
ar
X

iv
:1

71
0.

05
68

3v
2 

 [
m

at
h.

A
T

] 
 4

 M
ay

 2
01

8

COHEN–LENSTRA HEURISTICS FOR TORSION IN

HOMOLOGY OF RANDOM COMPLEXES

MATTHEW KAHLE, FRANK H. LUTZ, ANDREW NEWMAN, AND KYLE PARSONS

Abstract. We study torsion in homology of the random d-complex Y ∼
Yd(n, p) experimentally. Our experiments suggest that there is almost always
a moment in the process where there is an enormous burst of torsion in ho-
mology Hd−1(Y ). This moment seems to coincide with the phase transition
studied in [1, 20, 21] , where cycles in Hd(Y ) first appear with high probability.

Our main study is the limiting distribution on the q-part of the torsion
subgroup of Hd−1(Y ) for small primes q. We find strong evidence for a lim-
iting Cohen–Lenstra distribution, where the probability that the q-part is iso-
morphic to a given q-group H is inversely proportional to the order of the
automorphism group |Aut(H)|.

We also study the torsion in homology of the uniform random Q-acyclic
2-complex. This model is analogous to a uniform spanning tree on a com-
plete graph, but more complicated topologically since Kalai showed that the
expected order of the torsion group is exponentially large in n2 [14]. We give
experimental evidence that in this model also, the torsion is Cohen–Lenstra
distributed in the limit.

1. Introduction

The random d-complex Yd(n, p), introduced by Linial and Meshulam in [18], is
the probability space on d-dimensional simplicial complexes with vertex set [n] and
complete (d− 1)-skeleton, where each d-dimensional face is included independently
with probability p. A closely related model is Yd(n,m), which also has vertex set
[n] and complete (d − 1)-skeleton, and has exactly m d-dimensional faces, chosen

uniformly at random from all
(

( n

d+1)
m

)

possibilities.

The random complex Yd(n,m) is a generalization of the Erdős –Rényi random
graph G(n,m). By now, many topological properties of the random d-complex have
been studied [1, 2, 3, 12, 18, 20, 24, 22]. Many of these properties are monotone

properties which always have thresholds. Torsion in homology is a non-monotone
property, though, so even formulating well-posed questions requires a bit more care.

We regard the random d-complex as a discrete-time stochastic process, as follows.
At time m = 0, we start with the (d− 1)-skeleton of the simplex on n vertices, and
for each time m = 1, 2, . . . ,

(

n
d+1

)

, we add one face σ, chosen uniformly at random

from all remaining d-dimensional faces. Following the notation of [22], we let Yd(n)
denote the discrete-time stochastic process Yd(n) = {Yd(n,m) : 0 ≤ m ≤

(

n
d+1

)

}.
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We always assume that homology is with integer coefficients, unless otherwise
indicated. Our main interest is in the torsion in Hd−1(Yd(n)). Experimentally,
there is a short burst of huge torsion—an example run is shown in Table 1.

Table 1. The torsion burst for a single instance of Y2(75).

m H2 H1

2469 Z4 Z236

2470 Z4 Z235 × Z/2Z
2471 Z4 Z234 × Z/2Z
2472 Z4 Z233 × Z/2Z
2473 Z4 Z232 × Z/2Z
2474 Z4 Z231 × Z/2Z× Z/2Z
2475 Z4 Z230 × Z/2Z× Z/79040679454167077902597570Z
2476 Z5 Z230 × Z/2Z
2477 Z5 Z229 × Z/2Z
2478 Z6 Z229

The torsion burst seems closely related to the appearance of the first nontrivial
top-dimensional homology class, that is, the first homology class not represented
by an embedded copy of ∂∆d+1. In [1] and [20] a constant cd is described such that
p = cd/n is the sharp threshold for Hd(Yd(n, p),R) 6= 0. The connection between
the emergence of nontrivial top homology and torsion in the (d − 1)st homology
was mentioned in [22] where they make the following conjecture that there is no
torsion away from the phase transition. Additionally, [22] mentions conducting
experiments indicating torsion near the phase transition at cd/n. The torsion burst
was also observed for d = 2 in experiments examining the fundamental group of
random 2-complexes in [4].

Conjecture 1 ( Luczak and Peled [22]). For every d ≥ 2 and p = p(n) such
that |np− cd| is bounded away from 0, Hd−1(Yd(n, p);Z) is torsion-free with high
probability.

It may seem surprising that there is a simplicial complex on 75 vertices which
has the huge torsion we see in Table 1, and we don’t yet know why this torsion
appears, however the existence of small simplicial complexes with large torsion in
homology was known previously. Indeed, there is a canonical class of examples
which realizes this phenomenon. These complexes were first described by Kalai
in [14] and are called Q-acyclic complexes. A d-dimensional Q-acyclic complex is
defined to be a d-dimensional simplicial complex X with complete (d− 1)-skeleton,
(

n−1
d

)

d-dimensional faces, βd(X,Q) = 0, and βd−1(X,Q) = 0. Thus, Q-acyclic
complexes are higher dimensional generalizations of trees. However, unlike trees, d-
dimensional Q-acyclic complexes may have finite but nontrivial (d− 1)st homology
group.

In [14], Kalai gives a striking generalization of Cayley’s enumeration of spanning
trees, showing

∑

X∈T d(n)

|Hd−1(X)|2 = n(n−2

d ),
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where T d(n) is defined to be the collection of all d-dimensional Q-acyclic complexes
on n vertices. As a corollary to the main result, [14] shows that

E [|Hd−1(X)|] ≥ exp
(

Θ
(

nd
))

for X a uniform random Q-acyclic complex with d ≥ 2, and also points out that

|Hd−1(X)| ≤
√
d + 1

(n−2

d )
for any simplicial complex X having dimension d on n

vertices. So the existence of small complexes with large torsion in homology is
known, however, the reason for them to appear in Y2(n) remains a mystery.

2. Background on Cohen–Lenstra heuristics

Cohen–Lenstra heuristics refer to a family of probability distributions on finite
abelian groups, first appearing in [6] in the context of class groups of number
fields, in which the probability of each group G in the support of the distribution
is inversely proportional to |G|α|Aut(G)|β , for α ≥ 0 and β ≥ 0. Since Cohen–
Lenstra heuristics were first introduced they have appeared in number theory as
well as in various models of random integral matrix cokernels (see for example
[5, 6, 8, 11, 15, 23, 26, 27, 28]). The variety of settings in which Cohen–Lenstra
heuristics appear suggest they are a natural family of distributions on finite abelian
groups.

A Cohen–Lenstra heuristic of particular interest is the case where α = 0 and
β = 1. However, this does not give a distribution on the set of all finite abelian
groups. That is, it is well known that there is no distribution on the set of all finite
abelian groups so that for any such group G,

Pr(G) ∝ 1

|Aut(G)| .

A simple proof of this fact appears in, for example, Chapter 5 of [16]. However, if
one restricts to the family of p-groups Gp for any fixed prime p then there is such a
distribution so that the probability assigned to any p-group is inversely proportional
to the number of automorphisms of that group. Indeed, Cohen and Lenstra prove
in their original paper [6] that for a fixed prime p,

∑

G∈Gp

1

|Aut(G)| =
1

∏∞
i=1(1 − p−k)

.

This family of distributions on p-groups is the one we consider most often here.
However, in Section 3.3 we also discuss families of distributions with β = 1, but α
equal to a positive integer.

In the next section, we focus on the 2-dimensional process Y2(n) and experimen-
tally measure where the torsion burst occurs, how large the torsion group is at its
peak, and the Cohen–Lenstra heuristics which model the random groups within the
torsion burst. In Section 4, we discuss torsion in higher dimensions of the Linial–
Meshulam process. In Section 5, we experimentally measure both the size and
the distribution of the first homology groups of uniformly random 2-dimensional
Q-acyclic complexes. In Section 6, we make more refined conjectures about the
torsion burst.
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3. Random 2-complex experiments

3.1. Preliminaries. For n ∈ N, we run the stochastic process Y2(n) and compute
integer homology at each step, then output the largest torsion subgroup that ap-
pears in H1. If there are two or more nonisomorphic groups which attain the same
maximum size in the process, we take the first. We denote this randomly-generated
group LT (n).

We do not actually compute
(

n
3

)

rounds of integer homology computations. In-
stead we make a number of time-saving reductions. The first reduction is to consider
just a portion of the entire

(

n
3

)

-step process. From the comments of  Luczak and
Peled and their conjecture [22], as well as our very early experiments, the torsion
burst appears to occur around the top-dimensional homology threshold. Since [1]
and [20] show that c2/n is the sharp phase transition for top-dimensional homology
to emerge, we set our window to search for LT (n) around m∗ := ⌊ c2

n

(

n
3

)

⌋. The
exact window varied between different rounds of experiments, but based on our
most recent trials searching the window from m1 = m∗ − 100 to m2 = m∗ + 100
appears to almost always be sufficient to find the torsion burst.

Furthermore we are aided by the fact that we are looking for the largest torsion
group rather than, say, the first torsion group. If βi denotes the ith Betti number
over Q, we observe that the size of the torsion group can increase only when a face is
added which decreases β1, and can decrease only when β2 increases (this is because
H1(Y2(n,m + 1)) is a quotient of H1(Y2(n,m)) by the Mayer–Vietoris sequence).
Thus, if we compute β2 with real coefficients, at each stage in the window that we
search we only need to compute integer homology of Y2(n,m) if β2(Y2(n,m− 1)) =
β2(Y2(n,m)) < β2(Y2(n,m+ 1)). This seems to be a large reduction in the number
of integer homology computations. Before the phase transition, it is rare that β2

will increase and after the phase transition it is rare that it will not. This is made
precise by considering the homological shadow of Y2(n, p) described in [20] and [19].
We discuss the homological shadow in the final section.

Computing β1 or β2 with real coefficients or rational coefficients is faster than
computing full integer homology, however, the process of computing the rank of
the relevant boundary matrix typically results in the entries growing arbitrarily
large, so the process is still slow. To save time, we instead pick a large prime
q0 and compute β2 with Z/q0Z coefficients instead of computing β2 with rational
coefficients, and then we compute integer homology for all values of m for which
β2(Y2(n,m−1);Z/q0Z) = β2(Y2(n,m);Z/q0Z) < β2(Y2(n,m+1);Z/q0Z). We keep
the largest torsion group found in the first homology as LT (n). If there is a tie
between two non-isomorphic largest torsion groups of the same size, we keep the
first one as LT (n). In practice, ties like this never occurred.

Example 1. We run our implementation of LT (n) with n = 60 and q0 = 10007.
First, the predicted place for torsion to appear is computed as m∗ = ⌊ c2

60

(

60
3

)

⌋. This
value is 1570; so we set the window to be from m1 = 1470 to m2 = 1670. Now we
generate a random 2-complex on 60 vertices with 1670 2-dimensional faces which are
randomly ordered. This random ordering gives us the first 1670 steps in an instance
of Y2(60). Now we do a binary search to find all values of m between 1471 and 1669
so that β2(Y2(60,m − 1);Z/10007Z) = β2(Y2(60,m);Z/10007Z) < β2(Y2(60,m +
1),Z/10007Z). In this particular instance there happened to be two such values
of m, 1543 and 1545. Finally we compute integer homology of Y2(60, 1543) and
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Y2(60, 1545) and compare the torsion parts which are Z/66911823408Z and Z/4Z,
respectively. The output therefore is Z/66911823408Z.

We ran our code for these Linial–Meshulam experiments in GAP by implement-
ing an algorithm of Benedetti and Lutz [4] to find a Morse matching (in the sense
of discrete Morse theory [10]). After finding a Morse matching, we build the top-
dimensional boundary matrix for the resulting CW-complex using standard tech-
niques and then use the built-in linear algebra functions of GAP to compute integer
homology or homology with respect to finite field coefficients from the boundary
matrix.

As in other models of random abelian groups such as those studied in [6, 11,
28, 26], a reasonable conjecture is that for a fixed prime q, the Sylow q-subgroup
of LT (n) is distributed according to a Cohen–Lenstra distribution. Based on our
data we make the following conjecture.

Conjecture 2. For a fixed prime q, the Sylow q-subgroup of LT (n) is asymp-
totically distributed according to the Cohen–Lenstra distribution which assigns

probability

∏∞
k=1(1 − q−k)

|Aut(G)| to any q-group G.

To be more precise about the type of convergence, we conjecture that for any
fixed prime q, the Sylow q-subgroup of LT (n) converges in distribution to the
Cohen–Lenstra heuristic given in the statement of Conjecture 2.

3.2. Experiments and Results. For our experiments we ran LT (n) enough times
so that we generated 10,000 nontrivial abelian groups. We do not think omitting
trials where LT (n) returns the trivial group changes our data too much, and con-
sider such a situation an error state for our experiments. There are three reasons
why LT (n) might return the trivial group:

(1) There is no torsion burst.

(2) There is a torsion burst, but it occurs before or after the window that we
search, so we miss it.

(3) There is q0-torsion which affects our search process since in this case the
Betti number β(Y2(n,m);Z/q0Z) is not always equal to β2(Y2(n,m);Q).

Since we do not do anything to distinguish between these three possibilities we just
omit and replace trials with LT (n) = 1. We do not believe this has a significant
impact on our data. The simplest reason is that it is rare that LT (n) returns
the trivial group. In the trials on 50 vertices, only about 5% returned the trivial
group (that is 500 of the initial 10,000 trials returned the trivial group and were
replaced with 500 new trials all of which returned nontrivial groups), and that the
proportion dropped significantly as n increased all the way to less than 0.1% for
trials on 125 vertices. Moreover, for our experiments here we used q0 = 10007,
and so if our conjecture is true, we only expect to miss the torsion burst due to the
presence of q0-torsion in about 0.01% of trials. Finally, the conjectured distribution
is a distribution on the q-part of LT (n) for a fixed prime q. This distribution can
not be extended in the naive way to a distribution on all finite abelian groups that
assigns a well defined probability to every finite abelian group, but see [16] for
a discussion of global Cohen–Lenstra heuristics. In this probability distribution,
the trivial group has probability zero. Based on our conjecture and the evidence
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Table 2. The empirical ratio of the probability that LT (n) has
trivial 2-part to the probability of the given 2-group, compared to
the predicted ratio from the Cohen–Lenstra distribution (10,000
trials for each n).

2-Subgroup n = 50 n = 60 n = 75 n = 100 n = 125 Predicted

Trivial Group 1 1 1 1 1 1
Z/2Z 0.9045 1.0364 0.9752 0.9965 1.0076 1
Z/4Z 1.8822 1.9795 2.0063 2.0314 2.0423 2
Z/8Z 3.8530 4.3975 3.8548 4.2812 4.2525 4
Z/2Z× Z/2Z 5.3591 5.6712 6.0705 5.8846 5.9958 6
Z/2× Z/4Z 6.4772 7.6464 7.4177 8.2820 7.9560 8
Z/16Z 7.2026 7.6666 7.1561 7.3040 7.3316 8
Z/2× Z/8 13.1756 14.6363 14.9526 17.5120 13.7251 16
Z/32Z 15.3466 16.8488 16.2342 19.9109 14.6262 16

Table 3. The empirical ratio of the probability that LT (n) has
trivial 3-part to the probability of the given 3-group, compared to
the predicted ratio from the Cohen–Lenstra distribution (10,000
trials for each n).

3-Subgroup n = 50 n = 60 n = 75 n = 100 n = 125 Predicted

Trivial Group 1 1 1 1 1 1
Z/3Z 1.9622 1.9277 2.0334 1.9381 2.0482 2
Z/9Z 6.0997 5.8486 5.9510 6.0010 5.9337 6
Z/27Z 17.4937 17.8290 17.0212 17.8295 17.8012 18
Z/3Z× Z/3Z 44.1507 44.9349 47.8632 42.0075 47.8220 48
Z/81Z 47.1440 54.7227 54.3689 56.5816 64.8620 54

in favor of it, we expect that asymptotically almost surely, Y2(n) has no torsion
burst.

Our conjecture gives a prediction for how likely a particular q-group is to appear,
for any particular prime q. In Tables 2, 3, and 4, we summarize how closely our
empirical distribution is to the conjectured Cohen–Lenstra distribution for q = 2,
3, and 5, respectively. Since the conjecture is that the probability of a group is
inversely proportional to the size of its automorphism group, Tables 2, 3, and 4
show for a given group G the observed ratio of the number of instances where the
Sylow q-group of LT (n) was trivial to the number of instances where the Sylow
q-group of LT (n) was isomorphic to G. This observed ratio from our experiments
is compared with the conjectured ratio in Table 2. For example, Z/2Z×Z/2Z has
six automorphisms, so under the limiting conjectured distribution LT (n) should
have trivial Sylow 2-subgroup six times as often as it has Z/2Z×Z/2Z as its Sylow
2-subgroup.
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Table 4. The empirical ratio of the probability that LT (n) has
trivial 5-part to the probability of the given 5-group, compared to
the predicted ratio from the Cohen–Lenstra distribution (10,000
trials for each n).

5-Subgroup n = 50 n = 60 n = 75 n = 100 n = 125 Predicted

Trivial Group 1 1 1 1 1 1
Z/5Z 4.1215 4.1488 4.1628 4.0488 3.9284 4
Z/25Z 20.4866 20.7777 20.1259 19.5384 20.2080 20

For these 10,000 trials, we also computed the total variation distances between
the empirical distributions coming from our data sets and the conjectured distribu-
tion for primes q = 2, 3, 5, . . . , 23. We do not include a table of these computations,
since all the distances were less than 0.03.

In addition to experimentally establishing Cohen–Lenstra heuristics, we were also
interested in how large these torsion groups can be compared to the number of ver-
tices in the simplicial complex. It is known from [14] that on average d-dimensional
Q-acyclic complexes have groups of size exp(Θ(nd)) as their codimension-1 homol-
ogy groups, and that the maximum size of the codimension-1 homology group of a
Q-acyclic complex is also bounded by exp(Θ(nd)). So indeed the torsion subgroup
in the first homology group of a 2-dimensional complex on n vertices can be of
order exp(Θ(n2)). From the data collected for n = 50, 60, 75, 100, and 125 we
summarize the average size of log(|LT (n)|) across all 10,000 trials for each value of
n and give the results in Table 5. In this table and in all future tables, values of
the form µ± σ refer to the empirical mean µ and the standard deviation σ of the
statistic labeled by the column heading.

Table 5. Order of log(|LT (n)|) for 10,000 trials for each value of n.

n log(|LT (n)|)

50 12.4683 ± 4.2591
60 28.5229 ± 5.1663
75 64.8400 ± 6.1673

100 156.6246 ± 15.5111
125 291.0269 ± 11.8643

Using the data of the third column in Table 5 we found a best-fit quadratic
function of 0.0328109n2 − 2.0328n + 32.2885. To test this model, we ran a few
trials of LT (n) for different values of n and compared the average of log(|LT (n)|)
found in these trials to the size predicted by the quadratic regression. As in other
experiments we omitted trials where LT (n) returned the trivial group. Table 6
shows the results.
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Table 6. Predicted and empirical size of log(|LT (n)|).

n Number of Trials Predicted Size of log(|LT (n)|) Empirical Size of log(|LT (n)|)

150 100 465.614 464.743
175 25 681.382 685.413
200 2 938.164 948.902
250 1 1574.770 1590.538
260 1 1721.780 1742.036
270 1 1875.350 1889.057

Additionally, we examined when the largest torsion group appeared. In Table 7
we summarize 1000 trials at each value of n and record the average number of
faces in the complex when the largest torsion group appeared. In order to quantify
how close this is to the asymptotic homological phase transition, the third column,
labeled c, gives a number determined by the number of vertices n and the (average)
number of faces f in the following way:

c :=
nf
(

n
3

) =
3f
(

n−1
2

) .

This formula comes from the fact that the expected number of faces in Y ∼
Y2(n, c/n), where c is a constant, is

E[f(Y )] =
c

n

(

n

3

)

=
c

3

(

n− 1

2

)

,

by taking E[f(Y )] to be the empirical average given in the second column. Thus,
to see that the torsion burst corresponds to the homological phase transition we
look for the number in the third column to be close to the constant c2 as defined
exactly in [3], and which to four decimal places is 2.7538. Therefore, we have
strong evidence here pointing to the torsion burst occurring just before the phase
transition.

Table 7. Number of faces when the largest torsion group appeared.

Vertices Number of Faces c

50 1061.413 ± 12.8200 2.70769 ± 0.0327
60 1548.091 ± 15.0146 2.71436 ± 0.0263
70 2128.227 ± 18.3770 2.72152 ± 0.0235
80 2798.862 ± 19.8927 2.72528 ± 0.0193
90 3562.576 ± 22.4019 2.72925 ± 0.0172

100 4415.850 ± 24.6725 2.73089 ± 0.0153
110 5362.723 ± 27.4617 2.73330 ± 0.0140

3.3. Other Cohen–Lenstra heuristics in the torsion burst. To this point,
we have focused our attention only on the largest group in the torsion burst in
an instance Y2(n) of the stochastic Linial–Meshulam process. However, as Table 1
shows, it is also possible (and common) for other torsion groups to appear within
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the torsion burst. In this section we discuss experimental evidence and establish
conjectures for Cohen–Lenstra heuristics in these other torsion groups.

So far, we have understood the phrase “torsion burst” to refer to the apparent
torsion in homology around the time that the first nontrivial cycle appear. For our
experiments above this understanding is sufficient. Here though, it is helpful to
have a precise definition of the torsion burst in Yd(n).

Definition 1. Given an instance of Yd(n) let LT (n) refer to the largest torsion
group which appears in Hd−1(Yd(n,m)), where ties between nonisomorphic torsion
groups of maximum size are broken by the group which appears first in the stochas-
tic process. Let m0 be the first time LT (n) appears in the codimension-1 homology
group over Yd(n). The torsion burst of Yd(n) is the unique maximal consecutive
set of states B in Yd(n) so that Y (n,m0) ∈ B and every state in B realizes torsion
in codimension-1 homology. The duration of the torsion burst is |B|.

Given an instance Y2(n) which has a torsion burst, let G0 = LT (n) and let m0 be
the first place where G0 appears in the first homology group. Starting from m0, we
successively inspect the torsion parts of H1(Y2(n,m0 − 1)), H1(Y2(n,m0 − 2)), . . .
The first group we find different from G0 we denote by G−1, the second group we
find different from the previously recorded groups G0 and G−1 we denote by G−2,
etc., until we get the trivial group as G−l for some l. For each 0 < k ≤ l we refer to
G−k as the kth subcritical torsion group. For k > l, we say that the kth subcritical
torsion group is undefined.

Similarly, we can define the kth supercritical torsion group. Starting again with
G0 = LT (n) and m0 the first place LT (n) appears in the first homology group,
successively inspecting the torsion parts of H1(Y2(n,m0+1)), H1(Y2(n,m0+2)), . . .
allows to define groups G1, G2, . . . , until the trivial group is reached as Gl′ for
some l′.

Note that, on the formal level, our definition is not symmetric for the subcritical
and the supercritical torsion groups, as the search for new groups always begins
at m0 where LT (n) appears for the first time. In fact, in Table 1 there is exactly
one occurrence of LT (n), but in other cases we saw LT (n) persisting for a couple
of steps, so choosing m0 as the step where LT (n) appears for the last time would
also be an option. Most instances of the torsion burst in Y2(n) we saw in our
experiments are unimodal in the sense that before we reach LT (n) the size of the
torsion group is monotone increasing (though not strictly increasing), and that after
we reach LT (n) the size of the torsion group is monotone decreasing. Moreover, for
a unimodal torsion burst we see that the subcritical groups are iterative subgroups
of LT (n) and the supercritical groups are iterative quotients of LT (n). This can
be checked routinely by the Mayer–Vietoris sequence.

It is possible that the torsion burst could be non-unimodal or there could even
be cases where the torsion appears, disappears, and reappears again, which means
that we inspect only the component that contains (the first occurrence of) LT (n),
but such cases are rare. This is why we include the condition of “consecutive” in
the definition of the torsion burst.

For a particular unimodal instance of Y2(n), let G−(Y2(n)) denote the num-
ber of defined, nontrivial subcritical groups, and let G+(Y2(n)) denote the num-
ber of defined, nontrivial supercritical groups. We will call the value G(Y2(n)) =
G−(Y2(n)) + G+(Y2(n)) + 1 the number of phases in the torsion burst of Y2(n), if
the torsion burst exists and is unimodal (where we might miss cases where torsion
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groups reappear). Note that the “+1” in the formula for G(Y2(n)) comes from
adding one to count LT (n).

Counting the number of phases is slightly different than counting the number
of distinct torsion groups within the torsion burst. In counting just the number
of phases we ignore the duration of any particular group, but we will count a
group twice if it appears before and after LT (n). Furthermore, we extend these
definitions to non-unimodal torsion bursts. In that case the number of subcritical
and the number of supercritical groups are counted with multiplicity in case some
group isomorphism class appears as Gi and Gj for different i and j, even if i and
j are both positive or both negative. The number of phases is defined in the exact
same way in either case.

Example 2. In the instance of Y2(75) shown in Table 1, the largest torsion group
is Z/2Z × Z/79040679454167077902597570Z, the first subcritical torsion group is
Z/2Z × Z/2Z, the second subcritical torsion group is Z/2Z, the third subcritical
torsion group is the trivial group, and for every k ≥ 4, the kth subcritical group
is undefined. On the other side, the first supercritical torsion group is Z/2Z, the
second supercritical torsion group is trivial, and all higher supercritical torsion
groups are undefined. The number of phases in this instance of Y2(75) is four. We
observe that the number of phases is different than the number of distinct groups
since Z/2Z is both the first supercritical torsion group and the second subcritical
torsion group.

To examine the smaller torsion groups in homology, we ran 10,000 trials at n = 60
and recorded the entire torsion burst. Based on the data collected we make the
following conjectures.

Conjecture 3. For k ∈ N, let λk denote the probability distribution on the set of

all abelian groups which assigns probability proportional to
1

|G|k|Aut(G)| to each

finite abelian group G. Then for each k, the conditional distribution on the kth
subcritical torsion group of Y2(n) given that it exists converges to λk.

Conjecture 4. Let λk be as above. For each k, the conditional distribution on the
kth supercritical torsion group of Y2(n) given that it exists converges to λk.

Note that for these conjectures it is not necessary to restrict to the q-part of the
subcritical or supercritical group. The distribution which we claim is known to be
a probability distribution on the set of all finite abelian groups. Indeed, this distri-
bution appears for example in [6, 15, 28, 26]. For any k ≥ 1, the constant of propor-
tionality for λk is known to be

∏

p prime

∏∞
i=k+1(1 − 1/p−i) =

∏∞
i=k+1 ζ(i)−1 < ∞,

where ζ denotes the Riemann zeta function.
Observe the symmetry between the two conjectures. For each k, we conjecture

the same limiting conditional distribution for k-subcritical and for k-supercritical
torsion groups. There is no immediately obvious reason for this symmetry. Indeed,
as we pointed out above, in the unimodal case, the subcritical torsion groups are
iterated subgroups of LT (n) and the supercritical torsion groups are iterated quo-
tients, so a priori they could behave quite differently. Nevertheless, our conjectures
point to a remarkable symmetry.

Tables 8, 9, and 10 summarize the results of 10,000 trials at n = 60 and compares
them to the conjectured Cohen–Lenstra distributions by providing the ratios of
the number of instances a particular sub- or supercritical group was trivial to the
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Table 8. Observed ratios for the first subcritical torsion group
and the first supercritical torsion group for 10,000 instances of
Y2(60), and a comparison to the conjectured limiting ratios.

Group 1st Subcritical Group 1st Supercritical Group Cohen–Lenstra Ratio

Trivial Group 1 1 1
Z/2Z 1.9482 2.0793 2
Z/3Z 5.7533 6.4367 6
Z/4Z 7.7613 8.0608 8
Z/6Z 11.9222 11.3984 12
Z/5Z 18.1864 21.1449 20
Z/2Z× Z/2Z 23.3261 21.9950 24
Z/8Z 35.7667 30.3958 32
Z/10Z 36.3729 36.7815 40
Z/7Z 42.4950 38.0609 42
Z/12Z 49.3333 42.0865 48
Z/9Z 54.3291 54.0370 54
Z/2Z× Z/4Z 58.7945 61.6479 64
Z/14Z 93.3043 91.1875 84

Table 9. Observed ratios for the second subcritical torsion group
and the second supercritical torsion group for 10,000 instances of
Y2(60), and a comparison to the conjectured limiting ratios; there
were 5,708 trials where the second subcritical torsion group was de-
fined and 5,623 trials where the second supercritical torsion group
was defined.

Group 2nd Subcritical Group 2nd Supercritical Group Cohen–Lenstra Ratio

Trivial Group 1 1 1
Z/2Z 5.2907 4.7272 4
Z/3Z 26.3274 23.5833 18
Z/4Z 39.4911 39.3056 32
Z/6Z 107.8780 108.8462 72
Z/2Z× Z/2Z 126.3714 92.2826 96
Z/5Z 152.5172 132.6563 100

number of instances where it was a particular group, for common groups, as in
Tables 2, 3, and 4. For each k, we condition on the event that the kth sub- or
the kth supercritical group exists, the data in the tables reflects this. Now, the
differences between the observed and conjectured ratios are larger in the Tables 8,
9, and 10, especially in Table 9 and 10, than in the Tables 2, 3, and 4, but this
can be explained by the sample size and the high concentration of instances of the
trivial group. As further evidence for our conjecture, we found the total variation
distance between the empirical distribution and the conjectured distribution for the
subcritical and supercritical groups to be less than 0.06 in all cases.
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Table 10. Observed ratios for the third subcritical torsion group
and the third supercritical torsion group for 10,000 instances of
Y2(60) and a comparison to the conjectured limiting ratios; there
were 1,285 trials where the third subcritical torsion group was de-
fined and 1,378 trials where the third supercritical torsion group
was defined.

Group 3rd Subcritical Group 3rd Supercritical Group Cohen–Lenstra Ratio

Trivial Group 1 1 1
Z/2Z 11.0866 10.9206 8
Z/3Z 104.8182 77.1250 54

Finally, a related statistic is the duration of the torsion burst. Before presenting
the experimental data, we note that Conjectures 3 and 4 imply something about
the duration of the torsion burst. Namely Conjecture 3 (resp. Conjecture 4) implies
that there is a positive probability the kth subcritical (supercritical) torsion group
is defined for any fixed k, provided there is a positive probability there is a torsion
burst. This is straightforward to compute. Let p0 denote the asymptotic probability
that Y2(n) has a torsion burst (assuming such a probability exists). For k ≥ 1, let
pk denote the asymptotic probability that the kth subcritical torsion group of Y2(n)
is nontrivial conditioned on the event that it exists. By Conjecture 3, pk > 0 for all
k ≥ 1, in fact, pk = 1 −∏∞

i=k+1 ζ(i)−1. Let qk denote the asymptotic probability
that Y2(n) has a kth subcritical torsion group. Clearly, Y2(n) has a kth subcritical
torsion group if and only if it has a nontrivial (k − 1)st subcritical torsion group.
Thus we have the following recurrence qk = pk−1 · qk−1, and q1 = p0 since a torsion
burst implies that there is a nontrivial largest torsion group, so there is a defined
first subcritical torsion group. Thus, if p0 > 0 then qk > 0 for every positive
integer k.

Moreover, by linearity of expectation the asymptotic expected number of positive
integers k so that Y2(n) has a kth subcritical torsion group is given by

∞
∑

i=1

qi =
∞
∑

i=1

i−1
∏

j=1

pj .

Assuming Conjecture 3, this sum converges since pk → 0 as k → ∞. The same
would hold for the supercritical torsion groups as well. Thus, we may compute the
expected number of phases in the torsion burst. Since G−(Y2(n)) does not count
the trivial subcritical torsion group we have

lim
n→∞

E[G−(Y2(n))] =

(

∞
∑

i=1

qi

)

− 1.

The same expectation would hold for G+(Y2(n)). Thus the expected number of
phases, assuming Conjectures 3 and 4 and that the torsion burst occurs with high
probability, is asymptotically given by:
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Table 11. Durations of the torsion burst (1000 trials for each n).

Vertices Duration Number of Phases

50 6.882 ± 6.087 2.509 ± 1.215
60 6.019 ± 6.494 2.438 ± 1.212
70 5.788 ± 6.856 2.455 ± 1.213
80 5.229 ± 4.533 2.398 ± 1.205
90 5.094 ± 4.000 2.394 ± 1.146

100 5.205 ± 6.710 2.440 ± 1.173
110 5.097 ± 4.232 2.426 ± 1.176

lim
n→∞

E[G(Y2(n))] = 2

(

∞
∑

i=1

qi

)

− 2 + 1 = 2





∞
∑

i=1

i−1
∏

j=1



1 −
∞
∏

k=j+1

ζ(k)−1







− 1.

A reasonable approximation for this value is 2.49524.
To collect data on the duration of the torsion burst experimentally we ran 1000

trials at n = 50, 60, 70, 80, 90, and 100. Table 11 summarizes the results. Ad-
ditionally, we should compare the number of phases in the torsion burst with the
number predicted by the Cohen–Lenstra heuristics given above.

We notice that the average duration of the torsion burst decreases with n. This,
together with the conjectured asymptotic number of phases, suggests that the du-
ration in Y2(n) for which a particular nontrivial torsion group in the first homology
group persists depends on n. There are a few trivial conditions which imply that the
torsion part of H1(Y2(n,m)) is isomorphic to the torsion part of H1(Y2(n,m+ 1)),
which depend on n. For example, if the (m + 1)st face completes the boundary of
a tetrahedron then it will not change the torsion in homology. Similarly, if an edge
of the (m + 1)st face was isolated in Y (n,m) then the torsion in homology would
not change. In the density regime we are interested in, the number of possible faces
which complete a tetrahedron is expected to be O(n), and the expected number
of isolated edges is O(n2). Thus, at any stage in this regime the probability that
we add a face which completes a tetrahedron is O(n−2), and the probability we
add a face which covers an isolated edge is O(n−1), so both of these probabilities
go to zero with n. This gives a partial explanation for why a particular nontrivial
torsion group is asymptotically unlikely to persist for more than one state, but the
full picture remains unclear.

4. Torsion in higher-dimensional complexes

So far all of our experiments have been in the Linial–Meshulam model with
d = 2. The next step would be to see what happens in higher dimensions. It is not
immediately obvious that the same torsion burst should occur in higher dimension.
For one, the 2-dimensional case has a nontrivial fundamental group, and so the
torsion in the first homology group could be coming from the fundamental group.
In higher dimensions, the random complex is simply-connected, and so one might
expect that something completely different happens here.
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On the other hand, as [20] points out, Yd(n, c/n) has a phase transition with
regard to Euler characteristic at c = cd in the sense that when c < cd one has that
the pure part of the complex X obtained by collapsing Yd(n, c/n) as far as possible
has negative Euler characteristic, whereas for c > cd this pure part of the complex
obtained by performing all possible collapses has positive Euler characteristic. So
perhaps torsion appears at the moment the Euler characteristic of this “essential
core” reaches one, because at that point we have something that is close to a Q-
acyclic complex, which, as we mentioned above, typically have large torsion in
homology, by a result of [14]. In this case we might expect that the torsion burst
is a general phenomenon in higher dimensions, and early evidence suggests this is
correct. Tables 12, 13, and 14 show results of a single trial each in 3, 4, and 5
dimensions, respectively.

Table 12. Homology groups of one instance of Y3(25).

Faces H3 H2

1949 Z4 Z79

1950 Z4 Z78 × Z/6Z
1951 Z4 Z77 × Z/7780167918307023583785903521760Z
1952 Z5 Z77 × Z/5Z
1953 Z6 Z77

Table 13. Homology groups of one instance of Y4(17).

Faces H4 H3

1787 Z10 Z43

1788 Z10 Z42 × Z/2Z
1789 Z10 Z41 × Z/2Z
1790 Z10 Z40 × Z/2Z
1791 Z10 Z39 × Z/49234986784469188898774Z
1792 Z11 Z39

Table 14. Homology groups of one instance of Y5(16).

Faces H5 H4

2972 Z6 Z37

2973 Z6 Z36 × Z/1147712621067945810235354141226409657574376675Z
2974 Z7 Z36

We point out here, using the results of [1] and [20], that for the Tables 12,
13, and 14 the expected number of faces when homology emerges are 1,976.94,
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1,805.44, and 2,992.99, respectively. So it still seems probable in higher dimensions
that torsion in codimension-1 homology occurs immediately before the emergence
of nontrivial top-dimensional homology.

In addition to the Linial–Meshulam model we also tried to compute torsion in
homology of the stochastic process on random clique complexes. Recall that the
clique complex of a graph G is the largest simplicial complex having G as its 1-
skeleton, i.e., the d-dimensional simplices are exactly the d-cliques in G. In the
stochastic model one edge is added at a time and homology of the resulting clique
complex is computed at each step. However, in running this process on up to 100
vertices several times we never found any torsion in the clique complex model.
Perhaps this is not too surprising. In the Linial–Meshulam model, torsion seems to
vanish very quickly.

This suggests that many of the empty triangles are cycles which have finite
order in the first homology group, so a randomly selected one is likely to drop the
torsion. In contrast, in the clique complex model, there are no empty triangles
to be torsion cycles. Additionally, there are

(

n
d+1

)

steps in the Linial–Meshulam
stochastic model and the torsion burst seems to only last for a few faces, but the
clique complex stochastic model only has

(

n
2

)

steps, so it could be in some sense
too coarse to detect torsion.

5. Random 2-trees

In this section, we study uniform random 2-trees in the 2-skeleton of the simplex
on n vertices. These are 2-dimensional analogues of uniform spanning trees on
complete graphs on n vertices.

A 2-dimensional simplicial complex T is a 2-tree if T has a complete 1-skeleton,
H1(T,Q) = 0, and H2(T,Q) = 0.

2-trees are also called Q-acyclic complexes. They were first studied topologi-
cally and combinatorially by Kalai [14], who showed as a corollary of his higher-
dimensional Cayley’s theorem that the expected order of the torsion part of H1(T,Z)
for a uniform random 2-tree on n vertices is enormous. It is at least exp(cn2) for
some constant c > 0.

Little else seems to be known about the topology of random 2-trees. It is appar-
ently an open problem even to show that, with high probability, these complexes
are not contractible. Our experiments suggest that there is almost always nontrivial
torsion in homology, and that the torsion group is Cohen–Lenstra distributed.

5.1. Markov chains. We review a few basic facts and definitions about Markov
chains. Consider a discrete Markov chain with state space A and transition matrix
P . We call the Markov chain irreducible if for all pairs of states a1, a2 ∈ A, there
exists an integer k ≥ 0 such that P k

a1,a2
> 0. That is, the Markov chain is irreducible

if it is possible to transition from any state to any other state in finite time. A
state a ∈ A is lazy provided Pa,a > 0, that is, if there is positive probability of
not transitioning from a when the current state is a. The Markov chain is called
regular provided there exists k′ > 0 such that for all a1, a2 ∈ A, P k′

a1,a2
> 0 (note

the difference with the definition of irreducible). It is easy to see that a finite,
irreducible Markov chain with at least one lazy state is regular. A distribution
π on the state space A satisfies detailed balance provided for all pairs of states
a1, a2 ∈ A, Pa1,a2

πa1
= Pa2,a1

πa2
. It is well known (see, for example [17]) that

given a finite, regular Markov chain with state space A, transition matrix P , and
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distribution π on A satisfying detailed balance, π is the unique limit distribution
of the Markov chain given any initial distribution. That is, given any distribution
π̃ on A,

lim
n→∞

Pnπ̃ = π.

We will use these basic facts about Markov chains to demonstrate that the chain
we build on the set T 2(n) of all 2-dimensional Q-acyclic complexes on n vertices
approximately samples from the uniform distribution on T 2(n).

We implement a Markov chain on the state space T 2(n) in the following way.
Given T ∈ T 2(n), uniformly choose σ ∈ f2(T ) and τ ∈ f2(K2

n)\f2(T ). Let T ′ be the
subcomplex of K2

n with all the same cells as T , except f2(T ′) = (f2(T )\{σ})∪{τ}.
If T ′ ∈ T 2(n) then the Markov chain transitions to T ′ otherwise it remains at T .
Call the transition matrix for this Markov chain P . Note that |f2(T )| =

(

n−1
2

)

and

|f2(K2
n) \ f2(T )| =

(

n
3

)

−
(

n−1
2

)

=
(

n−1
3

)

. We see then that P is given by

PT1,T2
=















1

(n−1

2 )(n−1

3 )
, |f2(T1) △ f2(T2)| = 2,

0, |f2(T1) △ f2(T2)| > 2,

1 −∑T 6=T1
PT1,T , T1 = T2.

Since PT1,T2
= PT2,T1

we know that the uniform distribution on T 2(n) satisfies
detailed balance and further since T 2(n) is the collection of maximal independent
sets of a matroid the exchange principle shows the Markov chain is irreducible.
Note finally that there are subcomplexes Y of K2

n with |f2(Y )| =
(

n−1
2

)

that

are not in T 2(n). For example, any subcomplex of K2
n with complete 1-skeleton

that contains within its 2-faces a 2-cycle such as the boundary of the tetrahedron
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}. This gives us that there is at least one (in
reality many more than one) T ∈ T 2(n) with PT,T > 0. Thus the Markov chain
has states that are lazy with positive probability and so is regular. Given that it
is irreducible, regular, and the uniform distribution satisfies detailed balance, we
can conclude that the uniform distribution is the unique limiting distribution for
any initial distribution. Thus our Markov chain will sample approximately from
the uniform distribution on T 2(n).

Sampling from the uniform distribution on T 2(n) and then applying H1(−,Z)
yields a distribution π(n) on finite abelian groups. Taking finitely many samples
from the Markov chain on T 2(n) and applying H1(−,Z) gives an empirical distribu-
tion π̃(n) that approximates π(n). We will analyze if π(n) also appears to conform
to the Cohen–Lenstra heuristics. Mirroring our work on the Linial–Meshulam model
we look only at the p-part of our distribution. That is, for every prime p we have a
distribution on p-groups, πp(n), given by sampling a group from π(n) and looking
at its Sylow p-subgroup. The corresponding empirical distributions will be denoted
π̃p(n).

5.2. Experiments and Results. Apparently, the question of whether the bases-
exchange Markov chain mixes quickly for every matroid is a well-known open ques-
tion in probability [25]. The Markov chain mixes quickly for “balanced” matroids
[9] where matroid elements are negatively correlated, but unfortunately the 2-tree
matroid we study is not balanced. On 6 vertices, for example, there are 46620
2-dimensional Q-acyclic complexes. Half of these contain the face [1, 2, 3], and half
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Table 15. 2-subgroups of the torsion in random Q-acyclic complexes

Group n = 50 n = 60 n = 75 n = 100 Conjectured Ratio

No 2-torsion 1 1 1 1 1
Z/2Z 0.938748 1.024867 0.986878 1.020466 1
Z/4Z 1.909153 1.997922 2.000000 1.893910 2
Z/8Z 3.879720 3.841545 4.082857 3.881879 4
Z/2Z× Z/2Z 5.503968 5.747012 5.614931 6.426667 6
Z/16Z 7.397333 7.904110 8.073446 8.406977 8
Z/4Z× Z/2Z 7.149485 8.266476 7.916898 7.630607 8
Z/32Z 14.373057 15.104712 14.148515 14.830769 16
Z/8Z× Z/2Z 15.158470 16.485714 16.713450 15.221053 16

contain the face [4, 5, 6]. However, 11664 contain both. So the probability that a
uniform random 2-tree on 6 vertices contains [1, 2, 3] and [4, 5, 6] is

11664/46620 > 1/4,

contradicting negative correlation.
We ran the Markov chain until time 2t0 where t0 was the first time that the

edge degrees was a set of consecutive integers without gaps. This was a somewhat
arbitrary choice, but based on the intuition that the degrees would all get closer to
concentrated around their expected value. Even though we are not aware of any
rigorous results on the mixing time of our Markov chain, our experiments makes us
guess that at least the torsion may already be close to its limiting distribution by
this point.

We conjecture the same Cohen–Lenstra distribution for torsion in the random
2-tree that we conjectured for the torsion burst in the Linial–Meshulam model.

Conjecture 5. For a fixed prime q, the Sylow q-subgroup of H1(X), where X is
drawn uniformly from T 2(n), is asymptotically distributed according to the Cohen–

Lenstra heuristic which assigns probability

∏∞
k=1(1 − q−k)

|Aut(G)| to any q-group G.

The resulting homology groups are torsion groups by construction, and even
though we conjecture the same limiting distribution, the groups we found for ran-
dom 2-trees were somewhat larger than the torsion groups we found in the Linial–
Meshulam process. For example, the average order of the torsion group for our
experiments on 100 vertices is 9.92 · 1096, with a standard deviation of 3.99 · 1098.

We generated Q-acyclic complexes on 50, 60, 75, and 100 vertices as described
above. Then for small primes q we calculated the q-part of the first homology of the
complexes. For a few of the more common groups Tables 15, 16, and 17 compare for
each p-group G the ratio of instances where the Sylow q-subgroup was isomorphic
to G to the number of instances where the Sylow q-subgroup was trivial, as in
Tables 2, 3, and 4. For each value of n we generated 10,000 Q-acyclic complexes.

We estimated the total variation distances between the empirical distributions
coming from our data sets and the conjectured distributions for primes q = 2, 3, 5, . . . , 23;
for n = 100, all these distances were less than 0.04.
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Table 16. 3-subgroups of the torsion in random Q-acyclic complexes

Group n = 50 n = 60 n = 75 n = 100 Conjectured Ratio

No 3-torsion 1 1 1 1 1
Z/3Z 2.030946 1.965724 1.987892 1.940909 2
Z/9Z 6.222712 5.988159 5.900634 5.924226 6
Z/27Z 18.565789 17.116923 17.443750 17.678344 18
Z/3Z× Z/3Z 52.259259 47.956897 40.158273 46.647059 48
Z/81Z 49.946903 58.557895 64.160920 52.866667 54

Table 17. 5-subgroups of the torsion in random Q-acyclic complexes

Group n = 50 n = 60 n = 75 n = 100 Conjectured Ratio

No 5-torsion 1 1 1 1 1
Z/5Z 4.068060 3.874423 4.242123 4.186783 4
Z/25Z 18.514634 21.055710 18.358852 20.334218 20

6. A hitting time conjecture in the Linial–Meshulam model

At this point we briefly review what is known about the Linial–Meshulam model
in the p = c/n regime. In [1] and [20], a one-sided sharp threshold of p = cd/n is
established for the property that Hd(Yd(n, p)) 6= 0, with cd a constant depending
only on d and explicitly given in [1]. We do not give the precise definition of cd here,
but c2 ≈ 2.75383. Beyond this, however, [20] says more about how the complex
changes at cd/n. We have the following theorems:

Theorem 1. [20, Theorem 1.1] For c < cd, with high probability, Hd(Y ) is gener-

ated by a bounded number of copies of the boundary of the (d + 1)-simplex.

Theorem 2. [20, Theorem 1.3] For c > cd, let tc be the smallest positive root of

t = e−c(1−t)d. Denote βd = dimHd(Yd(n, c/n),R). With high probability,

βd = (1 + o(1))

((

n

d

)(

ctc(1 − tc)
d +

c

d + 1
(1 − tc)

d+1 − (1 − tc)

))

.

Furthermore, not only do we know that a phase transition occurs in Hd at cd/n,
the following result about the shadow is also proved by [20]. The shadow of a
d-dimensional simplicial complex X with complete (d− 1)-skeleton over a field F is
denoted SHF(Y ) and is defined first by [19] as

SHF(Y ) = {f ∈ ∆
(d)
n−1\fd(Y ) : βd(Y ∪ {f};F) > βd(Y,F)}.

Theorem 3. [20, Theorem 1.4] Let Y ∼ Yd(n, c/n) for d ≥ 2, c > 0 fixed. If

c < cd then with high probability |SHR(Y )| = Θ(n), and if c > cd then |SHR(Y )| =
Θ(nd+1).

In [20] this result about the shadow is interpreted as a higher-dimensional ana-
logue of the giant component in the Erdős–Rényi random graph. Recall that in the
Erdős–Rényi random graph model G(n, p) we have a phase transition at p = 1/n.
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Namely for c < 1 and G ∼ G(n, c/n) one has that with high probability every
component of G is on O(log n) vertices and that for c > 1 and G ∼ G(n, c/n) one
has that with high probability G has a unique “giant component” on Θ(n) vertices
and all other components are on O(log n) vertices; see for example [13]. With this
in mind, we make the following conjecture, which, if true, would enrich the anal-
ogy between the giant component of G(n, p) and the giant shadow of Yd(n, p) in
a way that contrasts some key differences between the two. As in [3], a core in a
d-complex is a subcomplex in which every (d − 1)-face is contained in at least two
d-faces. A core is an obstruction to collapsibility.

Conjecture 6. Let Yd(n) be the stochastic Linial–Meshulam process in d dimen-
sions for d ≥ 2. Then there exists a constant δ depending on d so that with high
probability there exists m0 ∈ {1, . . . ,

(

n
d+1

)

} so that the following three events occur.

(1) The torsion part of Hd−1(Yd(n,m0)) is isomorphic to LT (n).

(2) Yd(n,m0) contains a core Y ′ which spans the entire vertex set and has
Hd−1(Y ′) ∼= LT (n), but Yd(n,m0 − 1) does not contain such a core.

(3) |SHR(Yd(n,m0))| ≥ δnd+1, but |SHR(Yd(n,m0 − 1))| ≤ O(n).

Our conjecture allows us to define a higher-dimensional analogue of the giant
component in terms of the faces of the complex rather than in terms of the shadow.
Given a d-dimensional simplicial complex Y on n vertices we say that Y contains
a homological giant Y ′ if Y ′ is a core of Y , Hd−1(Y

′) is finite, and V (Y ) = V (Y ′).
The conjecture says the hitting time for the emergence of a homological giant is
the same as the hitting time for the emergence of the giant shadow. If this is true,
then with high probability the homological giant has its top dimensional homology
generated by a bounded number of (d + 1)-simplex boundaries at the moment it
first appears. This means that after removal of one face from each of these (d+ 1)-
simplex boundaries we have that the remaining part of the homological giant is a
spanning simplicial tree in the sense of Duval, Klivans, and Martin [7]. That is,
this is a subcomplex with βd−1 = βd = 0. This is a more general definition than
the 2-trees discussed earlier and their d-dimensional analogues, in the sense that
the (d− 1)-skeleton is not required to be complete.

Linial and Peled conjecture [21] that in a single step in the process Yd(n), the
size of the shadow jumps from O(n) to Θ(nd+1), and they suggest the problem
of trying to study the structure of this complex at the moment the giant shadow
appears. We conjecture the same behavior as part (3) of the hitting-time conjecture
(Conjecture 6), so if true, our conjecture would provide a partial answer to the
problem posed by Linial and Peled in [21]. Quick experiments show evidence for
the conjecture. Indeed, in 100 trials on each of n = 50, 60, 70, 100 we found strong
evidence that the emergence of the giant shadow coincided with the torsion burst—
these events two coincided in 99% of the trials.
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