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COMPUTATIONAL EXPLORATIONS OF THE THOMPSON
GROUP T FOR THE AMENABILITY PROBLEM OF F

S. HAAGERUP, U. HAAGERUP*, M. RAMIREZ-SOLANOT.

ABSTRACT. It is a long standing open problem whether the Thompson group
F' is an amenable group. In this paper we show that if A, B, C denote the
standard generators of Thompson group T and D := CBA~! then

1
V2+V3 < EH

Moreover, the upper bound is attained if the Thompson group F' is amenable.
Here, the norm of an element in the group ring CT is computed in B(¢2(T)) via
the regular representation of T'. Using the “cyclic reduced” numbers 7(((C +
C?)(D+ D?+ D?))"), n € N, and some methods from our previous paper [10]
we can obtain precise lower bounds as well as good estimates of the spectral
distributions of 15 ((I+C+C?)(I+D+D2?+D?))*(I+C+C?)(I+D+D?+D?),
where 7 is the tracial state on the group von Neumann algebra L(T). Our
extensive numerical computations suggest that
1

V12
and thus that F' might be non-amenable. However, we can in no way rule out
that \/%H(I +C+C?(I+ D+ D?+D3)|| = 2+V2

(I+C+C?)(I+D+D*>+D%)| < 2+V2.

[|(I+C+C?)(I+ D+ D*+ D%)|| =~ 3.28,

1. INTRODUCTION

Definition 1.1. The Thompson group T is the group of (cyclic) order preserving
homeomorphisms f : R/Z — R/Z for which:

o fand f~! are piecewise linear with finitely many breakpoints.
e all breakpoints of f and f~! are in Z[}]/Z.
e all slopes of f are in the set 2% := {2" | n € Z}.

T is a countable group. It is generated by the elements C, D, whose graphs are
shown in Fig. 1. Moreover, it has the finite presentation
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FI1GURE 1. The generators C, D of the Thompson group 7.

(1) T=(C,D|C®=D*=(CD)°=e,
[CDC, D*(CDC)D?| = [D*(CDC)D?,C(D*CDCD*)C™ '] = e),

where the group commutator is given by the definition [g, h] = ghg~'h~1. If A, B,C
denote the standard generators of T [6], then D = CBA™.
Recall that F' is the subgroup of T given by

F=(A,B)={feT]|f(0)=0}

It is a long standing open problem whether the Thompson group F' is amenable.
The present paper is a continuation of the work started in [10] by the same au-
thors. In that paper, we tested the amenability problem of F' by estimating norms
of certain elements in the group ring CF' using computers. Thanks to the new
algorithms we devised to compute words in C, D in polynomial time (see Section 2)
and to some results by Haagerup and Olesen [12], we can now test the amenability
problem of F' by computing norms of certain elements in C7T'. Extrapolations of
our computational results suggest the same as our previous paper, namely, that
F might not be amenable. A recent experimental work by Elder, Rechnitzer and
Janse van Reusburg [7] on the amenability problem of F' using statistical methods
arrives also to the same conclusion that F' might be non-amenable (see also [8]).

As in [10, Section 2], by the norm of ||a|| of an element a in the group ring of a
discrete group I' we mean

llal| = H)\(a)HB(ez(r)),

where A is the left regular representation of I'. We continue using the standard
convention of writing a € B(¢*(I")) instead of A(a) € B(¢*(T)) for any a € CT. Our
starting point is the following theorem (see Section 2 for more details)

Theorem 1.2. Let C, D be the generators of T, whose graphs are shown in Fig.
1, and let I denote the unit element of T. Then

1
V2+3 < ﬁ||(1+0+02)(I+D+D2+D3)II < 242

Moreover, the upper bound is attained if the Thompson group F is amenable.
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In comparison, one gets for the free product Z3xZ4 on two generators ¢ € Zs,d €
Z4 that
1

2
(2) i
(cf. Section 4). Given a discrete group I', let L(I") denote its von Neumann algebra.
That is, L(T) is the von Neumann algebra in B(¢?(T")) generated by I'. Then we
can define the normal faithful tracial state 7 on L(T") by

T(h) := (hde,dc), h e L(T).

(see e.g. [14, Section 6.7]). Moreover, we can express the norm of b in terms of the
moments

le+c+c)e+d+d*+d%)| = V2+ V3.

my(h*h) == 7((h*h)"™), n € Ny,
namely, (cf. [10, Section 4])

* : 1\ o
Bl = (A" BIJ/2 = Tim (B R)™) .

The challenge is to compute all the moments m,,(h*h), and in practice we can only
compute a finite number of them. In this paper, we were able to compute the
moments my(h*h), n =0, ...,28 for the element

1
V12

using efficient methods, both mathematically and computationally. This procedure
can be adapted to elements in a discrete group I' that are expressed similarly. Define
the self-adjoint operator

= 0 h*
h = ( . ) € My(B(¢4(T))),
and let 7 := 7 ® 79, where 75 := %TT on M3(C). Then
A:C(o(h)) = C

given by A(f) := 7(f(h)) is a positive functional on C(c(h)) such that A(1) = 1.
Hence there is a unique Borel probability measure for which

h= (I+C+C?)(I+ D+ D*+ D?),

F(f(h) = (ﬁ)fdm Vf e Clo(h))

Since 7 is faithful, the support supp(p) = o(h) C [—||h||, [|k]|]- Such measure
1 is invariant under the reflection ¢ — —t because the odd moments of h are zero,
and it satisfies

(7]
/ ErAu(t) = mon(R) = ma(h*h),  n €Ny
—IInl|

(cf. [10, Section 2]). Moreover, £||h|| € supp(p) by symmetry of u. The theory of
orthonormal polynomials applied to this measure (cf. [10, Section 4]) together with
the moments yield an increasing sequence of numbers converging to ||h||. We can
calculate the first 28 of these numbers using our computed moments, and a suitable
extrapolation of these numbers (n =0,...,28) gives

3.2016 < (I+C+C*H(I+ D+ D?+ D?)|| ~ 3.28.

LH
V12
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We found that this sequence of numbers actually gives much better lower bounds
than the sequence of “roots” and “ratios” of the moments that also converge to
the norm (cf. Section 5). Furthermore, we also estimate the Lebesgue density of u
with fairly high precision, which shows that the measure pu is very close to zero on
the interval [3.22,2 4 v/2]. However, we cannot rule out that the measure has very
“thin tail” stretching all the way up to 2 + /2.

In comparison, one gets Eq. (2) when one considers the free product Zz x Z4 on
two generators ¢ € Zsz,d € Z4. The measure u based on ¢, d instead of C, D will be
denoted by fifree, and it can be computed explicitly (See Section 4)

1 /24 — (22 — 5)2 3
() ftree = o z(12(— 2?) : L VB3I VEUVE-VE,Va+vE (T) 4T + 100

In our previous paper, we estimated the norm 3.60613 < ||A+ B+ A"+ B~ || ~
3.87, where A, B are the standard generators of F', by using the first 24 moments
of (A+B+ A=t + B~1)2. Elvey-Price [9] succeeded in computing 7 more moments,
which pass the test of [10, Theorem B.1] for possible computational errors. Using
these 31 moments, the updated estimated norm remains unchanged, while the new
lower bound is

3.64271 < ||[A+ B+ A"+ B! ~ 3.87,

with a very likely lower bound of 3.70211, based on the same list of moments.
In comparison,

37873 < ||C+D+C '+ D7 =~ 3.84,

which suggests that the actual norm is also much closer to 4, even though it cannot
be 4 because the Thompson group T is not amenable [4]. This norm is estimated
in the same way as we did with the norm ||[A+ B + A~! + B71|| (cf. Appendix B).
The composition of words in C, D is given in Section 2, and it was inspired by the
Belk and Brown forest algorithm in [3] (see also [2]).

2. AcTIiON OF C,D, THE CYCLIC REDUCED NUMBERS (;,,, AND AMENABILITY.

Since the elements of the Thompson group T are piecewise linear functions with
breakpoints on the diadics, it makes sense to introduce the set of diadic intervals

k k+1
D:={lg; 5] In €Nk =0,...,2" =1},
Note that the unit interval is the largest diadic interval, and cutting a diadic interval
into two equal halves gives two new diadic intervals. Then we write the elements
of T as functions D — D. For instance, the element C whose graph is in Figure 1

is determined by the function

fo :{di,da,ds} — {ri,r2,r3}

given by

feldy) =rs  felde)=r1  folds) =r2,
where the diadic intervals d; := [0, %], dy = [%, %], ds = [%, 1] in this case are
obtained from the breakpoints of C' and note that they only overlap on their
boundaries. Similarly ry := [0,1], ro := [3,2], r3 := [3,1] are obtained from

the breakpoints of C~!.
Observe that D is not closed under union, e.g. the union of the diadic intervals

[1,1],[5,3] € D is the interval [1,2] ¢ D which is not diadic. This asymmetry
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FI1GURE 2. Construction of the doubletrees for the generators C, D
of the Thompson group 7.

F1GURE 3. Doubletree composition.

is used to construct, for a given x € T, a so-called domain tree and range tree
with vertices in D. Namely for the domain tree, we start with a subset L of diadic
intervals of D which only intersect on their boundaries and whose union is the unit
interval and where the set of boundary points contains all the breakpoints of . We
then represent each diadic interval with a dot, and we join two of these dots with
a caret whenever the union is also a diadic interval provided that the two intervals
only overlap on their boundaries. The tip of the caret is the joined diadic interval.
We do this recursively until we get the unit interval. For instance, in our example,
for the domain of fc, we can join ds and d3 with a caret to obtain the diadic interval
[1/2,1] and then we join this and d; with a caret to obtain the diadic interval [0, 1].
The domain tree of C is illustrated in Figure 2. To get the corresponding range
tree we do the same construction for the diadic intervals z(L) := {z(d) | d € L}.
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FIGURE 4. Case 1C: Trees I, II, III appear in the range tree of
2z € T. The action of C' simply rotates these trees (and each tree
keeps its own leaves).

The domain tree (resp. range tree) of z € T will be denoted with d(z) (resp. r(z)).

Definition 2.1 (Doubletree). The doubletree of x € T is the pair of trees r(z),
d(z) together with the permutation (a rotation) o : leaves(r(z)) — leaves(d(z)) of
its leaves.

For instance in our example, the doubletree of C' is shown in Figure 3. Compo-
sition of doubletrees is done as if we were composing its corresponding piecewise
linear maps. However, it might be necessary to subdivide the diadic intervals in
domain and range to accomplish this task. (This corresponds to replace a domain
leaf and its corresponding range leaf with a double caret). For instance, if we com-
pose C o D using the doubletrees shown in Figure 2, we see that the range diadic
interval [0,1/4] of D is too small to be composed with the domain diadic interval
[0,1/2] of C. But once we subdivide [0,1/2] € leaves(d(C)) into [0,1/4], [1/4,1/2]
(and subdivide as well the image under C') then the composition can be done. See
Figure 3.

A doubletree with no double-carets is said to be reduced.

2.1. The action of C' and D on any element of T. We investigate the double-
tree composition C oz, x € T in three cases, where the doubletrees of C' and x are
assumed to be reduced (i.e. no double-carets).

Case 1C: (non-degenerate)

Assume that the root of the range tree r(z) has a left and a right node. The tree
starting at the left node is called tree I. Assume that the right node has a left node
and a right node. The tree starting at the right-left node is called tree II, and the
one starting at the right-right node is called tree III. The trees I, II, III, can be
0-trees, i.e. they can be leaves.

Then the root of the range tree r(C o x) has a left and a right node. The tree
starting at the left node is tree II. The right node has a left node and a right node.
The tree starting at the right-left node is tree III, and the one starting at the right-
right node is tree I. The leaves of tree I, which map to leaves of the domain tree
d(z), stay with the tree, and the same holds for the other two trees II, III. See
Figure 4. The rotation permutation starts with o(C o 2)(1) = o(z)(c(C)(1)).
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FIGURE 5. Composition C oz, where x € T satisfies the hypoth-
esis of case 1C (non-degenerate).

X X C ox

FIGURE 6. Composition C oz, where x € T satisfies the hypoth-
esis of case 2C (degenerate).

Reduction occurs only if tree III and tree I are O-trees and the leaves oy, or
on the domain form a caret. Reduction occurs again only if tree II is also a O-tree;
in such case we have the identity. An example of case 1C, is shown in Figure 5.

Case 2C:(degenerate, missing tree II)
Assume that the root of the range tree r(z) has a left and a right node. Assume
that the right node is a O-tree (a leaf), which maps to another leaf of the domain
tree d(x). Insert a double caret at these two leaves and proceed as in case 1C. An
example for this case is shown in Figure 6.

Case 3C:(degenerate, missing trees, I,IT,ITI)
The element z is the identity. Thus Cox = C.

The composition Doz, x € T is done in 5 cases, where the trees of D and x are
assumed to be reduced.
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x — 1 w Dox =II

NSNS

FIGURE 7. Case 1D: Trees I, II, ITI, IV appear in the range tree of
x € T. The action of D simply rotates these trees (and each tree
keeps its own leaves).

Case 1D: (non-degenerate)
Assume that the root of the range tree r(x) has a left and a right node, which both
have also a left node and a right node. The tree starting at the left-left node is called
tree I. The one starting at the left-right node is called tree II. The one starting at
the right-left node is called tree III, and the one starting at the right-right node is
called tree IV. The trees I, II, IIT, IV can be O-trees, i.e. they can be leaves.
Then, the root of the range tree r(D o x) has a left and a right node, which both
have also left and right nodes. The tree starting at the left-left node is tree II. The
tree starting at the left-right node is tree III. The tree starting at the right-left
node is tree IV. The tree starting at the right-right node is tree I. The leaves of tree
I, which map to leaves of the domain tree d(x), stay with the tree, and the same
holds for the other three trees II, II1, IV. See Figure 7. The rotation permutation
starts with o(D o x)(1) = o(z)(c(D)(1)).
Reduction occurs only in the following two cases:
(a) II and IIT are O-trees and the leaves oy, oq1 on the domain form a caret.
(b) IV and T are O-trees and the leaves ory, o1 on the domain form a caret.

Reduction occurs again, only if both (a) and (b) occur; in such case we have the
identity. An example of case 1D with reduction (a) is shown in Figure 8.

Case 2D: (degenerate, missing tree II)
Assume that the root of the range tree r(z) has a left and a right node. Assume
that the left node is a leaf which we call v, while the right node has a left and a
right node. The leaf v maps to a leaf of the domain tree d(z). Insert a double caret
at these two leaves. Then proceed as in case 1D. An example is shown in Figure 9.
Case 3D: (degenerate, missing tree III)
Assume that the root of the range tree r(z) has a left and a right node. Assume
that the right node is a leaf which we call v, while the left node has a left and a
right node. The leaf v maps to a leaf of the domain tree d(z). Insert a double caret
at these two leaves. Then proceed as in case 1D. An example is shown in Figure
10.

Case 4D: (degenerate, missing trees II, IIT)
Assume that the root of the range tree r(z) has a left and a right node, such
that both trees are O-trees. Since z is assumed to be reduced, = D?. Thus
Dox=D?= D1



COMPUTATIONAL EXPLORATIONS OF T FOR THE AMENABILITY PROBLEM OF F 9

* Dox Dex

FiGUurE 8. Composition D oz, where x € T satisfies the hypoth-
esis of case 1D (non-degenerate).

X X Dex

FIGURE 9. Composition D oz, where x € T satisfies the hypoth-
esis of case 2D (degenerate).

X b Dox

FIGURE 10. Composition D o z, where x € T satisfies the hy-
pothesis of case 3D (degenerate).
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R1 Rl
R2 R2
L1 L2 L3 R3 3 13 5 L1
o - R(x)=

R6

L4 L& R5 RS R6 Lé L4
LS i’
R4 R4

FicURE 11. The rotation operator R on doubletrees swaps the
nodes of every caret in the domain and range trees.

Case 5D: (degenerate, missing trees I, I, III, IV)
The element «x is the identity. Thus Doz = D.

2.2. The cyclic reduced numbers (,. Let R:T — T, be defined by
Rx)t)=1—2z(1-¢t), z€T,teR/Z.
Then the graph of R(x) is the graph of x rotated by 180 degrees. The rotation map
R is a group isomorphism, and
(4) RoR=id, C '=D?R(C)D?, D '=D?*R(D)D*
The doubletree of R(z), x € T, is obtained by swapping all the nodes of every caret
in the domain and range trees of z, i.e. left node (resp. right node) becomes right
node (resp. left node). An example is shown in Figure 11.
Define
a:=C+C? b:=D+ D?*+ D?,
and recall that C% = I, D* = I. Since C, D € L(T) are unitaries, C* = C~! and
D* = D~!. Moreover, a and b are self-adjoint, i.e. a* = a and b* = b. Define the
“cyclic reduced” numbers

Cn:=T((ab)™), neN.
Define Ny := {D,D? D~1}. For n € N let,
N, = {(to,s1,t1,--,8n,tn) |5, €{C,C71}, i =1,...,n,
t; € {D,D*, D7}, i=0,...,n},
and note that
b(ab)™ = Z to(sity - Sntn), n € Ny.

(to,sl,tl,---sn,tn)eNn
We define the product of a tuple as follows
(5)  w((ty,ta, ... tn)) :=tity Ly, t1,...,t, €{C,D,C~',D? D71},

and the inverse of each entry of a tuple as
(6) J((trsta, .. otn)) == (t7 5650 ot 1),
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For w = (t1,...,t,) it holds by Eq. (4)

(7) 7(J(w)) = D*R(m(w))D?.

We say that the word 7(J(w)) is the “reverse-inverse” of the word 7w(w). For
example, if w = (C,D,C?) then 7(J(w)) = C1D71C~2, which corresponds to
first reversing the letters of the word C'DC? and then taking the inverse. Define
forn € N,

Sy = {w, J(W') |w,w € {C} x Ny, n(w) < 7(J(w)), m(J(w")) < m(w')}
S = {w, J@W) | w,w’ € Ny_y x {7}, m(w) < 7n(J(w)), n(J(w")) < m(w')}
E, = {we{C}x N,_1|7(w)=mr(J(w))}

E, = {we N, 1 x {0} |n(w)=mr(J(w))}.

Here the comparison m(w) < 7(J(w)) is done by comparing the lexicographic order
of their corresponding serialized (e.g. preorder) reduced doubletrees. The letter
Sy stands for smaller, e.g. that the word 7(w) is smaller than its reverse-inverse
w(J(w)). Similarly, the letter E, stands for equal. Since b(ab)™ is self-adjoint,
w € {C} x N, if and only if w™! € N,, x {C~1}, where w1 is the inverse of each
entry in the tuple w and in reverse order. Define for n € N,

(8) Go= > (my),  Go= Y. ()

($1y)esn XS;L (I,y)EEnXE;L
(9) C§n+1 = Z <‘T7y>7 C26n+1 = Z <x,y>,
(%,y)€Sn XS], 14 (x,9)€E X E],

where (x,y) := 7(y*z) is the inner product on L(T) associated with the trace 7.
Then

Lemma 2.2.
Cn =2, +4¢;, n=2.
Proof. For n € N, define
X, = {(s1,t1, 5, tn) | 8: € {C,C~ Y t; € {D,D*, D™ '},i=1,...,n}.

Then
(ab)™ = Z ().

z€Xn
Since (ab)™ = Cb(ab)"~! + C~1b(ab)"~!, we can partition X,, as follows
X, = {w,J(w)|we{C}xNy_1}

Sp, UL, UE,UJ(E,),
where

L, :={w,J(w") |w,w" € {C} x Ny_1, m(w) > w(J(w)), n(J(w')) > m(w)}.

Thus
(@)= > w(z)+ Y w@)+2 Y w(x)

€S, €Ly z€E,

(ba)" = Z m(x) + Z m(x) + 2 Z m(x),

zeS!, zel!, rc k!,

Similarly,
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where
L = {w,J(w) | w,w' € N1 x {C7'}, w(w) > 7(J(w)), 7(J(w)) > 7(w')}.

The inner product (Y g 7(z), > 5 7(v)) = 0 because if there is a w € S, w' € E,
such that 7(w) = w(w’) then by Eq. (7), 7(J(w)) = w(J(w")), and thus w(w) <
m(J(w)) = 7(J(w')) = w(w') = w(w), a contradiction.

Similarly, the inner product (3 g m(x),>;, m(x)) = 0 because if there is a
w € Sp,w’ € LI, such that m(w) = w(w’) then by Eq. (7) n(w) < 7(J(w)) =

w(J(w')) < m(w') = m(w), a contradiction. The innerproducts

(Y w2), Y @) = () nlx), Y (@)

€S, z€S!, z€L, zeL!,
coincide because L,, = J(Sy,), L), = J(S},) and because by Eq. (7)
m(x) =m(a) < w(J(z)) =r(J(2)).
It follows that for n € N,
Gn = ((ab)", (ba)")

= (> wla), Yo w@) + () wla), Y w@) +4() ] w(z), Y w(x)

€S, €S, €Ly, el zeE, reE],
= 2()  w(@), Y w@) +4() ] 7w(x), Y w(x))
€S, z€eS/, zeE, TEFE!,

= 20, + 4G,

and
Gt = {(ab)", (ba)" ")
=AY w@), Y w4 Y w@), 3 @)
€S, z€S; z€E, z€E, |,

= ZCSn—&-l + 4C2en+1'

2.3. Amenability.

Definition 2.3 (Amenability). A discrete group I is said to be amenable if there
exists a finitely additive measure p : P(T") — [0,1] with u(T") = 1 such that

w(xA) = p(A), forall Ae P(T), x €T,
where P(T") denotes the power set of T

Let P,Q, R € L(T) be the projections given by

I+8S I+C+C? I+D+D?+ D3
-2 @= 3 R= 4 ’

(10) P:

where S := D2
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Theorem 2.4. Let P,Q, R € L(T) be the projections in Eq. (10), which are defined
in terms of the generators C, D of Thompson group T'. Then

14++/2
7

Moreover, the upper bound is attained if the Thompson group F is amenable.

IQR]| <

Proof. Tt is well-known that
TDO(S,C)=2Zs%Zs = PSL(2,Z) = SL(2,2)/{£I},

(cf. [13, p.11, Example 1.5.3]). By [5, Proposition 2.5.9] the reduced C*-algebra of
any subgroup H of a (discrete) group G is a subalgebra of C(G) in a canonical
way, namely, one takes the left regular representation of G and restricts it to H.
Hence

Cr(ZyZ3) = C7({S,C)) € CX(T).
By this and Example 4.2 (or [1, Remark 15]) we get
142
75

1PQIl =

By spectral reasons
(11) R<P
Hence 0 < QRQ < QPQ, and by the C*-identity (i.e. ||z*z|| = ||z||?) we get
IQRII* = [|QRQ]| < [|QPQ|.
Since the norm of an element is the same as the norm of its adjoint (i.e. ||z*|| =
[lz[]),
1+v2
7

|QPQ||"/? = ||PQP||"* = | |PQ|| =

Thus

1++2
V6

We will now prove that ||QR|| > 1%5 if F' is amenable. Let H := (*(Z[1] N[0, 1)),

and let 7 : T — B(H) be the representation given by
m(x)dy = Gyt zeT, teZ[1/2]N[0,1),

=097....

(12) lQR[| <

where the set {d; | t € Z[1/2]N[0,1)} is an orthonormal basis for the Hilbert space
H. Let S1,52 € B(H) be the isometries defined by

S10; 1= 5t/27 S90; 1= 5(t+1)/2a t e Z[1/2] N [0, 1),

and note that they satisfy the relation S1S7 + 5255 = I. Then by [12, Proposition
4.3],7(CT) is contained in the Cuntz algebra Oy = C*(S1,S52). If F' is amenable
then by [12, Proposition 4.4], 7 is weakly contained in the left regular representation
of T. This is equivalent to the existence of a *-homomorphism p from the reduced
C*-algebra C¥(T) into the C*-algebra generated by 7(T') such that m = po\. Hence

@)y = llp(A@)lB) < [IM@)llep ), « € CT.
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Thus amenability of F implies that the norm ||QR|| is greater or equal than
the norm ||7(QR)||. Thus, it suffices to show that ||[7(QR)|| = 1+—\/‘6/§ We have
Im(QR)|* = [|7(RQR)]|, and

1
W(RQR) = E(Sl + S2)2(2I + 51 + 52)*(21 + S + SQ)(Sl + 52)*2.

Substituting x := %(5’1 + S3) gives

m(RQR) = %12(\@] + 2)*(V2I 4 x)2*2.
Since z is a proper isometry (i.e. z*x = I # za*),
|22(V2I + 2)*(V2I + z)z*?|| = ||(V2I + z)*(V2I + z)]|.
Consequently,
IR(RQR)| = SI(VET +2)* (VBT + )l = V3T + .

Now, the spectrum of z is the entire unit disc because z is a proper isometry.
(One uses the Wold decomposition to show this). Thus the spectral radius of
V2I 4+ z is V2 + 1. Hence the norm is at least this number and by the triangle

inequality we get
IV2I +z|| = 1+ V2,

as required. ([l

3. TWO PROJECTIONS

Let T := (¢, d) be a discrete group on two generators such that ¢ is of order k
and d of order ¢, for some integers £ > k > 2. Let L(T") denote its von Neumann
algebra, i.e. L(I") is the von Neumann algebra in B(¢?(T")) generated by I'. Then

7(h) = (hde, 0c), h e L)
defines a normal faithful tracial state on L(T") (see e.g. [23, Section 6.7]). Let
etct -kt

P:= 2 €Cr' c C;(T) c L(T') € B(FA(T))
14+d+-..+gt1
Q= 14F - T9 ccrcorr) c L(T) C BUAT))
be fixed projections such that
I1PQIl < 1.
Let
TP =p BeT@=7
Q=T = = =7

and notice that 1

It follows by P. R. Halmos’ work [11] that the C*-algebra A := C*(P, Q, I) generated
by 2 projections P, Q) and the identity I is the direct sum of an abelian C*-algebra
and a C*-algebra of type I3 i.e. of the form C(X) ® M3(C) where X equals the

spectrum of a certain positive contraction. The abelian part is of dimension at
most 4 and its minimal projections are given as

eooszp\/Q:(I*P)/\(I*Q)
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el :==PAQ e :=PAI—-Q) eor = (I = P)NQ,
where some, and even all may vanish. The central support for the I part of A is
denoted f and it is given by

(13) f=1—e11 — e — e — eno-
We define
(14) R::P—611 — €10, SIZQ—BH — €01

and see that R and S are projections satisfying R < f, S < f because Pej; =
e P = e1;, Peg; = eqi P = 0 and Qe = €;1Q = €1, Qejo = ¢0Q = 0,1 =0, 1.
Moreover,

RAS=0 RvS=f.
So inside fAf, the pair of projections R, S actually fit the description given by
Halmos. Thus, there exists an isomorphism ® of fAf onto C(c(RSR)) ® M>(C) =
M5(C(c(RSR))), such that

1 0
o(f) = Ic(s(rRSR) ® ( 0 1 )
1 0
®(R) = Ic(o(rsR)) ® ( 00 )
and
a(s) RSR (RSR)'/2(f ~ RSR)'/?
Now,

P—al=(R—af)+ (1 —a)e;; + (1 —a)eip — aepr — aeqo
Q—BI=(S—Bf)+(1—Ben + (1 - Beor — Bero — Beoo
(P—al)(Q—pI) = (R—af)(S=Ff)+(1—-a)(1-Blenn—a(l—pB)en — (1 -a)ern+
(=) (=B)eoo-

Thus since Re;; = Se;; = fe;; =0 for 4,5 € {0,1} we get

(15) r((P-an@=-8D)") = 7((R=af)(s=B8)")+ (@B)"(ec) +
(—a(1 = B))"7(eor) + (=B(1 = )" 7(e10) +
(1= a)(1 = B))"r(en).

Similarly, since
PQ = RS “+e11

(I =P)I=Q)=(f-R)(f—S5)+ew
P(I - Q)=R(f-5)+ew
(I-P)Q=(f-R)S+en
we get
T((PQ)") = T((RS)") + 7(en)
(=P =@)") =7 (((f = B = 9)") + 7(ew)
(P =@)") = 7((R(f = 9)") + T(er0)

(1= P)Q)") =7(((f = B)S)") + rleor).
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Since ||PQ|| < 1, ||e11]| = ||e11 PQ|| < 1 because the norm is submultiplicative, and
thus the minimal projection
€11 = 07
and since PQP = RSR + e11, the spectrum
o(RSR) =o(PQP) C [0,1).

By the continuous functional calculus for the positive element RSR € fAf we can

- wn=(g V) em=(40)

B t t(1—t)
<I>(S)—< =D 1—+ ), 0<t<l

®(RSR) = (é 8) O<t<l1

B(R(f — S)R) = <1gt 8) 0<it<1
w(r-msu-m = (9,0, ) v<r<
s(r-m-s-my = (oY) o<e<u,

The restriction of 7 to fAf is a trace on this algebra, so by the spectral theorem
to the positive element RSR, there must exist a positive measure u on o(RSR)
such that for any x € fAf we have

CIENY A UOROES TEMOTID

-/ ' (@)du(t)

() = S TH(®() (1),

and £Tr is the normalized trace of My(C). Thus

where

1

l=7(I)= | 7 (f)du(t) + 7(e11) + 7(e1o0) + 7(eo1) + 7(eo),

and since 7((pq)™) = 7((pgp)™) for any two projections p, ¢ and any n € N, we get

7 ((RS)")du(t) + 7(e1r)

Q

IR

| -rs- s>)) u(t) + 7(eoo)
/Oth( ) du(t) + 7(ew)
IRICE

)du() + 7(eo1).

/\
3

—_ — —
I
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It is not difficult to show that ©({0}) = 0. We extend p to a probability measure
on [0, 1] by putting

1({0}) == p1o + por
n({1}) == poo + pa,
where
pij i=(ei), i, €{0,1}.
Lemma 3.1. Define
vi=p— (p10 — po1)d0 — (too — p11)01-

Then v is a measure on [0, 1] with total mass v([0,1]) = 28, and

Py =5 [ v, mz1

Moreover,

po—por=a—pB>0, =0, po=1l—-a—-p3>0, v({1})=0.
Proof. Letting n =1 in Eq. (16), we get

L=7(I) = poo+ por+ p1o + pa1 + p((0,1)).
a=r(P) = 7(P(I=Q)+7(PQ) = o+ pur + 34((0, 1)
B=71(Q) = 7((I-P)Q)+7(PQ)=pos+ p + %u((o, 1)).
l—a=7(I-P) = poo+ por+ %u(((l 1)).
1-B=7(I-Q) = poo+ p10+ %u(((l 1)).

Combining these equations we get
0<a-pB=7(P)—T7(Q)= o — Ho

0<l-a-B=7(I~-P)—7(Q) = poo — p11-
Since ||PQ|| < 1, p11 = 0. Thus

foo =1 —a — .

We can write 5, 1 = 0,1 as follows

1 —
for = = p({0}) — Hi0 — Ho1

2 2

1 10 — Mol
po = sp({0}) + ———

2 2

1 Hoo — H11
poo = sp({1}) + ———

2 2

1

Moo — H11
— _ 1 7 -
Hi11 2:“’({ }) 9 ’
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and the measure v on [0, 1] defined in the lemma satisfies
v({0}) = pu({0}) — (10 — po1)
v({1}) = p({1}) = (koo — pi11)
o = v({0}) + (w10 — po1) — pao — por _ %y({o})

2 2
A7) o= 50({0) + (w0 — pon)
o= v({1}) + (2M00 — 1) 4 Hoo ; p %1/({1}) + (00 — p11)

i = (1)),
Moreover, the total mass of v is
v((0,1]) = v({0}) +v({1}) + u((0,1))
= 1—(po— por +poo —p11) =1 = (a=B+1—-a—p)
= 2p,

and

O L N ST
/M 5! ) =5 /(Oy du(t) + 3v({1}) = 7((PQ)"),  meN.

O

By the following proposition and Lemma 3.1 we can state the “cyclic numbers”
T((P—al)(Q—BI))"), mneN,
in terms of the moments 7((PQ)™).

Theorem 3.2. Forn € N,
(P —al)(Q — BI))") = (aB)" oo + (=B(1 — @)™ (10 — po1) +

o s t—a—pF+2ap
(a1~ a)5(1 - 5)) /{mHTn(Na(l—a)ﬁ(l—ﬂ)

where T, is the Chebyshev polynomial of the first kind.
Proof. Let
E:=P—al F:=qQ - plI, E':= R - af, F':=8 - jf

Then the spectrum o(F) = {—a,1 — a}, o(F) = {—f,1 — 8}, and by Eq.(15) we
get

T((EF)") = (=) (=5)" oo+ (=a(1=5))" por+(=B(1=a))" pro+((1—a)(1-F))" p11+

/ T ((E'F)™)du(t)
(0,1)

)dv(t),

= ()" oo + (=51~ 0))" (110 — pon) +1({0}) (3 (~5(1 — )"+ 5 (~al1 ~ ))")+

D= =)+ [ (P )utt)

(0,1)

= ()" noo + (=B(1 — @)™ (0 — por) + / m((E"F)")dv(t),

[0,1]
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where we used Eq. (17) in the second equality.
To complete the proof we just need to show that

t—a—[+2ap

T ! I\ v = (a(l—a _ n/2 " 1% .
f, TEEa0 = @-es-a)? [t )
Since
/ l1-a 0
o) = ar-an-( " °))
/ _ _ t— /6 t(l - t)
o) = as-on=( s VOTT)
we get
oy (- =8) (1—a)iT D)
er) = (0= )
Since

Te(®(E'F')) (1—a)t-f)—a(l—t—f)=t—a—f+2a8
det(2(E'F)) = a(l—a)(B(1-B))

the characteristic polynomial A% + T'r(®(E'F")) + det(®(E'F’)) of ®(E'F’) is
N —(t—a—F+2a)A+a(l —a)(1l - p).

The eigenvalues of ®(E’F’) are

_ t—a—B+2aB+/(t—a—pB+2aB)2—4a(l —a)B(1 - B)

)\1(75)1 5
Ao(t) = oo g2l \/(t_a_§+2aﬁ)2 —da(1-0)8(1-8)

If |t — a — B+ 2a8| < 2y/a(l —a)B(1 — B) then Ay = A; and

A=A e Ao = |Aale™ ¥ Ai| = [Ae] = Va(l —a)B(1 - B),

where

Re A\ t—a—p+2a8
cosf = =

2Ml - 2/a(t—a)B(1 - B)
Let t1,ts be the roots of (t —a — B+ 2a)? — 4a(l — a)B(1 — B) with t; < ts.
Then for ¢; < t < to it holds
AL(t)" + Ao ()"
2
inf +e—in0
2
la(1 — a)B(1 — B)|"/? cos(nb)
B a2 t—a—pB+2a8
(001~ )31 — 9Tt

where T, is the Chebyshev polynomials of the first kind. Since both sides of this
equality are polynomials which agree on the interval [¢1,¢2], they must be the same

R(B'FYY) =

A"

);
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polynomials. Hence

! I\ v _ Al(t)n+>‘2(t)n v
/M o ((B'F'Y")du(t) /H A2 ).

| (at-asa - gy == B+ 20f
[0,1]

2y/a(l-a)B(1-p)

) du(t).
O

4. THE FREE CASE

Let p € L(T") be a nonzero projection different from the identity. Here projections
mean self-adjoint idempotents (p?> = p = p*). Let u be the spectral distribution
measure of p with respect to the trace 7 on L(T'). Then supp(p) = o(p) = {0,1}
because 7 is faithful, and

() = / = / Oy + PO = JOR(O)) + SV

for any f € C({0,1}). In particular, by letting f(¢) =t and f(t) =1 —t we get

p({0}) =1=7(p), p{1}) =7().

Moreover, the moments m.,(p) = 7(p") = 7(p) for n € N.

Theorem 4.1. Let ' := Zy x Z; be the free product on two generators ¢ € Zy,
d € Zy for some integers k,{ > 2. Let

_ e+c+---+ck_1’ e etd+---+dt ccr

k L
be two monzero projections different from the identity. Moreover, assume that o :=
7(p), B:=1(q) satisfy 0 < B<a <1, a+pf <1 andlet

A= Va(l—B)++/B(1—a)
X2 == /a(l - B) — /B(1 - a).

Then the spectral distribution measure figree Of poq (pg) ) € My(L(T)) with

respect to the trace T := 1 ® 79 on Ma(L(T)) is
1 VR-AE-),
2w t(1—t2)
where dt is the Lebesgue measure. In particular,

lpall = V(1 - 8) +V/B(1 - ).

Proof. Let p (resp. v) be the spectral distribution measure of p (resp. ¢) with
respect to the trace 7 of L(I'). We now compute the S-transform (cf.[17, p.30-32]
or [16]):

Yu(s) = /OOO “_du(s) = /0 Oo(ts+t252+t383+-~->du<t)

Hfree = (A1~ AUl dE + (1= B)do,

1—ts

= mi(p)s +ma(p)s® + ms(p)s® + - =as+as’ +as® +---
as

1—s
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Similarly,

Vu(s) = 1ﬁ—ss'

The formal power series v, (resp. 1,,) has to satisfy the equations x,(1.(s)) = s,
wu(Xu(Z)) = z and SM(Z) = Zilxu(z) (resp. Xu(wl/(s)) =35 wU(XV(Z)) = z and

Su(z) = Zjlxl,(z)). Solving for x,, Su, Xv, Sy, we get

z
z=Yu(s) <= (Il-s)z=as = X“(Z)_S_OH—Z
z
P = ) =s=
z+1 z+1
Su(s) = e = 2
z+1 z+1

By [17, Theorem 3.6.3], the multiplicative free convolution is

GG (D
Suan(2) = Sul2)9(2) = STy
Thus ( )
5 z(z+1
Xuw (2) = g S (2) = s
and

s=xumw(2) = (a+2)(B+2)s=2z2(z+1)

:11—(a+6)8i\/d(s)
2 s—1

= Yumu(s) = 2
where d(s) is the discriminant

d(s) := (a — B)*s® + (4aB — 2o — 23)s + 1.
Letting s = §, the discriminant d(s) can be written as

il = ()\—Alg\g)\—)\g),

where

M= Val =B+ VB —a) A= +a(l—p) - VB a).
Let ¥ := ¢,x,. Then the Cauchy transform G(X) of uXwv is

G-+ = +(+) = 11 @HB) VAR A—a-B+ VOO - )
A AT 2 -1 B 20(1 = X) '
By Stieltjes inversion formula, X v is given by
(18) pRr(z) = lim <1Im Gz + zy)> dx + codo
y—0+ T

L),
™ 2z(1 — x)

P‘%;)\%] (517) dzr + 0050.
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where ¢g := 1 — f3, is the residue of G at the simple pole 0, and dx is the Lebesgue
measure. Since 0 < f < a <1 and a+ f < 1, the integral

M1y o)A
(19) /A T iz =

(cf. [15, Example 4.3.3]). By [17, Remarks 3.6.2(iii)], we get that uXv = ok oo the

spectral distribution of p2gp? with respect to the (unique) trace 7 on L(T"). Since
T((p%qp%)”) = 7((pgp)™) for every n € No, W v = pipqp, the spectral distribution
of pgp w.r.t. 7. Define the self-adjoint operator

(0 (pg)
S = ( pg 0 ) € My(L(T)),
and let pgee := pg be the spectral distribution of S with respect to the normal
faithful trace 7 ® 7o, where 75 := 177 is the normalized trace on M(C). By [10,
Eq. (2.6)], m2n(S) = 7(((pg)*(pg)") = 7((qpq)") = 7((pgp)"). Thus the image
measure ¢(ug) of g by the map ¢ : t — 2 is ¢(us) = fipgp = p M v. Substituting
t? = x in Eq. (18), we get

1 V(AT = 2)(2 = A3) 1
Py t(1—2)

ps(t) = o] (B)dE + codo.

Symmetrizing,

1 /(O3 =) (- N\)
ps(t) = o ) L= A1, =2a)Uprz, A At + codo,

and by [10, Eq (2.7)],

llpgll = ||S|| = max(supp(us)) = A1
0

Example 4.2 (free case). Let I' := Zy * Z3 be the free product with generators
SE€EZy, c€Z3 Let p=(e+3s)/2, q=(e+c+c?)/3 €CI. Then by Theorem 4.1

Ipql\/;(léw\/;u;) 136\/50.985....

Let TV := Z3 x Z4 be the free product with generators ¢ € Zs, d € Z4. and let
g=(e+c+c*/3,r=(e+d+d*+d*/4€CI' Then by Theorem 4.1

lorli= /30~ D+ ha- D=2 EB —oans

5. RESULTS
Let P,Q, R € L(T) be the projections given by

I+S I+C+C? I+D+D?*+ D3
p._ + Q= +C+ Ro— + D+ D+ 7
2 3 4
where S := D? and C, and D are the generators of T shown in Figure 1. Let 7 be

the trace on CT' coming from the group von Neumann algebra L(T'), as described in
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[10, Section 2]. Using the trace properties of 7, the even moments for the self-adjoint
operator

(20) P m( o A ) € My(C3(T))

are given by

man(h) = 7((h)*") = 12"7((QRQ)") = 12"7((QR)"), né€N,

where
1

V12

Our goal is to compute as many as possible of the moments
my, = my(h*h)
= man(h)
(21) = 7(I+C+CHI+D+D*+D*)"), neN,
because by Section 4 in [10] we can use them to estimate the norm [|h|| (which is

equal to ||A]]):
lim m,/*" = lim V12r((QRQ)")"/*" = V12|QRQI|V* = V12(|QR|| = ||Al].

n—oo

h:=V12QR = (I+C+C*»(I+ D+ D*+ D3).

Rather than computing the moments m,, directly, we compute the “cyclic re-
duced” numbers

Co i =7(((C+CH(D+D*+D*))"), neN.

These numbers are related by the formula

54 (—2)" "k
(22) C"_T :22 ﬁmk, n € Ny,
k=0
where mg = 1/4, (o := 1), and ¢, is the coefficient of tk in the substituted
Chebyshev polynomial of the first kind 6"/27,,(v/6(t — ;)). To obtain this formula

(22), we use Lemma 3.1 and Theorem 3.2 with a = 7(Q) = 1/3, 8 = 7(R) = 1/4,
and note that from Lemma 3.1, f[o 1 th dv = 2my, /12%.
To compute the cyclic reduced numbers (,,, we use the inner product

(z,y) = 7(y"x)
on L(T) associated with the trace 7. Recall that the trace restricted to the group
ring CT (considered as a subalgebra of C;(T") C L(T)) satisfies

_J e ifeeY
T(Z Cat) = { 0 else '
x€Y

for any finite subset ¥ C T and any set of complex numbers (¢;)qer indexed
by T. In particular, 7(z) = 1 if x = e else it is zero. For instance, expanding
(I+C+C?)(I+ D+ D?+ D3) we see that the identity occurs only once and thus
mq = 1. Thus

(23) Oz > ey =D > ctylz,y),
reX yey zeX yey

for any finite subsets X,Y C T, and any c,,cy € C.



24 S. HAAGERUP U. HAAGERUP M. RAMIREZ-SOLANO

Define
a:=C+C? b:=D+ D?*+D?,
and recall that C® = I, D* = I, and that a = ¢* and b = b*. Then
¢ =71((ad)™), meN.

Using computers, we compute ¢, as follows. We store in one file the terms of the
expanded sum (ab)™, (one term per line), and in another file those of (ba)™. Here
a term is a word of length n in the letters C,C~!, D, D~! D?. Composition of
the letters in the word is done using the algorithm described in section 2, which
yields a reduced doubletree. This doubletree is then converted into a sequence of
zeroes and ones and separators and pointers by serializing the range and domain
trees using the preorder traversal method. We save this sequence in base 64 in a
single line. To save time and space we read the file for (ab)” and apply ab (i.e. we
multiply each word with CD,CD? CD~1,C~'D,C~1D? and C~'D~!) in order
to obtain the file for (ab)"*!. To save space we store not only the word but also
its frequency. Taking the inverse of each word in the file for (ab)™ gives the file for
(ba)™. The inverse of a doubletree © € T' with range tree r(z) and domain tree d(z)
is the doubletree with range tree d(z) and domain tree r(x) (i.e. it simply swaps
the domain and range trees). The inner product

Con = ((ad)", (ba)"), neN

is the intersection of the sorted files for (ab)™ and (ba)™. We used the GNU sort
program to sort the files. The odd “cyclic reduced” numbers (2,41 are computed
similarly
Cant1 = ((ab)", (ba)") = ((ab)", (ba)" "), n € No.

To reduce the size of the files by about one half, we compute instead the numbers

5,¢2 given in Egs. (8),(9); the idea is the following: Since (ab)™ = Cb(ab)™ +
C~1b(ab)™, and b(ab)™ is self-adjoint, we can obtain the terms of the expanded sum
for C~1b(ab)™ from those of Cb(ab)™ by using the “reverse-inverse” map mo J =
Ad(D?*)oR given in Eq. (7). For instance the reverse-inverse of the word C DC?D? is
D? R(CDC?D?)D? = C~'D='C~2D~2, which corresponds to reversing the order
of the letters and taking the inverse. The letter s (resp. e) in ¢ (resp. () stands
for that we are only keeping the words which are smaller than (resp. equal to) their
corresponding reverse-inverses. The comparison is done using the lexicographic
order of the serialized form of the doubletrees. The relation between these numbers
and the reduced cyclic number (, is given by Lemma 2.2

Co=2¢, +4¢;, n=>2.

We wrote two programs in C'# and Haskell, both using parallel programming, to
calculate the numbers (7, (¢, which can be downloaded at

https://github.com/shaagerup/ThompsonGroupT/
https://github.com/mariars/ThompsonGroupT/

The size of each of the two files for computing (55 is about 281 GB and 285 GB.
They were run in a desktop computer with 2 TB of SSD hard disk, and on the
Abacus 2.0 supercomputer from the DelC National HPC Centre. The series of
numbers ¢, ¢S, Cn, My, are shown in Table 1.

In comparison, when one considers the free product Zz*Z,4 on two generators ¢ €
Z3, d € Z4, the measure pgee in Eq. (3) based on ¢, d instead of C, D, is computed
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explicitly using Theorem 4.1 with o = T(#) =1/3, 8= T(M) =1/4,

(and substituting = = v/12t). Hence the moments mfree

can be computed explicitly

n

with Eq. (3) together with Lemma A.1. One gets m{™® = 1, and

free

my,

=2
=12mi% —6 » 65722

Jj=0

) (n—2> n>2
j+1 23 ’ =7

Estimations of the norm [|h|| are done as follows. By [10, Section 4] and the
theory of orthogonal polynomials we can define a sequence of positive numbers

Dy—2Dp\ >
e () - ren
where

D,1 == 1, Dn = det([miﬂ'(h)]ﬁjzo).
n_ G & Cn my (h*h)
1 0 0 0 1
2 0 0 0 6
3 0 0 0 42
4 0 0 0 318
5 1 0 2 2528
6 0 0 0 20790
7 0 0 0 175344
8 4 0 8 1508158
9 36 0 72 13177554
10 70 3 152 116636378
11 64 1 132 1043596346
12 524 1 1052 9423929906
13 2228 4 4472 85780131568
14 8160 16 16384 786252907282
15 21617 32 43362 7251162207110
16 81644 102 163696 67241091321510
17 279531 697 561850 626619942680948
18 1006816 4990 2033592 5865627675769158
19 3429416 13057 6911060 55130780282172364
20 12284412 35247 24709812 520110723876289138
21 43215686 89274 86788468 4923701716098043110
22 154863150 246102 310710708 46759540919860581346
23 550890233 763137 1104833014 445382340814268264936
24 1982133410 2484953 3974206632 4253954798148920432622
25 7128125209 9275681 14293353142  40735421620966779279998
26 25797672490 34858087 51734777328  391022235546378412228050
27 93561508424 119608865 187601452308 3761992784005490950198026
28 341014479116 411320336 683674239576 36271465945557216051920334

TABLE 1.

The series of numbers for h =

D+ D?+ D3) .

B NI



26 S. HAAGERUP U. HAAGERUP M. RAMIREZ-SOLANO

For instance
mg 0 my 0 mo
0 mi 0 mao 0
D4 = det mq 0 mo 0 ms s
0 mo 0 ms 0
mo 0 ms 0 my

where mg := 1/4 and m,, is defined in Eq. (21). Let

0 (651
a; 0 ay 0

M, = a2
Y a
0 a, 0

T
T —
ma" s On Amax (M) a1 +ap

1.00000 2.00000 2.00000 2. -----
1.56508 2.44949 1.41421 2.44949 3.41421
1.86441 2.64575 1.73205 2.71519 3.14626
2.05496 2.75162 1.41421 2.82843 3.14626
2.18916 2.81952 1.77951 2.9224 3.19373
2.28992 2.86773 1.41111 2.97266 3.19062
2.36899 2.90414 1.75248 3.01653 3.16359
2.43306 2.93277 1.42622 3.04235 3.17870
2.48626 2.95593 1.78930 3.06842 3.21552
10 2.53129 2.97509 1.43494 3.08578 3.22424
11 2.57000 2.99123 1.75349 3.10309 3.18844
12 2.60371 3.00504 1.43767 3.11454 3.19117
13 263339 3.01701 1.78223 3.12665 3.21990
14 2.65975 3.02753 1.45087 3.13534 3.23310
15 2.68337 3.03685 1.76147 3.14458 3.21234
16 2.70467 3.04518 1.45124 3.15121 3.21271
17 272399 3.05270 1.77229 3.15841 3.22353
18 274163 3.05953 1.45749 3.16373 3.22978
19 275780 3.06577 1.76751 3.16956 3.22500
20 2.77270 3.07150 1.46238 3.17394 3.22989
21 2.78647 3.07679 1.76938 3.1788 3.23176
22 2.79926 3.08169 1.46384 3.18249 3.23321
23 2.81116 3.08625 1.76757 3.1866 3.23141
24 2.82228 3.09051 1.46904 3.18976 3.23662
25 2.83269 3.09449 1.76906 3.19332 3.23810
26 2.84247 3.09824 1.47004 3.19607 3.23909
27 2.85168 3.10176 1.76808 3.19917 3.23811
28 2.86036 3.10509 1.47534 3.2016 3.24341

T/;BLE 2. Estimating the norm ﬁu(pr C+CH(I+D+D?+
DA -

© o~ W= 3
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FIGURE 12. Estimating the norm \/%H(I +C+C*(I+ D+ D?+ D3)||.

Then by [10, Proposition 4.4]

(24) liminf(a,—1 +a,) < Al < sup(an-1 + an).
n—oo n>3

ratios (/)

L

Moreover by [10, Proposition 4.1 and Proposition 4.7], the roots (m2" )22 ,, the

n=1»
o]
n=1»

and the norms (||M,]])$2, are increasing sequences that con-

verge to ||h|| and satisfy

My, 1
S |Myl] € —=

mMp—1 vV 12

We list these sequences in Table 2, and plot them in Figure 12 forn =1,...,28.

mi" < (I +C+C(I+D+D?+D%|, neN.

When n > 16, the norm ||h|| > v/2 + +/3. The best lower bound for A that we can
obtain from our data is

L

m||([+0+02)(I+D+D2 + D%)|| > 3.2016,

and a very likely lower bound for h is

L

\/ﬁ|\(1+0+02)(1+D+D2 + D%)|| > agr + aog = 3.24341,

because of Eq (24) and because the sequence (ay,—1 + )2, appear to be mono-
tonically increasing for n > 19. By making a least squares fitting of the numbers

)\2

max

(Mig), ..., A2, (Msg) to a function of the form f(n) = a — b(n —c)~% we get
8.952

fn) = 1079 — o
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In particular, the extrapolation method suggests that

(25) (I 4+C+C*(I+ D+ D? + D?)|| =~ V10.79 = 3.28.

o]
V12

This and Theorem 2.4 suggest that F might be non-amenable.

5.1. Spectral distribution measure. Recall that h = v/12QR. Since h defined
in Eq. (20) is self-adjoint, we get by the spectral theorem that there is a unique
probability measure p; to R with support (cf. [10, Section 2])

supp(pz) © [=II2I1, 1711 € [=(1 + ), (1 +q)],

where |||| = ||h]] < 2+ V2 = 1+ ¢ by Theorem 2.4. In this subsection, we will
estimate the spectral distribution measure pj, as it was done in [10, Section 5].
The Hilbert space L?([—(q+ 1), (¢ + 1)],dt) can be equipped with the orthonormal
basis

n+ %
P,(——), n €Ny,
l+g (q ey 0
where P,,, n € Ny, are the Legendre polynomials. The Hilbert space L?([—(q +
1),q+1], \/ﬁdt) can be equipped with the orthonormal basis
T q)%—

t t
T ) \/§T’n A
0(q + 1) (q + 1)
where T,,, n € Ny are the Chebyshev polynomials of the first kind.
By [10, Eq. (5.3)], the density of u; with respect to the Lebesgue measure can
be approximated by

n €N,

2N 1
B =2, T ( / (i) Pn<qj1>du;l<s>> Pu()
and by
@ o) =3 </+ T (- )du*(s)>T( L
=\ g1t "+ qn /g2 -2

where ¢y :=1 and ¢, := v/2, n € N. Since 7, is a symmetric measure, all the odd
terms in Eq. (26) are zero. Using the moments m,, in Eq. (21) (with mo = 1/4)
and the formula

q+1 3
/ 2" dpj, = man(h) = my,, n € Ny,
—(g+1)

we compute the “Chebyshev” density pog for 0 < t < 24+/2 and plot it in Figure 13,
together with the corresponding “free” density. We are more interested in the tail
of the measure, however, because it gives us an estimate of the norm ||h|| = ||h]]:

[|A[] = max{[t] | ¢ € supp(uz,)},

(cf. [10, Section 2]). We plot pag in the tail interval [v2 + /3, 2 + v/2] in Figure
14. This shows that ju; has very little mass in [3.22,3.414], hence ||h|| can be any
number in [3.22, 3.414] including the extrapolated number 3.28 found in Eq. (25).
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FIGURE 13. Estimating the Chebyshev density for uj; where h =

\/%(I+C+02)(I—|—D+D2+D3).
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FIGURE 14. Estimating the tail of Chebyshev density for u; where

h=—=(I+C+C*)(I+D+D*+D%.
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APPENDIX A. FREE MOMENTS
Lemma A.1. Let

V34+V2 2n 24 — (2 — 2
o T i L G N
Vi_yz T t(12 — t2)
Then mi =1 and
L2+
mps =12mi* — 6 Y C< % )635" =% peN
7=0

where Cj 1= J+1 (QJ) j € Ny are the Catalan numbers.
Proof. Substituting x = ¢? in Eq.(27), we get

54+2v6 _n—1 24 — (1 — 5)2
free:/ x (JC )dl‘,

n € N.
" o 2w 12—z

m

Then

1 54+2v/6
12mpss — myss, = */ 2"/24 — (x — 5)?dz, neN.
5

2T 26
Substituting L\;g =y, we get

(28) 12m£fj_el Ei‘; = 7/ 6(V6y +5)"\/4 —y2dy, necN.

Using the binomial formula, we get
12m55 —miiS = GZ / y mdy( )6’”25” “, nen.

Observing that the 1ntegra1 is zero when k is odd,

2
t2miss — mis = 62( [ i) (e, nen

Hence
L5]
12mfree —mfee, =6 0 ( >6J5" % neN,
- 23
7=0
where C; := +1 (gj]) is a Catalan number.

Eq. (28), hOldb also if we let n = —1:
Va-y?
12m, free o free _ /
™ 2 V6y +5 dy =
It follows that m!™¢ = 1 because by Eq. (19) (with a = 1/3, 8 = 1/4), mfFe¢ = 1/4.
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FIGURE 15. Estimating the norm ||C + D + C~! + D1||.

APPENDIX B. ESTIMATING THE NORM ||C + D + C~! + D7}

Here we will describe briefly our estimation of the norm of
h:=C+D+C'+D'ecCT,
where C, D are the generators of T" whose graphs are shown in Figure 1. We use
the same procedure as we did in [10]. By [10, Theorem 1.3]
23<|[C+D+C '+ DY <4

The upper bound is never attained because the Thompson group 7' is not amenable.
We compute the first 28 even moments m,, (h*h) by first computing the sequence
(with ¢ = 3)

ho =€

hi=nh

ha = hhy — (g + 1)hg

hn+1 = hhn - qhn—h n > 2.

Then we compute the sequences

gn = ||hN||§_(Q+1)qn_lv

Tin = fn_(q_lxgnfl +§n72+"'+£1)7

G = M= (@)1 + 02+ +m)
mp = (2:) q" + ; (n%k) G+1-9)q"* neN
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n__[|hn]l? T Cn M (h*h)

1 4 0 0 4

2 14 2 2 30

3 46 6 2 270

4 182 50 34 2678

5 856 360 244 28418

6 3888 1680 844 317246

7 20536 10552 6356 3681822

8 111366 60310 35010 44027350

9 642550 368762 222842 538815546

10 3850086 2291198 1407754 6714321830

11 23444600 14185540 8719700 84869473770

12 145705728 89557468 95720548 1085055369622

13 915645208 568085492 355133636 14001672259722

14 5816241006 3637390874 2288268034 182071429751606

15 37273096250 23461764106 14837859518 2382930531465042

16 240608480566 152250955922 96703523122 31360608130235654

17 1563526262404 993951776628 633902431984 414711515674495370

18 10219209908952 6522582898368 4174630000468 5507403086681142854

19 67146704535028 43011657706540 27618539011904 73415226964469375622

20 443323828665766 284895372767222 183478938659506 981973882890399349286

21 2939893937656674 1894817824426598 1223610644784438 13175045740884220099018

22 19575351631144042 12650487642600618 8189644814105262 177267112861509055927594

23 130835022206113204 84759454955281696 54997636841585104 2391279755795301975623294

24 877529231836455728 569783620173397812 370502892149137828 32335124616320091148224950
25 5905019922806515884 3842215847470546512 2503367879099490904 438214977894105234044150738
26 39857811116595156626 25984967195646155486 16961687532334006854  5951190674684154918623110822
27 269809546538449104054  176221080384309789662  115227866329705330058 80978038411680591548914827558
28 1831388211478414017418 1198180652247376494918 784745277424152455990 1103891232023903090341589166522

TABLE 3.

The series of numbers for h.=C +C~ 1+ D+ D1 .
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These series of numbers are listed in Table 3. Next, we compute the increasing
sequences of “roots”, “ratios”, “norms” that converge to the norm (cf. Section 5).
We list them in Table 4 and plot them in Figure 15. The best lower bound for ||h||
that we can obtain from our results is

||C+D+C™t+ D7 >3.7873.
By making a least squares fitting of the numbers A2, (Mig),..., A2 (Mag) to a
function of the form f(n) =a — b(n — ¢)~% we get
18.5975

In particular, the extrapolation method predicts that

|C+D+C™ '+ DY ~V14.8 = 3.84,

f(n) =14.8 —

which is closer to 4.

T
o [ m
man 4m7,,i1 Oy Amax(Mn) Qp_1+ Qp

2.00000 2.00000 2.00000 2. - ----
2.34035 2.73861 1.87083 2.73861 3.87083
2.54230 3.00000 1.79284 3.0557 3.66367
2.68211 3.14937 1.94854 3.25861 3.74139
2.78843 3.25755 2.04888 3.42926 3.99743
2.87375 3.34119 1.72771 3.51875 3.77659
2.94445 3.40670 1.96392 3.57859 3.69163
3.00423 3.45804 1.78580 3.61369 3.74972
3.05548 3.49831 1.94497 3.63956 3.73078
10 3.09992 3.53005 1.99819 3.66407 3.94316
11 3.13878 3.55529 1.75237 3.68118 3.75056
12 3.17305 3.57561 2.02259 3.69704 3.77496
13 3.20348 3.59223 1.79177 3.70881 3.81436
14 3.23068 3.60604 1.95285 3.71884 3.74462
15 3.25515 3.61772 1.98142 3.72895 3.93427
16 3.27727 3.62774 1.75239 3.73636 3.73381
17 3.29738 3.63648 2.03111 3.74354 3.78351
18 3.31575 3.64418 1.81639 3.74935 3.84750
19 3.33261 3.65107 1.97352 3.75482 3.78992
20 3.34813 3.65727 1.93786 3.7603 3.91138
21 3.36249 3.66291 1.78748 3.76455 3.72534
22 3.37581 3.66807 2.02147 3.76876 3.80895
23 3.38821 3.67283 1.82478 3.77227 3.84625
24 3.39979 3.67724 2.00115 3.77583 3.82593
25 3.41062 3.68134 1.88660 3.77924 3.88775
26 3.42079 3.68518 1.83914 3.78205 3.72575
27 3.43036 3.68877 2.00637 3.7849 3.84551
28 3.43939 3.69215 1.82673 3.7873 3.83309
TABLE 4. Estimating the norm ||C + C~! + D + D71 .

© 00~ U W= 3
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