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Abstract. It is a long standing open problem whether the Thompson group

F is an amenable group. In this paper we show that if A, B, C denote the
standard generators of Thompson group T and D := CBA−1 then

√
2 +
√

3 <
1
√

12
||(I + C + C2)(I +D +D2 +D3)|| ≤ 2 +

√
2.

Moreover, the upper bound is attained if the Thompson group F is amenable.

Here, the norm of an element in the group ring CT is computed in B(`2(T )) via
the regular representation of T . Using the “cyclic reduced” numbers τ(((C +

C2)(D+D2 +D3))n), n ∈ N, and some methods from our previous paper [10]

we can obtain precise lower bounds as well as good estimates of the spectral
distributions of 1

12
((I+C+C2)(I+D+D2+D3))∗(I+C+C2)(I+D+D2+D3),

where τ is the tracial state on the group von Neumann algebra L(T ). Our

extensive numerical computations suggest that

1
√

12
||(I + C + C2)(I +D +D2 +D3)|| ≈ 3.28,

and thus that F might be non-amenable. However, we can in no way rule out
that 1√

12
||(I + C + C2)(I +D +D2 +D3)|| = 2 +

√
2.

1. Introduction

Definition 1.1. The Thompson group T is the group of (cyclic) order preserving
homeomorphisms f : R/Z→ R/Z for which:

• f and f−1 are piecewise linear with finitely many breakpoints.
• all breakpoints of f and f−1 are in Z[ 1

2 ]/Z.

• all slopes of f are in the set 2Z := {2n | n ∈ Z}.

T is a countable group. It is generated by the elements C,D, whose graphs are
shown in Fig. 1. Moreover, it has the finite presentation
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Figure 1. The generators C,D of the Thompson group T .

(1) T = 〈C,D | C3 = D4 = (CD)5 = e,

[CDC,D2(CDC)D2] = [D2(CDC)D2, C(D2CDCD2)C−1] = e〉,

where the group commutator is given by the definition [g, h] = ghg−1h−1. If A,B,C
denote the standard generators of T [6], then D = CBA−1.

Recall that F is the subgroup of T given by

F = 〈A,B〉 = {f ∈ T | f(0) = 0}.

It is a long standing open problem whether the Thompson group F is amenable.
The present paper is a continuation of the work started in [10] by the same au-
thors. In that paper, we tested the amenability problem of F by estimating norms
of certain elements in the group ring CF using computers. Thanks to the new
algorithms we devised to compute words in C,D in polynomial time (see Section 2)
and to some results by Haagerup and Olesen [12], we can now test the amenability
problem of F by computing norms of certain elements in CT . Extrapolations of
our computational results suggest the same as our previous paper, namely, that
F might not be amenable. A recent experimental work by Elder, Rechnitzer and
Janse van Reusburg [7] on the amenability problem of F using statistical methods
arrives also to the same conclusion that F might be non-amenable (see also [8]).

As in [10, Section 2], by the norm of ||a|| of an element a in the group ring of a
discrete group Γ we mean

||a|| = ||λ(a)||B(`2(Γ)),

where λ is the left regular representation of Γ. We continue using the standard
convention of writing a ∈ B(`2(Γ)) instead of λ(a) ∈ B(`2(Γ)) for any a ∈ CΓ. Our
starting point is the following theorem (see Section 2 for more details)

Theorem 1.2. Let C,D be the generators of T, whose graphs are shown in Fig.
1, and let I denote the unit element of T . Then

√
2 +
√

3 <
1√
12
||(I + C + C2)(I +D +D2 +D3)|| ≤ 2 +

√
2.

Moreover, the upper bound is attained if the Thompson group F is amenable.
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In comparison, one gets for the free product Z3?Z4 on two generators c ∈ Z3, d ∈
Z4 that

(2)
1√
12
||(e+ c+ c2)(e+ d+ d2 + d3)|| =

√
2 +
√

3.

(cf. Section 4). Given a discrete group Γ, let L(Γ) denote its von Neumann algebra.
That is, L(Γ) is the von Neumann algebra in B(`2(Γ)) generated by Γ. Then we
can define the normal faithful tracial state τ on L(Γ) by

τ(h) := 〈hδe, δe〉, h ∈ L(Γ).

(see e.g. [14, Section 6.7]). Moreover, we can express the norm of h in terms of the
moments

mn(h∗h) := τ((h∗h)n), n ∈ N0,

namely, (cf. [10, Section 4])

||h|| = ||h∗h||1/2 = lim
n→∞

τ((h∗h)n)
1
2n .

The challenge is to compute all the moments mn(h∗h), and in practice we can only
compute a finite number of them. In this paper, we were able to compute the
moments mn(h∗h), n = 0, . . . , 28 for the element

h =
1√
12

(I + C + C2)(I +D +D2 +D3),

using efficient methods, both mathematically and computationally. This procedure
can be adapted to elements in a discrete group Γ that are expressed similarly. Define
the self-adjoint operator

h̃ :=

(
0 h∗

h 0

)
∈M2(B(`2(T ))),

and let τ̃ := τ ⊗ τ2, where τ2 := 1
2Tr on M2(C). Then

Λ : C(σ(h̃))→ C

given by Λ(f) := τ̃(f(h̃)) is a positive functional on C(σ(h̃)) such that Λ(1) = 1.
Hence there is a unique Borel probability measure for which

τ̃(f(h̃)) =

∫
σ(h̃)

f dµ, ∀f ∈ C(σ(h̃))

Since τ̃ is faithful, the support supp(µ) = σ(h̃) ⊂ [−||h||, ||h|| ]. Such measure

µ is invariant under the reflection t 7→ −t because the odd moments of h̃ are zero,
and it satisfies ∫ ||h||

−||h||
t2ndµ(t) = m2n(h̃) = mn(h∗h), n ∈ N0

(cf. [10, Section 2]). Moreover, ±||h|| ∈ supp(µ) by symmetry of µ. The theory of
orthonormal polynomials applied to this measure (cf. [10, Section 4]) together with
the moments yield an increasing sequence of numbers converging to ||h||. We can
calculate the first 28 of these numbers using our computed moments, and a suitable
extrapolation of these numbers (n = 0, . . . , 28) gives

3.2016 ≤ 1√
12
||(I + C + C2)(I +D +D2 +D3)|| ≈ 3.28.
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We found that this sequence of numbers actually gives much better lower bounds
than the sequence of “roots” and “ratios” of the moments that also converge to
the norm (cf. Section 5). Furthermore, we also estimate the Lebesgue density of µ
with fairly high precision, which shows that the measure µ is very close to zero on
the interval [3.22, 2 +

√
2]. However, we cannot rule out that the measure has very

“thin tail” stretching all the way up to 2 +
√

2.
In comparison, one gets Eq. (2) when one considers the free product Z3 ? Z4 on

two generators c ∈ Z3, d ∈ Z4. The measure µ based on c, d instead of C,D will be
denoted by µfree, and it can be computed explicitly (See Section 4)

(3) µfree =
1

2π

√
24− (x2 − 5)2

x(12− x2)
1[−
√

2−
√

3,
√

2−
√

3]∪[
√

3−
√

2,
√

2+
√

3](x) dx+
3

4
δ0.

In our previous paper, we estimated the norm 3.60613 ≤ ||A+B+A−1 +B−1|| ≈
3.87, where A,B are the standard generators of F , by using the first 24 moments
of (A+B+A−1 +B−1)2. Elvey-Price [9] succeeded in computing 7 more moments,
which pass the test of [10, Theorem B.1] for possible computational errors. Using
these 31 moments, the updated estimated norm remains unchanged, while the new
lower bound is

3.64271 ≤ ||A+B +A−1 +B−1|| ≈ 3.87,

with a very likely lower bound of 3.70211, based on the same list of moments.
In comparison,

3.7873 ≤ ||C +D + C−1 +D−1|| ≈ 3.84,

which suggests that the actual norm is also much closer to 4, even though it cannot
be 4 because the Thompson group T is not amenable [4]. This norm is estimated
in the same way as we did with the norm ||A+B+A−1 +B−1|| (cf. Appendix B).
The composition of words in C, D is given in Section 2, and it was inspired by the
Belk and Brown forest algorithm in [3] (see also [2]).

2. Action of C,D, the cyclic reduced numbers ζn, and amenability.

Since the elements of the Thompson group T are piecewise linear functions with
breakpoints on the diadics, it makes sense to introduce the set of diadic intervals

D := {[ k
2n
,
k + 1

2n
] | n ∈ N0, k = 0, . . . , 2n − 1}.

Note that the unit interval is the largest diadic interval, and cutting a diadic interval
into two equal halves gives two new diadic intervals. Then we write the elements
of T as functions D → D. For instance, the element C whose graph is in Figure 1
is determined by the function

fC : {d1, d2, d3} → {r1, r2, r3}
given by

fC(d1) = r3 fC(d2) = r1 fC(d3) = r2,

where the diadic intervals d1 := [0, 1
2 ], d2 := [ 1

2 ,
3
4 ], d3 := [ 3

4 , 1] in this case are
obtained from the breakpoints of C and note that they only overlap on their
boundaries. Similarly r1 := [0, 1

2 ], r2 := [ 1
2 ,

3
4 ], r3 := [ 3

4 , 1] are obtained from

the breakpoints of C−1.
Observe that D is not closed under union, e.g. the union of the diadic intervals

[ 1
4 ,

1
2 ], [ 1

2 ,
3
4 ] ∈ D is the interval [ 1

4 ,
3
4 ] 6∈ D which is not diadic. This asymmetry
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Figure 2. Construction of the doubletrees for the generators C,D
of the Thompson group T .

Figure 3. Doubletree composition.

is used to construct, for a given x ∈ T , a so-called domain tree and range tree
with vertices in D. Namely for the domain tree, we start with a subset L of diadic
intervals of D which only intersect on their boundaries and whose union is the unit
interval and where the set of boundary points contains all the breakpoints of x. We
then represent each diadic interval with a dot, and we join two of these dots with
a caret whenever the union is also a diadic interval provided that the two intervals
only overlap on their boundaries. The tip of the caret is the joined diadic interval.
We do this recursively until we get the unit interval. For instance, in our example,
for the domain of fC , we can join d2 and d3 with a caret to obtain the diadic interval
[1/2, 1] and then we join this and d1 with a caret to obtain the diadic interval [0, 1].
The domain tree of C is illustrated in Figure 2. To get the corresponding range
tree we do the same construction for the diadic intervals x(L) := {x(d) | d ∈ L}.
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Figure 4. Case 1C: Trees I, II, III appear in the range tree of
x ∈ T . The action of C simply rotates these trees (and each tree
keeps its own leaves).

The domain tree (resp. range tree) of x ∈ T will be denoted with d(x) (resp. r(x)).

Definition 2.1 (Doubletree). The doubletree of x ∈ T is the pair of trees r(x),
d(x) together with the permutation (a rotation) σ : leaves(r(x)) → leaves(d(x)) of
its leaves.

For instance in our example, the doubletree of C is shown in Figure 3. Compo-
sition of doubletrees is done as if we were composing its corresponding piecewise
linear maps. However, it might be necessary to subdivide the diadic intervals in
domain and range to accomplish this task. (This corresponds to replace a domain
leaf and its corresponding range leaf with a double caret). For instance, if we com-
pose C ◦D using the doubletrees shown in Figure 2, we see that the range diadic
interval [0, 1/4] of D is too small to be composed with the domain diadic interval
[0, 1/2] of C. But once we subdivide [0, 1/2] ∈ leaves(d(C)) into [0, 1/4], [1/4, 1/2]
(and subdivide as well the image under C) then the composition can be done. See
Figure 3.

A doubletree with no double-carets is said to be reduced.

2.1. The action of C and D on any element of T . We investigate the double-
tree composition C ◦ x, x ∈ T in three cases, where the doubletrees of C and x are
assumed to be reduced (i.e. no double-carets).
Case 1C: (non-degenerate)
Assume that the root of the range tree r(x) has a left and a right node. The tree
starting at the left node is called tree I. Assume that the right node has a left node
and a right node. The tree starting at the right-left node is called tree II, and the
one starting at the right-right node is called tree III. The trees I, II, III, can be
0-trees, i.e. they can be leaves.

Then the root of the range tree r(C ◦ x) has a left and a right node. The tree
starting at the left node is tree II. The right node has a left node and a right node.
The tree starting at the right-left node is tree III, and the one starting at the right-
right node is tree I. The leaves of tree I, which map to leaves of the domain tree
d(x), stay with the tree, and the same holds for the other two trees II, III. See
Figure 4. The rotation permutation starts with σ(C ◦ x)(1) = σ(x)(σ(C)(1)).
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Figure 5. Composition C ◦ x, where x ∈ T satisfies the hypoth-
esis of case 1C (non-degenerate).

Figure 6. Composition C ◦ x, where x ∈ T satisfies the hypoth-
esis of case 2C (degenerate).

Reduction occurs only if tree III and tree I are 0-trees and the leaves σIII , σI
on the domain form a caret. Reduction occurs again only if tree II is also a 0-tree;
in such case we have the identity. An example of case 1C, is shown in Figure 5.
Case 2C:(degenerate, missing tree II)

Assume that the root of the range tree r(x) has a left and a right node. Assume
that the right node is a 0-tree (a leaf), which maps to another leaf of the domain
tree d(x). Insert a double caret at these two leaves and proceed as in case 1C. An
example for this case is shown in Figure 6.
Case 3C:(degenerate, missing trees, I,II,III)

The element x is the identity. Thus C ◦ x = C.

The composition D ◦ x, x ∈ T is done in 5 cases, where the trees of D and x are
assumed to be reduced.
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Figure 7. Case 1D: Trees I, II, III, IV appear in the range tree of
x ∈ T . The action of D simply rotates these trees (and each tree
keeps its own leaves).

Case 1D: (non-degenerate)
Assume that the root of the range tree r(x) has a left and a right node, which both
have also a left node and a right node. The tree starting at the left-left node is called
tree I. The one starting at the left-right node is called tree II. The one starting at
the right-left node is called tree III, and the one starting at the right-right node is
called tree IV. The trees I, II, III, IV can be 0-trees, i.e. they can be leaves.

Then, the root of the range tree r(D ◦x) has a left and a right node, which both
have also left and right nodes. The tree starting at the left-left node is tree II. The
tree starting at the left-right node is tree III. The tree starting at the right-left
node is tree IV. The tree starting at the right-right node is tree I. The leaves of tree
I, which map to leaves of the domain tree d(x), stay with the tree, and the same
holds for the other three trees II, III, IV. See Figure 7. The rotation permutation
starts with σ(D ◦ x)(1) = σ(x)(σ(D)(1)).

Reduction occurs only in the following two cases:

(a) II and III are 0-trees and the leaves σII, σIII on the domain form a caret.
(b) IV and I are 0-trees and the leaves σIV, σI on the domain form a caret.

Reduction occurs again, only if both (a) and (b) occur; in such case we have the
identity. An example of case 1D with reduction (a) is shown in Figure 8.
Case 2D: (degenerate, missing tree II)

Assume that the root of the range tree r(x) has a left and a right node. Assume
that the left node is a leaf which we call v, while the right node has a left and a
right node. The leaf v maps to a leaf of the domain tree d(x). Insert a double caret
at these two leaves. Then proceed as in case 1D. An example is shown in Figure 9.
Case 3D: (degenerate, missing tree III)

Assume that the root of the range tree r(x) has a left and a right node. Assume
that the right node is a leaf which we call v, while the left node has a left and a
right node. The leaf v maps to a leaf of the domain tree d(x). Insert a double caret
at these two leaves. Then proceed as in case 1D. An example is shown in Figure
10.
Case 4D: (degenerate, missing trees II, III)

Assume that the root of the range tree r(x) has a left and a right node, such
that both trees are 0-trees. Since x is assumed to be reduced, x = D2. Thus
D ◦ x = D3 = D−1.
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Figure 8. Composition D ◦ x, where x ∈ T satisfies the hypoth-
esis of case 1D (non-degenerate).

Figure 9. Composition D ◦ x, where x ∈ T satisfies the hypoth-
esis of case 2D (degenerate).

Figure 10. Composition D ◦ x, where x ∈ T satisfies the hy-
pothesis of case 3D (degenerate).
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Figure 11. The rotation operator R on doubletrees swaps the
nodes of every caret in the domain and range trees.

Case 5D: (degenerate, missing trees I, II, III, IV)
The element x is the identity. Thus D ◦ x = D.

2.2. The cyclic reduced numbers ζn. Let R : T → T , be defined by

R(x)(t) = 1− x(1− t), x ∈ T, t ∈ R/Z.
Then the graph of R(x) is the graph of x rotated by 180 degrees. The rotation map
R is a group isomorphism, and

(4) R ◦R = id, C−1 = D2R(C)D2, D−1 = D2R(D)D2.

The doubletree of R(x), x ∈ T , is obtained by swapping all the nodes of every caret
in the domain and range trees of x, i.e. left node (resp. right node) becomes right
node (resp. left node). An example is shown in Figure 11.
Define

a := C + C2 b := D +D2 +D3,

and recall that C3 = I, D4 = I. Since C,D ∈ L(T ) are unitaries, C∗ = C−1 and
D∗ = D−1. Moreover, a and b are self-adjoint, i.e. a∗ = a and b∗ = b. Define the
“cyclic reduced” numbers

ζn := τ((ab)n), n ∈ N.
Define N0 := {D,D2, D−1}. For n ∈ N let,

Nn := {(t0, s1, t1, . . . , sn, tn) | sj ∈ {C,C−1}, j = 1, . . . , n,

ti ∈ {D,D2, D−1}, i = 0, . . . , n},
and note that

b(ab)n =
∑

(t0,s1,t1,···sn,tn)∈Nn

t0(s1t1 · · · sntn), n ∈ N0.

We define the product of a tuple as follows

(5) π((t1, t2, . . . , tn)) := t1t2 · · · tn, t1, . . . , tn ∈ {C,D,C−1, D2, D−1},
and the inverse of each entry of a tuple as

(6) J((t1, t2, . . . , tn)) := (t−1
1 , t−1

2 , . . . , t−1
n ).
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For w = (t1, . . . , tn) it holds by Eq. (4)

(7) π(J(w)) = D2R(π(w))D2.

We say that the word π(J(w)) is the “reverse-inverse” of the word π(w). For
example, if w = (C,D,C2) then π(J(w)) = C−1D−1C−2, which corresponds to
first reversing the letters of the word CDC2 and then taking the inverse. Define
for n ∈ N,

Sn := {w, J(w′) | w,w′ ∈ {C} ×Nn−1, π(w) < π(J(w)), π(J(w′)) < π(w′)}
S′n := {w, J(w′) | w,w′ ∈ Nn−1 × {C−1}, π(w) < π(J(w)), π(J(w′)) < π(w′)}
En := {w ∈ {C} ×Nn−1 | π(w) = π(J(w))}.
E′n := {w ∈ Nn−1 × {C−1} | π(w) = π(J(w))}.
Here the comparison π(w) < π(J(w)) is done by comparing the lexicographic order
of their corresponding serialized (e.g. preorder) reduced doubletrees. The letter
Sn stands for smaller, e.g. that the word π(w) is smaller than its reverse-inverse
π(J(w)). Similarly, the letter En stands for equal. Since b(ab)n is self-adjoint,
w ∈ {C} ×Nn if and only if w−1 ∈ Nn × {C−1}, where w−1 is the inverse of each
entry in the tuple w and in reverse order. Define for n ∈ N,

(8) ζs2n :=
∑

(x,y)∈Sn×S′n

〈x, y〉, ζe2n :=
∑

(x,y)∈En×E′n

〈x, y〉

(9) ζs2n+1 :=
∑

(x,y)∈Sn×S′n+1

〈x, y〉, ζe2n+1 :=
∑

(x,y)∈En×E′n+1

〈x, y〉,

where 〈x, y〉 := τ(y∗x) is the inner product on L(T ) associated with the trace τ .
Then

Lemma 2.2.

ζn = 2ζsn + 4ζen, n ≥ 2.

Proof. For n ∈ N, define

Xn := {(s1, t1, · · · sn, tn) | si ∈ {C,C−1}, ti ∈ {D,D2, D−1}, i = 1, . . . , n}.
Then

(ab)n =
∑
x∈Xn

π(x).

Since (ab)n = Cb(ab)n−1 + C−1b(ab)n−1, we can partition Xn as follows

Xn = {w, J(w) | w ∈ {C} ×Nn−1}
= Sn t Ln t En t J(En),

where

Ln := {w, J(w′) | w,w′ ∈ {C} ×Nn−1, π(w) > π(J(w)), π(J(w′)) > π(w′)}.
Thus

(ab)n =
∑
x∈Sn

π(x) +
∑
x∈Ln

π(x) + 2
∑
x∈En

π(x).

Similarly,

(ba)n =
∑
x∈S′n

π(x) +
∑
x∈L′n

π(x) + 2
∑
x∈E′n

π(x),



12 S. HAAGERUP U. HAAGERUP M. RAMIREZ-SOLANO

where

L′n := {w, J(w′) | w,w′ ∈ Nn−1 × {C−1}, π(w) > π(J(w)), π(J(w′)) > π(w′)}.

The inner product 〈
∑
Sn
π(x),

∑
E′n
π(x)〉 = 0 because if there is a w ∈ Sn, w′ ∈ E′n,

such that π(w) = π(w′) then by Eq. (7), π(J(w)) = π(J(w′)), and thus π(w) <
π(J(w)) = π(J(w′)) = π(w′) = π(w), a contradiction.

Similarly, the inner product 〈
∑
Sn
π(x),

∑
L′n
π(x)〉 = 0 because if there is a

w ∈ Sn, w
′ ∈ L′n, such that π(w) = π(w′) then by Eq. (7) π(w) < π(J(w)) =

π(J(w′)) < π(w′) = π(w), a contradiction. The innerproducts

〈
∑
x∈Sn

π(x),
∑
x∈S′n

π(x)〉 = 〈
∑
x∈Ln

π(x),
∑
x∈L′n

π(x)〉

coincide because Ln = J(Sn), L′n = J(S′n) and because by Eq. (7)

π(x) = π(x′) ⇐⇒ π(J(x)) = π(J(x′)).

It follows that for n ∈ N,

ζ2n = 〈(ab)n, (ba)n〉
= 〈

∑
x∈Sn

π(x),
∑
x∈S′n

π(x)〉+ 〈
∑
x∈Ln

π(x),
∑
x∈L′n

π(x)〉+ 4〈
∑
x∈En

π(x),
∑
x∈E′n

π(x)〉

= 2〈
∑
x∈Sn

π(x),
∑
x∈S′n

π(x)〉+ 4〈
∑
x∈En

π(x),
∑
x∈E′n

π(x)〉

= 2ζs2n + 4ζe2n,

and

ζ2n+1 = 〈(ab)n, (ba)n+1〉
= 2〈

∑
x∈Sn

π(x),
∑

x∈S′n+1

π(x)〉+ 4〈
∑
x∈En

π(x),
∑

x∈E′n+1

π(x)〉

= 2ζs2n+1 + 4ζe2n+1.

�

2.3. Amenability.

Definition 2.3 (Amenability). A discrete group Γ is said to be amenable if there
exists a finitely additive measure µ : P (Γ)→ [0, 1] with µ(Γ) = 1 such that

µ(xA) = µ(A), for all A ∈ P (Γ), x ∈ Γ,

where P (Γ) denotes the power set of Γ.

Let P,Q,R ∈ L(T ) be the projections given by

(10) P :=
I + S

2
Q :=

I + C + C2

3
R :=

I +D +D2 +D3

4
,

where S := D2.
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Theorem 2.4. Let P,Q,R ∈ L(T ) be the projections in Eq. (10), which are defined
in terms of the generators C,D of Thompson group T . Then

||QR|| ≤ 1 +
√

2√
6

.

Moreover, the upper bound is attained if the Thompson group F is amenable.

Proof. It is well-known that

T ⊃ 〈S,C〉 = Z2 ? Z3
∼= PSL(2,Z) = SL(2,Z)/{±I},

(cf. [13, p.11, Example 1.5.3]). By [5, Proposition 2.5.9] the reduced C∗-algebra of
any subgroup H of a (discrete) group G is a subalgebra of C∗r (G) in a canonical
way, namely, one takes the left regular representation of G and restricts it to H.
Hence

C∗r (Z2 ? Z3) = C∗r (〈S,C〉) ⊂ C∗r (T ).

By this and Example 4.2 (or [1, Remark 15]) we get

||PQ|| = 1 +
√

2√
6

.

By spectral reasons

(11) R ≤ P.

Hence 0 ≤ QRQ ≤ QPQ, and by the C∗-identity (i.e. ||x∗x|| = ||x||2) we get

||QR||2 = ||QRQ|| ≤ ||QPQ||.

Since the norm of an element is the same as the norm of its adjoint (i.e. ||x∗|| =
||x||),

||QPQ||1/2 = ||PQP ||1/2 = ||PQ|| = 1 +
√

2√
6

.

Thus

(12) ||QR|| ≤ 1 +
√

2√
6

= 0.97 . . . .

We will now prove that ||QR|| ≥ 1+
√

2√
6

if F is amenable. Let H := `2(Z[ 1
2 ]∩ [0, 1)),

and let π : T → B(H) be the representation given by

π(x)δt = δx(t), x ∈ T, t ∈ Z[1/2] ∩ [0, 1),

where the set {δt | t ∈ Z[1/2]∩ [0, 1)} is an orthonormal basis for the Hilbert space
H. Let S1, S2 ∈ B(H) be the isometries defined by

S1δt := δt/2, S2δt := δ(t+1)/2, t ∈ Z[1/2] ∩ [0, 1),

and note that they satisfy the relation S1S
∗
1 + S2S

∗
2 = I. Then by [12, Proposition

4.3], π(CT ) is contained in the Cuntz algebra O2 = C∗(S1, S2). If F is amenable
then by [12, Proposition 4.4], π is weakly contained in the left regular representation
of T . This is equivalent to the existence of a *-homomorphism ρ from the reduced
C∗-algebra C∗r (T ) into the C∗-algebra generated by π(T ) such that π = ρ◦λ. Hence

||π(x)||B(H) = ||ρ(λ(x))||B(H) ≤ ||λ(x)||C∗r (T ), x ∈ CT.
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Thus amenability of F implies that the norm ||QR|| is greater or equal than

the norm ||π(QR)||. Thus, it suffices to show that ||π(QR)|| = 1+
√

2√
6

. We have

||π(QR)||2 = ||π(RQR)||, and

π(RQR) =
1

48
(S1 + S2)2(2I + S1 + S2)∗(2I + S1 + S2)(S1 + S2)∗2.

Substituting x := 1√
2
(S1 + S2) gives

π(RQR) =
1

6
x2(
√

2I + x)∗(
√

2I + x)x∗2.

Since x is a proper isometry (i.e. x∗x = I 6= xx∗),

||x2(
√

2I + x)∗(
√

2I + x)x∗2|| = ||(
√

2I + x)∗(
√

2I + x)||.
Consequently,

||π(RQR)|| = 1

6
||(
√

2I + x)∗(
√

2I + x)|| = 1

6
||
√

2I + x||2.

Now, the spectrum of x is the entire unit disc because x is a proper isometry.
(One uses the Wold decomposition to show this). Thus the spectral radius of√

2I + x is
√

2 + 1. Hence the norm is at least this number and by the triangle
inequality we get

||
√

2I + x|| = 1 +
√

2,

as required. �

3. Two projections

Let Γ := 〈c, d〉 be a discrete group on two generators such that c is of order k
and d of order `, for some integers ` ≥ k ≥ 2. Let L(Γ) denote its von Neumann
algebra, i.e. L(Γ) is the von Neumann algebra in B(`2(Γ)) generated by Γ. Then

τ(h) = 〈hδe, δe〉, h ∈ L(Γ)

defines a normal faithful tracial state on L(Γ) (see e.g. [23, Section 6.7]). Let

P :=
e+ c+ · · ·+ ck−1

k
∈ CΓ ⊂ C∗r (Γ) ⊂ L(Γ) ⊂ B(`2(Γ))

Q :=
1 + d+ · · ·+ d`−1

`
∈ CΓ ⊂ C∗r (Γ) ⊂ L(Γ) ⊂ B(`2(Γ))

be fixed projections such that
||PQ|| < 1.

Let

α := τ(P ) =
1

k
, β := τ(Q) =

1

`
and notice that

0 < β ≤ α ≤ 1

2
.

It follows by P. R. Halmos’ work [11] that the C∗-algebra A := C∗(P,Q, I) generated
by 2 projections P,Q and the identity I is the direct sum of an abelian C∗-algebra
and a C∗-algebra of type I2 i.e. of the form C(X) ⊗M2(C) where X equals the
spectrum of a certain positive contraction. The abelian part is of dimension at
most 4 and its minimal projections are given as

e00 := I − P ∨Q = (I − P ) ∧ (I −Q)
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e11 := P ∧Q e10 := P ∧ (I −Q) e01 := (I − P ) ∧Q,
where some, and even all may vanish. The central support for the I2 part of A is
denoted f and it is given by

(13) f = I − e11 − e10 − e01 − e00.

We define

(14) R := P − e11 − e10, S := Q− e11 − e01

and see that R and S are projections satisfying R ≤ f , S ≤ f because Pe1i =
e1iP = e1i, Pe0i = e0iP = 0 and Qei1 = ei1Q = ei1, Qei0 = ei0Q = 0, i = 0, 1.
Moreover,

R ∧ S = 0 R ∨ S = f.

So inside fAf , the pair of projections R,S actually fit the description given by
Halmos. Thus, there exists an isomorphism Φ of fAf onto C(σ(RSR))⊗M2(C) =
M2(C(σ(RSR))), such that

Φ(f) = IC(σ(RSR)) ⊗
(

1 0
0 1

)
Φ(R) = IC(σ(RSR)) ⊗

(
1 0
0 0

)
and

Φ(S) =

(
RSR (RSR)1/2(f −RSR)1/2

(RSR)1/2(f −RSR)1/2 f −RSR

)
.

Now,
P − αI = (R− αf) + (1− α)e11 + (1− α)e10 − αe01 − αe00

Q− βI = (S − βf) + (1− β)e11 + (1− β)e01 − βe10 − βe00

(P−αI)(Q−βI) = (R−αf)(S−βf)+(1−α)(1−β)e11−α(1−β)e01−β(1−α)e10+

(−α)(−β)e00.

Thus since Reij = Seij = feij = 0 for i, j ∈ {0, 1} we get

τ
((

(P − αI)(Q− βI)
)n)

= τ
((

(R− αf)(S − βf)
)n)

+ (αβ)nτ(e00) +(15)

(−α(1− β))nτ(e01) + (−β(1− α))nτ(e10) +

((1− α)(1− β))nτ(e11).

Similarly, since
PQ = RS + e11

(I − P )(I −Q) = (f −R)(f − S) + e00

P (I −Q) = R(f − S) + e10

(I − P )Q = (f −R)S + e01

we get
τ((PQ)n) = τ((RS)n) + τ(e11)

τ
((

(I − P )(I −Q)
)n)

= τ
((

(f −R)(f − S)
)n)

+ τ(e00)

τ
((
P (I −Q)

)n)
= τ

((
R(f − S)

)n)
+ τ(e10)

τ
((

(I − P )Q
)n)

= τ
((

(f −R)S
)n)

+ τ(e01).
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Since ||PQ|| < 1, ||e11|| = ||e11PQ|| < 1 because the norm is submultiplicative, and
thus the minimal projection

e11 = 0,

and since PQP = RSR+ e11, the spectrum

σ(RSR) = σ(PQP ) ⊂ [0, 1).

By the continuous functional calculus for the positive element RSR ∈ fAf we can
write

Φ(f) =

(
1 0
0 1

)
, Φ(R) =

(
1 0
0 0

)
.

Φ(S) =

(
t

√
t(1− t)√

t(1− t) 1− t

)
, 0 < t < 1.

Φ(RSR) =

(
t 0
0 0

)
, 0 < t < 1.

Φ(R(f − S)R) =

(
1− t 0

0 0

)
, 0 < t < 1.

Φ((f −R)S(f −R)) =

(
0 0
0 1− t

)
, 0 < t < 1.

Φ((f −R)(f − S)(f −R)) =

(
0 0
0 t

)
, 0 < t < 1.

The restriction of τ to fAf is a trace on this algebra, so by the spectral theorem
to the positive element RSR, there must exist a positive measure µ on σ(RSR)
such that for any x ∈ fAf we have

τ(x) =

∫
t∈σ(RSR)

1

2
Φ(x)11(t) +

1

2
Φ(x)22(t)dµ(t)

=

∫ 1

0

τt(x)dµ(t)

where

τt(x) :=
1

2
Tr(Φ(x)(t)),

and 1
2Tr is the normalized trace of M2(C). Thus

1 = τ(I) =

∫ 1

0

τt(f)dµ(t) + τ(e11) + τ(e10) + τ(e01) + τ(e00),

and since τ((pq)n) = τ((pqp)n) for any two projections p, q and any n ∈ N, we get

τ
(
(PQ)n

)
=

∫ 1

0

τt
(
(RS)n

)
dµ(t) + τ(e11)(16)

τ
((

(I − P )(I −Q)
)n)

=

∫ 1

0

τt

((
(f −R)(f − S)

)n)
dµ(t) + τ(e00)

τ
((
P (I −Q)

)n)
=

∫ 1

0

τt

((
R(f − S)

)n)
dµ(t) + τ(e10)

τ
((

(I − P )Q
)n)

=

∫ 1

0

τt

((
(f −R)S

)n)
dµ(t) + τ(e01).



COMPUTATIONAL EXPLORATIONS OF T FOR THE AMENABILITY PROBLEM OF F 17

It is not difficult to show that µ({0}) = 0. We extend µ to a probability measure
on [0, 1] by putting

µ({0}) := µ10 + µ01

µ({1}) := µ00 + µ11,

where

µij := τ(eij), i, j ∈ {0, 1}.

Lemma 3.1. Define

ν := µ− (µ10 − µ01)δ0 − (µ00 − µ11)δ1.

Then ν is a measure on [0, 1] with total mass ν([0, 1]) = 2β, and

τ((PQ)n) =
1

2

∫
[0,1]

tndν(t), n ≥ 1.

Moreover,

µ10 − µ01 = α− β ≥ 0, µ11 = 0, µ00 = 1− α− β ≥ 0, ν({1}) = 0.

Proof. Letting n = 1 in Eq. (16), we get

1 = τ(I) = µ00 + µ01 + µ10 + µ11 + µ((0, 1)).

α = τ(P ) = τ(P (I −Q)) + τ(PQ) = µ10 + µ11 +
1

2
µ((0, 1)).

β = τ(Q) = τ((I − P )Q) + τ(PQ) = µ01 + µ11 +
1

2
µ((0, 1)).

1− α = τ(I − P ) = µ00 + µ01 +
1

2
µ((0, 1)).

1− β = τ(I −Q) = µ00 + µ10 +
1

2
µ((0, 1)).

Combining these equations we get

0 ≤ α− β = τ(P )− τ(Q) = µ10 − µ01

0 ≤ 1− α− β = τ(I − P )− τ(Q) = µ00 − µ11.

Since ||PQ|| < 1, µ11 = 0. Thus

µ00 = 1− α− β.

We can write µij , i = 0, 1 as follows

µ01 =
1

2
µ({0})− µ10 − µ01

2

µ10 =
1

2
µ({0}) +

µ10 − µ01

2

µ00 =
1

2
µ({1}) +

µ00 − µ11

2

µ11 =
1

2
µ({1})− µ00 − µ11

2
,
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and the measure ν on [0, 1] defined in the lemma satisfies

ν({0}) = µ({0})− (µ10 − µ01)

ν({1}) = µ({1})− (µ00 − µ11)

µ01 =
ν({0}) + (µ10 − µ01)

2
− µ10 − µ01

2
=

1

2
ν({0})

µ10 =
1

2
ν({0}) + (µ10 − µ01)(17)

µ00 =
ν({1}) + (µ00 − µ11)

2
+
µ00 − µ11

2
=

1

2
ν({1}) + (µ00 − µ11)

µ11 =
1

2
ν({1}).

Moreover, the total mass of ν is

ν([0, 1]) = ν({0}) + ν({1}) + µ((0, 1))

= 1− (µ10 − µ01 + µ00 − µ11) = 1− (α− β + 1− α− β)

= 2β,

and ∫
[0,1]

1

2
tndν(t) =

1

2

∫
(0,1)

tndµ(t) +
1

2
ν({1}) = τ((PQ)n), n ∈ N.

�

By the following proposition and Lemma 3.1 we can state the “cyclic numbers”

τ(((P − αI)(Q− βI))n), n ∈ N,
in terms of the moments τ((PQ)n).

Theorem 3.2. For n ∈ N,

τ(((P − αI)(Q− βI))n) = (αβ)nµ00 + (−β(1− α))n(µ10 − µ01) +

(α(1− α)β(1− β))n/2
∫

[0,1]

Tn(
t− α− β + 2αβ

2
√
α(1− α)β(1− β)

)dν(t),

where Tn is the Chebyshev polynomial of the first kind.

Proof. Let

E := P − αI F := Q− βI, E′ := R− αf, F ′ := S − βf
Then the spectrum σ(E) = {−α, 1 − α}, σ(F ) = {−β, 1 − β}, and by Eq.(15) we
get

τ((EF )n) = ((−α)(−β))nµ00+(−α(1−β))nµ01+(−β(1−α))nµ10+((1−α)(1−β))nµ11+∫
(0,1)

τt((E
′F ′)n)dµ(t)

= (αβ)nµ00 + (−β(1−α))n(µ10−µ01) +ν({0})(1

2
(−β(1−α))n+

1

2
(−α(1−β))n)+

1

2
ν({1})((1− α)(1− β))n +

∫
(0,1)

τt((E
′F ′)n)dµ(t)

= (αβ)nµ00 + (−β(1− α))n(µ10 − µ01) +

∫
[0,1]

τt((E
′F ′)n)dν(t),
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where we used Eq. (17) in the second equality.
To complete the proof we just need to show that∫

[0,1]

τt((E
′F ′)n)dν(t) = (α(1−α)β(1−β))n/2

∫
[0,1]

Tn(
t− α− β + 2αβ

2
√
α(1− α)β(1− β)

)dν(t).

Since

Φ(E′) = Φ(R− αf) =

(
1− α 0

0 −α

)
Φ(F ′) = Φ(S − βf) =

(
t− β

√
t(1− t)√

t(1− t) 1− t− β

)
we get

Φ(E′F ′) =

(
(1− α)(t− β) (1− α)

√
t(1− t)

−α
√
t(1− t) −α(1− t− β)

)
.

Since

Tr(Φ(E′F ′)) = (1− α)(t− β)− α(1− t− β) = t− α− β + 2αβ

det(Φ(E′F ′)) = α(1− α)(β(1− β))

the characteristic polynomial λ2 + Tr(Φ(E′F ′)) + det(Φ(E′F ′)) of Φ(E′F ′) is

λ2 − (t− α− β + 2αβ)λ+ α(1− α)(1− β).

The eigenvalues of Φ(E′F ′) are

λ1(t) :=
t− α− β + 2αβ +

√
(t− α− β + 2αβ)2 − 4α(1− α)β(1− β)

2

λ2(t) :=
t− α− β + 2αβ −

√
(t− α− β + 2αβ)2 − 4α(1− α)β(1− β)

2
.

If |t− α− β + 2αβ| ≤ 2
√
α(1− α)β(1− β) then λ2 = λ1 and

λ1 = |λ1|eiθ λ2 = |λ2|e−iθ |λ1| = |λ2| =
√
α(1− α)β(1− β),

where

cos θ =
Reλ1

2|λ1|
=

t− α− β + 2αβ

2
√
α(1− α)β(1− β)

.

Let t1, t2 be the roots of (t − α − β + 2αβ)2 − 4α(1 − α)β(1 − β) with t1 < t2.
Then for t1 < t < t2 it holds

τt((E
′F ′)n) =

λ1(t)n + λ2(t)n

2

= |λ1|n
einθ + e−inθ

2

= |α(1− α)β(1− β)|n/2 cos(nθ)

= (α(1− α)β(1− β))n/2Tn(
t− α− β + 2αβ

2
√
α(1− α)β(1− β)

),

where Tn is the Chebyshev polynomials of the first kind. Since both sides of this
equality are polynomials which agree on the interval [t1, t2], they must be the same
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polynomials. Hence∫
[0,1]

τt((E
′F ′)n)dν(t) =

∫
[0,1]

λ1(t)n + λ2(t)n

2
dν(t).

=

∫
[0,1]

(α(1− α)β(1− β))n/2Tn(
t− α− β + 2αβ

2
√
α(1− α)β(1− β)

) dν(t).

�

4. The free case

Let p ∈ L(Γ) be a nonzero projection different from the identity. Here projections
mean self-adjoint idempotents (p2 = p = p∗). Let µ be the spectral distribution
measure of p with respect to the trace τ on L(Γ). Then supp(µ) = σ(p) = {0, 1}
because τ is faithful, and

τ(f(p)) =

∫
σ(p)

fdµ =

∫
σ(p)

(f(0)1{0} + f(1)1{1})dµ = f(0)µ({0}) + f(1)µ({1}),

for any f ∈ C({0, 1}). In particular, by letting f(t) = t and f(t) = 1− t we get

µ({0}) = 1− τ(p), µ({1}) = τ(p).

Moreover, the moments mn(p) = τ(pn) = τ(p) for n ∈ N.

Theorem 4.1. Let Γ := Zk ? Z` be the free product on two generators c ∈ Zk,
d ∈ Z` for some integers k, ` ≥ 2. Let

p :=
e+ c+ · · ·+ ck−1

k
, q :=

e+ d+ · · ·+ d`−1

`
∈ CΓ

be two nonzero projections different from the identity. Moreover, assume that α :=
τ(p), β := τ(q) satisfy 0 < β ≤ α < 1, α+ β < 1 and let

λ1 :=
√
α(1− β) +

√
β(1− α)

λ2 :=
√
α(1− β)−

√
β(1− a).

Then the spectral distribution measure µfree of

(
0 (pq)∗

pq 0

)
∈ M2(L(Γ)) with

respect to the trace τ̃ := τ ⊗ τ2 on M2(L(Γ)) is

µfree =
1

2π

√
(λ2

1 − t2)(t2 − λ2
2)

t(1− t2)
1[−λ1,−λ2]∪[λ2,λ1]dt + (1− β)δ0,

where dt is the Lebesgue measure. In particular,

||pq|| =
√
α(1− β) +

√
β(1− α).

Proof. Let µ (resp. ν) be the spectral distribution measure of p (resp. q) with
respect to the trace τ of L(Γ). We now compute the S-transform (cf.[17, p.30-32]
or [16]):

ψµ(s) :=

∫ ∞
0

ts

1− ts
dµ(s) =

∫ ∞
0

(ts+ t2s2 + t3s3 + · · · )dµ(t)

= m1(p)s+m2(p)s2 +m3(p)s3 + · · · = αs+ αs2 + αs3 + · · ·

=
αs

1− s
.
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Similarly,

ψν(s) =
βs

1− s
.

The formal power series ψµ (resp. ψµ) has to satisfy the equations χµ(ψµ(s)) = s,
ψµ(χµ(z)) = z and Sµ(z) = z+1

z χµ(z) (resp. χν(ψν(s)) = s, ψν(χν(z)) = z and

Sν(z) = z+1
z χν(z)). Solving for χµ, Sµ, χν , Sν , we get

z = ψµ(s) ⇐⇒ (1− s)z = αs =⇒ χµ(z) = s =
z

α+ z

z = ψν(s) =⇒ χν(z) = s =
z

β + z
.

Sµ(z) =
z + 1

z
χµ(z) =

z + 1

α+ z

Sν(z) =
z + 1

z
χν(z) =

z + 1

β + z

By [17, Theorem 3.6.3], the multiplicative free convolution is

Sµ�ν(z) = Sµ(z)Sν(z) =
(z + 1)2

(α+ z)(β + z)
.

Thus

χµ�ν(z) =
z

z + 1
Sµ�ν(z) =

z(z + 1)

(α+ z)(β + z)
,

and

s = χµ�ν(z) ⇐⇒ (α+ z)(β + z)s = z(z + 1)

=⇒ ψµ�ν(s) = z =
1

2

1− (α+ β)s±
√
d(s)

s− 1

where d(s) is the discriminant

d(s) := (α− β)2s2 + (4αβ − 2α− 2β)s+ 1.

Letting s = 1
λ , the discriminant d(s) can be written as

d(
1

λ
) =

(λ− λ2
1)(λ− λ2

2)

λ2
,

where

λ1 :=
√
α(1− β) +

√
β(1− α) λ2 :=

√
α(1− β)−

√
β(1− α).

Let ψ := ψµ�ν . Then the Cauchy transform G(λ) of µ� ν is

G(λ)− 1

λ
=

1

λ
ψ(

1

λ
) =

1

2λ

1− (α+ β) 1
λ +

√
d( 1
λ )

1
λ − 1

=
λ− α− β +

√
(λ− λ2

1)(λ− λ2
2)

2λ(1− λ)
.

By Stieltjes inversion formula, µ� ν is given by

µ� ν(x) = lim
y→0+

(
− 1

π
ImG(x+ iy)

)
dx+ c0δ0(18)

=
1

π

√
(λ2

1 − x)(x− λ2
2)

2x(1− x)
1[λ2

2,λ
2
1](x) dx+ c0δ0.
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where c0 := 1− β, is the residue of G at the simple pole 0, and dx is the Lebesgue
measure. Since 0 < β ≤ α < 1 and α+ β < 1, the integral

(19)

∫ λ2
1

λ2
2

1

π

√
(λ2

1 − x)(x− λ2
2)

2x(1− x)
dx = β,

(cf. [15, Example 4.3.3]). By [17, Remarks 3.6.2(iii)], we get that µ�ν = µ
p

1
2 qp

1
2

, the

spectral distribution of p
1
2 qp

1
2 with respect to the (unique) trace τ on L(Γ). Since

τ((p
1
2 qp

1
2 )n) = τ((pqp)n) for every n ∈ N0, µ� ν = µpqp, the spectral distribution

of pqp w.r.t. τ . Define the self-adjoint operator

S :=

(
0 (pq)∗

pq 0

)
∈M2(L(Γ)),

and let µfree := µS be the spectral distribution of S with respect to the normal
faithful trace τ ⊗ τ2, where τ2 := 1

2Tr is the normalized trace on M2(C). By [10,
Eq. (2.6)], m2n(S) = τ(((pq)∗(pq))n) = τ((qpq)n) = τ((pqp)n). Thus the image
measure φ(µS) of µS by the map φ : t 7→ t2 is φ(µS) = µpqp = µ� ν. Substituting
t2 = x in Eq. (18), we get

µS(t) =
1

π

√
(λ2

1 − t2)(t2 − λ2
2)

t(1− t2)
1[λ2,λ1](t)dt + c0δ0.

Symmetrizing,

µS(t) =
1

2π

√
(λ2

1 − t2)(t2 − λ2
2)

t(1− t2)
1[−λ1,−λ2]∪[λ2,λ1]dt+ c0δ0,

and by [10, Eq (2.7)],

||pq|| = ||S|| = max(supp(µS)) = λ1.

�

Example 4.2 (free case). Let Γ := Z2 ? Z3 be the free product with generators
s ∈ Z2, c ∈ Z3. Let p = (e+ s)/2, q = (e+ c+ c2)/3 ∈ CΓ. Then by Theorem 4.1

||pq|| =
√

1

2
(1− 1

3
) +

√
1

3
(1− 1

2
) =

1 +
√

2√
6

= 0.985 . . . .

Let Γ′ := Z3 ? Z4 be the free product with generators c ∈ Z3, d ∈ Z4. and let
q = (e+ c+ c2)/3, r = (e+ d+ d2 + d3)/4 ∈ CΓ′. Then by Theorem 4.1

||qr|| =
√

1

3
(1− 1

4
) +

√
1

4
(1− 1

3
) =

√
2 +
√

3√
12

= 0.908 . . . .

5. Results

Let P,Q,R ∈ L(T ) be the projections given by

P :=
I + S

2
Q :=

I + C + C2

3
R :=

I +D +D2 +D3

4
,

where S := D2 and C, and D are the generators of T shown in Figure 1. Let τ be
the trace on CT coming from the group von Neumann algebra L(T ), as described in
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[10, Section 2]. Using the trace properties of τ , the even moments for the self-adjoint
operator

(20) h̃ :=
√

12

(
0 (QR)∗

QR 0

)
∈M2(C∗r (T ))

are given by

m2n(h̃) = τ((h̃)2n) = 12nτ((QRQ)n) = 12nτ((QR)n), n ∈ N,

where

h :=
√

12QR =
1√
12

(I + C + C2)(I +D +D2 +D3).

Our goal is to compute as many as possible of the moments

mn := mn(h∗h)

= m2n(h̃)

= τ(((I + C + C2)(I +D +D2 +D3))n), n ∈ N,(21)

because by Section 4 in [10] we can use them to estimate the norm ||h|| (which is

equal to ||h̃||):

lim
n→∞

m1/2n
n = lim

n→∞

√
12τ((QRQ)n)1/2n =

√
12||QRQ||1/2 =

√
12||QR|| = ||h||.

Rather than computing the moments mn directly, we compute the “cyclic re-
duced” numbers

ζn := τ(((C + C2)(D +D2 +D3))n), n ∈ N.

These numbers are related by the formula

(22) ζn −
5 + (−2)n

12
= 2

n∑
k=0

cn,k
12k

mk, n ∈ N0,

where m0 := 1/4, (ζ0 := 1), and cn,k is the coefficient of tk in the substituted

Chebyshev polynomial of the first kind 6n/2Tn(
√

6(t− 5
12 )). To obtain this formula

(22), we use Lemma 3.1 and Theorem 3.2 with α = τ(Q) = 1/3, β = τ(R) = 1/4,
and note that from Lemma 3.1,

∫
[0,1]

tk dν = 2mk/12k.

To compute the cyclic reduced numbers ζn, we use the inner product

〈x, y〉 := τ(y∗x)

on L(T ) associated with the trace τ . Recall that the trace restricted to the group
ring CT (considered as a subalgebra of C∗r (T ) ⊂ L(T )) satisfies

τ(
∑
x∈Y

cxx) =

{
ce if e ∈ Y
0 else

,

for any finite subset Y ⊂ T and any set of complex numbers (cx)x∈T indexed
by T . In particular, τ(x) = 1 if x = e else it is zero. For instance, expanding
(I +C +C2)(I +D+D2 +D3) we see that the identity occurs only once and thus
m1 = 1. Thus

(23) 〈
∑
x∈X

cx x,
∑
y∈Y

cy y〉 =
∑
x∈X

∑
y∈Y

cxcy〈x, y〉,

for any finite subsets X,Y ⊂ T , and any cx, cy ∈ C.
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Define

a := C + C2 b := D +D2 +D3,

and recall that C3 = I, D4 = I, and that a = a∗ and b = b∗. Then

ζn = τ((ab)n), n ∈ N.

Using computers, we compute ζn as follows. We store in one file the terms of the
expanded sum (ab)n, (one term per line), and in another file those of (ba)n. Here
a term is a word of length n in the letters C,C−1, D,D−1, D2. Composition of
the letters in the word is done using the algorithm described in section 2, which
yields a reduced doubletree. This doubletree is then converted into a sequence of
zeroes and ones and separators and pointers by serializing the range and domain
trees using the preorder traversal method. We save this sequence in base 64 in a
single line. To save time and space we read the file for (ab)n and apply ab (i.e. we
multiply each word with CD,CD2, CD−1, C−1D,C−1D2, and C−1D−1) in order
to obtain the file for (ab)n+1. To save space we store not only the word but also
its frequency. Taking the inverse of each word in the file for (ab)n gives the file for
(ba)n. The inverse of a doubletree x ∈ T with range tree r(x) and domain tree d(x)
is the doubletree with range tree d(x) and domain tree r(x) (i.e. it simply swaps
the domain and range trees). The inner product

ζ2n = 〈(ab)n, (ba)n〉, n ∈ N

is the intersection of the sorted files for (ab)n and (ba)n. We used the GNU sort
program to sort the files. The odd “cyclic reduced” numbers ζ2n+1 are computed
similarly

ζ2n+1 = 〈(ab)n+1, (ba)n〉 = 〈(ab)n, (ba)n+1〉, n ∈ N0.

To reduce the size of the files by about one half, we compute instead the numbers
ζsn, ζ

e
n given in Eqs. (8),(9); the idea is the following: Since (ab)n = Cb(ab)n +

C−1b(ab)n, and b(ab)n is self-adjoint, we can obtain the terms of the expanded sum
for C−1b(ab)n from those of Cb(ab)n by using the “reverse-inverse” map π ◦ J =
Ad(D2)◦R given in Eq. (7). For instance the reverse-inverse of the word CDC2D2 is
D2R(CDC2D2)D2 = C−1D−1C−2D−2, which corresponds to reversing the order
of the letters and taking the inverse. The letter s (resp. e) in ζsn (resp. ζen) stands
for that we are only keeping the words which are smaller than (resp. equal to) their
corresponding reverse-inverses. The comparison is done using the lexicographic
order of the serialized form of the doubletrees. The relation between these numbers
and the reduced cyclic number ζn is given by Lemma 2.2

ζn = 2ζsn + 4ζen, n ≥ 2.

We wrote two programs in C# and Haskell, both using parallel programming, to
calculate the numbers ζsn, ζ

e
n, which can be downloaded at

https://github.com/shaagerup/ThompsonGroupT/

https://github.com/mariars/ThompsonGroupT/

The size of each of the two files for computing ζs28 is about 281 GB and 285 GB.
They were run in a desktop computer with 2 TB of SSD hard disk, and on the
Abacus 2.0 supercomputer from the DeIC National HPC Centre. The series of
numbers ζsn, ζ

e
n, ζn,mn are shown in Table 1.

In comparison, when one considers the free product Z3?Z4 on two generators c ∈
Z3, d ∈ Z4, the measure µfree in Eq. (3) based on c, d instead of C, D, is computed
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explicitly using Theorem 4.1 with α = τ( e+c+c
2

3 ) = 1/3, β = τ( e+d+d2+d3

4 ) = 1/4,

(and substituting x =
√

12 t). Hence the moments mfree
n can be computed explicitly

with Eq. (3) together with Lemma A.1. One gets mfree
1 = 1, and

mfree
n = 12mfree

n−1 − 6

bn−2
2 c∑
j=0

6j5−2j+n−2

(
2j
j

)
j + 1

(
n− 2

2j

)
, n ≥ 2.

Estimations of the norm ||h|| are done as follows. By [10, Section 4] and the
theory of orthogonal polynomials we can define a sequence of positive numbers

αn :=

(
Dn−2Dn

D2
n−1

)1/2

, n ∈ N,

where

D−1 := 1, Dn := det([mi+j(h̃)]ni,j=0).

n ζsn ζen ζn mn(h∗h)
1 0 0 0 1
2 0 0 0 6
3 0 0 0 42
4 0 0 0 318
5 1 0 2 2528
6 0 0 0 20790
7 0 0 0 175344
8 4 0 8 1508158
9 36 0 72 13177554
10 70 3 152 116636378
11 64 1 132 1043596346
12 524 1 1052 9423929906
13 2228 4 4472 85780131568
14 8160 16 16384 786252907282
15 21617 32 43362 7251162207110
16 81644 102 163696 67241091321510
17 279531 697 561850 626619942680948
18 1006816 4990 2033592 5865627675769158
19 3429416 13057 6911060 55130780282172364
20 12284412 35247 24709812 520110723876289138
21 43215686 89274 86788468 4923701716098043110
22 154863150 246102 310710708 46759540919860581346
23 550890233 763137 1104833014 445382340814268264936
24 1982133410 2484953 3974206632 4253954798148920432622
25 7128125209 9275681 14293353142 40735421620966779279998
26 25797672490 34858087 51734777328 391022235546378412228050
27 93561508424 119608865 187601452308 3761992784005490950198026
28 341014479116 411320336 683674239576 36271465945557216051920334

Table 1. The series of numbers for h = 1√
12

(I + C + C2)(I +

D +D2 +D3) .
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For instance

D4 = det


m0 0 m1 0 m2

0 m1 0 m2 0
m1 0 m2 0 m3

0 m2 0 m3 0
m2 0 m3 0 m4

 ,

where m0 := 1/4 and mn is defined in Eq. (21). Let

Mn =



0 α1

α1 0 α2 0

α2
. . .

. . .

. . .
. . . αn

0 αn 0

 .

n m
1
2n
n

√
mn

mn−1
αn λmax(Mn) αn−1 + αn

1 1.00000 2.00000 2.00000 2. - - - - -
2 1.56508 2.44949 1.41421 2.44949 3.41421
3 1.86441 2.64575 1.73205 2.71519 3.14626
4 2.05496 2.75162 1.41421 2.82843 3.14626
5 2.18916 2.81952 1.77951 2.9224 3.19373
6 2.28992 2.86773 1.41111 2.97266 3.19062
7 2.36899 2.90414 1.75248 3.01653 3.16359
8 2.43306 2.93277 1.42622 3.04235 3.17870
9 2.48626 2.95593 1.78930 3.06842 3.21552
10 2.53129 2.97509 1.43494 3.08578 3.22424
11 2.57000 2.99123 1.75349 3.10309 3.18844
12 2.60371 3.00504 1.43767 3.11454 3.19117
13 2.63339 3.01701 1.78223 3.12665 3.21990
14 2.65975 3.02753 1.45087 3.13534 3.23310
15 2.68337 3.03685 1.76147 3.14458 3.21234
16 2.70467 3.04518 1.45124 3.15121 3.21271
17 2.72399 3.05270 1.77229 3.15841 3.22353
18 2.74163 3.05953 1.45749 3.16373 3.22978
19 2.75780 3.06577 1.76751 3.16956 3.22500
20 2.77270 3.07150 1.46238 3.17394 3.22989
21 2.78647 3.07679 1.76938 3.1788 3.23176
22 2.79926 3.08169 1.46384 3.18249 3.23321
23 2.81116 3.08625 1.76757 3.1866 3.23141
24 2.82228 3.09051 1.46904 3.18976 3.23662
25 2.83269 3.09449 1.76906 3.19332 3.23810
26 2.84247 3.09824 1.47004 3.19607 3.23909
27 2.85168 3.10176 1.76808 3.19917 3.23811
28 2.86036 3.10509 1.47534 3.2016 3.24341

Table 2. Estimating the norm 1√
12
||(I +C +C2)(I +D+D2 +

D3)|| .
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Figure 12. Estimating the norm 1√
12
||(I + C + C2)(I +D +D2 +D3)||.

Then by [10, Proposition 4.4]

(24) lim inf
n→∞

(αn−1 + αn) ≤ ||h|| ≤ sup
n≥3

(αn−1 + αn).

Moreover by [10, Proposition 4.1 and Proposition 4.7], the roots (m
1
2n
n )∞n=1, the

ratios (
√

mn

mn−1
)∞n=1, and the norms (||Mn||)∞n=1 are increasing sequences that con-

verge to ||h|| and satisfy

m
1
2n
n ≤

√
mn

mn−1
≤ ||Mn|| ≤

1√
12
||(I + C + C2)(I +D +D2 +D3)||, n ∈ N.

We list these sequences in Table 2, and plot them in Figure 12 for n = 1, . . . , 28.
When n ≥ 16, the norm ||h|| ≥

√
2 +
√

3. The best lower bound for h that we can
obtain from our data is

1√
12
||(I + C + C2)(I +D +D2 +D3)|| ≥ 3.2016,

and a very likely lower bound for h is

1√
12
||(I + C + C2)(I +D +D2 +D3)|| ≥ α27 + α28 = 3.24341,

because of Eq (24) and because the sequence (αn−1 + αn)∞n=1 appear to be mono-
tonically increasing for n ≥ 19. By making a least squares fitting of the numbers
λ2

max(M18), . . . , λ2
max(M28) to a function of the form f(n) = a− b(n− c)−d we get

f(n) = 10.79 − 8.952

(n+ 0.2)0.841
.
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In particular, the extrapolation method suggests that

(25)
1√
12
||(I + C + C2)(I +D +D2 +D3)|| ≈

√
10.79 = 3.28.

This and Theorem 2.4 suggest that F might be non-amenable.

5.1. Spectral distribution measure. Recall that h =
√

12QR. Since h̃ defined
in Eq. (20) is self-adjoint, we get by the spectral theorem that there is a unique
probability measure µh̃ to R with support (cf. [10, Section 2])

supp(µh̃) ⊂ [−||h̃||, ||h̃||] ⊂ [−(1 + q), (1 + q)],

where ||h̃|| = ||h|| ≤ 2 +
√

2 = 1 + q by Theorem 2.4. In this subsection, we will
estimate the spectral distribution measure µh̃, as it was done in [10, Section 5].
The Hilbert space L2([−(q+ 1), (q+ 1)], dt) can be equipped with the orthonormal
basis √

n+ 1
2

1 + q
Pn(

t

q + 1
), n ∈ N0,

where Pn, n ∈ N0, are the Legendre polynomials. The Hilbert space L2([−(q +
1), q + 1], 1

π
√

(1+q)2−t2
dt) can be equipped with the orthonormal basis

T0(
t

q + 1
),
√

2Tn(
t

q + 1
), n ∈ N,

where Tn, n ∈ N0 are the Chebyshev polynomials of the first kind.
By [10, Eq. (5.3)], the density of µh̃ with respect to the Lebesgue measure can

be approximated by

ρ′N (t) =

2N∑
n=0

n+ 1
2

q + 1

(∫ q+1

−(q+1)

Pn(
s

q + 1
)dµh̃(s)

)
Pn(

t

1 + q
)

and by

(26) ρN (t) =

2N∑
n=0

c2n

(∫ q+1

−(q+1)

Tn(
s

q + 1
)dµh̃(s)

)
Tn(

t

1 + q
)

1

π
√

(1 + q)2 − t2
,

where c0 := 1 and cn :=
√

2, n ∈ N. Since µh̃ is a symmetric measure, all the odd
terms in Eq. (26) are zero. Using the moments mn in Eq. (21) (with m0 = 1/4)
and the formula ∫ q+1

−(q+1)

t2n dµh̃ = m2n(h̃) = mn, n ∈ N0,

we compute the “Chebyshev” density ρ28 for 0 ≤ t ≤ 2+
√

2 and plot it in Figure 13,
together with the corresponding “free” density. We are more interested in the tail
of the measure, however, because it gives us an estimate of the norm ||h̃|| = ||h||:

||h|| = max{|t| | t ∈ supp(µh̃)},

(cf. [10, Section 2]). We plot ρ28 in the tail interval [
√

2 +
√

3, 2 +
√

2] in Figure
14. This shows that µh̃ has very little mass in [3.22, 3.414], hence ||h|| can be any
number in [3.22, 3.414] including the extrapolated number 3.28 found in Eq. (25).
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Figure 13. Estimating the Chebyshev density for µh̃ where h =
1√
12

(I + C + C2)(I +D +D2 +D3).

Figure 14. Estimating the tail of Chebyshev density for µh̃ where

h = 1√
12

(I + C + C2)(I +D +D2 +D3).
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Appendix A. free moments

Lemma A.1. Let

(27) mfree
n :=

∫ √3+
√

2

√
3−
√

2

t2n

π

√
24− (t2 − 5)2

t(12− t2)
dt, n ∈ N.

Then mfree
1 = 1 and

mfree
n+1 = 12mfree

n − 6

bn−1
2 c∑
j=0

Cj

(
n− 1

2j

)
6j5n−1−2j , n ∈ N

where Cj := 1
j+1

(
2j
j

)
, j ∈ N0 are the Catalan numbers.

Proof. Substituting x = t2 in Eq.(27), we get

mfree
n =

∫ 5+2
√

6

5−2
√

6

xn−1

2π

√
24− (x− 5)2

12− x
dx, n ∈ N.

Then

12mfree
n+1 −mfree

n+2 =
1

2π

∫ 5+2
√

6

5−2
√

6

xn
√

24− (x− 5)2dx, n ∈ N.

Substituting x−5√
6

= y, we get

(28) 12mfree
n+1 −mfree

n+2 =
1

2π

∫ 2

−2

6(
√

6y + 5)n
√

4− y2dy, n ∈ N.

Using the binomial formula, we get

12mfree
n+1 −mfree

n+2 = 6

n∑
k=0

1

2π

∫ 2

−2

yk
√

4− y2dy

(
n

k

)
6k/25n−k, n ∈ N.

Observing that the integral is zero when k is odd,

12mfree
n+1 −mfree

n+2 = 6

bn2 c∑
j=0

(
1

2π

∫ 2

−2

y2j
√

4− y2dy

) (
n

2j

)
6j5n−2j , n ∈ N.

Hence

12mfree
n+1 −mfree

n+2 = 6

bn2 c∑
j=0

Cj

(
n

2j

)
6j5n−2j , n ∈ N,

where Cj := 1
j+1

(
2j
j

)
is a Catalan number.

Eq. (28), holds also if we let n = −1:

12mfree
0 −mfree

1 =
6

2π

∫ 2

−2

√
4− y2

√
6y + 5

dy = 2.

It follows that mfree
1 = 1 because by Eq. (19) (with α = 1/3, β = 1/4), mfree

0 = 1/4.
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Figure 15. Estimating the norm ||C +D + C−1 +D−1||.

�

Appendix B. Estimating the norm ||C +D + C−1 +D−1||

Here we will describe briefly our estimation of the norm of

h := C +D + C−1 +D−1 ∈ CT,

where C,D are the generators of T whose graphs are shown in Figure 1. We use
the same procedure as we did in [10]. By [10, Theorem 1.3]

2
√

3 < ||C +D + C−1 +D−1|| < 4.

The upper bound is never attained because the Thompson group T is not amenable.
We compute the first 28 even moments mn(h∗h) by first computing the sequence
(with q = 3)

h0 = e

h1 = h

h2 = hh1 − (q + 1)h0

hn+1 = hhn − qhn−1, n ≥ 2.

Then we compute the sequences

ξn = ||hn||22 − (q + 1)qn−1,

ηn = ξn − (q − 1)(ξn−1 + ξn−2 + · · ·+ ξ1),

ζn = ηn − (q − 1)(ηn−1 + ηn−2 + · · ·+ η1)

mn =

(
2n

n

)
qn +

n∑
k=1

(
2n

n− k

)
(ζk + 1− q)qn−k, n ∈ N.
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These series of numbers are listed in Table 3. Next, we compute the increasing
sequences of “roots”, “ratios”, “norms” that converge to the norm (cf. Section 5).
We list them in Table 4 and plot them in Figure 15. The best lower bound for ||h||
that we can obtain from our results is

||C +D + C−1 +D−1|| ≥ 3.7873.

By making a least squares fitting of the numbers λ2
max(M18), ..., λ2

max(M28) to a
function of the form f(n) = a− b(n− c)−d we get

f(n) = 14.8 − 18.5975

(n+ 0.2)1.1097
.

In particular, the extrapolation method predicts that

||C +D + C−1 +D−1|| ≈
√

14.8 = 3.84,

which is closer to 4.

n m
1
2n
n

√
mn

mn−1
αn λmax(Mn) αn−1 + αn

1 2.00000 2.00000 2.00000 2. - - - - -
2 2.34035 2.73861 1.87083 2.73861 3.87083
3 2.54230 3.00000 1.79284 3.0557 3.66367
4 2.68211 3.14937 1.94854 3.25861 3.74139
5 2.78843 3.25755 2.04888 3.42926 3.99743
6 2.87375 3.34119 1.72771 3.51875 3.77659
7 2.94445 3.40670 1.96392 3.57859 3.69163
8 3.00423 3.45804 1.78580 3.61369 3.74972
9 3.05548 3.49831 1.94497 3.63956 3.73078
10 3.09992 3.53005 1.99819 3.66407 3.94316
11 3.13878 3.55529 1.75237 3.68118 3.75056
12 3.17305 3.57561 2.02259 3.69704 3.77496
13 3.20348 3.59223 1.79177 3.70881 3.81436
14 3.23068 3.60604 1.95285 3.71884 3.74462
15 3.25515 3.61772 1.98142 3.72895 3.93427
16 3.27727 3.62774 1.75239 3.73636 3.73381
17 3.29738 3.63648 2.03111 3.74354 3.78351
18 3.31575 3.64418 1.81639 3.74935 3.84750
19 3.33261 3.65107 1.97352 3.75482 3.78992
20 3.34813 3.65727 1.93786 3.7603 3.91138
21 3.36249 3.66291 1.78748 3.76455 3.72534
22 3.37581 3.66807 2.02147 3.76876 3.80895
23 3.38821 3.67283 1.82478 3.77227 3.84625
24 3.39979 3.67724 2.00115 3.77583 3.82593
25 3.41062 3.68134 1.88660 3.77924 3.88775
26 3.42079 3.68518 1.83914 3.78205 3.72575
27 3.43036 3.68877 2.00637 3.7849 3.84551
28 3.43939 3.69215 1.82673 3.7873 3.83309

Table 4. Estimating the norm ||C + C−1 +D +D−1|| .
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