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A GENERALIZATION OF THE GORESKY-KLAPPER

CONJECTURE, PART II

TODD COCHRANE, MICHAEL J. MOSSINGHOFF, CHRIS PINNER,
AND C. J. RICHARDSON

Abstract. Suppose that f(x) = Axk mod p is a permutation of the least

residues mod p. With the exception of the maps f(x) = Ax and Ax(p+1)/2

mod p we show that for fixed n ≥ 2 the image of each residue class mod n

contains elements from every residue classe mod n, once p is sufficiently large.
If f(x) = Ax mod p, then for each p and n there will be exactly (1+o(1)) 6

π2 n
2

readily describable values of A for which the image of some residue class mod
n misses at least one residue class mod n, even when p is large relative to n.
A similar situation holds for f(x) = Ax(p+1)/2 mod p.

1. Introduction

For an odd prime p we let I = {1, 2, . . . , p− 1} denote the reduced residues mod
p, and f : I → I a permutation of I of the form

(1.1) f(x) = Axk mod p,

with A, k integers. Generally we assume that

(1.2) |A| < p/2, p ∤ A, 1 ≤ k < p− 1, gcd(k, p− 1) = 1,

although occasionally we allow k to be negative with |k| < (p − 1)/2; f(x) is
determined by the value of k mod (p− 1).

Goresky & Klapper [9] divided I into the even and odd residues

E = {2, 4, . . . , p− 1}, O = {1, 3, . . . , p− 2},
and asked when f could also be a permutation of E (equivalently of O). Apart
from the identity map (p;A, k) = (p; 1, 1) they found six cases

(p;A, k) = (5;−2, 3), (7; 1, 5), (11;−2, 3), (11; 3, 7), (11; 5, 9), (13; 1, 5),

and conjectured that there were no more for p > 13. This was proved for sufficiently
large p in [3] and in full in [6], with asymptotic counts on |f(E) ∩ O| considered
in [4]. Since x 7→ p − x switches elements of E and O, this is the same as asking
when f(E) = O or f(O) = E, on replacing A by −A. A related question of Lehmer
[11, Problem F12, p. 381] asks how often x mod p and its inverse, f(x) = x−1 mod
p, have opposite parity; see Zhang [21], or the generalizations by Alkan, Stan and
Zaharescu [1], Lu and Yi [13, 14], Shparlinski [16, 17], Xi and Yi [19], and Yi and
Zhang [20].
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Regarding even and odd as a mod 2 property, we ask the same question for a
general modulus n. Dividing I up into the n congruence classes mod n,

(1.3) Ij := {x : 1 ≤ x ≤ p− 1, x ≡ j mod n}, j = 0, . . . , n− 1,

there are now several different ways of generalizing the concept of a permutation
(1.1) having f(O) = O and f(E) = E, or f(O) = E and f(E) = O. In [2] we
identified five types of f(x):

Type (i): f(Ij) = Ij for all j = 0, . . . , n− 1.
Type (iia): f(I0), . . . , f(In−1) a permutation of I0, . . . , In−1.
Type (iib): f(Ij) = Ij for some j.
Type (iii): There is a pair i, j with f(Ii) ⊆ Ij .
Type (iv): There is a pair i, j with f(Ii) ∩ Ij = ∅.
Notice that for n = 2 these are all the same problem, but for general n they can

be quite different (indeed the Ij may not even have the same cardinality).
In the first paper [2] our focus was primarily on the Type (i)-(iii) maps, showing

that, with the exception of f(x) = ±x mod p when n is even, and f(x) = ±x or
±x(p+1)/2 mod p when n is odd, every f(Ii) must contain elements from at least
two different Ij once p ≥ 9 · 1034n92/3.

Here we are mainly interested in the Type (iv) maps. When

(1.4) d := gcd(p− 1, k − 1)

is suitably small we showed in [2] that the values of f(Ii) are, from an asymptotic
point of view, distributed equally in the n residue classes, ruling out any Type (iv)
maps. In particular we shall need the following result, Theorem 3.2, from [2].

Theorem 1.1. Let p be an odd prime and A, k, n integers satisfying (1.2) with
n ≥ 2, and

d = gcd(k − 1, p− 1) ≤ 0.006p89/92.

For any i, j, 0 ≤ i, j < n, we have f(Ii) ∩ Ij 6= ∅ provided that

p > 4 · 1029 n 184
3 .

For small |k| this bound can be improved, for example Theorem 1.1 of [2]:

Theorem 1.2. Suppose that f(x) = Axk mod p, with k 6= 1, positive or negative.
If p ≥ 16.2|k − 1|2n4 then f(x) is not a Type (iv) map.

Note here we are thinking of p > n2, otherwise any permutation f(x) is a Type
(iv) mapping. Indeed, if p < n2 there will always be a residue class Ii, and hence
its image f(Ii), containing fewer than n elements.

If we want a stronger statement avoiding cases of Type (iv) even when d is large,
that is, prove that the image of every residue class mod n hits every residue class
mod n, then we will need to exclude more examples for n > 2. For the linear maps,
k = 1, we see in the next example that the image of each residue class mod n will
miss at least one residue class mod n when the coefficient A is sufficiently small, or
more generally, of the form

(1.5) A =
tp− r

s
, gcd(r, s) = 1,

for some integers r, s, t with s 6= 0, and r and s sufficiently small. Note that any
such representation also has (t, s) = 1.

Example 1.1. Suppose that f(x) = Ax mod p with A an integer satisfying (1.2).
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(a) If |A| < n, or more generally,
(b) if A is of the form (1.5) with |r|+ |s|+ gcd(n, s)− 1 ≤ n,

then for each i there is at least one j with f(Ii) ∩ Ij = ∅.
(c) If A is of the form (1.5) with

(1.6) |r|+ |s| ≤ n

then at least n/ gcd(n, s) residue classes Ii will have f(Ii) ∩ Ij = ∅ for some j.
Indeed, letting B := |A| in case (a), B := |r|+ |s|+gcd(n, s)− 2 in case (b) and

B := |r|+ |s|− 1 in case (c), the number of missed residue classes Ij will be at least
n−B.

Note that (a) is a special case of (b) with s = 1, t = 0, r = −A, and (c) coincides
with (b) when gcd(n, s) = 1.

A similar situation occurs for exponent k = (p+1)/2, though we must halve the
range of restriction, as we see in the next example.

Example 1.2. Suppose that p ≡ 1 mod 4 and f(x) = Ax(p+1)/2 mod p.
If A satisfies (1.2) and

(a) 2|A| < n, or more generally,
(b) A is of the form (1.5) with 2(|r| + |s|+ gcd(n, s)− 2) < n,

then for each i there is at least one j with f(Ii) ∩ Ij = ∅. Indeed, if the restriction
in parts (a) and (b) takes the form B < n (as in the preceding example) then in
each case the number of missed residue classes Ij will be at least n−B.

The ranges in Example 1.2 can be extended to resemble Example 1.1(c) if we
just want there to be at least one residue class whose image does not hit all classes.

Example 1.3. Suppose that p ≡ 1 mod 4 and f(x) = Ax(p+1)/2 mod p and 2β ‖ n.

If A satisfies (1.2) and

(a) 2β | A and |A| < n , or
(b) 2β ∤ A and |A|+ gcd(n,A) < n, or

A is of the form (1.5), and

(c) n is odd, with |r|+ |s|+min{gcd(n, r), gcd(n, s)} − 1 ≤ n, or
(d) n is even and 2β | r, with |r|+ |s|+ gcd(n, s)− 1 ≤ n, or
(e) n is even and 2β | s, with |r|+ |s|+ gcd(n, r) − 1 ≤ n, or
(f) n is even and 2β ∤ rs with |r| + |s|+ gcd(n, s) + gcd(n, r) − 1 ≤ n,

then f(Ii) ∩ Ij = ∅ for some i, j.

Appropriate values for i can be found in the proof of Example 1.3, and again, for
those i there will be at least (n−B) missed residue classes Ij , when the restriction
takes the form n < B (although in some cases of (c) we must interchange the roles
of i and j).

It turns out that, as long as we avoid exponents k = 1 or (p+1)/2 with coefficients
similar to those in Examples 1.1, 1.2 or 1.3 then f(Ii) will hit all residue classes
once p is sufficiently large relative to n. To make this precise we define the set

C := {C ≡ Axk−1 mod p : 1 ≤ x ≤ p− 1, |C| < p/2}.
Notice that for any integer x, f(x) = Axk ≡ Cx mod p for some C in C . As we
shall see in Section 3, when d = gcd(k − 1, p− 1) is relatively large, and so |C | is
relatively small, it can be useful to reduce to the consideration of the linear maps
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Cx mod p. Note that when k = 1, C = {A}, while when k = p+1
2 , C = {A,−A}.

In the next theorem we show that if C contains an element C with n ≤ |C| ≤ p/n,
and p is sufficiently large then f(Ii) will hit all residue classes Ij . In particular,
this happens when A itself satisfies n ≤ |A| ≤ p/n. This is always the case when
n = 2, other than the maps f(x) = ±x or the ±x(p+1)/2.

If C contains only elements in the ranges |C| < n or p/n < |C| < p/2 then,
prompted by the examples in Example 1.1, 1.2 and 1.3, we write the latter C in
the form

(1.7) C =
tp− r

s
, s > 0, gcd(r, s) = 1.

If for some such C, |r| is sufficiently large relative to s then again we see that the
image of each residue class will hit every residue class. Throughout the paper x−1

mod m denotes the multiplicative inverse of x mod m.

Theorem 1.3. If C contains an element C or C−1 mod p with n ≤ |C| ≤ p/n or

C =
tp− r

s
, s > 0, gcd(r, s) = 1, (n+ 3)s ≤ |r| ≤ p

n
,

and p ≥ 4 · 1029 n184/3, then f(Ii) ∩ Ij 6= ∅ for all i, j.

We show in Section 4 that any C can be written in the form (1.7) with

(1.8) |r| < p/n, 1 ≤ s ≤ n.

Plainly once r, s are chosen there will be only one value of t ≡ rp−1 mod s making
C an integer with |C| < p/2. In particular, for fixed n there will be at most (n+2)3

values of C which cannot be used in Theorem 1.3. Thus if |C | > (n + 2)3 we are
guaranteed a suitable C. It turns out that we just need |C | > 2:

Theorem 1.4. Suppose that f(x) 6= Ax or Ax
p+1
2 mod p, and that

p > 4 · 1029 n184/3.

Then for any i, j we have f(Ii) ∩ Ij 6= ∅.
For the exponents k = 1 or (p + 1)/2, success or failure depends critically on

the representation of A in the manner (1.5) as we saw in Examples 1.1, 1.2 and
1.3. In the linear case we obtain a precise description of the Type (iv) maps. The
restriction (1.6) in Example 1.1 is in fact sharp for p sufficiently large.

Theorem 1.5. Suppose that f(x) = Ax mod p.
If p > n3(n+ 3) then f(x) is a Type (iv) map if and only if A is of the form

(1.9) A =
tp− r

s
, gcd(r, s) = 1, s > 0 1 ≤ |r| + s ≤ n.

Writing

S(N) :=
∑

1≤r,s≤N,
(r,s)=1,
r+s≤N

1 ∼ 3

π2
N2,

we see that for each n ≥ 3 and p we have precisely 2S(n) ∼ (6/π2)n2, choices of
A ≡ rs−1 mod p that can give a Type (iv) map Ax mod p.

We obtain the same restriction (1.6) for k = (p+ 1)/2 when p is slightly larger.
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Theorem 1.6. Suppose that p ≡ 1 mod 4 and f(x) = Ax
p+1
2 mod p with

p > max{(n3 + 1)2, 8 · 104(n logn)4}.
If A is not of the form (1.9) then for any i, j we have f(Ii) ∩ Ij 6= ∅.

Example 1.3 shows that for k = (p + 1)/2 there are cases where the condition
|r| + s ≤ n is sharp, for example when gcd(n, r) or gcd(n, s) = 1. This time not
every r, s satisfying (1.6) will produce a Type (iv) map, but from Example 1.3 we
will get at least 2S((n+1)/2) ∼ (3/2π2)n2 and at most 2S(n) ∼ (6/π2)n2 examples
of Type (iv) maps f(x) = Ax(p+1)/2 mod p.

2. Computations and Conjectures

Computations looking for maps of Type (iv) were performed for the primes
p < 20, 000 and moduli n = 3 through 12.

These computations revealed a number of families of Type (iv) maps that seemed
to occur for every prime. These all had exponent k = 1 or k = (p+1)/2. Restricting
to k 6= 1 or (p + 1)/2, examples of Type (iv) eventually died out. We showed in
Theorem 1.4 that for a given n there is indeed a C(n) such that once p > C(n)
any f(x) = Axk mod p with k 6= 1, (p + 1)/2 has f(Ii) ∩ Ij 6= ∅ for all i, j. The

value C(n) = 4 · 1029n184/3 obtained there is likely far from optimal. For each
n = 3 through 12 the five largest primes p < 20, 000 having an f(x) = Axk mod
p with k 6= 1, (p + 1)/2 and f(Ii) ∩ Ij = ∅ for some (i, j) are recorded in Table 1.

Notice that if Axk has this property with 2j ≡ p mod n then so will Axk′

when
k′ = k ± (p − 1)/2 has (k′, p − 1) = 1; a number of these pairs can be seen in the
table.

In view of this data it is tempting to make the following conjecture.

Conjecture 2.1. For n = 3 through 12 the optimal C(n) is

C(3) = 127, C(4) = 271, C(5) = 601, C(6) = 571, C(7) = 1733,

C(8) = 1777, C(9) = 3433, C(10) = 2473, C(11) = 6577, C(12) = 3851.

The data suggests that one can take C(n) = 6n3.

It is noticeable that maps of the form f(x) = Axp−2 = Ax−1 mod p appear
frequently in the data; this is somewhat surprising since from Theorem 1.2 we
know that there are no Type (iv) maps of this form for p > 65n4, a much smaller
bound than we have for the general k. But we note that this map is a self inverse,
and most of the remaining examples of Type (iv) maps in our table are also self
inverse maps.

The recurring Type (iv) maps Ax or Ax(p+1)/2 all seemed to have A small or of
the form (1.7) with r and s small. Identifying and explaining these led to Examples
1.1, 1.2 and 1.3. In practice these Examples went through many refinements as
additional data revealed new forms. We know from Theorem 1.5 that Example
1.1(c) is sharp. The current version of Example 1.3 is able to predict all the repeat
Type (iv) maps that we see in our data for n = 3 through 12 (though higher n would
probably lead to new refinements). Some further fine tuning is certainly possible,
for example if r and ⌊r/ gcd(s, n)⌋ or s and ⌊s/ gcd(r, n)⌋ have opposite parity then
we just need r + s ≤ n in Example 1.3(c) (see the proof of Example 1.3 for this
and other cases where the gcd term can be dropped). Computations for n = 15,
A = (p − 9)/5 produced no Type (iv) maps between 1489 and 2000, showing that
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p A k (i, j)

83 21,26 81 (1,1)
89 17,21 23,67 (1,1)

n = 3 97 17 47,95 (2,2)
109 44 53,107 (2,2)
127 45,53 71 (2,2)

151 2 13 (1,4),(2,3)
151 46 127 (3,1),(4,2)
157 64 155 (2,2),(3,3)

n = 4 167 83 165 (1,1),(2,2)
193 16,48 95 (2,2),(3,3)
193 49 95 (2,3),(3,2)
271 107 269 (1,1),(2,2)

479 142 477 (2,2)
503 25 65 (4,4)

n = 5 503 243 363 (4,4)
521 215 259,519 (3,3)
541 176 269,539 (3,3)
601 59 251,551 (3,3)

449 158 447 (5,5),(6,6)
457 137 151 (3,3),(4,4)
457 162 227 (1,1),(6,6)

n = 6 457 80,137 455 (3,3),(4,4)
479 214 477 (5,5),(6,6)
547 30 155 (3,3),(4,4)
571 118 341 (3,3),(4,4)

1303 347 1301 (4,4)
n = 7 1321 232 329,989 (6,6)

1409 416 703,1407 (1,1)
1489 653 371,1115 (6,6)
1733 670 865,1731 (2,2)

p A k (i, j)

1249 36 623 (1,1),(8,8)
1301 432 599 (5,5),(8,8)

n = 8 1381 648 1379 (5,8),(8,5)
1637 437 1635 (6,7),(7,6)
1777 176 1775 (3,6),(6,3)

2857 1383 713,2141 (2,2)
3037 105 505,2023 (2,2)

n = 9 3067 356 1871 (8,8)
3067 1313 2363 (8,8)
3089 482 1543,3087 (1,1)
3433 1590 571,2287 (2,2)

n = 10 2137 830 1067 (8,9),(9,8)
2287 109 2285 (1,1),(6,6)
2377 623 2375 (0,7),(7,0)
2441 1169 1829 (0,0),(1,1)
2473 803 1235 (0,3),(3,0)

n = 11 4787 624 4785 (1,1)
4987 2070 2215 (2,2)
5281 964 2111,4751 (6,6)
5683 2390 5681 (9,9)
6577 731,3284 1645,4933 (5,5)

n = 12 3457 1135 1727 (0,1),(1,0)
3529 1485 1763 (0,1),(1,0)
3637 993 3635 (0,1),(1,0)
3659 934 3657 (0,0),(11,11)
3851 9 351 (5,6),(6,5)

Table 1. Type (iv): Five largest p < 20, 000 with an f(x) = Axk

mod p, k 6= 1, (p+ 1)/2 having f(Ii) ∩ Ij = ∅ for some (i, j).

(c) can not always be weakened to r + s ≤ n. Our existing data already showed
that the gcds can not be dropped in (b),(d),(e) and (f); for example n = 12, A = 9,
(p ± 8)/3, (p ± 3)/8, (p ± 1)/6 or (p ± 9)/2. In order to see that both gcds were
needed in (f) computations were carried out on n = 24, A = (p − 4)/15 and Type
(iv) did not always occur.

Example 1.1(c) gives Type (iv) maps of the form f(x) = Ax mod p that will
occur for every p (whenever p is in the correct congruence class to make that A an
integer). These A for n = 3 to 12 are shown in Table 2.

Similarly when p ≡ 1 mod 4 and k = (p + 1)/2, Example 1.3 gives us cases of
Type (iv) maps f(x) = Ax(p+1)/2 mod p that will occur for all p. These A for n = 3
to 12 are shown in Table 3.

After excluding the values of A in Tables 2 and 3, few additional Type (iv)
exceptions were found in a search of p < 20, 000 and k = 1 or (p+1)/2; the largest
prime for each n is shown in Tables 4 and 5.
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Conjecture 2.2. Suppose that f(x) = Ax or Ax(p+1)/2 mod p where A satisfies
(1.2) but is not of the form

|A| < n or A = (tp− r)/s with |r|+ |s| ≤ n, gcd(r, s) = 1,

then f(Ii) ∩ Ij 6= ∅ for all i, j once p > c(n), with the data suggesting that one can
take c(n) = 3n3. For small n the optimal values are

c(3) = 17, c(4) = 61, c(5) = 137, c(6) = 197, c(7) = 277,

c(8) = 937, c(9) = 653, c(10) = 2297, c(11) = 1061, c(12) = 2857.

By Theorems 1.5 and 1.6 this holds with c(n) = O(n4) for k = 1, and c(n) =
O(n6) for k = (p+ 1)/2.

3. Type (iv) intersections for large d

Theorem 1.3 is an immediate consequence of the next two theorems. Recall that
C is the set of absolute least residues

C := {Axk−1 mod p : 1 ≤ x ≤ p− 1}.
If we have a suitable C ∈ C then we can show that each residue class gets mapped
to all the residue classes.

Theorem 3.1. Suppose that C contains an integer C with n ≤ |C| ≤ p/n.

If p > 106 and d ≥ 0.88n2p1/2 log2 p, or if k = 1, then f(Ii) ∩ Ij 6= ∅ for all i, j.

Proof. We proceed as in the proof of Theorem 4.1 of [2], but with Ij in place of
I \ Ij . Since C is in C we can write C ≡ ABk−1 mod p for some B. We let

L := (p− 1)/d,

and

U = {x ∈ Ii : Cx mod p ∈ Ij , x ≡ BzL mod p for some z}.
Notice that if x is in U we have

Axk ≡ Cx(B−1x)k−1 ≡ CxzL(k−1) = Cx(zp−1)(k−1)/d ≡ Cx mod p.

So we can show that f(Ii) ∩ Ij 6= ∅ by showing |U | > 0. Writing Ij(x) for the
characteristic function of Ij , and using the Dirichlet characters of order L to pick
out when B−1x is an Lth power mod p, we have

L|U | =
∑

χL=χ0

χ(B−1)S(χ), S(χ) :=
∑

x∈Zp

χ(x)Ii(x)Ij(Cx),

where χ0 denotes the principal character. Hence

L|U | = Mij + E,

where

Mij :=
∑

x∈Z∗

p

Ii(x)Ij(Cx), E :=
∑

χL=χ0

χ6=χ0

χ(B−1)S(χ).



8 T. COCHRANE, M. MOSSINGHOFF, C. PINNER, AND CJ RICHARDSON

n A

3 1, 2, (p− 1)/2.

4 1, 2, 3, (p− 1)/2, (p± 1)/3.

5 1, 2, 3, 4, (p− 1)/2, (p− 3)/2, (p± 1)/3, (p± 2)/3, (p± 1)/4.

6 1, 2, 3, 4, 5, (p− 1)/2, (p− 3)/2, (p± 1)/3, (p± 2)/3, (p± 1)/4, (p± 1)/5, (2p± 1)/5.

7 1, 2, 3, 4, 5, 6, (p− 1)/2, (p− 3)/2, (p− 5)/2, (p± 1)/3, (p± 2)/3, (p± 4)/3, (p± 1)/4,
(p± 3)/4, (p± 1)/5, (p± 2)/5, (2p± 1)/5, 2(p± 1)/5, (p± 1)/6.

8 1, 2, 3, 4, 5, 6, 7, (p− 1)/2, (p− 3)/2, (p− 5)/2, (p± 1)/3, (p± 2)/3, (p± 4)/3, (p± 5)/3,
(p± 1)/4, (p± 3)/4, (p± 1)/5, (p± 2)/5, (p± 3)/5, (2p± 1)/5, 2(p± 1)/5, (2p± 3)/5, (p± 1)/6,
(p± 1)/7, (2p± 1)/7, (3p± 1)/7.

9 1, 2, 3, 4, 5, 6, 7, 8, (p− 1)/2, (p− 3)/2, (p− 5)/2, (p− 7)/2, (p± 1)/3, (p± 2)/3, (p± 4)/3, (p± 5)/3,
(p± 1)/4, (p± 3)/4, (p± 5)/4, (p± 1)/5, (2p± 1)/5, (p± 2)/5, (2p± 2)/5, (p± 3)/5, (2p± 3)/5,
(2p± 4)/5, (2p± 4)/5, (p± 1)/6, (p± 1)/7, (2p± 1)/7, (3p± 1)/7, (p± 2)/7,
(2p± 2)/7, (3p± 2)/7, (p± 1)/8, (3p± 1)/8.

10 1, 2, 3, 4, 5, 6, 7, 8, 9, (p− 1)/2, (p− 3)/2, (p− 5)/2, (p− 7)/2, (p± 1)/3, (p± 2)/3, (p± 4)/3,
(p± 5)/3, (p± 7)/3, (p± 1)/4, (p± 3)/4, (p± 5)/4, (p± 1)/5, (2p± 1)/5, (p± 2)/5, (2p± 2)/5,
(p± 3)/5, (2p± 3)/5, (p± 4)/5, (2p± 4)/5, (p± 1)/6, (p± 1)/7, (2p± 1)/7, (3p± 1)/7,
(p± 2)/7, (2p± 2)/7, (3p± 2)/7, (p± 3)/7, (2p± 3)/7, (3p± 3)/7, (p± 1)/8, (3p± 1)/8,
(p± 1)/9, (2p± 1)/9, (4p± 1)/9.

11 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, (p− 1)/2, (p− 3)/2, (p− 5)/2, (p− 7)/2, (p− 9)/2, (p± 1)/3, (p± 2)/3,
((p± 4)/3, (p± 5)/3, (p± 7)/3, (p± 8)/3, (p± 1)/4, (p± 3)/4, (p± 5)/4, (p± 7)/4, (p± 1)/5,
(2p± 1)/5, (p± 3)/5, (2p± 2)/5, (p± 3)/5, (2p± 3)/5, (p± 4)/5, (2p± 4)/5, (p± 6)/5, (2p± 6)/5,
(p± 1)/6, (p± 5)/6, (p± 1)/7, (2p± 1)/7, (3p± 1)/7, (p± 2)/7, (2p± 2)/7, (3p± 2)/7, (p± 3)/7,
(2p± 3)/7, (3p± 3)/7, (p± 4)/7, (2p± 4)/7, (3p± 4)/7, (p± 1)/8, (3p± 1)/8, (p± 3)/8, (3p± 3)/8,
(p± 1)/9, (2p± 1)/9, (4p± 1)/9, (p± 2)/9, (2p± 2)/9, (4p± 2)/9, (p± 1)/10, (3p± 1)/10.

12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, (p− 1)/2, (p− 3)/2, (p− 5)/2, (p− 7)/2, (p− 9)/2, (p± 1)/3, (p± 2)/3,
(p± 4)/3, (p± 5)/3, (p± 7)/3, (p± 8)/3, (p± 1)/4, (p± 3)/4, (p± 5)/4, (p± 7)/4, (p± 1)/5,
(2p± 1)/5, (p± 2)/5, (2p± 2)/5, (p± 3)/5, (2p± 3)/5, (p± 4)/5, (2p± 4)/5,
(p± 6)/5, (2p± 6)/5, (p± 7)/5, (2p± 7)/5, (p± 1)/6, (p± 5)/6, (p± 1)/7, (2p± 1)/7, (3p± 1)/7,
(p± 2)/7, (2p± 2)/7, (3p± 2)/7, (p± 3)/7, (2p± 3)/7, (3p± 3)/7, (p± 4)/7, (2p± 4)/7, (3p± 4)/7,
(p± 5)/7, (2p± 5)/7, (3p± 5)/7, (p± 1)/8, (3p± 1)/8, (p± 3)/8, (3p± 3)/8, (p± 1)/9, (2p± 1)/9,
(4p± 1)/9, (p± 2)/9, (2p± 2)/9, (4p± 2)/9, (p± 1)/10, (3p± 1)/10, (p± 1)/11, (2p± 1)/11,
(3p± 1)/11, (4p± 1)/11, (5p± 1)/11.

Table 2. Type (iv) examples Ax mod p from Example 1.1.

Using the finite Fourier expansion Ii(x) =
∑

y∈Zp

ai(y)ep(yx) we have

S(χ) =

p−1
∑

u=0

p−1
∑

v=0
(u,v) 6=(0,0)

ai(u)aj(v)
∑

x∈Zp

χ(x)ep(ux+ vCx).
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n A

3 1, 2, (p− 1)/2.

4 1.

5 1, 2, 3, 4, (p− 1)/2, (p− 3)/2, (p± 1)/3, (p± 2)/3, (p− 1)/4.

6 1, 2, 4, (p− 1)/2, (p− 1)/4.

7 1, 2, 3, 4, 5, 6, (p− 1)/2, (p− 3)/2, (p− 5)/2, (p± 1)/3, (p± 2)/3, (p± 4)/3,
(p− 1)/4, (p+ 3)/4, (p± 1)/5, (2p± 1)/5, (p± 2)/5, (2p± 2)/5, (p± 1)/6.

8 1, 2, 3, 5, (p− 1)/2, (p− 3)/2, (p± 1)/3, (p± 2)/3, (p± 1)/5, (2p± 1)/5.

9 1, 2, 3, 4, 5, 6, 7, 8, (p− 1)/2, (p− 3)/2, (p− 5)/2, (p− 7)/2, (p± 1)/3, (p± 2)/3,
(p± 4)/3, (p± 5)/3, (p− 1)/4, (p+ 3)/4, (p− 5)/4, (p± 1)/5, (2p± 1)/5, (p± 2)/5,
(2p± 2)/5, (p± 3)/5, (2p± 3)/5, (p± 4)/5, (2p± 4)/5, (p± 1)/6, (p± 1)/7,
(2p± 1)/7, (3p± 1)/7, (p± 2)/7, (2p± 2)/7, (3p± 2)/7, (p− 1)/8, (3p+ 1)/8.

10 1, 2, 3, 4, 6, 7, 8, (p− 1)/2, (p− 3)/2, (p− 7)/2, (p± 1)/3, (p± 2)/3, (p± 4)/3, (p± 1)/4, (p± 3)/4,
(p± 1)/6, (p± 1)/7, (2p± 1)/7, (3p± 1)/7, (p± 2)/7, (2p± 2)/7, (3p± 2)/7, (p− 1)/8, (3p+ 1)/8.

11 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, (p− 1)/2, (p− 3)/2, (p− 5)/2, (p− 7)/2, (p− 9)/2, (p± 1)/3, (p± 2)/3,
((p± 4)/3, (p± 5)/3, (p± 7)/3, (p± 8)/3, (p− 1)/4, (p+ 3)/4, (p− 5)/4, (p+ 7)/4, (p± 1)/5,
(2p± 1)/5, (p± 3)/5, (2p± 2)/5, (p± 3)/5, (2p± 3)/5, (p± 4)/5, (2p± 4)/5, (p± 6)/5, (2p± 6)/5,
(p± 1)/6, (p± 5)/6, (p± 1)/7, (2p± 1)/7, (3p± 1)/7, (p± 2)/7, (2p± 2)/7, (3p± 2)/7, (p± 3)/7,
(2p± 3)/7, (3p± 3)/7, (p± 4)/7, (2p± 4)/7, (3p± 4)/7, (p− 1)/8, (3p+ 1)/8, (p+ 3)/8, (3p− 3)/8,
(p± 1)/9, (2p± 1)/9, (4p± 1)/9, (p± 2)/9, (2p± 2)/9, (4p± 2)/9, (p± 1)/10, (3p± 1)/10.

12 1, 2, 3, 4, 5, 7, 8, (p− 1)/2, (p− 3)/2, (p− 5)/2, (p− 7)/2, (p± 1)/3, (p± 2)/3, (p± 4)/3, (p± 5)/3,
(p− 1)/4, (p+ 3)/4, (p− 5)/4, (p+ 7)/4, (p± 1)/5, (2p± 1)/5, (p± 2)/5, (2p± 2)/5, (p± 3)/5,
(2p± 3)/5, (p± 4)/5, (2p± 4)/5, (p± 1)/7, (2p± 1)/7, (3p± 1)/7, (p± 2)/7, (2p± 2)/7, (3p± 2)/7,
(p± 4)/7, (2p± 4)/7, (3p± 4)/7, (p− 1)/8, (3p+ 1)/8.

Table 3. Type (iv) examples Ax(p+1)/2 mod p from Example 1.3.

The classic Gauss sum bound, and the [8, Theorem 1] bound on

p−1
∑

u=0

|ai(u)|, give as

in the proof of [2, Theorem 4.1],

(3.1) |E| < 0.22(L− 1)p1/2 log2 p.
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p A k (i, j)

n = 3 13 5 1 (2,2)

n = 4 19 7 1 (3,4),(4,3))
19 8 1 (3,3),(4,4)

n = 5 53 14,19 1 (4,4)

n = 6 61 16,22 1 (2,4),(5,3)
61 19 1 (3,2),(4,5)
61 25 1 (3,5),(4,2))

n = 7 131 27,34 1 (6,6)

n = 8 151 31,39 1 (7,8),(8,7)

n = 9 241 35,62 1 (8,8)

n = 10 283 48,58 1 (4,8),(9,5)
283 112 1 (5,4),(8,9)
283 122 1 (5,9),(8,4)

n = 11 449 65,76 1 (10,10)

n = 12 491 71,83 1 (0,11),(11,0)

Table 4. Type (iv): Largest p < 20, 000 having an f(x) = Ax
mod p with f(Ii) ∩ Ij = ∅ for some (i, j) and A not in Table 2.

p A k (i, j)

n = 3 17 5 9 (2,2),(3,3)
17 7 9 (2,3),(3,2)

n = 4 61 6 31 (1,3),(4,2)
61 10 31 (2,4),(3,1)

n = 5 137 7 69 (3,2),(4,5)
137 39 69 (2,4),(5,3)

n = 6 197 16 99 (1,3),(4,2)
197 37 99 (2,4),(3,1)

n = 7 277 9,56 139 (5,4),(6,7)
277 62 139 (4,5),(7,6)
277 67 139 (5,7),(6,4)
277 94,123 139 (4,6),(7,5)

n = 8 937 188 469 (2,7),(7,2)
937 314 469 (2,7),(7,7)

n = 9 653 149 327 (1,1),(4,4)

n = 10 2297 768,984 1149 (3,4),(4,3)

n = 11 1061 337 531 (5,7),(11,9)
1061 488 531 (7,5),(9,11)

n = 12 2857 570,817 1429 (4,4),(9,9)

Table 5. Type (iv): Largest p < 20, 000 having an f(x) =
Ax(p+1)/2 mod p with f(Ii) ∩ Ij = ∅ for some (i, j) and A not in
Table 3.

We need a lower bound on Mij . Suppose that we have n ≤ C ≤ p/n. If C < 0 we

replace C by −C and j by j = p− j mod n. Since 0 < Cx < Cp we have

Mij =

C−1
∑

u=0

|{x ∈ Ii : up ≤ Cx < (u+ 1)p, Cx− up ∈ Ij}|

=

C−1
∑

u=0
u≡K mod n

∣

∣

∣

{

x ∈ Ii :
up

C
≤ x <

up

C
+

p

C

}∣

∣

∣
,
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where K := (Ci− j)p−1 mod n.
Note that for p/2n < C ≤ p/n we have

⌊ p

nC

⌋

= 1 >
p

2nC
,

and for C ≤ p/2n
⌊ p

nC

⌋

>
p

nC
− 1 ≥ p

2nC
.

Similarly, for n ≤ C < 2n we have
⌊

C

n

⌋

= 1 >
C

2n
,

and for C ≥ 2n
⌊

C

n

⌋

>
C

n
− 1 ≥ C

2n
.

Hence, observing that a general interval of length ℓ or an interval of the form
[0, ℓ− 1], will contain at least ⌊ℓ/n⌋ complete sets of residues mod n, we have

∣

∣

∣

{

x ∈ Ii :
up

C
≤ x <

up

C
+

p

C

}∣

∣

∣
≥

⌊ p

nC

⌋

>
p

2nC
,

and

|{0 ≤ u ≤ C − 1 : u ≡ K mod n}| ≥
⌊

C

n

⌋

>
C

2n
,

giving

Mij >
C

2n
· p

2nC
=

p

4n2
.

Hence, as long as we have

p

4n2
≥ 0.22

p3/2 log2 p

d
,

we have |U | > 0 and f(Ii) ∩ Ij 6= ∅.
If k = 1 then C = A and as shown above, |f(Ii) ∩ Ij | = Mij > p/4n2 whenever

n ≤ |A| ≤ p/n. Note that n ≤ |C| ≤ p/n implies p > n2. �

Theorem 3.2. Suppose that C contains a C of the form

(3.2) C or C−1 =
(tp− r)

s
, s > 0, gcd(r, s) = 1, (n+ 3)s ≤ |r| ≤ p

n
.

If p > 106 and d ≥ 1.32n2p1/2 log2 p, or if k = 1, then f(Ii) ∩ Ij 6= ∅ for all i, j.

Proof. We proceed as in Theorem 3.1. If C−1 is of the stated form we observe that
counting x in Ii with Cx in Ij is the same as counting x in Ij with C−1x in Ii and
reverse the roles of i and j. So we suppose that C is of the stated form and that
r, s > 0. If r < 0 we can replace C by −C and j by j = p− j mod n.

To estimate Mij we split the x into the different residue classes a mod s and
observe that for x = a+ sy we have

Cx = x

(

tp− r

s

)

≡ (tp− r)a

s
− ry mod p.

Hence, writing (tp−r)a
s ≡ α(a) mod p with 0 ≤ α(a) < p, we have

Mij =

s−1
∑

a=0

∣

∣

∣

∣

{

0 ≤ y ≤ (p− 1− a)

s
: ys+ a ∈ Ii, α(a) − ry mod p ∈ Ij

}∣

∣

∣

∣

.
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If b := gcd(n, s) = 1 then the condition ys+a ∈ Ii reduces to the mod n congruence
y ≡ λ(a) := (i− a)s−1 mod n. If b > 1 then we are reduced to the s/b values

A = {a : 0 ≤ a < s, a ≡ i mod b},

and the condition ys+ a ∈ Ii becomes y ≡ λ(a) := (s/b)−1(i− a)/b mod n/b, that
is y ≡ λv(a) mod n, v = 1, . . . , b with λv(a) = λ(a) + vn/b.

Now any y with

−
(⌊

r(p− 1− a)

sp

⌋

− 1

)

p ≤ α(a)− ry < 0

will have 0 < y ≤ (p− 1− a)/s and hence

Mij ≥
∑

a∈A

b
∑

v=1

⌊
r(p−1−a)

sp
⌋−1

∑

u=1

Mij(a, v, u),

where

Mij(a, v, u) = |{y ≡ λv(a) mod n/b, −up ≤ α(a)−ry < −(u−1)p, α(a)−ry mod p ∈ Ij}|.

The condition α(a) − ry mod p ∈ Ij becomes α(a) − ry + up ≡ j mod n and
u ≡ µ(a, v) := (j + rλv(a)− α(a))p−1 mod n.

Hence

Mij ≥
∑

a∈A

b
∑

v=1

⌊ r(p−1−a)
sp

⌋−1
∑

u=1

u≡µ(a,v) mod n

∣

∣

∣

∣

{

y ≡ λv(a) mod n,
(α(a) + up)

r
− p

r
< y ≤ (α(a) + up)

r

}
∣

∣

∣

∣

.

When n < p/r < 2n we observe that we are guaranteed at least one element
y ≡ λv(a) mod n in the interval of length p/r > n. When p/r ≥ 2n we use that we
have at least ⌊p/rn⌋ > p/rn− 1 elements satisfying the congruence. Hence

∣

∣

∣

∣

{

y ≡ λv(a) mod n,
(α(a) + up)

r
− p

r
< y ≤ (α(a) + up)

r

}∣

∣

∣

∣

≥ p

2rn
.

Similarly, with (n+ 3)s ≤ r < p/n,
⌊

r(p− 1− a)

sp

⌋

− 1 ≥ r(p − s)

sp
− 2 ≥ r

s
− 3 ≥ n.

So we get at least one u in the sum satisfying u ≡ µ(a, v) mod n for (n + 3) ≤
r/s < (2n+ 3) and ⌊(r/s− 3)/n⌋ > r/ns− 3/n− 1 for (2n+ 3) ≤ r/s and

∣

∣

∣

∣

{

1 ≤ u ≤
⌊

r(p− 1− a)

sp

⌋

: u ≡ µ(a, v) mod n

}
∣

∣

∣

∣

≥ r

s(2n+ 3)
.

Hence

(3.3) Mij ≥
s

b
· b · r

s(2n+ 3)
· p

2rn
=

p

2n(2n+ 3)
,

and making this greater than |E| < 0.22(p/d)
√
p log2 p ensures that U 6= ∅. The

k = 1 case follows as before. �
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4. Proofs of Theorems 1.3 and 1.4

Proof of Theorem 1.3. Suppose that p > 4 · 1029 n184/3. Certainly p > 106. If d ≤
0.006p89/92 then Theorem 1.3 follows from Theorem 1.1, while if d ≥ 1.32n2p1/2 log2 p
it follows from Theorems 3.1 and 3.2. Otherwise we have

1.32 n2p1/2 log2 p > d > 0.006 p89/92,

and so p43/92/ log2 p < 220n2. But this does not occur for p > 4 · 1029 n184/3. �

Proof of Theorem 1.4. Suppose that k 6= 1 or (p+ 1)/2 and that

p > max{4 · 1029n184/3, 2(n+ 3)2n4} = 4 · 1029n184/3.

Let C be an integer with |C| < p/2. By the box principle the congruence y ≡ Cx
mod p has a nonzero solution x = s, y = r with 1 ≤ s ≤ n, |r| < p/n, and
gcd(r, s) = 1. Let G be the group of d-th powers mod p, and recall that

C := {Axk−1 mod p : 1 ≤ x ≤ p− 1} = {Ax mod p : x ∈ G },
reduced to values between −p/2 and p/2. Each element C ∈ C has a representation
as above,

C ≡ rs−1mod p, 1 ≤ s ≤ n, |r| < p/n, gcd(r, s) = 1.

If for some C ∈ C we have (n+ 3)s ≤ |r| ≤ p/n, then Theorem 1.3 applies.
Otherwise, every C ∈ C is in

B := {C ∈ C : C ≡ rs−1 mod p, 1 ≤ s ≤ n, |r| < (n+ 3)s}.
In this case, let Ax be an element in C having a representation Ax ≡ rs−1 mod
p from B with |r/s| minimal. Let y 6= ±1 ∈ G ; such a y exists since |G | ≥ 3 by
assumption. Then Ax, Ayx, Ay−1x are distinct elements of C , and so we have
representations

Ax ≡ r1s
−1
1 , Ayx ≡ r2s

−1
2 , Ay−1x ≡ r3s

−1
3 mod p,

with 1 ≤ si ≤ n, |ri| < (n+ 3)si. Thus,

y ≡ r2s
−1
2 s1r

−1
1 ≡ r1s

−1
1 s3r

−1
3 mod p

and so

s21r2r3 ≡ r21s2s3 mod p.

Thus if p > 2(n+ 3)2n4 then the two sides must be equal, that is,

(

r1
s1

)2

=
r2
s2

r3
s3

,

which cannot happen by the minimality of r1/s1. �

5. Proofs of Theorems 1.5 and 1.6

In order to deal with the exponents k = 1 and k = (p + 1)/2, we need the
following addition to Theorems 3.1 and 3.2 which deals with the case when r, s are
both small but (1.6) does not hold.



14 T. COCHRANE, M. MOSSINGHOFF, C. PINNER, AND CJ RICHARDSON

Theorem 5.1. Suppose that

A =
tp− r

s
, s > 0, gcd(r, s) = 1, |r| + s > n.

(a) If p > |r|sn, then f(x) = Ax mod p has f(Ii) ∩ Ij 6= ∅ for all i, j.

(b) If p > (|r|sn+ 1)2 then f(x) = Ax(p+1)/2 mod p has f(Ii) ∩ Ij 6= ∅ for all i, j.

For part (a) we actually prove that |f(Ii) ∩ Ij | ≥ ⌊p/rns⌋ under the given hy-
potheses. Using [5] we can replace the hypothesis in part (b) with the condition
p ≫ (|r|ns log(|r|ns))4/3.
Proof. (a) We first deal with the linear case f(x) = Ax mod p. We assume that
r > 0 else we can replace A by −A and j by j̄ = p− j mod n. We also assume that
r < s else we replace A by A−1 = (t′p − s)/r where t′ ≡ sp−1 mod r and switch
the roles of i and j.

Take a with 1 ≤ a ≤ n with

a ≡ (js+ ri)p−1 mod n.

For convenience here p−1 will denote the inverse of p mod ns.
We define u such that

u ≡ i mod n, u ≡ at−1 mod s.

Writing b := gcd(n, s) we see that if b > 1 then at−1 ≡ irp−1t−1 ≡ i mod b so there
is a solution (defined mod ns/b). Note that ap − js − ru ≡ 0 mod s and mod n,
and so when b > 1 we can define λ by

rλ ≡ (ap− js− ru)

(ns/b)
mod b, 0 ≤ λ < b,

with λ = 0 if b = 1. Set v = u+ λns/b. We split into two cases:

Case 1: 1 ≤ a ≤ s.
We solve

(5.1) x ≡ v mod ns, 1 ≤ x ≤ min{ap/r, p− 1}.
The condition p > nrs ensures that ap/r ≥ p/r > ns so we are guaranteed a
solution, and x ≡ i mod n so x is in Ii.

Since xt ≡ a mod s we have

Ax ≡ ap− xr

s
, mod p.

Notice that 0 < (ap− xr)/s < ap/s ≤ p so that this is the least residue with

ap− rx

s
≡ ap− rv

s
= j + n

(ap− js− ru)/(ns/b)− rλ

b
≡ j mod n.

Case 2: s+ 1 ≤ a ≤ n.
Notice 1 ≤ a− s ≤ n− s < r. We solve

(5.2) x ≡ v mod ns, (a− s)p/r < x ≤ p− 1.

Since 0 < (a− s)p/r ≤ p− p/r < p−ns we are again guaranteed a solution x in Ii,

Ax ≡ (a− s)p− xr

s
+ p, mod p.

Since 0 > ((a − s)p − xr)/s > −pr/s > −p this is the least residue and again
(ap− rx)/s ≡ j mod n.
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We note that the set of x satisfying (5.1) or (5.2), is an arithmetic progression
of length at least ⌊p/rns⌋. In particular, we have shown that Mij = {x ∈ Ii :
Ax mod p ∈ Ij} satisfies |Mij | ≥ ⌊p/rsn⌋.

(b) Suppose now that k = (p+1)/2, and that p > (|r|sn+1)2. Then f(x) ≡ ±Ax
mod p depending on whether x is a quadratic residue or not. In part (a) we saw
that there was an arithmetic progression of ⌊p/|r|sn⌋ ≥ p/|r|sn − 1 >

√
p values

of x ∈ Ii, with Ax mod p ∈ Ij . By [12] these cannot all be quadratic nonresidues.
Thus we must have a quadratic residue x ∈ Ii with f(x) = Ax mod p in Ij . �

Proof of Theorem 1.5. Suppose that p > (n+3)n3 and that f(x) = Ax mod p. By
the box principle we can write A ≡ rs−1 mod p with (r, s) = 1, 1 ≤ s ≤ n and
|r| < p/n. If 1 ≤ |r| + s ≤ n, then Example 1.1(c) shows that f(x) = Ax mod p
is a Type (iv) mapping. Suppose now that |r| + s > n. If |r| > (n + 3)s then the
result follows from Theorem 3.2, so we can assume that |r| ≤ (n+ 3)s ≤ (n+ 3)n.
Since p > (n+ 3)n3 we have p > |r|sn, and so Theorem 5.1 gives f(Ii) ∩ Ij 6= ∅ for
all i, j. �

Proof of Theorem 1.6. Suppose that k = (p + 1)/2 and p > max{(n3 + 1)2, 8 ·
104(n logn)4}. Observe that in the proof of Theorem 3.2 we have L = 2 and

hence by (3.1) will get f(Ii) ∩ Ij 6= ∅ as long as Mij > 0.22
√
p log2 p. Since

p > 8 · 104(n logn)4 we have p > 8 · 106 and so by (3.3),

(5.3) Mij ≥ p/2n(2n+ 3) ≥ p/6n2 > 0.22
√
p log2 p,

provided C contains a value C satisfying (3.2).
By the box principle we can write A ≡ r1s

−1
1 mod p and A−1 ≡ r2s

−1
2 mod p

with (ri, si) = 1, 1 ≤ si ≤ n and |ri| < p/n. If one of these has |ri| ≥ (n+3)si then
the result follows from (5.3). If both have |ri| < (n + 3)si then, since r1r2 ≡ s1s2
mod p and |r1r2 − s1s2| < (n + 3)2n2 + n2 < p, we must have r1r2 = s1s2 and
|r1| = s2 ≤ n. Hence A has a representation A = (tp−r)/s, gcd(r, s) = 1, with both
s, |r| ≤ n, and since A is not of the form (1.9) by assumption, we have |r|+ s > n.
Since p > (n3 + 1)2 ≥ (|r|sn + 1)2 the result follows from Theorem 5.1. �

6. Proof of examples

Proof of Example 1.1. (a) Suppose that 0 < A < n. Then each Ax, x = 1, . . . , p−1
will lie in [1, A(p − 1)] with A(p − 1) < Ap. So reducing mod p to lie in [1, p) we
have

Ax mod p = Ax− ℓp, 0 ≤ ℓ ≤ A− 1.

For x in Ii we have Ax − ℓp ≡ Ai − ℓp mod n with at most A different values of
ℓ, and so Ax mod p can take at most A different values mod n. Similarly the −Ax
mod p take the form p− (Ax − ℓp) = (ℓ + 1)p− Ax, 0 ≤ ℓ < A, giving at most A
classes mod n. Therefore f(x) = Ax mod p or −Ax mod p with A < n must omit
at least n−A classes.

(b) Suppose that A = (tp − r)/s with s > 0 and 1 ≤ x < p, gcd(s, rt) = 1.
We divide x into the various residue classes mod s. Since gcd(s, t) = 1, letting t−1

denote the mod s inverse of t, we can write

x ≡ t−1a mod s, 1 ≤ a ≤ s.

Then s | (ap− rx) and

Ax ≡ ap− rx

s
mod p.
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Suppose that r > 0, otherwise replace A by −A and count the p− ℓ mod n, and set

r = hs+ r0, 1 ≤ r0 < s.

We have
ap− rx

s
<

ap

s
≤ p,

and
ap− rx

s
>

ap− rp

s
=

(

−h+
a− r0

s

)

p.

Hence the least residue of Ax mod p is

ap− rx

s
+ ℓp

where ℓ is one of the h+1 possibilities 0, 1, . . . , h if a ≥ r0, or the h+2 possibilities
0, 1, . . . , h, h+ 1 for 1 ≤ a ≤ r0 − 1.

Therefore, writing m = ℓs+ a, we have 1 ≤ m ≤ (h+ 1)s+ (r0 − 1) = r + s− 1
and the least residues take the form

mp− rx

s
, 1 ≤ m ≤ r + s− 1, m ≡ tx mod s.

Let b := gcd(n, s) and suppose that x is in Ii. If b = 1 then, for each m, we have

mp− rx

s
≡ (mp− ri)s−1 mod n

and hence obtain at most r + s − 1 residue classes mod n. If b > 1 then m ≡ ti
mod b and, for a given m, plainly (mp− rx)/b ≡ (mp− ri)/b mod n/b giving

mp− rx

s
≡ (s/b)−1(mp− ri)/b mod n/b.

So we will have b possible residue classes mod n for each of them in 1 ≤ m ≤ r+s−1
lying in a particular residue class m ≡ ti mod b; that is, at most

(6.1) b

⌈

r + s− 1

b

⌉

≤ b

(

r + s− 2

b
+ 1

)

= r + s+ b− 2

residue classes mod n. At least one residue class is missed when this is less than n.
(c) We proceed as in (b). For b = 1 there is nothing to show. So suppose that

b > 1 with (r+s−1) = bq+w, 0 ≤ w < b. We take our i to satisfy ti ≡ v mod b for
any v with w < v ≤ b. This gives us (n/b)(b− w) = n(1 − { r+s−1

b }) ≥ n/b residue
classes mod n. For these i the number of residue classes hit in (6.1) becomes

b

⌊

r + s− 1

b

⌋

≤ r + s− 1 < n. �

Proof of Example 1.2. Recall that Ax(p+1)/2 ≡ ±Ax mod p. Counting the residue
classes for Ax or −Ax mod p gives at worst twice the total obtained in the proof
of Example 1.1 for each of these, and therefore a missed residue class when this is
less than n. �

Proof of Example 1.3. (a) Suppose that A > 0. Notice that when n is odd or n is
even and 2β | A and x ≡ 2−1p mod n/ gcd(A, n) we have

Ax− ℓp ≡ (A− ℓ)p−Ax mod n, ℓ = 0, . . . , A− 1.

Thus, matching up the opposite ends Ax and Ap − Ax, we can perfectly pair
the residue classes Ax,Ax − p, . . . , Ax − (A − 1)p for Ax mod p and the classes
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p−Ax, 2p−Ax, . . . , Ap−Ax for −Ax mod p in reverse order. Hence Ax(p+1)/2 or
−Ax(p+1)/2 ≡ ±Ax mod p can take at most A different values mod n when x is in
Ii for any of the gcd(n,A) values of i with i ≡ 2−1p mod n/ gcd(A, n).

(b) If 2β ∤ A then we can no longer match the end values and the best we can
hope for is to match up gcd(A, n) steps in. That is

Ax− gcd(A, n)p ≡ Ap−Ax mod n,

so that the remaining Ax− (gcd(A, n) + ℓ)p match up with the (A− ℓ)p−Ax mod
n. Thus we will just have the Ax−ℓp with 0 ≤ ℓ < gcd(A, n) unmatched, and hence
a total of B := A+gcd(A, n) residue classes. This requires 2Ax ≡ (A+gcd(A, n))p
mod n, that is 2A/ gcd(A, n) x ≡ (A/ gcd(A, n)+1)pmod n/ gcd(A, n), equivalently
x ≡ 1

2 (A/ gcd(A, n) + 1)p(A/ gcd(A, n))−1 mod n/2 gcd(A, n). Similarly we could
match at the other end p − Ax ≡ Ax − (A − 1 − gcd(A, n))p mod n for the same
count. Hence if

i :≡ 1

2

(

A

gcd(A, n)
± 1

)(

A

gcd(A, n)

)−1

p mod
n

gcd(n, 2A)
,

we have f(Ii) ∩ Ij = ∅ for at least n−B values of j.
(c), (d) and (e). Let b := gcd(n, s) and c := gcd(n, r).
Suppose first that n is odd or n even with 2β | r and

B := r + s+ b− 2 < n.

Suppose that i satisfies i ≡ 2−1p mod n/c.
As in the proof of Example 1.1, for A = (tp − r)/s, r, s > 0 the classes for Ax

mod p and −Ax mod p with x in Ii will take the form
(

mp− rx

s

)

and p−
(

mp− rx

s

)

respectively, with 1 ≤ m ≤ r + s− 1, and m ≡ tx mod s. Writing m′ = r + s−m
we have

p−
(

m′p− rx′

s

)

=
(mp− rx)

s
+

r(x + x′ − p)

s

where plainly 1 ≤ m ≤ r + s− 1 iff 1 ≤ m′ ≤ r + s− 1 and, since r ≡ pt mod s,

m′ ≡ tx′ mod s iff x′ ≡ p−mt−1 mod s.

Note that when b > 1, the conditions x ≡ mt−1 mod s with x in Ii and m′ ≡
tx′ mod s, x′ in Ii both imply that m ≡ ti mod b, since i ≡ p− i mod b.

If b = 1 then the x, x′ in Ii have x+ x′ − p ≡ 2i− p ≡ 0 mod n/c and

p−
(

m′p− rx′

s

)

≡ (mp− rx)

s
≡ (mp− ri)s−1 mod n

with the different m only giving us r + s− 1 different residue classes mod n.
Now suppose that b > 1 and x, x′ are in Ii, and that we have an m with 1 ≤

m ≤ r + s− 1 and m ≡ ti mod b. Consider the x with

x ≡ i mod n/c, x ≡ mt−1 mod s.

If x0 is one solution then the other x will satisfy x ≡ x0 mod ns/bc. That is, we
will have b solutions mod ns/c:

x = x0 + λns/bc mod ns/c, 0 ≤ λ < b.
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Similarly, the
x′ ≡ i mod n/c, x′ ≡ p−mt−1 mod s

will have b solutions mod ns/c, namely, since p− i ≡ i mod n/c,

x′ = p− x0 − λns/bc mod ns/c, 0 ≤ λ < b.

Thus pairing up the x and x′ with the same λ we get r(x+x′ − p) ≡ 0 mod ns and

p−
(

m′p− rx′

s

)

≡ (mp− rx)

s
mod n

perfectly pairing up the classes for −Ax′ and Ax. Counting the b values of λ for
each m with 1 ≤ m ≤ r + s− 1 and m ≡ ti mod b gives the count B as before and
we miss n−B classes. This gives us (d), and (c) when b = min{b, c}.

Notice that in some cases we can relax our inequality; for example if b > 1 but
b | (r + s− 1), or if r and ⌊r/b⌋ have opposite parity (so that if r ≡ w mod b then
m ≡ 2−1r ≡ 1

2 (w+ b) mod b), we never have to round up in (6.1) and so only need
r + s ≤ n.

Observe that f(Ii) ∩ Ij = ∅ if and only if f−1(Ij) ∩ Ii = ∅ where

f(x) = Ax(p+1)/2 mod p ⇒ f−1(x) =

(

A

p

)

A−1x(p+1)/2 mod p,

with
A = (tp− r)/s ⇒ A−1 = (t′p− s)/r, t′ ≡ sr−1 mod p.

Switching the roles of r and s gives (c) when n is odd and (e) when n is even.
(f) Suppose that n is even 2β ∤ r and that i satisfies

i ≡ 1

2
((r/c) ± 1) p (r/c)

−1
mod n/c,

(we just consider the plus sign, the case with the minus sign is similar). Take
m′ = r + s+ c−m and write

p−
(

m′p− rx′

s

)

=
mp− rx

s
+

r(x + x′ − p)− cp

s
,

with 1 ≤ m′ ≤ r + s− 1, and hence 1 + c ≤ m ≤ r + s+ c− 1, and

x′ ≡ m′t−1 ≡ (r + c)t−1 −mt−1 mod s.

Notice that if x′ is in Ii then m = s + r + c −m′ ≡ r + gcd(r, n) − ti ≡ ti mod b,
since 2it ≡ pt(r/c)−1(1 + (r/c)) ≡ (c+ r) mod b.

Suppose that x, x′ are in Ii. If b = 1 then

r(x + x′ − p)− cp ≡ c (2i(r/c)− p ((r/c) + 1)) ≡ 0 mod n

and

p−
(

m′p− rx′

s

)

≡ mp− rx

s
≡ (mp− ri)s−1 mod n.

For the −Ax′ mod p we need the 1 + c ≤ m ≤ r + s− 1 + c and for Ax mod p the
1 ≤ m ≤ r + s− 1. Hence we have 1 ≤ m ≤ r+ s+ c− 1 and at most r + s+ c− 1
residue classes mod n.

Suppose that b > 1 and m ≡ ti mod b, then taking x0 to be a solution to

x ≡ i mod n/c, x ≡ mt−1 mod s,

the solutions take the form

x ≡ x0 + λns/bc mod ns/c, 0 ≤ λ < b.
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Likewise, since (r/c)−1(1 + (r/c))p− i ≡ i mod n/c, the solutions to

x′ ≡ i mod n/c, x′ ≡ (r + c)t−1 −mt−1 mod s

can be written

x′ ≡ (r/c)−1(1 + (r/c))p− x0 − λns/bc mod ns/c, 0 ≤ λ < b,

where here we take (r/c)−1 to be an inverse of r/c mod ns/c.
Pairing up the x and x′ with the same λ we have

p−
(

m′p− rx′

s

)

≡ mp− rx

s
≡ mp− rx0

s
− λ(r/c)(n/b) mod n.

With b choices of λ for each m ≡ ti mod b with 1 ≤ m ≤ r + s+ c− 1 we have at
most

(6.2) b

⌈

r + s+ c− 1

b

⌉

≤ b

(

r + s+ c− 2

b
+ 1

)

= r + s+ c+ b− 2

residue classes mod n.
Notice that ti ≡ (r + c)/2 mod b and if b | (r + c) when s is odd, or 2b | (r + c)

when s is even, or b ∤ (r + c) and ⌊(r + c)/b⌋ is odd, then in (f) we only need
r + s + c ≤ n. Similarly when 2β | s the value of i is only fixed mod b/2, hence if
r+ c ≡ w mod b we can pick an i so that ti ≡ (w + b)/2 mod b, and again we only
need r + s+ c ≤ n, giving us (e) directly without flipping r and s. �
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