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Abstract. — We construct highly singular projective curves and surfaces defined by invari-
ants of primitive complex reflection groups.

It is a classical problem to determine the maximal number of singularities of a given
type that a curve or a surface might have. Several kinds of upper bounds have been
given [Sak], [Bru], [Miy], [Var], [Wah]..., and these bounds have been approached for
small degrees [Iv], [Bar], [Esc1], [Esc2], [End], [EnPeSt], [Lab], [Sar3], [Sta]... or general
degrees [Chm].

In [Bar], [Sar1], [Sar2], [Sar3], Barth and Sarti used pencils of surfaces constructed
from invariants of some finite Coxeter subgroups of GL4(R) to obtain surfaces of degree
6, 10, 12 with the biggest number of nodes known up to now. We have decided to explore
more systematically pencils of curves and surfaces constructed from invariants of finite
complex reflection subgroups of GL3(C) or GL4(C). In this paper, we gather the results of
these computations (made with MAGMA [Magma]) obtained from the primitive complex
reflection. As the reader will see, not all the primitive complex reflection groups lead to
interesting examples but these investigations have lead to the discovery of the following
curves or surfaces, which improve some known lower bounds and are quite close to
upper bounds found by Sakai [Sak] for curves or Miyaoka [Miy] for surfaces (we refer
to Shephard-Todd notation [ShTo] for complex reflection groups; for Coxeter groups, we
also use the notation W(Γ ), where Γ is a Coxeter graph):
(a) Using the complex reflection group G24 ⊂GL3(C), we construct a curve of degree 14

with 42 cusps (i.e. singularities of type A2): this improves known lower bounds (see
Example 3.2). Note that the known upper bound for the number of cusps of a curve
of degree 14 in P2(C) is 55.

(b) Using the complex reflection group G26, we construct a curve of degree 18 with 36
singular points of type E6 (see Example 3.4). We do not know if such a bound was
already reached.

(c) Let µD4
(d ) denote the maximal number of quotient singularities of type D4 that an

irreducible surface in P3(C)might have. Miyaoka [Miy] proved that

µD4
(d ) ¶

16

117
d (d −1)2.
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2 C. BONNAFÉ

For d = 8, 12, or 24, this reads

µD4
(8) ¶ 53, µD4

(12) ¶ 198 and µD4
(24) ¶ 1 736.

Using respectively the complex reflection groups G28 =W(F4), G29 and G32, we prove
that

µD4
(8) ¾ 48, µD4

(12) ¾ 160 and µD4
(24) ¾ 1 440

(see Examples 4.3 and 4.5(3) and Table IV). This improves considerably the last
known lower bounds [Esc2]. Recall that, by standard arguments, this implies that
µD4
(8k ) ¾ 48k 3, µD4

(12k ) ¾ 160k 3 and µD4
(24k ) ¾ 1 440k 3 for all k ¾ 1. Note that the

fact that µD4
(24) ¾ 1 440 was first announced in [Bon1] (and a previous lower bound

µD4
(8) ¾ 44 was also obtained): see Section 6 for details.

We also found examples which do not improve known lower bounds but might pos-
sibly be interesting for the number and the type of singularities they contain (with “big”
multiplicities or “big” Milnor numbers): see Examples 3.4, 4.5, 4.7. The examples might
also be interesting for their big group of automorphisms.

These computations also show that Miyaoka bounds are quite sharp, even for singu-
larities that are not of type A. Contrary to previous constructions, the singular points of
our curves or surfaces are in general not all real(1) (even though most of these varieties
are defined over Q). By contrast, note also that, using a theorem of Marin-Michel on
automorphisms of reflection groups [MaMi], we can show that the Sarti dodecic can be
defined over Q (this was still an open question).

For the smoothness of the exposition, we have decided to include most of the MAGMA
codes in separate texts [Bon1] (for varieties associated with G32) and [Bon2] (for the other
examples), as well as some explicit polynomials: these two texts are not intended to
be published, but are made for the reader interested in checking the computations by
himself.

1. Notation, preliminaries

We fix an n-dimensional C-vector space V and a finite subgroup W of GLC(V ). We set

Ref(W ) = {s ∈W | dimC(V
s ) = n −1}.

Hypothesis. We assume throughout this paper that

W = 〈Ref(W )〉.
In other words, W is a complex reflection group. We also assume that
W acts irreducibly on V . The number n is called the rank of W .

(1)There is an important exception to this remark: all the singular points of the surface of degree 8 with 48
singularities of type D4 constructed in Example 4.3 have rational coordinates.
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1.A. Invariants. — We denote by C[V ] the ring of polynomial functions on V (identi-
fied with the symmetric algebra S(V ∗) of the dual V ∗ of V ) and by C[V ]W the ring of
W -invariant elements of C[V ]. By Shephard-Todd/Chevalley-Serre Theorem [Bro, The-
orem 4.1], there exist n algebraically independent homogeneous elements f1, f2,. . . , fn of
C[V ]W such that

C[V ]W =C[ f1, f2, . . . , fn ].
Let di = deg( fi ). We will assume that d1 ¶ d2 ¶ · · · ¶ dn . A family ( f1, f2, . . . , fn ) satisfying
the above property is called a family of fundamental invariants of W . Whereas such a fam-
ily is not uniquely defined, the list (d1, d2, . . . , dn ) is well-defined and is called the list of
degrees of W . If f ∈C[V ] is homogeneous, we will denote byZ ( f ) the projective (possibly
reduced) hypersurface in P(V )' Pn−1(C) defined by f . Its singular locus will be denoted
byZsing( f ). A homogeneous element f ∈C[V ] is called a fundamental invariant if it belongs
to a family of fundamental invariants.

Recall that a subgroup G of GLC(V ) is called primitive if there does not exist a decom-
position V = V1 ⊕ · · · ⊕ Vr with Vi 6= 0 and r ¾ 2 such that G permutes the Vi ’s. We will
be mainly interested in primitive (often called exceptional) complex reflection groups, and
we will refer to Shephard-Todd numbering [ShTo] for such groups (there are 34 isomor-
phism classes, named Gi for 4 ¶ i ¶ 37). Almost all the computations(2) have been done
using the software MAGMA [Magma].

1.B. Marin-Michel Theorem. — LetQ denote the algebraic closure ofQ in C and we set
Γ = Gal(Q/Q). Using the classification of finite reflection groups, Marin-Michel [MaMi]
proved that there exists a Q-structure VQ of V such that:

(1) VQ =Q⊗Q VQ is stable under the action of W (so that W might be viewed as a sub-
group of GLQ(VQ)).

(2) The action of Γ on GLQ(VQ) induced by the Q-form VQ stabilizes W .

This implies that Q[VQ] is a Q-form of C[V ] stable under the action of W and that the
action of Γ on Q[VQ] induced by the Q-form Q[VQ] stabilizes the invariant ring Q[VQ].

Proposition 1.1. — The Sarti dodecic can be defined over Q.

Remark 1.2. — An explicit polynomial with rational coefficients defining the Sarti dode-
cic is given in [Bon2]. �

Proof. — Assume here that W is a Coxeter group of type H4 acting on a vector space V
of dimension 4. We fix a Q-form VQ as above. Let f be a homogeneous invariant of W of
degree 12 defining the Sarti dodecic: it belongs to Q[VQ]. We fix a Q-basis (h1, h2, . . . , h455)
of the homogeneous component of degree 12 of Q[VQ]. It is also a Q-basis of the homo-
geneous component of degree 12 of Q[VQ]. By multiplying f by a scalar if necessary, we
may assume that there exists i ∈ {1, 2, . . . , 455} such that the coefficient of f on hi is 1.

Now, if γ ∈ Γ , then γ f is also an invariant of W of degree 12 defining an irreducible
projective surface with 600 nodes. By the unicity of such an invariant [Sar3], this forces
γ f = ξ f for some ξ ∈Q×. But ξ= 1 because the coefficient of f on hi is 1. So f ∈Q[VQ].

(2)Some Milnor and Tjurina numbers were computed with SINGULAR [DGPS].
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Remark 1.3. — In our computations made with MAGMA, reflection groups W are repre-
sented as subgroups of GLn (K )where K is a number field depending on W . There are of
course infinitely many possibilities for representing W in this way, but it turns out that
the choice of this model have a considerable impact on the time used for computations,
and on the form of the defining polynomials for the singular varieties we obtain. Let us
explain which choices we have made and for which reasons:

• We do not use the MAGMA command
ShephardTodd(k)

for defining the complex reflection group Gk . Indeed, the MAGMA model for Gk is
generally not stable under the Galois action, and leads to very lengthy computations
(and sometimes to computations that do not conclude after hours) and to very ugly
defining polynomials for the singular varieties found by our methods.

• In his CHAMP package for MAGMA intended to study the representation theory of
Cherednik algebras [Thi], Thiel used the model implemented in the CHEVIE pack-
age of GAP3 by Michel [Mic]. These models are almost all stable under the action
of the Galois group (except for the Coxeter groups G23 = W(H3) and G30 = W(H4))
and leads to much shorter computations and much nicer defining polynomials for
singular varieties (for instance, they almost all have rational coefficients).

• We have decided to create our own models for the Coxeter groups G23 =W(H3) and
G30 =W(H4): they are stable under the Galois action (so fit with Marin-Michel The-
orem). This again shortens the computations and lead to polynomials with rational
coefficients for defining singular varieties: this is how we found en explicit polyno-
mial with rational coefficients defining the Sarti dodecic [Bon2]. These models are
implemented in a file primitive-complex-reflection-groups.m avail-
able in [Bon2] and are accessible through the command

PrimitiveComplexReflectionGroup(k)
once this file is downloaded. Note that:

- This file copies almost entirely Thiel’s file except for the Coxeter groups G23 =
W(H3), G28 =W(F4) and G30 =W(H4).

- For G23 =W(H3) and G30 =W(H4), we have given our own models defined over
the field Q(ρ), where ρ4 = 5ρ2 − 5 (i.e. ρ =

Æ

(5+
p

5)/2). We do not pretend it
is the best possible model but, for our purposes, it is the best model available
as of today.

- For G28 = W(F4), we have used a version which contains the Coxeter group
W(B4) in its standard form (that is, as the group of monomial matrices whose
non-zero coefficients belong to µ2 = {1,−1}) as a subgroup of index 3. This
implies in particular that invariant polynomials can be expressed in terms on
elementary symmetric functions.

Of course, as explained in the introduction, the fact that most of the singular varieties we
construct are defined over Q do not imply that the coordinates of all the singular points
are rational, or even real. Some of the varieties have in fact no real points. The only
example where singular points have rational coordinates is given in Example 4.3 (see
Figure I). �
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n W |W | |W /Z(W )| (d1, d2, . . . , dn ) dr

3

G23 =W(H3) 120 60 2, 6, 10 6
G24 336 168 4, 6, 14 14
G25 648 108 6, 9, 12 12
G26 1 296 216 6, 12, 18 12
G27 2 160 360 6, 12, 30 12

4

G28 =W(F4) 1 152 576 2, 6, 8, 12 6
G29 7 680 1 920 4, 8, 12, 20 8

G30 =W(H4) 14 400 7 200 2, 12, 20, 30 12
G31 46 080 11 520 8, 12, 20, 24 20
G32 155 520 25 920 12, 18, 24, 30 24

5 G33 51 840 25 920 4, 6, 10, 12, 18 10

6 G34 39 191 040 6 531 840 6, 12, 18, 24, 30, 42 12
G35 =W(E6) 51 840 25 920 2, 5, 6, 10, 12, 14, 18 6

7 G36 =W(E7) 2 903 040 1 451 520 2, 6, 8, 10, 12, 14, 18 6
8 G37 =W(E8) 696 729 600 348 364 800 2, 8, 12, 14, 18, 20, 24, 30 8

TABLE I. Degrees of primitive complex reflection groups in rank ¾ 3

2. Strategy for finding some “singular” invariants in rank n ¾ 3

If n = 2, then the varieties Z ( f ) are just collections of points, and so are uninteresting
for our purpose.

Hypothesis and notation. From now on, and until the end of this pa-
per, we assume moreover that n ¾ 3 and that W is primitive. We denote
by r the minimal natural number such that the space of homogeneous
invariants of W of degree dr has dimension ¾ 2.

Note that this implies that W is one of the groups Gi , with 23 ¶ i ¶ 37, in Shephard-
Todd classification. We recall in Table I the degrees (d1, d2, . . . , dn ) of these groups. We
also give the following informations: the order of W , the order of W /Z(W ) (which is the
group which acts faithfully on P(V )), the degree dr and, whenever W is a Coxeter group,
we recall its type (W(X i ) denotes the Coxeter group of type X i ). Recall from general theory
that |W |= d1d2 · · ·dn and |Z(W )|=Gcd(d1, d2, . . . , dn ).

Using MAGMA, we first determine by computer calculations some fundamental invari-
ants f1,. . . , fr . By the definition of r , the fundamental invariants f1,. . . , fr−1 are uniquely
determined up to scalar. By inspection of Table I, we see that d1 < d2 < · · · < dn and that
there is a unique f of the form f m1

1 · · · f mr−1
r−1 which has degree dr . So the space of homo-

geneous invariants of degree dr has dimension 2, and is spanned by fr and f . Moreover,
all fundamental invariants of degree dr are, up to a scalar, of the form fr + u f , for some
u ∈C.
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This means that we need to determine the values of u such that Z ( fr +u f ) is singular.
For this, we use the basis (x1, . . . , xn ) of V ∗ chosen by MAGMA and we set

Fu = fr +u f and F aff
u (x1, . . . , xn−1) = Fu (x1, . . . , xn−1, 1).

This basis allows to identify P(V ) with Pn−1(C) and we denote by An−1(C) the affine open
subset of Pn−1(C) defined by xn 6= 0. Then Z aff(F aff

t ) denotes the affine open subset of
Z (Fu ) defined by xn 6= 0. Note the following easy fact:

(2.2) Any W -orbit of points in Pn−1(C) meets An−1(C).

Proof. — Indeed, the linear span of a W -orbit of a non-zero vector in V must be equal to
V , because W acts irreducibly. So it cannot be fully contained in the orthogonal of xn .

One deduces immediately the following fact, which will be useful for saving much
time during computations:

(2.3) Z (Fu ) is singular if and only if Z aff(F aff
u ) is singular.

Now, let
X = {(ξ, u ) ∈An−1(C)×A1(C) | F aff

u (ξ) = 0}.
We denote by φ :X → A1(C) the second projection. Then the fiber φ−1(u ) is the variety
Z aff(F aff

u ). We can then define

Xsfib = {(ξ, u ) ∈X |
∂ F aff

u

∂ x1
(ξ) = · · ·=

∂ F aff
u

∂ xn−1
(ξ) = 0}.

ThenXsfib is not necessarily the singular locus ofX , but the points in φ(Xsfib) are the val-
ues of u for which the fiber φ−1(u ) =Z aff(F aff

u ) (or, equivalently, Z (Fu )) is singular. We set
Using = φ(Xsfib) and we denote by U irr

sing the set of u ∈Using such that Z (Fu ) is irreducible.
This provides an algorithm for finding these values of u : it turns out that φ is not dom-
inant in our examples, so that there are only finitely many such values of u . We then
study more precisely these finite number of cases (number of singular points, nature of
singularities, Milnor number,. . . ). Let us see on a simple example how it works:

Example 2.4 (Coxeter group of type H3). — Assume here, and only here, that W =G23 =
W(H3). Then (d1, d2, d3) = (2, 6, 10) so that r = 2 and dr = 6. Then Fu = f2 + u f 3

1 . We first
define W (see Remark 1.3 for the choice of a model) and the fundamental invariants f1

and f2:

> load ’primitive-complex-reflection-groups.m’;
> W:=PrimitiveComplexReflectionGroup(23);
> K<a>:=CoefficientRing(W);
> R:=InvariantRing(W);
> P<x1,x2,x3>:=PolynomialRing(R);
> f1:=InvariantsOfDegree(W,2)[1];
> f2:=InvariantsOfDegree(W,6)[1];
> Gcd(f1,f2);
1

Note that the last command shows that the invariant f2 of degree 6 we have chosen is
indeed a fundamental invariant. We now define F aff

u andXsfib and then determine the set
Using of values of u such that Z (Fu ) is singular:
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> P2:=Proj(P);
> A2xA1<xx1,xx2,u>:=AffineSpace(K,3);
> A1<U>:=AffineSpace(K,1);
> phi:=map<A2xA1->A1 | [u]>;
> f1aff:=Evaluate(f1,[xx1,xx2,1]);
> f2aff:=Evaluate(f2,[xx1,xx2,1]);
> Fuaff:=f2aff + u * f1aff^3;
> X:=Scheme(A2xA1,Fuaff);
> Xsfib:=Scheme(X,[Derivative(Fuaff,i) : i in [1,2]]);
> Psing:=MinimalBasis(phi(Xsfib));
> # Psing;
1
> Factorization(Psing[1]);
[

<T + 1, 1>,
<T + 9/10, 1>,
<T + 63/64, 1>

]
> Using:=[-1, -9/10, -63/64];

We next determine for which values u ∈Using = {u1, u2, u3} the curve Z (Fu ) is irreducible:

> F:=[f2+ui*f1^3 : ui in Using]; // the polynomials F_{t_i}
> Z:=[Curve(P2,f) : f in F];
> [IsAbsolutelyIrreducible(i) : i in Z];
[ true, true, false ]

We then study the singular locus of the irreducible curves Z (Fu ) for u = u1 or u2. Let us
see how to do it for u = u1:

> Z1sing:=SingularSubscheme(Z[1]);
> Z1sing:=ReducedSubscheme(Z1sing);
> Degree(Z1sing);
10
> points:=SingularPoints(Z[1]);
> # points;
10
> pt:=points[1];
> IsNode(Z[1],pt);
true
> # ProjectiveOrbit(W,pt);
10

The command Degree(Z1sing) shows thatZ (Fu1
) contains exactly 10 singular points.

The command # points shows that they are all defined over the field K (=Q(
p

5)). The
command # ProjectiveOrbit(W,p1) shows that they are all in the same W -orbit
(the function ProjectiveOrbit has been defined by the author for computing orbits
in projective spaces (see [Bon1] or [Bon2] for the code). So all these singularities are
equivalent and the command IsNode(Z[1],pt) shows that they are all nodes.

One can check similarly that Z (Fu2
) has 6 nodes, all belonging to the same W -orbit. �

In the next sections, we will give tables of singular curves and surfaces obtained in this
way. Inspection of these tables (and Examples 5.1 and 5.2) leads to the following result:
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Proposition 2.5. — Apart from the two singular surfaces S and S ′ of degree 8 with 80 nodes
defined by invariants of G29, all the singular curves and surfaces described in Tables II, III and IV
can be defined over Q. The singular surfaces S and S ′ are Galois conjugate over Q.

Proof. — One could just check that the polynomials given thanks to the MAGMA codes
contained in [Bon2] have coefficients in Q. But one could also follow the same argument
as in Proposition 1.1, based on Marin-Michel Theorem, by using the fact that all these
singular curves and surfaces are characterized by their number of singular points or their
type.

Proposition 2.6. — If W = Gk , with 23 ¶ k ¶ 35 and k 6= 34, and if u ∈ U irr
sing, then W acts

transitively on Zsing(Fu ).

3. Singular curves from groups of rank 3

Hypothesis. We still assume that W is primitive but, in this section, we
assume moreover that n = 3.

This means that W is one of the groups Gi , for 23 ¶ i ¶ 27. We denote by ( f1, f2, f3) a
set of fundamental invariants provided by MAGMA. Table II gives the list of curves ob-
tained through the methods detailed in Section 2. This table contains the degree dr , the
cardinality of U irr

sing, the number of singular points and the type of the singularity (since
all singular points belong to the same W -orbit by Proposition 2.6, they are all equiv-
alent singularities). Details of MAGMA computations are given in [Bon2] (they follow
the lines of Example 2.4). We use standard notation for the types of the singularities of
curves [AGV]. For instance (here, we denote by m the multiplicity, µ the Milnor number
and τ the Tjurina number):
• A1 is a node, i.e. a singularity equivalent to x y : in this case, m = 2 and µ=τ= 1.
• A2 is a cusp, i.e. a singularity equivalent to y 2− x 3: in this case, m = 2=µ=τ= 2.
• D4 is a singularity equivalent to x (y 2− x 2): in this case, m = 3, µ=τ= 4.
• X9 is a singularity equivalent to x y (y − x )(y + x ): in this case, m = 4, µ=τ= 9.
• E6 is a singularity equivalent to y 3− x 4: in this case, m = 3, µ=τ= 6.

Example 3.2. — A plane curve is called cuspidal if all its singular points are of type A2.
By [Sak, (0.4)], a cuspidal plane curve of degree 14 has at most 55 singular points of type
A2. But it is not known if this is the sharpest bound: to the best of our knowledge, no
cuspidal plane curve of degree 14 with 42 or more singular points of type A2 was known
before the above example of Z (Fu3

) for W =G24.
Also, a cuspidal plane curve of degree 12 can have at most 40 singular points [Sak,

(0.4)], but it is not known if this bound can be achieved. However, there exists at least one
cuspidal curve of degree 12 with 39 cusps [C-ALi, Example 6.3]. Our example obtained
from invariants of G25, with 36 cusps, approaches these bounds and has an automorphism
group of order ¾ 108. �
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W dr |U irr
sing| ui |Zsing(Fui

)| Singularity

G23 =W(H3) 6 2
u1 6 A1

u2 10 A1

G24 14 3
u1 21 A1

u2 28 A1

u3 42 A2

G25 12 2
u1 12 D4

u2 36 A2

G27 12 2
u1 45 A1

u2 36 A1

TABLE II. Singularities of the curves Z (Fu ) for t ∈U irr
sing

(u , v ) |Zsing(Fu ,v )| W -orbits Singularity

(u1, v1) 63
9 X9

54 A2

(u2, v2) 21
9 X9

12 D4

(u3, v3) 45
9 X9

36 A2

(u4, v4) 36 36 E6

(u5, v5) 84
12 D4

72 A2

TABLE III. Some singular curves of degree 18 defined by invariants of G26

Remark 3.3. — Note that G26 does not appear in Table II. The reason is the following:
if W = G26, then dr = 12 but G26 contains W ′ = G25 as a normal subgroup of index 2
and it turns out that invariants of degree 12 of G25 and G26 coincide. This makes the
computation for G26 unnecessary in this case. Note, however, the next Example 3.4, where
we construct singular curves of degree 18 using invariants of G26. �

Example 3.4 (The group G26). — We assume in this example that W = G26. Recall that
(d1, d2, d3) = (6, 12, 18). Up to a scalar, any fundamental invariant of degree 18 of W is of
the form Fu ,v = f3+u f1 f2+ v f 3

1 for some (u , v ) ∈ A2(C). Using MAGMA, one can check the
following facts. First, the set C of (u , v ) ∈ A2(C) such that Z (Fu ,v ) is singular is a union of
three affine linesL1,L2,L3 and a smooth curve E isomorphic to A1(C). The singular locus
Csing of C consists of 7 points and it turns out that there are only 5 points (ui , vi )1 ¶ i ¶ 5 in
Csing such that Z (Fui ,vi

) is irreducible. Table III gives the information about singularities
of these varieties Z (Fui ,vi

) (with the numbering used in our MAGMA programs [Bon2]).
Note that a cuspidal curve of degree 18 has at most 94 singularities of type A2 [Sak,

(0.3)]. Note also that there exists a cuspidal curve of degree 18 with 81 cusps [Iv]. �
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W dr |U irr
sing| ui |Zsing(Fui

)| Singularity

G28 =W(F4) 6 4

u1 12 A1

u2 12 A1

u3 48 A1

u4 48 A1

G29 8 5

u1 40 A1

u2 20 Ordinary, m = 3,µ= 11,τ= 10
u3 160 A1

u4 80 A1

u5 80 A1

G30 =W(H4) 12 4

u1 300 A1

u2 60 A1

u3 360 A1

u4 600 A1

G31 20 5

u1 480 A1

u2 960 A1

u3 1 920 A1

u4 640 A1

u5 1 440 A1

G32 24 4

u1 40 Ordinary, m = 6,µ= 125,τ= 125
u2 360 Non-ordinary, m = 3,µ= 18,τ= 18
u3 1 440 D4

u4 540 Non-simple, non-ordinary, m = 2,µ= 9,τ= 9

TABLE IV. Singularities of the surfaces Z (Fu ) for u ∈U irr
sing

4. Singular surfaces from groups of rank 4

Hypothesis. We still assume that W is primitive but, in this section, we
assume moreover that n = 4.

This means that W is one of the groups Gi , for 28 ¶ i ¶ 32. We denote by ( f1, f2, f3, f4)
a set of fundamental invariants provided by MAGMA and we denote by U irr

sing the set of
elements u ∈C such that Z (Fu ) is irreducible and singular. Table IV gives the list of sur-
faces obtained through the methods detailed in Section 2. This table contains the degree
dr , the number of values of t such that Z (Fu ) is irreducible and singular, the number of
singular points and informations about the singularity (since all singular points belong
to the same W -orbit by Proposition 2.6, they are all equivalent singularities). The number
m (resp. µ, resp. τ) denotes the multiplicity (resp. the Milnor number, resp. the Tjurina
number).

The example with 1 440 singularities of type D4 obtained from G32 is detailed in sec-
tion 6: one can derive from the construction a surface of degree 8 with 44 singularities of
type D4 (see also [Bon1]).
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FIGURE I. Part of the real locus of Z (ϕ2) for W =G28 =W(F4).

Remark 4.2 (Coxeter groups of rank 4). — In Table IV, the cases of Coxeter groups of
type F4 and H4 (i.e. the primitive reflection groups G28 and G30) was dealt with by
Sarti [Sar1]. �

Examples 4.3 (Coxeter group of type F4). — Assume in this example, and only in this
example, that W = G28 =W(F4) is the Coxeter group of type F4, in the form explained in
Remark 1.3. We denote by σ1, σ2, σ3, σ4 the elementary symmetric polynomials in x1,
x2, x3, x4 and if f ∈C[x1, x2, x3, x4] and k ¾ 1, we set f [k ] = f (x k

1 , x k
2 , x k

3 , x k
4 ).

Let ϕ1 and ϕ2 be the following two polynomials:

ϕ1 = 7σ1[2]
4−72σ1[2]

2σ2[2] +4 320σ4[2] +432σ2[4]

and ϕ2 =σ1[2]
4−9σ1[2]

2σ2[2] +27σ2[2]
2−27σ1[2]σ3[2] +324σ4[2].

Then it is easily checked that ϕi ∈C[V ]W and that the two varieties Z (ϕi ) are isomorphic
(because there is an element g of NGL4(C)(W ) such that ϕ2 = gϕ1) and have the following
properties:
• The reduced singular locusZsing(ϕi ) has dimension 0 and consists of 48 points which

are all quotient singularities of type D4.
• The group G28 acts transitively on Zsing(ϕi ) and all elements of Zsing(ϕi ) have coor-

dinates in Q.
This shows in particular that

(4.4) µD4
(8) ¾ 48,

as announced in the introduction. Figure I shows part of the real locus of Z (ϕ2). �
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Examples 4.5 (The group G29). — Assume in this example, and only in this example,
that W = G29, in the version implemented by Jean Michel in the Chevie package of
GAP3 [Mic]. Then it contains the symmetric group S4 (viewed as the subgroup of GL4(C)
consisting of permutation matrices). We use the notation of Example 4.3 for elementary
symmetric functions and evaluation at powers of the indeterminates.

(1) Recall that the Endraß octic [End] has degree 8 and 168 nodes and its automorphism
group has order 16. As shown in Table IV, Z (Fu3

) is an irreducible surface in P3(C) with
160 nodes and a group of automorphisms of order at least 1 920, thus approaching En-
draß’ record but with more symmetries. However, this surface has no real point. Up to a
scalar, we have

Fu3
=σ1[8] +3σ1[2]

2σ2[2] +2σ2[4]−30σ1[2]σ3[2] +240σ4[2].

It is still an open question to determine whether one can find a surface of degree 8 in
P3(C) with more than 168 nodes (being aware that the maximal number of nodes cannot
exceed 174, see [Miy]).

(2) For the surface Z (Fu2
), it can be shown with the software SINGULAR that the singu-

larities are all of type T4,4,4 that is, are equivalent to the singularity x y z + x 4+ y 4+ z 4. Up
to a scalar, we have

Fu2
=σ1[2]

4−32σ1[2]σ3[2] +256σ4[2].
Figure II shows part of the real locus of Z (Fu2

).

(3) On the other hand, if we set

ϕ1 =σ1[2]
6−

3

2
σ1[2]

4σ2[2]−78σ1[2]
2σ2[2]

2+
585

2
σ1[2]

3σ3[2] +208σ2[2]
3

−990σ1[2]σ2[2]σ3[2] +1710σ1[2]
2σ4+1350σ3[2]

2−2880σ2[2]σ4[2],
we can check that ϕ1 ∈C[V ]W and that:
• Z (ϕ1) has exactly 160 singular points, which are all singularities of type D4.
• Zsing(ϕ1) is a single G29-orbit.

This shows that

(4.6) µD4
(12) ¾ 160,

as announced in the introduction. This improves considerably known lower bounds (to
the best of our knowledge, it was only known that µD4

(12) ¾ 96, see [Esc2]). Recall also
that Miyaoka’s bound says that µD4

(12) ¶ 198. Figure III shows part of the real locus of
Z (ϕ1).

(4) Let us keep going on with fundamental invariants of degree 12. Let

ϕ2 =σ3[2]σ1[2]
3−4σ1[2]σ2[2]σ3[2] +4σ1[2]

2σ4[2] +4σ3[2]
2

(up to a scalar). Then ϕ2 ∈ C[V ]W is irreducible over C (this has been checked with
SINGULAR) and computations with MAGMA show that:
• Zsing(ϕ2) has pure dimension 1 and is the union of 30 lines.
• G29 acts transitively on these 30 lines.
• The set of points belonging to at least two of these 30 lines has cardinality 60, and

splits into two G29-orbits (one of cardinality 40, the other of cardinality 20).
Figure IV shows part of the real locus of Z (ϕ2). �
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FIGURE II. Part of the real locus of Z (Fu3
) for W =G29.

FIGURE III. Part of the real locus of Z (ϕ1) for W =G29.

Example 4.7 (The group G31). — Recall that the Chmutov surface [Chm] of degree 20 has
2 926 nodes and that an irreducible surface in P3(C) of degree 20 cannot have more than
3 208 nodes [Miy]. The third surface associated with G31 in Table IV has “only” 1 920
nodes and most of them are not real (contrary to the Chmutov surface). However, it has
a big group of automorphisms (of order a least 11 520). �
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FIGURE IV. Part of the real locus of Z (ϕ2) for W =G29.

5. Examples in higher dimension

Example 5.1 (The group G33). — Computations with MAGMA show that there are no
fundamental invariant f3 of degree 10 of G33 such that Z ( f3) is singular [Bon2]. �

Example 5.2 (Coxeter group of type E 6). — Assume in this Example, and only in this
Example, that W =G35 is a Coxeter group of type E6. Then r = 3 and (d1, d2, d3) = (2, 5, 6),
so that any fundamental invariant of degree 6 of W is of the form Fu = f3+u f 3

1 for some
u ∈C. Computations with MAGMA show that [Bon2]:
(a) Using =U irr

sing has cardinality 8.
(b) For each u ∈Using, Zsing(Fu ) has dimension 0, W acts transitively on Zsing(Fu ), and all

these singular points are nodes.
(c) The hypersurfaces Z (Fu ), u ∈U irr

sing, have respectively 27, 36, 135, 216, 360, 432, 1080
and 1080 singular points. �

The other exceptional groups have been investigated but the computations are some-
what too long (note that n ¾ 5).

6. The case of G32

Hypothesis. We assume in this section, and only in this section, that W
is the primitive complex reflection group G32.

In Table IV, it is said that the surface Z (Fu3
) attached to G32 has 1 440 singularities of

type D4. We give here a detailed account of this example, and show that it also produces
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surfaces of degree 8 and 16 with many singularities of type D4. The MAGMA codes are
contained in the ARXIV version of this section [Bon1].

We need some more notation. If f ∈ C[x1, x2, x3, x4] is homogeneous, we denote by
f [k ] the homogeneous polynomial f (x k

1 , x k
2 , x k

3 , x k
4 ). Let W1 be the subgroup of GL4(C)

generated by

s1 =







0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 −1






, s2 =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1






and s3 =







−1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






.

Let ζ3 (resp. ζ4) be a primitive third (resp. fourth) root of unity. Let W2 be the subgroup
of GL4(C) generated by

s ′1 =







0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 ζ4






, s ′2 =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 ζ4






and s ′3 =







−ζ4 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






.

Finally, let W =W3 denote the subgroup of GL4(C) generated by

s ′′1 =







1 0 0 0
0 1 0 0
0 0 ζ3 0
0 0 0 1






, s ′′2 =









ζ3+2
3

ζ3−1
3

ζ3−1
3 0

ζ3−1
3

ζ3+2
3

ζ3−1
3 0

ζ3−1
3

ζ3−1
3

ζ3+2
3 0

0 0 0 1









,

s ′′3 =







1 0 0 0
0 ζ3 0 0
0 0 1 0
0 0 0 1






and s ′′4 =









ζ3+2
3

1−ζ3
3 0 1−ζ3

3
1−ζ3

3
ζ3+2

3 0 ζ3−1
3

0 0 1 0
1−ζ3

3
ζ3−1

3 0 ζ3+2
3









.

Commentaries. The following facts are checked using MAGMA, as explained in [Bon1].
Let Z(Wi ) denote the center of Wi . In all cases, it is isomorphic to a group of roots of unity
acting by scalar multiplication. Then:

(a) The group W1 has order 48 and is isomorphic to the non-trivial double cover GL2(F3)
of the symmetric group S4 'W1/Z(W1).

(b) The group W2 has order 768, contains a normal abelian subgroup H of order 32 and
W2/H 'S4. The group W2/Z(W2) has order 192, but is not isomorphic to a Coxeter
group of type D4.

(c) The group W3 is the complex reflection group denoted by G32 in the Shephard–Todd
classification [ShTo] (it has order 155920). Recall that the group W3/Z(W3) is a simple
group of order 25 920 and is isomorphic to the derived subgroup of the Weyl group
of type E6 (i.e. to the derived subgroup of the special orthogonal group SO5(F3)). It
contains the group W1 as a subgroup, as well as a subgroup of diagonal matrices
isomorphic to (µ3)

4, where µd is the group of d -th roots of unity.
Note that we have used the version of G32 implemented by Michel in the Chevie

package of GAP3 [Mic]. �
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If λ = (λ1 ¾ λ2 ¾ λ3 ¾ λ4) is a partition of 8 of length at most 4, we denote by Ω−λ (resp.
Ω+λ) be the orbit of the monomial xλ1

1 xλ2
2 xλ3

3 xλ4
4 under the action of W1 (resp. the symmet-

ric group S4) and we set
mε
λ =
∑

m∈Ωελ

m

for ε ∈ {+,−}. Then m+
λ is the symmetric function traditionnally denoted by mλ. If all the

λi ’s are even, then m−
λ =m+

λ but note for instance that

m+
611 6=m−

611 = x 6
1 x2 x3+ x 6

1 x2 x4− x 6
1 x3 x4+ x1 x 6

2 x3− x1 x 6
2 x4+ x 6

2 x3 x4

+x1 x2 x 6
3 + x1 x 6

3 x4− x2 x 6
3 x4− x1 x2 x 6

4 − x1 x3 x 6
4 − x2 x3 x 6

4 .

Now, let

g = m−
8 −6m−

62−60m−
611+2 240m−

521−14m−
44+10 180m−

431+40 412m−
422

−23 440m−
4211+111 980m−

332+154 704m−
2222.

By construction, m−
λ is invariant under the action of W1 and so g is invariant under the

action of W1 ' S̃4. One can check with MAGMA the following facts [Bon1, Proposition 1]:

Proposition 6.1. — If 1 ¶ k ¶ 3, then the polynomial g [k ] is invariant under the action of Wk .

One can also check that g [3] is the polynomial denoted by Fu3
(suitably normalized) in

Table IV (in the G32 example).

Theorem 6.2. — The homogeneous polynomial g satisfies the following statements:
(a) Z (g ) is an irreducible surface of degree 8 in P3(C) with exactly 44 singular points which are

all quotient singularities of type D4.
(b) If k ¾ 1, then Z (g [k ]) is an irreducible surface of degree 8k , whose singular locus has di-

mension 0 and contains at least 44k 3 quotient singularities of type D4.
(c) Z (g [2]) is an irreducible surface of degree 16 with exactly 472 singular points: 24 quotient

singularities of type A1, 96 quotient singularities of type A2 and 352 quotient singularities
of type D4.

(d) Z (g [3]) is an irreducible surface of degree 24 in P3(C) with exactly 1 440 singular points
which are all quotient singularities of type D4.

Remark 6.3. — Note that g has coefficients in Q but the singular points of Z (g ), Z (g [2])
and Z (g [3]) have coordinates in various field extensions of Q, and most of the singular
points are not real (at least in this model). �

We now turn to the study of the singularities of the varietiesZ (g [i ]) for i ∈ {1, 2, 3}. Note
the following fact, checked using MAGMA [Bon1, Lemma 3], that will be used further:

Lemma 6.4. — If 1 ¶ i < j ¶ 4, then the closed subscheme of P3(C) defined by the homogeneous
ideal 〈g , ∂ g

∂ xi
, ∂ g
∂ x j
〉 has dimension 0.
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FIGURE V. Part of the real locus of Z (g )

6.A. Degree 8. — The MAGMA computations leading to the proof of the statement (a)
of Theorem 6.2 are detailed in [Bon1, §1]. Along these computations, the following facts
are obtained (here,U denotes the open subset of P3(C) defined by x1 x2 x3 x4 6= 0):

Proposition 6.5. — We have:
(a) dimZsing(g ) = 0, so Z (g ) is irreducible.
(b) Zsing(g ) is contained inU .
(c) The group W1 has 3 orbits in Zsing(g ), of respective length 8, 12 and 24.

Note that the points in the W1-orbit of cardinality 8 are the only real singular points of
Z (g ). Figure V shows part of the real locus of Z (g ).

6.B. Degree 8k . — Let U denote the open subset of P3(C) defined by x1 x2 x3 x4 6= 0 and
let σk : P3(C)→ P3(C), [x1; x2; x3; x4] 7→ [x k

1 ; x k
2 ; x k

3 ; x k
4 ]. The restriction of σk to a morphism

U → U is an étale Galois covering, with group (µk )
4/∆µk (here, ∆ : µk ,→ (µk )

4 is the
diagonal embedding). We have Z (g [k ]) =σ−1

k (Z (g )).
Let us first prove that Z (g [k ]) is irreducible. We may assume that k ¾ 2, as the result

has been proved for k = 1 in the previous section. Recall that
∂ g [k ]
∂ xi

= k x k−1
i (

∂ g

∂ xi
◦σk ),

so the singular locus of Z (g [k ]) is contained in

{p1, p2, p3, p4}∪
�⋃

i 6= j

σ−1
k (Zi , j )
�

,

where pi = [δi 1;δi 2;δi 3;δi 4] (and δi j is the Kronecker symbol) and Zi , j is the subscheme
of P3(C) defined by the ideal 〈g , ∂ g

∂ xi
, ∂ g
∂ x j
〉 (and which has dimension 0 by Lemma 6.4).

Since σk is finite, this implies that Zsing(g [k ]) has dimension 0, so Z (g [k ]) is irreducible.
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FIGURE VI. Part of the real locus of Z (g [2])

Now, σk :U →U is étale and the singular locus of Z (g ) is contained in U (see Propo-
sition 4(b)). Therefore, the 44 singularities of Z (g ) lift to 44k 3 singularities in Z (g [k ])∩U
of the same type, i.e. quotient singularities of type D4. This proves the statement (b) of
Theorem 6.2.

Note that, for k = 2, 3 and 4 (and maybe for bigger k ) we will prove in the next sections
that Z (g [k ]) contains singular points outside ofU .

6.C. Degree 16. — Using the morphism σ2 defined in the previous section, we get that
Z (g [2])∩U has exactly 352 singular points, which are all quotient singularities of type D4.
The other singularities are determined thanks to MAGMA computations that are detailed
in [Bon1, §3], and which confirm the statement (c) of Theorem 6.2. Note that we also need
the software SINGULAR [DGPS] for computing some Milnor numbers and identifying the
singularity A2. Note also that W2 acts transitively on the 24 quotient singularities of type
A1 and also acts transitively on the 96 quotient singularities of type A2. Figure VI shows
part of the real locus of Z (g ).

6.D. Degree 24. — Using the morphism σ3 defined in Section 6.B, we get that Z (g [3])∩
U has exactly 44×33 = 1188 singular points, which are all quotient singularities of type D4.
The other singularities are determined thanks to MAGMA computations that are detailed
in [Bon2] or [Bon1, §4], and which confirm the statement (d) of Theorem 6.2. Note also
that, in the given model, the surface Z (g [3]) has only 32 real singular points: Figure VII
gives partial views of its real locus.

6.E. Complements. — From Section 6.B, we deduce that Zsing(g [4]) has 2 816 quotient
singularities of type D4 lying in the open subset U and it can be checked that it has 432
other singular points not lying inU , for which we did not determine the type.
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FIGURE VII. Part of the real locus of Z (g [3])
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