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Abstract. In recent years it became apparent that geophysical abrasion can

be well characterized by the time evolution N(t) of the number N of static bal-
ance points of the abrading particle. Static balance points correspond to the

critical points of the particle’s surface represented as a scalar distance function

r, measured from the center of mass of the particle, so their time evolution
can be expressed as N(r(t)). The mathematical model of the particle can be

constructed on two scales: on the macro (global) scale the particle may be

viewed as a smooth, convex manifold described by the smooth distance func-
tion r with N = N(r) equilibria, while on the micro (local) scale the particle’s

natural model is a finely discretized, convex polyhedral approximation r∆ of

r, with N∆ = N(r∆) equilibria. There is strong intuitive evidence suggesting
that under some particular evolution models (e.g. curvature-driven flows) N(t)

and N∆(t) primarily evolve in the opposite manner (i.e. if one is increasing

then the other is decreasing and vice versa). This observation appear to be a
key factor in tracking geophysical abrasion. Here we create the mathematical

framework necessary to understand these phenomenon more broadly, regard-

less of the particular evolution equation. We study micro and macro events in
one-parameter families of curves and surfaces, corresponding to bifurcations

triggering the jumps in N(t) and N∆(t). Based on this analysis we show that
the intuitive picture developed for curvature-driven flows is not only correct, it

has universal validity, as long as the evolving surface r is smooth. In this case,

bifurcations associated with r and r∆ are coupled to some extent: resonance-
like phenomena in N∆(t) can be used to forecast downward jumps in N(t) (but

not upward jumps). Beyond proving rigorous results for the ∆ → 0 limit on

the nontrivial interplay between singularities in the discrete and continuum ap-
proximations we also show that our mathematical model is structurally stable,

i.e. it may be verified by computer simulations.
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1. Introduction

1.1. Motivation. Recent work in geomorphology [12, 26, 35] indicates that the
shapes of sedimentary particles and the time (t) evolution of those shapes may be
well characterized by the number N(t) of mechanical balance points of the abrading
particle. Such balance points correspond to the critical points of the scalar distance
function r, measured from the center of mass o. In this paper we develop the
mathematical theory for the case when r is a smooth, convex planar curve but we
will also show numerical results for the non-smooth case and for surfaces.

There are two types of physical models describing the evolution of particles under
abrasion. The first kind, which we might call local model, is based on discrete events
when in a collision a small part of the abraded particle is broken off. The most
natural geometrical setting for local models is a multi-faceted convex polyhedron
and collisional events correspond to truncations with planes parallel to, and very
close to tangent planes. The second kind of model we might call global and it
considers the averaged effect of many such micro collisions. The natural setting
for global models is a smooth, convex body evolving under a geometric partial
differential equation (PDE). Both model types are physically legitimate: at close
inspection, the convex hulls of pebbles can be best approximated by multi-faceted
polyhedra, on the other hand, it is equally possible to adopt the global view and
approximate pebbles with smooth surfaces.

The distance functions describing these two types of models are, of course, re-
lated: in case of a fine polyhedral approximation the two surfaces (smooth global
model and polyhedral discrete model) are close to each other in the C1-norm. We
denote the size of the largest polyhedral face by ∆ and the two distance functions
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Figure 1. Equilibria on a planar ellipse and its polygonal approxi-
mation. Upper left: ellipse in Euclidean plane. Lower left: distance
function r(ϕ) corresponding to the ellipse. Upper right: polygonal
approximation in Euclidean plane. Lower right: distance function
r∆(ϕ) corresponding to polygon. Observe that most, but not all
edges and vertices of the polygon carry equilibria. The latter ac-
cumulate in flocks, centered around the locations of the equilibria
of the smooth curve.

by r and r∆, respectively. Mechanical equilibria correspond to the critical points
of r and r∆. We will refer to these points as global and local equilibria and denote
their numbers by N and N∆, respectively. Both the smooth function r and its
polyhedral approximation r∆ may carry equilibria of different stability types. In
three dimensions we have three generic types: stable, saddle an unstable. For ex-
ample, vertices of a polyhedron may carry unstable equilibrium points, edges may
carry saddle-type equilibrium points and faces may carry stable equilibrium points.
The numbers N and N∆ refer to the number of equilibria belonging to any of the
aforementioned stability types. In two dimensions we just have two generic sta-
bility types: stable and unstable equilibria follow each other alternating along the
smooth curve r or its fine polygonal approximation r∆. Figure 1 illustrates these
concepts for a planar, elliptical disc and its discretized, polygonal approximation.
Although critical points appear to be related to first derivatives (they are defined
by vanishing gradient), nevertheless, the C1-proximity of the two functions does
not imply that N and N∆ are close. As we showed in [16], in the ∆→ 0 limit N∆

does not, in general, converge to N .

The time dependence N(t) of the number of global critical points has been
broadly investigated in various evolution equations [10, 12, 14, 15, 22, 25]. Our
goal here is rather different: instead of studying any particular evolution equation
(which we will use only as illustrations) we focus on some universal features relating
N(t) to N∆(t). Earlier results appear to suggest intuitively that, as long as r(t) is
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smooth, N(t) and N∆(t) tend to evolve in the opposite directions: in [33] it was
shown that it is always possible to increase the number of equilibria via suitable,
small truncations, however, the opposite is not true: in general, it is not possible
to reduce the number of equilibria by a small local truncation. These results were
further advanced in [17] where the concept of robustness was introduced to mea-
sure the stability of N with respect to truncations of the solid. By distinguishing
between upward and downward robustness (measuring the difficulty to increase or
decrease N , respectively) it was again found that upward robustness is, in gen-
eral, much smaller than downward robustness. These results suggest that in the
local, polygonal model, which could be realized in a randomized chipping algorithm
[20, 24], N∆(t) would tend to increase under subsequent, small random truncations.
On the other hand, there are results [22, 12] showing that, at least in curvature-
driven, global PDE models which could be regarded as continuum analogies of the
aforementioned chipping algorithms, N(t) tends to decrease.

In this paper we will show that the indicated opposite trend of N∆(t) and N(t)
is indeed universal, and it is independent of the particular type of evolution model
as long as r(t) remains smooth. Our paper will focus on this case, and we will show
that resonance-like phenomena in N∆(t) may help to predict downward jumps in
N(t). The nontrivial coupling between N∆(t) and N(t) may be better understood
intuitively via an analogy to a mechanical oscillator. In case of of a damped, driven
harmonic oscillator resonance occurs whenever the driving frequency approaches
the natural frequency of the oscillator, i.e. an extrinsic quantity approaches and
intrinsic one. In our problem we associate two scalars with a point p of a smooth
curve: the distance r(p) between p and the center of mass o, and the radius of
curvature R(p) at p. In the analogy, r(p) is the extrinsic and R(p) is the intrinsic
quantity. (In three dimensions we have two intrinsic quantities: the two principal
radii) The size ∆ of the discretization is analogous to damping and N∆ is analogous
to the amplitude of the oscillation. If r(p) = R(p) then in the ∆→ 0 limit we can
observe as N∆ →∞. However, the analogy is incomplete, because in the case of the
harmonic oscillator a single amplitude-frequency diagram is sufficient to describe
the generic response of the system. In our geometric setting there exist two, distinct
generic scenarios which we explain below.

As r(p) → R(p), the trajectory of the center of mass o approaches the evolute
E∆ or E corresponding to r∆ and r, respectively [17, 31], see also Remarks 5,
6. We will refer to the intersection between the trajectory of o and the evolute
E∆ or E as micro and macro events, respectively. It is well-known [31] that these
intersections trigger upward or downward jumps in the integer-valued functions
N∆(t) and N(t). In the generic case an event is equivalent to a codimension one,
saddle-node bifurcation. Such a bifurcation can occur in two different manners:
either creating or annihilating one pair of equilibrium points. As we will show,
micro events, in general, do not trigger macro events, however, the opposite is
not true: jumps in N(t) occur whenever r(p) = R(p) and here we have always
lim∆→0N

∆ = ∞. However, the time evolution N∆(t) will depend on thy type of
macro-event in an asymmetric manner (cf. Figure 2):

• If N(t) increases by 2 then we call this a (generic) creation and the corre-
sponding macro event in N∆(t) will be of type C.
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Figure 2. Co-evolution of N(t) and N∆(t). (A) Related macro
events (B) Qualitative example explaining the observations of ”op-
posite” evolution of N(t) and N∆(t). Observe that, although the
value N∆(t) may not increase in an averaged sense, at almost all
times N∆(t) appears to be increasing, while N(t) is monotonically
decreasing.

• If N(t) decreases by 2 then we call it a (generic) annihilation and the
corresponding macro event in N∆(t) will be of type A.

We will prove the existence of these macro events in Theorem 3 and discuss the
exact evolution of N∆ in their vicinity in Section 3.

The existence of coupled macro-events sheds light on the previous intuition about
the opposite co-evolution of N∆(t) and N(t). As we can see in Figure 2(B), if N(t)
evolves in a monotonic fashion (i.e. it has jumps only in one direction) then, due to
the coupling between corresponding macro events, for most of the time the evolution
of N∆(t) will be in the opposite direction. This does not imply that N∆(t) will be
monotonic in any averaged sense, however, in a generic case, locally it will almost
always appear to be monotonic. Figure 2(B) illustrates the qualitative trends for
N∆(t) and N(t) in the ∆→ 0 limit. Since the mesh-size ∆ is analogous to damping,
in computer simulations, for finite values of ∆ we expect to see finite versions of
C-type and A-type events as well as small fluctuations of N∆(t), cf. Figure 4.

Beyond explaining earlier observations, these results can also be of practical
use. Both computer simulations of the PDEs describing abrasion processes and
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related laboratory measurements are inherently discrete, one good example is the
study of surfaces of natural pebbles which, while rolling on a horizontal plane, are
supported on their convex hull [19]. The latter is well approximated by a many-
faceted polyhedron r∆ (with faces of maximal size ∆), on which, by studying its
detailed 3D scanned images, one can clearly observe large numbers N∆ of adjacent
equilibria in strongly localized flocks. The macro events of type A and C in the
evolution of N∆(t) correspond to the explosion of these local flocks into huge critical
flocks the size and evolution of which we explore in Subsections 3.1 and 3.2. If
we approximate the polyhedron r∆ by a sufficiently smooth surface r, then, in a
generic case, we can see that the flocks of equilibria on r∆ appear in the close
vicinity of the (isolated) equilibrium points of r (cf. Figure 3), however, the latter
may not be directly observed on the polyhedral image. In computer simulations
the opposite happens: a smooth surface r is replaced by its fine r∆ discretization
and computations are performed on the latter. As we can see, it is often the case
that we have means to monitor N∆(t) but we may not be able to directly monitor
N(t), although the latter is of prime physical interest [12]. In such cases by using
Theorem 3, N(t) may be obtained simply via monitoring the C- and A-type events
in N∆ and computing N(t) as

(1) N(t) = N(0) + 2(c− a),

where c and a refer respectively to the number of C-type and A-type events observed
in N∆(t).

These macro events also connect N∆ to the aforementioned robustness concepts.
The quantity σ(t) = 1/N∆(t) may serve as a measure of downward robustness since
whenever σ(t)→ 0, the function N(t) is approaching a downward step. Curiously,
σ(t) does not carry advance information on the approaching upward step in N(t).
The asymmetry in increasing/decreasing N(t) is at the very heart of understanding
natural abrasion processes and their mathematical models. One, rather delicate
feature of these PDEs is whether they tend to increase, conserve or reduce N
[22, 12] and the ability to track and measure this phenomenon in experiments and
computations is of key importance in the identification and scaling of the proper
evolution equations. The dynamic theory for local equilibria, the central topic of
this paper, appears to be a necessary step towards this goal. Our paper is structured
as follows.

To understand their evolution, the first natural question is to ask for the re-
lationship between N∆ and N on a fixed surface described by a generic distance
function r. We addressed this problem (which we may call the static theory of
equilibria) in [16] and we obtained explicit formulae (to be reviewed in Subsection
1.2.2) for the size of the individual flocks (emerging in the ∆→ 0 limit) surrounding
generic critical points of r. However, those results do not permit the computation
of the global value N∆ on the whole surface because in [16] we did not exclude the
existence of equilibria outside flocks. In Subsection 2.1 we complement the static
theory by filling this gap; we will prove that local equilibria disconnected from flocks
do not exist. In Subsection 2.2 we further strengthen these results by showing the
structural stability of our formulae with respect to small random fluctuations in
mesh size. The latter result validates computer simulations running with slightly
unequal mesh size. The main focus of our current paper is the dynamic theory
which we develop in Section 3. We prove our results for planar curves, however, in
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Figure 3. Flocks of equilibria observed on a scanned pebble.
Polyhedron model of pebble displaying multiple equilibria of all
three stability types: vertices carrying (unstable) equilibria are
marked with ”X”, edges carrying (saddle-type) equilibria marked
with thick black line, faces carrying (stable) equilibria are shaded
grey. Unmarked vertices, edges and faces do not carry equilibria.
Note that the marked equilibria are spatially strongly localized,
concentrated in areas marked by (a), (b) and (c). Such accumu-
lation of polyhedral equilibria are referred to as ”‘flocks”’. Flocks
appear in the vicinity of the equilibria of the smooth surface ap-
proximated by the multi-faceted polyhedron. Similar phenomena
can be observed by finely discretized smooth curves where equi-
libria of the polygon form flocks around equilibria of the smooth
curve.

Section 4 we provide a visually attractive numerical example for the evolution of
critical flocks on surfaces.

1.2. Basic concepts.

1.2.1. Mechanical equilibria. The study of equilibria of rigid bodies was initiated by
Archimedes [1]; his results have been used in naval design even in the 18th century
(cf. [2]). Archimedes’ main concern was the number of the stable balance points of
the body.

Mechanical equilibria of convex bodies correspond to the singularities of the
gradient vector field characterizing their surface. Modern, global theory of the
generic singularities of smooth manifolds appears to start with the papers of Cayley
[5] and Maxwell [27] who independently introduced topological ideas into this field
yielding results on the global number of stationary points. These ideas have been
further generalized by Poincaré and Hopf, leading to the Poincaré-Hopf Theorem [3]
on topological invariants. In case of topological spheres in two and three dimensions,
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the Poincaré-Hopf formula can be written as

(2) 2D: S − U = 0, 3D: S + U −H = 2,

where S,U,H denote the numbers of ‘sinks’ (minima, corresponding to stable equi-
libria), ‘sources’ (maxima, corresponding to unstable equilibria) and saddles, re-
spectively. This formula can be also regarded as a variant of the well-known Euler’s
formula [21] for convex polyhedra.

Mechanical equilibria of polyhedra have also been investigated in their own
right; in particular, the minimal number of equilibria attracted substantial inter-
est. Monostatic polyhedra (i.e. polyhedra with just S = 1 stable equilibrium point)
have been studied in [7],[8], [9] and [23].

The total number N of equilibria (N = S+U +H) has also been in the focus of
research. In planar, homogeneous, convex bodies (rolling along their circumference
on a horizontal support), we have N ≥ 4 [18]. However, convex homogeneous
objects with N = 2 exist in the three-dimensional space (cf. [33]). Zamfirescu [36]
showed that for typical convex bodies, N is infinite.

1.2.2. Fine discretizations: earlier results. While typical convex bodies are nei-
ther smooth objects, nor are they polyhedral surfaces, Zamfirescu’s result strongly
suggests that equilibria in abundant numbers may occur in physically relevant sce-
narios. This is indeed the case if we study the surfaces of natural pebbles which,
while rolling on a horizontal plane, are supported on their convex hull [19] and
exhibit flocks of equilibria (cf. Figure 3).

In [16] we provided a mathematical justification for this observation. We stud-
ied the inverse phenomenon: namely, we were seeking the numbers and types of
static equilibrium points of the families of polyhedra r∆ arising as equidistant ∆-
discretizations on an increasingly refined grid of a smooth curve r with N generic
equilibrium points, denoted by mi (i = 1, 2, . . . N). In the planar case, as ∆ → 0,
r∆ → r and we find that the diameter of each of the N flocks on r∆ (appearing
around mi) shrink and approach zero. However, we also find that inside a fixed
domain (centered at mi), the numbers S∆

i , U
∆
i of equilibria in each flock fluctu-

ate around specific values S0
i and U0

i that are independent of the mesh size and
the parametrization of the surface. We called these quantities the imaginary equi-
librium indices associated with mi. We may eliminate the fluctuation of S0

i , U0
i

by averaging over meshes in random positions (with uniform distributions) and in
Theorem 1 of [16] we obtained for the planar case that

(3) S0
i = 1/|(κiρi + 1)|, U0

i = |κiρi|/|(κiρi + 1)|,

where ρi = |mi|, and κi is the (signed) curvature of r at mi. What we did not
prove was whether by summing over all imaginary equilibrium indices

(4) N0 =

N∑
i=1

(S0
i + U0

i )

actually provides all equilibria on the ∆ → 0 mesh. We will provide this result
for the 2-dimensional case in Subsection 2.1 by proving Theorem 1 claiming that
there exist no ‘irregular’ equilibria on the ∆ → 0 mesh which are separated from
the flocks. In Subsection 2.2 we will prove Theorem 2 about randomized meshes
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indicating that these formulae are robust and they approximately predict results
computed on non-uniform meshes.

2. Static theory: equilibria on finely discretized, fixed planar
curves

Throughout this section, we deal with a planar curve satisfying the C3 differen-
tiability property which has exactly one, non-degenerate equilibrium point m with
respect a given reference point o. Note that as a plane curve is a one-dimensional
submanifold of R2, there is a neighborhood of m in which the examined curve can
be defined as a simple r : [τ , τ ]→ R2, r(τ) := (x(τ), y(τ)) three times continuously
differentiable curve, where τ < 0 < τ and m = r(0). For the evolution of static
equilibria we may write in a more explicit notation N(r(t, τ), o(t)) where τ is the
spatial parametrization of r and for planar curves τ is a scalar, for surfaces it is
a vector. We will use the shorthand notation N(t) if it is clear from the context
which function r and which reference point o are involved.

By a suitable choice of the coordinate system, we may assume that our reference
point o is the origin, and that m = r(0) = (0, ρ) is on the positive half of the y-axis;
i.e. ρ > 0. This implies that ẏ(0) = 0, and we also assume that ẋ > 0. We restrict
our investigation to curves that are ‘locally convex’ with respect to o, and whose
equilibrium point is non-degenerate. In other words, we assume that the signed
curvature κ of r(τ) at m satisfies the inequalities 0 6= 1 + κρ < 1.

Let F∆ denote the n-segment equidistant partition of [τ , τ ] with ∆ = (τ−τ)
n . If

i∆ is a division point of F∆, then we introduce the notation p∆
i = r(i∆), where

τ ≤ i∆ ≤ τ . Note that the indices of the points p∆
i are not necessarily integers,

but real numbers that are congruent mod 1. We denote the set of indices of
the points p∆

i by I, and examine the equilibria of the approximating curve P∆ =⋃
i−1,i∈I [p

∆
i−1, p

∆
i ]. During our investigation, we assume that these equilibria are

generic; that is, if P∆ has an equilibrium point at a vertex p∆
i , then the vector p∆

i

is perpendicular to neither p∆
i+1 − p∆

i nor p∆
i−1 − p∆

i .

For any K > 0, let S∆(K) denote the number of stable equilibria of P∆ with
respect to o lying on the sides [p∆

i , p
∆
i+1] satisfying |i| ≤ K. We define the quantity

U∆(K) for unstable equilibria of P∆ analogously. In Theorem 1 of [16], we proved
that if K = K(ρ, κ) is sufficiently large, then in the ∆ → 0 limit S∆ and U∆ will
fluctuate around the so-called imaginary equilibrium indices given in equation (3).

Roughly speaking, we may say that these formulas hold for number of equilibria
with ‘bounded’ indices, and we observe that this result holds for all sufficiently
small ∆, and the quantities in the formulas are independent of both ∆ and the
parametrization of the curve.

2.1. Nonexistence of irregular equilibria. Whereas it is easy to see that the
equilibria of P∆ are ‘physically’ close to m (i.e. for any equilibrium point q, |q−m|
is arbitrarily close to 0 if ∆ is sufficiently small), this property does not imply that
the set of indices of equilibrium points is bounded by some K independent of ∆.
Thus, the formulas in (3) do not necessarily provide the numbers of all equilibrium
points of P∆. This led in [16] to the following definition:
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Definition 1. If {p∆k
ik
} is a sequence of equilibrium points of P∆k with lim

k→∞
∆k =

0 and lim
k→∞

ik = ∞, then the sequence {p∆k
ik
} is called an irregular equilibrium

sequence.

In [16] it is remarked that if the coordinate functions of r(τ) are polynomials,
then the curve has no irregular equilibrium sequence, and asked (Question 1, [16])
whether the same holds if the two coordinate functions are analytic. Here we prove
that the answer to this question is affirmative not only for every analytic, but
for every C3-class curve. This means that the quantities in (3) are valid for all
equilibrium points of P∆, if ∆ is sufficiently small.

Theorem 1. If ∆ is sufficiently small then there exist some values k(∆),K(∆)
such that [p∆

i , p
∆
i+1] contains an equilibrium point if, and only if k(∆) ≤ i ≤ K(∆);

i.e. for sufficiently small ∆ the set of indices of equilibrium points is ‘connected’.
In particular, the curve r has no irregular equilibrium sequences.

Proof. We prove the assertion for the case that κρ + 1 > 0; that is, the curve
has a stable equilibrium at r(0), for the case that κρ + 1 < 0 we may apply a
similar argument. For every (sufficiently small) τ > 0, define the function u by the
implicit equation 〈r(τ), r(τ + u)− r(τ)〉 = 0. We show that this function is strictly
increasing, if τ is sufficiently small.

Clearly, lim
τ→0

u(τ) = 0. Thus, as r(τ) is C3-class, there is some ε > 0 such that if

0 < τ, u < ε, for some continuous vector function C(τ, u) ∈ R2, we have

(5) r(τ + u) = r(τ) + ṙ(τ)u+
1

2
r̈(τ)u2 + C(τ, u)u3

Consider the 2-variable function F (τ, u) = 〈r(τ), r(τ + u) − r(τ)〉. If at a point
(τ, u), F (τ, u) = 0, then ∂uF (τ, u) = 〈r(τ), ṙ(τ +u)〉 < 0, since the angle of the two
vectors is greater than π

2 if τ > 0. Since all partials of F (τ, u) are continuous, by
the Implicit Function Theorem u(τ) is continuously differentiable. Furthermore,

u′(τ) = −∂τF (τ, u)

∂uF (τ, u)
= −〈ṙ(τ), r(τ + u)− r(τ)〉+ 〈r(τ), ṙ(τ + u)− ṙ(τ)〉

〈r(τ), ṙ(τ + u)〉
.

We have observed that for the denominator in this equation, we have 〈r(τ), ṙ(τ+
u)〉 < 0 for every 0 < τ < ε, if F (τ, u) = 0. On the other hand, substituting (5)
into the numerator, we obtain that

〈ṙ(τ), r(τ+u)−r(τ)〉+〈r(τ), ṙ(τ+u)−ṙ(τ)〉 = u (〈ṙ(τ), ṙ(τ)〉+ 〈r̈(τ), r(τ)〉)+C∗(τ, u)u2,

where C∗(u, τ) is a continuous function. Note that 〈ṙ(τ), ṙ(τ)〉 + 〈r̈(τ), r(τ)〉 =
¨〈r(τ), r(τ)〉 > 0 if τ is sufficiently small. Thus, as u(τ) → 0 if τ → 0, we have

u′(τ) > 0 if τ is sufficiently small, which yields that on this interval u(τ) is strictly
increasing. This proves the existence of K(∆). To show the existence of k(∆), we
may apply the same consideration for the case that τ < 0. �

Remark 1. The proof of Theorem 1 yields that the function u(τ) is non-decreasing
even if m is a degenerate equilibrium point. Thus, the assertion in Theorem 1 holds
even in this case.
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Remark 2. Theorem 1 implies that if we sum all imaginary equilibrium indices
according to formulae (3-4) then we obtain the global imaginary equilibrium index
N0 associated with the curve r, approximating the number of all local equilibrium
points associated with the polygon r∆ in the ∆→ 0 limit.

2.2. Equilibria on random meshes. In this subsection we prove a probabilistic
version of the formulae (3) which are the main planar result in [16], and deals with an
equidistant, n-element partition of the interval [τ , τ ]. Our goal is to show that even
if the discretization is non-uniform, those formulae provide good estimates, thus
the numbers predicted by the formulae may be observed in computer simulations.

Theorem 2. Let r : [τ , τ ] → R2 be a C4-class curve satisfying the conditions in
the beginning of Section 2. For arbitrary n ≥ 2 and δ ≤ min{|τ |, τ} define the
probability distribution ζ(n, δ) in the following way: Choose n points τ1, τ2, . . . , τn
independently and using uniform distribution on [−δ, δ]. Label the points such that

τ1 ≤ τ2 ≤ . . . ≤ τn, and set Qn =
⋃n−1
i=1 [r(τi), r(τi+1)]. Then ζn,δ is defined by

p(ζn,δ = k) = the probability that Qn has k stable equilibria with respect to o,

where k = 0, 1, . . . , n − 1. Then, for every ε > 0 there is some δ = δ(r, n, ε) > 0
such that ∣∣∣∣E(ζn,δ)−

1

λ

(
1− 1

(1 + λ)n

)∣∣∣∣ < ε,

where λ = |1 + κρ|.

Proof. By the Implicit Function Theorem, the coordinate function x(τ) of r is
invertible in a neighborhood of τ = 0, and thus, in this neighborhood the curve
can be written as the graph of a function y = f(x). Since the function x = x(τ)
and its inverse are both C4-class, a uniform distribution for τ on the interval [−δ, δ]
correspond to an ‘almost’ uniform distribution of x on the interval [x(−δ), x(δ)] for
sufficiently small values of δ. Thus, it suffices to prove the assertion for graphs of
1-variable functions, i.e. we may assume that r is defined by r(x) = (x, f(x)) for
some C4-class function f . Note that then κ = f ′′(0).

Now, choose some values −δ ≤ x1 ≤ . . . ≤ xn ≤ δ independently, and for
i = 1, 2, . . . , n, let qi = (xi, f(xi)). Observe that there is an equilibrium point on
the segment [qi, qi+1] if, and only if 〈qi, qi+1 − qi〉 ≤ 0 ≤ 〈qi+1, qi+1 − qi〉 (see also
(3) in [16]).

In the following, we use the second-degree Taylor polynomial of f , by which we
have

f(x) = ρ+
κ

2
x2 + C(x)x3,

where C(x) is a continuously differentiable function on [−δ, δ], implying that there
is some K ∈ R such that |C(x2) − C(x1)| ≤ K|x2 − x1| for every x1, x2 ∈ [−δ, δ].
Then∣∣∣〈qi, qi+1 − qi〉 − (xi+1 − xi)

(
xi + f(xi)

κ

2
(xi+1 + xi) + C(xi+1)(x2

i+1 + xixi+1 + x2
i )
)∣∣∣ ≤

≤ K(xi+1 − xi)x3
i .

Thus, if δ is sufficiently small, the sign of 〈qi, qi+1 − qi〉 is ‘almost always’ equal to
the sign of xi + κρ

2 (xi + xi+1). We obtain similarly that the sign of 〈qi+1, qi+1− qi〉
is ‘almost always’ equal to that of xi+1 + κρ

2 (xi + xi+1).
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Let ζ̂(n, δ) denote the probability distribution where, choosing n points −δ ≤
x1 ≤ x2 ≤ . . . ≤ xn ≤ δ uniformly and independently, P (ζ̂(n, δ) = k) is the
probability that exactly k pairs {xi, xi+1} satisfy the inequalities

(6) xi +
κρ

2
(xi + xi+1) < 0 and xi+1 +

κρ

2
(xi + xi+1) > 0.

By our previous argument, it suffices to prove that E(ζ̂(n, δ)) = 1
λ

(
1− 1

(1+λ)n

)
.

To do it, we distinguish four cases depending on the value of κρ, and observe that
convexity and the nondegeneracy of the equilibrium point implies that 0 > κρ 6= −1.
These cases are −1 < κρ < 0, −2 < κρ < −1, κρ = −2, and κρ > −2. We note
that the computations in all these cases are almost identical, and thus, we carry
them out only in the first case.

Accordingly, assume that −1 < κρ < 0. We compute the probability pi that
(6) is satisfied for some fixed value of i. Putting µ = − 2+κρ

κρ > 1, in this case the

inequalities in (6) are equivalent to xi+1 ≥ µxi if 0 ≤ xi ≤ δ, and xi+1 ≥ xi
µ if

−δ ≤ xi ≤ 0. Thus, pi is equal to the fraction of the volumes of two regions. The
region in the denominator is the simplex defined by the inequalities −δ ≤ x1 ≤
x2 ≤ . . . ≤ xn ≤ δ; its volume is equal to 2nδn

n! . The region in the numerator is
equal the union of two nonoverlapping regions, which are defined by the inequalities

(8) 0 ≤ xi ≤ δ
µ , −δ ≤ x1 ≤ x2 ≤ . . . ≤ xi, µxi ≤ xi+1 ≤ . . . , xn ≤ δ,

(9) −δ ≤ xi ≤ 0, −δ ≤ x1 ≤2≤ . . . ≤ xi and xi
µ ≤ xi+1 ≤ . . . ≤ xn ≤ δ.

Hence,

pi =
n!

2nδn

 0∫
−δ

(δ + τ)i−1

(i− 1)!
·

(
δ − τ

µ

)n−i
(n− i)!

dτ +

δ
µ∫

0

(δ + τ)i−1

(i− 1)!
· (δ − µτ)

n−i

(n− i)!
dτ


By the linearity of expectation, we obtain that the expected value E of the number

of indices i satisfying (6) is equal to
n−1∑
i=1

pi. Summing up and applying the Binomial

Theorem, we have

E =
n

2nδn

 0∫
−δ

(
2δ + (1− 1

µ
)τ

)n−1

− (δ + τ)n−1 dτ +

δ
µ∫

0

(2δ + (1− µ)τ)
n−1 − (δ + τ)n−1 dτ

 ,

from which an elementary computation yields that

E =
µ+ 1

µ− 1

(
1−

(
µ+ 1

2µ

)n−1
)

=
1

λ

(
1− 1

(1 + λ)n−1

)
.

�

Remark 3. It is easy to check that the function E(λ) = 1
λ

(
1− 1

(1+λ)n−1

)
is strictly

decreasing on the interval (0,∞), and that lim
λ→0+0

E(λ) = n− 1.

Finally, we show how one can reconstruct the number of equilibrium points of a
smooth plane curve r from one of its sufficiently fine discretizations. We state it in
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a slightly different form, for graphs of functions. In our setting, the function f in
Remark 4 is the Euclidean distance function of r from the given reference point.

Remark 4. Let f : [x, x]→ R be a C2-class function with finitely many stationary
points, each in the open interval (x, x), such that the second derivative of f at each
such point is not zero. Assume that f has k local minima and l local maxima in
(x, x). Let x = x0 < x1 < x2 < . . . < xn−1 < xn = x denote the division points of
the equidistant n-element partition of [x, x]. Then, if n is sufficiently large, there
are exactly k integers 0 < j < n satisfying xj < min{xj−1, xj+1}, and l integers
0 < j < n satisfying xj > max{xj−1, xj+1}.

3. Dynamic theory: local equilibria on finely discretized, evolving
planar curves

In this section, we deal with a 1-parameter (t) family of closed convex curves
rt(τ), where t ∈ [t, t] is time, and τ ∈ [τ , τ ] is the spatial parameter. We assume
that rt(τ) is a C3-class function of τ , and this function, and all its derivatives with
respect to τ , depend continuously on t.

We denote the evolute of the function rt by Et : [τ , τ ]→ R2. We say that a point
Et(τ) of Et is general if it is not a cusp, and for any τ ′ 6= τ , Et(τ

′) 6= Et(τ). We
say that Et is locally convex at a general point Et(τ) if Et(τ) has a neighborhood
V in R2 such that Et ∩V is a strictly convex curve. If V satisfies this property, the
convex, connected region of (R2 \ Et) ∩ V is called the convex side of Et at Et(τ),
and the other region is called the concave side of Et.

Theorem 3. Let rt : [τ , τ ]→ R2 be a 1-parameter family of convex curves satisfying
the conditions above. Let o : [t, t] → R2 be a continuous curve that transversely
intersects Et at Et?(τ0) = p(t?), and let N(o(t)) (resp. N0(o(t))) denote the number
of global equilibrium points (the sum of the imaginary equilibrium indices) of rt with
respect to o(t). Assume that Et? is locally convex at the general point Et?(τ0).

(i) If o(t) moves from the convex side of Et? to its concave side as t increases,
then N(o(t)) increases by 2 at t = t?, lim

t→t?−0
N0(o(t)) = constant and

lim
t→t?+0

N0(o(t)) =∞.

(ii) If o(t) moves from the concave side of Et? to its convex side as t in-
creases, then N(o(t)) decreases by 2 at t = t?, lim

t→t?−0
N0(p(t)) = ∞ and

lim
t→t?+0

N0(p(t)) = constant.

As we remarked in the introduction, we call the events in (i) and in (ii) in
the evolution of N0(t) a C-type and an A-type event, respectively. The same
events in the evolution of N(t) correspond to a generic, codimension one saddle-
node bifurcation and they are called in bifurcation theorycreation and annihilation,
respectively [31].

Theorem 3 is an immediate consequence of the following lemma, Theorem 1, and
Theorem 1 of [16].

Lemma 1. Let r : [τ , τ ]→ R2 be a C3-class closed, convex curve. Let the evolute
of the curve be E : [τ , τ ] → R2. Assume that E is locally convex at a point E(τ0).
Let N(q) denote the number of equilibrium points of r with respect to q. Then
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E(τ0) has a neighborhood V such that N(q) + 2 = N(q′) for any point q ∈ V on the
convex, and any point q′ ∈ V on the concave side of E at E(τ0).

Proof. Without loss of generality, throughout the proof we consider only spherical
neighborhoods of E(τ). We recall the well-known fact that moving q continuously,
N(q) changes if, and only if q crosses the evolute E [17, 31]. Since for any sufficiently
small neighborhood V of E(τ0), E intersects V in a simple curve, we have that for
any q ∈ V \E, N(q) depends only on which side of E q is located. Thus, it suffices
to prove that for some q on the convex, and some q′ on the concave side of E, we
have N(q) + 2 = N(q′).

Let L(τ) denote the normal line of r at r(τ), i.e. the line perpendicular to ṙ(τ)
and passing through r(τ). Note that the number of equilibria with respect to a
point z is the number of normal lines of r passing through z. Let the normal
lines of r passing through E(τ0) be L(τ0), L(τ1), . . . , L(τk). Let q and q′ be points
sufficiently close to E(τ0) such that q is on the convex and q′ is on the concave
side. Then, apart from some small neighborhood of τ0, there are exactly k normals
(say L(τ ′i), where i = 1, 2, . . . , l) passing through q, and k normals (say L(τ ′′i ),
i = 1, 2, . . . , k) passing through q′, where τ ′i and τ ′′i are ‘close’ to τi. On the other
hand, there are exactly two lines through q′ that touch E near E(τ0), and since
E(τ0) is a general point of E, these two lines are normal lines of r at exactly two
values τ∗1 and τ∗2 , close to τ0. Since every normal line of r is tangent to E, it follows
that N(q′) = k + 2. Similarly, there are no lines through q that touch E close to
E(τ0), yielding that N(q) = k. �

Remark 5. For any fixed, small ∆, the lines, normal to a side of the approximating
polygon, and passing through a vertex of the side, decompose the plane into pieces
of small diameters. The union of these normals, which we may call the evolute
of the polygon, has the property that the number of the equilibria of the polygon
changes if, and only if the reference point crosses this set [17]. Thus, even though
imaginary equilibrium indices change continuously during a continuous motion of
the reference point, the quantity N∆(t) makes rapid jumps during this motion.
This phenomenon can be observed, i.e. on Figure 4, especially when the reference
point approaches the evolute of the curve.

Remark 6. Let the vertices of the approximating polygon be p1, p2, . . . , pn in
counterclockwise order, and let us orient the two normals to the side [pj , pj+1] at pj
and pj+1 such that the part of the normal through pi in the polygon points towards
pi, and the part of the other normal in the polygon points away from pi+1. In this
case, similarly like in Theorem 3, we can determine how the number of equilibria
of the polygon changes if we cross its evolute: it increases if we cross an oriented
line in it from right to left, and decreases in the opposite case. We note that the
boundary of a cell in the cell decomposition defined by the evolute of the polygon
is cyclic if, and only if the number of equilibria has a local extremum in this region.

3.1. The size of Critical Flocks. In this subsection we examine the number
of local equilibria of the one-parameter family of curves rt at some fixed time t,
exactly when the reference point o(t) = o is on the evolute of the curve, so we will
drop the subscript of r. Strictly speaking, this subsection could also be regarded of
the static theory of equilibria, discussed in Section 2, however, its content is more
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closely related to the subject of the current section. More specifically, we use the
following notation.

Let r : [τ , τ ] → R2 be C2k−1-class plane curve which has a unique equilibrium
point m = r(0) with respect to the origin o, where k ≥ 2 is the order of the first
nonzero derivative of the Euclidean distance function τ 7→ |r(τ)| at τ = 0. As in

Section 2, let F∆ be the n-element equidistant partition of [τ , τ ] with ∆ = τ−τ
n .

Let N∆(o) denote the number of equilibrium points of the approximating polygon
defined by F∆.

Theorem 4. We have N∆(o) = Θ
(

∆−
k−2
k−1

)
, i.e. there are constants C1, C2 ∈ R

such that C1∆−
k−2
k−1 ≤ N∆(o) ≤ C2∆−

k−2
k−1 holds for all ∆ > 0.

Remark 7. The proof of Theorem 4 shows a slightly stronger statement, namely

that the diameter of the flock at m is of order Θ
(

∆
1
k−1

)
, i.e. there are constants

c1, c2 such that for any division point τ of F∆ with |τ | ≤ c1∆
1
k−1 , both r(τ) and

the segment [r(τ), r(τ + ∆)] contains equilibrium points, and if |τ | ≥ c2∆
1
k−1 , then

neither.

Proof. Using the formula ∆ = τ−τ
n , we need to prove that N∆(o) = Θ

(
n
k−2
k−1

)
. Let

pi = r(i∆) for any division point i∆ of F∆. Note that if pi and pi+1 are unstable
equilibrium points, then [pi, pi+1] contains a stable equilibrium, and if [pi−1, pi]
and [pi, pi+1] contain stable equilibria, then pi is an unstable equilibrium. Thus, it

suffices to prove the existence of constants C1, C2 > 0 such that if |i| ≤ C1n
k−2
k−1 ,

then [pi, pi+1] contains a stable equilibrium point, and if |i| > C2n
k−2
k−1 , then it does

not. Clearly, in the proof we may assume that n is sufficiently large.

We prove Theorem 4 only under the additional assumption that τ denotes the
polar angle in a suitable polar coordinate system. We remark that in the general
case, in a suitable coordinate system, the polar angle φ can be expressed as a C2-
class function of τ in a neighborhood of τ = 0, and in a small neighborhood of 0,
we have |φ(τ) − γτ | ≤ θτ2 for some suitable γ, θ > 0. Using this inequality, our
argument can be modified for a general parametrization of r in a straightforward
way. Under the assumption that τ denotes polar angle, the curve can be written
as r(τ) = (ρ(τ) cos τ, ρ(τ) sin τ), where ρ(τ) is the C2k−1-class positive distance
function ρ(τ) = |r(τ)|.

Similarly as before, we observe that there is a stable point on [pi, pi+1] if, and
only if 〈pi, pi+1− pi〉 < 0 < 〈pi+1, pi+1− pi〉. In our notation, these inequalities are
equivalent to

(7) ρ ((i+ 1)∆)− ρ (i∆) cos ∆ > 0 and ρ (i∆)− ρ ((i+ 1)∆) cos ∆ > 0.

First, by the differentiability properties of r, there are constantsAk, Ak+1, . . . , A2k−2

and ρ,B > 0 such that

(8)

∣∣∣∣∣∣ρ(τ)− ρ−
2k−2∑
j=k

Ajτ
j

∣∣∣∣∣∣ < Bτ2k−1.
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We carry out the computations only for positive indices i, and assuming that
Ak < 0; that is, assuming that for small positive values of τ , ρ(τ) is a decreasing
function. Under these conditions, the second inequality is satisfied for all values of
i > 0.

Assume now that the first inequality is satisfied. Using the inequalities 1− ∆2

2 ≤
cos ∆ ≤ 1− ∆2

2 + ∆4

24 , we obtain that then

0 < ρ ((i+ 1)∆)− ρ (i∆) +
∆2

2
ρ (i∆) .

Now, let us estimate the right-hand side from above by (8). Then, applying the
inequalities sxs−1 ≤ (x+1)s−xs ≤ s(x+1)s−1 for all real x > 1 and integer s ≥ 2,
we obtain that

0 < Akk∆kik−1+

2k−2∑
j=k+1

|Aj |j∆jij−1+3B(i+1)2k−1∆2k−1+
∆2ρ

2
+

∆2

2

2k−2∑
j=k

Aj (i∆)
j
,

where ρ = ρ(0) = |m|. Let i = C2∆−
k−2
k−1 , where C2 will be chosen later. Then an

elementary consideration shows that the largest member of the above expression,
in terms of n, is of order ∆2, and by the inequality Ak < 0, we have that if ∆ is
sufficiently small, then AkkC

k−1
2 + ρ

2 > 0. Clearly, for suitably chosen values of C2

this is a contradiction, which, by Theorem 1 and Remark 1, proves that for any

i > C2∆−
k−2
k−1 , the segment [pi, pi+1] contains no equilibrium point.

To prove the existence of a value C1 > 0 such that the first inequality in (7) is

satisfied for all 0 < i < C1n
k−2
k−1 , we may apply a similar consideration. �

Remark 8. We observe that our result implies that if m is a nondegenerate
equilibrium point (i.e. k = 2), then there are constants C1, C2 > 0 such that
C1 < N∆(o) < C2 for all values of ∆. A stronger version of this result was proven
in [16].

3.2. Time evolution of Critical Flocks. In Theorem 3 we have seen that if
the reference point transversely crosses the evolute of a curve at a generic point
E(τ), then the number N0 of local equilibria tends to infinity if the reference point
approaches E(τ) from its convex side (annihilation) and remains constant if the
reference point approaches E(τ) from it concave side (creation). In this subsection
we explore more thoroughly these limits, and also cases when the point E(τ) is
degenerate. Note that if E(τ) is a generic point then the derivative of the curvature
of r corresponding to this point is not zero. If E(τ) is a cusp, we assume that it is
a generic cusp, i.e. that here the second derivative of the curvature of r is not zero.

Theorem 5. Let r be a C4-class plane curve with a unique, degenerate equilibrium
point m with respect to the origin o. Let o(t) = (µt, νt), where t ∈ [−ε, ε] for some
small value of ε > 0. Let N0(t) denote the number of local equilibria with respect
to o(t). Then the following holds.

(i) If the curve o(t) crosses the evolute of r at o, and the evolute E is locally
convex at o such that for t > 0, o(t) is on the concave side of o, then

N0(t) = 0 as t→ 0− 0, and N0(t) = Θ
(

1√
t

)
as t→ 0 + 0.
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(ii) If o(t) is tangent to the evolute of r at o, and E is locally convex at o, then
N0(t) = Θ

(
1
t

)
as t→ 0.

(iii) If o(t) is not tangent to E at the general cusp o, then N0(t) = Θ
(

1
3√
t2

)
as

t→ 0.
(iv) If o(t) is tangent to E at the general cusp o, then N0(t) = Θ

(
1
t

)
as t→ 0.

Proof. Note that since the number of local equilibria is independent of the parametriza-
tion of r, we may assume that r is given in the form r(x) = (x, f(x)) for some
C4-class function f and for x ∈ [−a, a]. Let ρ(x, t) = |r(x) − o(t)|, and let κ(x)
denote the signed curvature of r at the point r(x). Let X(t) denote the set of
values of x such that r(x) is an equilibrium point with respect to o(t). Then

N0(t) =
∑
x∈X(t)

1+|ρ(x,t)κ(x)|
|1+ρ(x,t)κ(x)| . Note that since m = r(0) is a degenerate equilib-

rium point with respect to o, we have κ(0) = − 1
ρ(0,0) < 0, and thus, we may restrict

our investigation to a neighborhood of x = 0 where κ(x) (and so f ′′(x)) is negative.
From this an elementary computation yields that N0(t) =

∑
x∈X(t)

2
|1+ρ(x,t)κ(x)| .

For any value of x, let us define the function t(x) by the condition that r(x) is
an equilibrium point with respect to o(t). Note that this condition is equivalent to
saying that 〈r′(x), r(x) − o(t)〉 = 0. Observe that if the line L = {o(t) : t ∈ R}
is not perpendicular to the vector r′(x), then this equation has a unique solution
for t. It is an elementary computation to show that the condition that L is not
perpendicular to r′(x) is equivalent to the condition that µ + νf ′(x) 6= 0. Under

this condition, the unique solution t can be expressed as t(x) = x+f ′(x)f(x)
µ+νf ′(x) . Note

that if µ+ νf ′(x) = 0 for some x arbitrarily close to x = 0 (but not equal to zero)
and ν 6= 0, then it would contradict our assumption that f ′(x) is differentiable at
x = 0, and f ′′(0) 6= 0. If ν = 0, then µ 6= 0, and thus, µ + νf ′(x) 6= 0 unless
f ′(x) = 0. Thus, we may assume that t(x) uniquely exists unless µ = 0 and x = 0.

First, we assume that µ 6= 0, or µ = 0 and x 6= 0. Let us define the function
F (x) = 1 + ρ(x, t(x))κ(x). We examine the first nonvanishing term of this function
as a function of x. Let ρ0 = f(0) > 0. Note that as f is a C4-class function, there
is some number A ∈ R, and continuous functions B,C,D such that f(x) = ρ0 −

1
2ρ0

x2+Ax3+B(x)x4, f ′(x) = − 1
ρ0
x+3Ax2+C(x)x3, f ′′(x) = − 1

ρ0
+6Ax+D(x)x2.

Here, it is easy to see that whereas B,C,D may be different functions, we have
f (4)(0) = 2D(0) = 6C(0) = 24B(0).

On the other hand, by the formula κ(x) = f ′′(x)

(1+f ′2(x))
3
2

and an elementary com-

putation, we obtain that κ′(x) 6= 0 is equivalent to A 6= 0, and κ′(0) = 0 and
κ′′(x) 6= 0 is equivalent to A = 0 and f (4)(0) 6= − 3

ρ30
. Note that F (x)→ 0 as x→ 0.

An elementary algebraic transformation shows that

F (x) =
(1 + f ′2(x))3 − f ′′2(x)

(
(x− µt(x))2 + (f(x)− νt(x))2

)
(1 + f ′2(x))3 (1− κ(x)ρ(x, t(x)))

.

Consider the case that µ 6= 0. If A 6= 0, then F (x) = 6ρ0Ax + G(x)x2 and
t(x) = 3A

µ x
2 +H(x)x3 for some continuous functions G,H. If A = 0 and f (4)(0) 6=

− 3
ρ30

, then F (x) =
ρ40(2D(x)ρ30+3)

2 x2 +G(x)x3 and t(x) = 1
2µρ20

x3 +H(x)x4 for some

continuous functions G,H. Here we note that D(0)ρ3
0 + 3 = f (4)(0)ρ3 + 3 6= 0.
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If µ = 0 and A 6= 0, then F (x) = 3ρ0Ax + G(x)x2 and t(x) = − 3Aρ20
ν x +

H(x)x2 for some continuous G and H. If µ = 0, A = 0 and f (4)(0) 6= − 3
ρ30

, then

F (x) =
(
C(x)−D(x)− 1

ρ30

)
x2 +G(x)x3, and t(x) = − 1

2ρ0ν
x2 +H(x)x3 for some

continuous G,H. Note that C(0)−D(0) = − f
(4)(0)

3 6= 1
ρ3 .

Finally, in the degenerate case, when x = 0 and µ = 0, there is an equilibrium

point for every value of t, and thus, |1 + κ(0)ρ(0, t)| = |ν|
ρ0
|t|.

To finish the proof one needs only to collect the number of equilibria in each
case, and express all magnitudes in terms of t. �

3.3. A numerical example for curvature-driven flow demonstrating the
singular limit for local equilibria. Here we demonstrate the results of the pre-
vious two subsections, in particular the size of the critical flock and Theorem 3
in the case where the curve is evolving under the curve shortening flow [22]. In
compact notation this flow may be written for a convex, embedded curve as

(9) v = cκ,

where v is the speed in the direction of the inward normal and κ is the curvature
and c is a scalar coefficient. This evolution is one of the most interesting evolutions
from the point of view of geophysics since we know [22] that it only generates
annihilations for N(t) so, based on Theorem 3 we expect to see only C-type events
in the evolution of N∆(t). In order to integrate equation (9), below we describe
a numerical scheme which produces in each time step an equidistant discretization
with respect to the arc-length of the curve. N∆(t) is computed on the polygon
determined by the vertices of that discretization. N(t) is simply the number of
extrema of the piecewise linear function determined by the vertex distances from
the centroid in polar coordinates.

Let I = [0, 1]; a smooth, non-intersecting curve with a natural parametrization

and unit perimeter is denoted by r(τ) : I → R2. Let (·)′ and ˙(·) stand for deriva-
tion with respect to the parameter of the curve and time, respectively. Then the
curvature of the curve is simply κ(τ) = ‖r(τ)′′‖. The unit normal to the curve is
n(τ) = r′′(τ)κ(τ)−1. In case of the curve shortening flow (9), during time dt, the
curve r(τ) is mapped to r̃(τ) via

(10) r̃(τ) = r(τ) + cκ(τ)n(τ)dt+O(dt) = r(τ) + cr′′(τ)dt+O(dt),

Note that r̃(τ) is parametrized with respect to the arc length of r(τ), hence its
parametrization is not natural. We aim to describe the curve by the tangent di-
rection α(τ). Hence r′(τ) =: e(α(τ)) = [sin(α(τ)), cos(α(τ)]. By keeping the linear
terms in dt, for r̃(τ) we obtain ‖r̃′(τ)‖ = 1− cα′(τ)dt. Obviously

(11) e(α(τ) + α̇(τ)dt) =
r̃′(τ)

‖r̃′(τ)‖
holds for the mapped curve. Taylor expansion of the left hand side of Equation
(11), substitution of e(α(τ)) into the derivative of r̃′(τ), the chain rule and the
Frenet-formulas yield
(12)

e(α(τ)) + e′(α(τ))α̇(τ)dt+O(dt) =
e(α(τ))− ce(α(τ))α′(τ)dt+ ce′(α(τ))α′′(τ)dt

1− cα′(τ)dt
.
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Figure 4. Co-evolution of local and global equilibria in 2D un-
der the curve-shortening flow (9). A polygon with 7 stable and
7 unstable balance points is evolved in such a manner that the
perimeter of the shape is kept unit. The simulation is carried out
until 2 stable and 2 unstable (global) equilibria remain.

Algebraic manipulations and neglecting the O(dt) terms leaves

(13) α̇(τ) = cα′′(τ).

This simple, linear PDE can easily be simulated by a finite difference scheme for
the spatial, and an Euler scheme for the time derivatives, respectively. However,
since τ is not a natural parameter for r̃(τ), in each time-step the curve must be
reparametrized to obtain r̃(τ̃), a curve with a natural parametrization τ̃ .

Figure 4 shows the co-evolution of the local and global equilibria from a generic
polygonal shape under the curve shortening flow. Observe the five type A events
during the evolution.
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4. Smooth surfaces and their discretizations

4.1. Earlier results. Let D = [u, u] × [v, v], and let r :→ R3 be a convex, C3-
class surface having a unique, non-degenerate equilibrium point at m = r(0, 0)
with respect to the origin o. Let F∆ denote the n × n equidistant partition of D,

where ∆ = (∆1,∆2) =
(
u−u
n , v−vn

)
. If (i∆1, j∆2) is a division point of F∆, we call

(i, j) the indices of the point p∆
i,j = r (i∆1, j∆2). Similarly like in the planar case

in Section 2, we note that in general, i and j are not integers but real numbers
congruent mod 1.

We define the polyhedral surface P∆ in the following way:

• The vertices of P∆ are exactly the points p∆
i,j .

• For any i, j, if the segment [p∆
i,j , p

∆
i+1,j+1] is an edge of conv{o, p∆

i,j , p
∆
i+1,j , p

∆
i+1,j+1, p

∆
i,j+1},

then the triangles conv{p∆
i,j , p

∆
i+1,j , p

∆
i+1,j+1} and conv{p∆

i,j , p
∆
i,j+1, p

∆
i+1,j+1},

and otherwise the triangles conv{p∆
i,j , p

∆
i+1,j , p

∆
i,j+1} and conv{p∆

i+1,j+1, p
∆
i,j+1, p

∆
i+1,j}

are faces of P∆.

Then P∆ is a triangulated surface defined by the partition F∆ of D.

If a face/edge of P∆ contains an equilibrium point with respect to o, and i, j are
the minimum of the indices of the vertices of this face/edge, then we say that the
indices of the equilibrium points are (i, j). For any K > 0, we denote the number of
stable/unstable/saddle points of Pn, whose indices satisfy the inequalities |i|, |j| ≤
K, by S∆(K), U∆(K) and H∆(K), respectively.

In [16, Theorem 2], the authors proved that if K is sufficiently large and ∆ is
sufficiently small, then the quantities S∆(K), U∆(K) and H∆(K) fluctuate around
specific values S0(K), U0(K) and H0(K), whose values are

(14) S0(K) = d, U0(K) = κ1κ2ρ
2d, H0(K) = −(κ1 + κ2)ρd

where d = 1
|(κ1ρ+1)(κ2ρ+1)| , ρ = |m|, and κ1, κ2 ≤ 0 are the (signed) principal

curvatures of r at m.

4.2. Enumeration of global equilibria on finely discretized surfaces. The
aim of this subsection is to find a 3-dimensional analogue of Remark 4; namely,
given a fine discretization of a smooth surface, we intend to find the number of
global equilibrium points of the surface.

Before stating our results, we need some preparation. We note that, for the
sake of simplicity, instead of ∆, to do this we describe an equidistant partition
by the number n of intervals in it, instead of the size ∆ of these intervals. Let
f : [0, a] × [0, b] → R be a C3-class function. Consider a partition Fn of the
rectangle D = [0, a] × [0, b] into n × n congruent rectangles. We call the vertices

of these rectangles grid vertices, and denote the grid vertex
(
i
na,

j
nb
)

by pi,j . The
neighbors of the grid vertex pi,j are the four grid vertices pi±1,j and pi,j±1. The
two pairs pi±1,j and pi,j±1 are called opposite neighbors of pi,j . A grid vertex p is
stationary, if for any opposite pair {q, q′} of its neighbors, f(p) ≥ max{f(q), f(q′)}
or f(p) ≤ min{f(q), f(q′)} is satisfied. If pi,j is a grid vertex, then the grid circle
of center pi,j and radius r is the set

Cr(pi,j) = {pl,m : max{|l − i|, |m− j|} ≤ r}.
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During the consideration, we assume that f has finitely many stationary points,
each in the interior of the domain D, and the determinant of the Hessian of f at
each of them is nonzero. We assume that the grids we use are non-degenerate; more
specifically, that if p 6= p′ are two grid vertices, then f(p) 6= f(p′).

Theorem 6. Let p = (x0, y0) ∈ intD.

(1) If p is not a stationary point of f , then p has a neighborhood U ⊂ D such
that for any n ≥ 1, if pi,j and all its neighbors are contained in U , then pi,j
is not a stationary grid vertex.

(2) If p is a local minimum of f , then p has a neighborhood U and some suf-
ficiently large value of r such that for every sufficiently large n, there is
exactly one grid vertex pi,j in U , which is minimal within its grid circle
Cr(pi,j).

(3) If p is a local maximum of f , then p has a neighborhood U and some suf-
ficiently large value of r such that for every sufficiently large n, there is
exactly one grid vertex pi,j in U , which is maximal within its grid circle
Cr(pi,j).

(4) If p is a saddle point of f , then every neighborhood of p contains a stationary
grid vertex, and p has a neighborhood U and some sufficiently large value
of r such that for every sufficiently large n, any grid vertex pi,j in U is
neither maximal, nor minimal within its grid circle Cr(pi,j).

Proof. First, we prove (1). Let L be the line through the origin and perpendicular
to grad f(p), and note that the derivative of f at p is zero in this direction. Let
ε > 0 be sufficiently small, and A be the union of the lines, through p, the angles
of which with L is not greater than ε. Note that by the continuity of grad f , p has
a neighborhood U such that for any q ∈ U , grad f(q) is perpendicular to some line
in A. This implies that if q ∈ U , and A contains no line parallel to the vector u,
then f ′u(q) 6= 0. Without loss of generality, we may assume that U is a Euclidean
disk in R2.

Now, consider any division Fn, and assume that the grid vertex pi,j and all its
neighbors are contained in U . Since ε > 0 is sufficiently small, the x-axis or the
y-axis is not parallel to any line in A. Without loss of generality, let the x-axis
have this property. We show that the sequence f(pi−1,j), f(pi,j) and f(pi+1,j) is
strictly monotonous. Indeed, if, for example, f(pi,j) ≥ max{f(pi−1,j), f(pi+1,j)},
then by the Lagrange Theorem, for some q1, q2 ∈ U , we have f ′x(q1) ≤ 0 ≤ f ′x(q2),
which, by the continuity of f ′x, yields that for some q ∈ U , we have f ′x(q) = 0, which
contradicts the definition of A. If f(pi,j) ≤ min{f(pi−1,j), f(pi+1,j)}, we can apply
a similar argument, and thus, pi,j is not a stationary grid vertex.

In the next part, we prove (2). Without loss of generality, assume that f(p) = 0.
Note that since p is a local minimum, both eigenvalues λ1 ≤ λ2 of the Hessian of f
at p are positive. Let P2 denote the second order Taylor polynomial of f centered
at p. Then P2 is a quadratic form with eigenvalues λ1

2 > 0 and λ2

2 > 0, and the

curve P2 = 1 is an ellipse. Now, since f is C3-class, there is some ᾱ ∈ R such that
for every (x, y) ∈ D, we have

|f(x, y)−P2(x, y)| < ᾱ√
2

(
|x|3 + x2|y|+ |x|y2 + |y|3

)
=

ᾱ√
2

(|x|+ |y|)
(
x2 + y2

)
≤ ᾱ

(
x2 + y2

)3/2
,
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which yields that for some suitable α ∈ R, we have |f(q) − P2(q)| ≤ α (P2(q))
3/2

for every q ∈ D. Thus, for any ε > 0 there is a neighborhood U of p such that

• for every q ∈ U , we have f(q) > 0, and |f(q)− P2(q)| < εP2(q),
• f is convex in U .

Observe that the second condition holds for any convex neighborhood of p, where
the Hessian of f has only positive eigenvalues, and the existence of such a neigh-
borhood follows from the fact that f is C3-class. Now, since P (q) is homogeneous,
every point q ∈ D, with f(q) = α, is contained between the ellipses P2(q) = (1−ε)α
and P2(q) = (1 + ε)α. Note that if ε is sufficiently small, for any value of α and
any point q of the level curve f(x, y) = α, the angle between the two tangent lines
of the ellipse P2(x, y) = (1− ε)α, passing through q, is at least π

3 .

Fix any ‘fine’ equidistant partition Fn, and consider the level curves f(x, y) = α,
as α ≥ 0 increases. Let p̄ be the first grid vertex that reaches the boundary of
such a curve (note that according to our assumptions, there is a unique such grid
vertex). Clearly, f(p̄) is minimal among all the grid vertices in U . Let

(15) r ≥
√
a2 + b2

min{a, b}
· λ2

λ1
·
√

1 + ε

1− ε
.

In the remaining part of the proof of (2), we show that there is no other grid vertex
in U which is minimal within its grid circle of radius r.

Assume, for contradiction, that the grid vertex q is minimal within Cr(q), and
let f(q) = β. Then the level curve f(x, y) = β already contains some grid vertex
q′ in its interior. Note that the semi-axes of the ellipse P2(x, y) = t are of length√

2t
λi

, where i = 1, 2. Recall that the curve f(x, y) = β is contained in the ellipse

P2(x, y) = (1 + ε)β, and the diameter of the latter curve is 2
√

2(1+ε)β
λ1

. Since,

according to our assumption, q′ is contained in the interior of P2(x, y) = (1 + ε)β,
and f(q′) < f(q), we obtain that

(16) rδ < 2

√
2(1 + ε)β

λ1
,

where δ = min
{
a
n ,

b
n

}
denotes the minimal distance between any two grid vertices.

Let w be the point of P2(x, y) = (1 − ε)β closest to q. Let ∆ =
√
a2+b2

n =
√
a2+b2

min{a,b}δ, and observe that any circle of diameter ∆ contains a grid vertex. We

show that the circle C of diameter ∆, touching the ellipse P2(x, y) = (1 − ε)β at
w from inside, is contained in the ellipse. By Blaschke’s Rolling Ball Theorem [4],
to do this it suffices to show that ∆

2 is not greater than any radius of curvature
of the ellipse. It is a well-known fact that the radius of curvature at any point of

an ellipse with semi-axes M ≥ m is at least m2

M and at most M2

m . Thus, a simple
computation yields that what we need to show is

(17) ∆ ≤ 2

√
2(1− ε)βλ1

λ2
.

To show (17), we can combine (16) with the definition of r in (15).
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Let C̄ be the circle of radius ∆ that touches the tangent lines of the ellipse
P2(x, y) = (1− ε)β through q. Since f is convex in U , the level curve f(x, y) = β is
also convex, and thus, this circle is also contained inside the level curve f(x, y) = β.
On the other hand, C̄ as any other circle of diameter ∆, contains a grid vertex q′′.
Then, our previous observation yields that f(q′′) < β = f(q). To finish the proof,
we show that C̄ is contained in the circle of radius rδ, centered at q, which implies
that q′′ is contained in the grid circle of radius r, centered at q.

Assume, for contradiction, that it is not so. Let φ be the angle between the two
tangent lines of the ellipse P2(x, y) = (1− ε)β, through q. Since the angle between
these two tangent lines is at least π

3 , a simple computation yields that the distance

of the center of C̄ and q is at most ∆, and hence no point of C̄ is farther from q

than 3
2∆ = 3

√
a2+b2

2 min{a,b}δ ≤ rδ, which finishes the proof of (2).

To prove (3), we can apply (2) for the function −f .

Finally, we prove (4). Let f(p) = 0. Then, in a neighborhood U of q, the
set {f(q) = 0}, q ∈ U can be decomposed into the union of two C2-class curves,
crossing each other at q, and for any α 6= 0, the set {f(q) = α}, q ∈ U is the union
of two disjoint, C2-class curves. Furthermore, if U is sufficiently small, there is
some sufficiently small φ > 0 and ε > 0 such that for any q ∈ U

• there is a closed angular domain A with apex q and angle φ such that for
any point q′ ∈ A with 0 < |q′ − q| < ε, we have f(q) < f(q′);
• there is a closed angular domain B with apex q and angle φ such that for

any point q′ ∈ B with 0 < |q′ − q| < ε, we have f(q) > f(q′).

Clearly, for a sufficiently large r (chosen independently of q), any such closed angular
domain in U contains a vertex of Cr(q), which yields the assertion. �

Theorem 7. Le f have S local minima and U local maxima. Then there is some
r such that for any sufficiently large n, exactly S grid vertices of Fn are minimal,
and exactly U grid vertices of Fn are maximal within their grid circles of radius r.

Proof. Fix some r such that any stationary point q of f has some neighborhood
that satisfies the corresponding conditions in (2), (3) or (4) of Theorem 6. Observe
that we can choose ε1, ε2 > 0 such that

• if q is a stationary point, the assertion in (2), (3) or (4) Theorem 6 holds
in the ε1-neighborhood Uq of q;

• if q is not a stationary point, and its distance from any stationary point is
at least ε1, then (1) holds in the ε2-neighborhood Uq of q.

Now, let n be large enough such that for any point q ∈ D, Cr(q) ⊂ U(q), and
for any stationary point, (2), (3) and (4) can be applied, and then, the theorem
follows. �

Remark 9. We may apply Theorem 7 for a parametrized convex surface r =
r(u, v), with x, y as (u, v), and z = f(x, y) as the distance function ‖r(u, v)‖.

4.3. Numerical example for evolving surface displaying the singular limit
for local equilibria. Here we give a 3D illustration for the phenomenon described
in Theorem 3. However, instead of regarding an evolution of the surface itself which
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Figure 5. The reference point is moved along the major axis of an
ellipsoid. Panel a) shows the co-evolution of the number of global
(red) and local (black) equilibria. The two peaks in the number
of the local equilibria is due to the double intersection with the
caustics. Panel b) is four snapshots about the emerging flocks on
the surface from a general viewpoint (top) and a vantage point
along the major axis (bottom). Panel c) shows enlarged versions
of the B and D flocks from panel b).

would induce a simultaneous evolution for the caustics and the reference point we
only treat a simpler case where both the surface and the caustics are constant and
we move the reference point along a self-defined trajectory.

The surface used for these computations is a triangulated ellipsoid with a =
2.0, b = 1.5, c = 1.0. The approximately equidistant triangulation of the surface
with V = 25556 vertices and F = 51108 facets was generated by DistMesh [30].
Offsetting the reference point in the direction v = (1, 0, 0) the caustics is crossed
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twice, (Figure 5). Note, that v is directed along the major axis, hence it produces
reference points which are in the (xy) and (xz) planes, both are planes of symmetry
of the object. Both intersections with the caustics produces peaks in the number
of local equilibria, and due to symmetry these crossings belong to the same surface
point, p = (2, 0, 0). Observe that the spatial expansion of the local equilibria in
any of the flocks reveals the line of curvature on the surface at p. As the reference
point is moved from the center, the first crossing of the caustics takes place at the
smaller principal curvature at p; it is straightforward that the flock unfold in the
horizontal plane (cases A, B and C on the figure). Similarly, the second crossing
of the caustics (associated with the higher principal curvature) is associated with
a flock spread in the vertical plane (case D).

The umbilical point of the ellipsoid represents a special case: as the two principal
curvatures are equal, any direction in the tangent plane is tangential to a line of
curvature. Hence, we expect a spatially distributed flock. This phenomenon is
illustrated in Figure 6. The displacement of the reference point takes place in the

v =

(
1

a

(a2 − b2)3/2

(a2 − c2)1/2
, 0,

1

c

(b2 − c2)3/2

(a2 − c2)1/2

)
direction, the distance of the caustics from the center is ‖v‖ ∼= 1.0477. In accordance
with Theorem 3, the number of local equilibria suddenly drops as the caustics is
crossed, indicating an annihilation of global equilibria. Here two saddles, a stable
and an unstable balancing points merge to form a single stable equilibrium.

5. Discussion and conclusions

In this paper we constructed a theory connecting the number N(t) of static
equilibrium points on one-parameter families of smooth curves to the evolution of
the number N∆(t) of equilibrium points on their finely discretized approximations.
First we show that if r(t) is non-smooth then the relationship between N∆(t) and
N(t) may be rather different.

5.1. Non-smooth evolution. As pointed out in Theorem 4 in [14], smooth, generic
bifurcations of equilibria may only occur if the spatial order (i.e. the order of the
highest spatial derivative) in the evolution equation is at least two. This is the case
for curvature-driven evolution, however, there are other evolution equations highly
relevant for abrasion models which are of lower order. One of the most prominent
examples is the Eikonal equation which may be written as

(18) v = 1,

where v denotes the speed in the direction of the inward surface normal. Equa-
tion (18) may be also written in polar coordinates, in two dimensions in the PDE
notation for the radial evolution of a curve r(ϕ) as

(19)
∂r

∂t
=

1

r

√
r2 +

(
∂r

∂ϕ

)2

.

As we can see, the Eikonal equation is of first spatial order. Unlike curvature-driven
flows, (19) does not preserve the smoothness of the evolving manifold. As long as
r(t) remains smooth (approximately until t = 1700 on Figure 7), N(t) remains
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Figure 6. The reference point is moved towards the point of the
caustics that corresponds to one of the umbilical points of the
surface. Panel a) shows the co-evolution of the number of global
(red) and local (black) equilibria. The single peak in the number of
the local equilibria is due to the single crossing with the caustics.
Panel b) is four snapshots about the emerging flocks on the surface
from a general viewpoint (top) and a vantage point along the major
axis (bottom). Panel c) shows enlarged versions of the B and C
flocks from panel b).

constant and once r(t) becomes non-smooth, N(t) decreases monotonically [15].
However, the coupling between N∆(t) and N(t) is in this case rather different: here
the downward jumps of N(t) are not coupled to resonance-like (A-type) events in
the evolution of N∆(t), rather, both evolutions have a downward trend (see our
example illustrated in Figure 7).
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Figure 7. Co-evolution of local and global equilibria in 2D under
the Eikonal equation (19). An initially smooth curve with 4 stable
and 4 unstable balance points is evolved in manner such that the
perimeter of the shape is kept unit. At t ≈ 1700 vertices evolve
and thus the curve ceases to be smooth. The simulation is carried
out until 2 stable and 2 unstable (global) equilibria remain. Note
stark contrast with Figure 4 in the evolution of S∆(t)

It is worth noting that if r is a polytope then, for sufficiently fine mesh-size we
may choose discretizations where edges and vertices of r∆ coincide with the edges
and vertices of r. In this case, evidently, we have N∆(t) ≡ N(t) and we can observe
a closely related scenario for t > 4000 in Figure 7. This observation illustrates that
in this case the tendency of the evolution of N∆(t) and N(t) is similar, in stark
contrast with the smooth scenario discussed in the main body of the paper (compare
Figures 4 and 7).

5.2. Related other phenomena. Our analysis shows that for smooth functions
r(t) the evolutions of N(t) and N∆(t) are strongly coupled and the evolution in the
discretized system can help to forecast changes in the smooth system. In particular,
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downward jumps in N(t) are preceded by resonance-like divergence in N∆(t). While
the evolution of N(t) is characteristic of the physical process, both in computer
simulations and laboratory experiments N∆(t) is the observable quantity, so these
results provide a tool to understand the former by observing the latter.

The fact that a discretization may carry information relevant to predict the
behavior of the underlying original system has been observed before, although in
quite a different context. In case of the Gibbs phenomenon one tries to reconstruct
a signal with jump discontinuity by using partial sum of harmonics. However, no
matter how many harmonics are included in the partial sum, the original signal
is recovered with a significant error because large oscillations occur near the dis-
continuity. As the frequency of the added harmonics increases, the overshoot does
not die out, rather, it approaches a finite limit. By monitoring the oscillations due
to the overshoot, the discretized system can be used to forecast the jump in the
original system. While the discretization happened in a function space (rather than
in physical space), nevertheless, the Gibbs phenomenon is still reminiscent of the
phenomena described in our paper. The appearance of ’tygers’ in the discretized
Burgers and Euler equations [32], [34] is analogous to the Gibbs phenomenon, how-
ever, here we regard the discretization of solutions to evolution equations. Similarly
to the Gibbs phenomenon, here also the sudden jump (shockwave) in the solution
is preceded by large oscillations in the Fourier approximation and thus a critical
event in the continuous system is reflected by resonance-type behavior in the cor-
responding discretization.

Both previous examples referred to Fourier-type discretizations. It is also known
that spatial discretizations (closer to the topic of our paper) may yield ”parasitic”
solutions not present in the continuous system. Most often parasitic solutions are
regarded as a mere numerical embarrassment [11], nevertheless, the example of
ghost solutions in elasticity [13] shows that, similarly to the current problem, they
could also contribute to the understanding of the underlying continuous system.
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