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It is well known that typical Hamiltonian systems have divided phase space consisting of regions
with regular dynamics on KAM tori and region(s) with chaotic dynamics called chaotic sea(s). This
complex structure makes rigorous analysis of such systems virtually impossible and significantly
complicates numerical exploration of their dynamical properties. Hamiltonian systems with sharply
divided phase space between regions of regular and chaotic dynamics are much easier to analyse,
but there are only few cases or families of such systems known to date. In this paper we outline
a new approach for a systematic construction, starting from a generic KAM Hamiltonian system,
of a system with a sharply divided phase space with an arbitrary number of regular islands which
are in one-to-one correspondence with islands of the initial KAM system. In this procedure a
typical Hamiltonian system, for example a KAM billiard, is replaced by a sequence of Hamiltonian
systems having an increasing (but finite) number of islands of regular motion. The islands in the
substituting systems are sub-islands of the KAM islands in the initial system. We apply this idea to
two-dimensional lemon-shaped billiards, where the substituting systems are obtained by replacing
parts of the curved boundaries by chords, so that in the limit of infinite number of islands the
boundary of the substituting system becomes arbitrary close to the original billiard’s boundary.

I. INTRODUCTION

Our understanding of the dynamics of Hamiltonian 
systems with divided phase space is very limited thanks 
to the lacking of examples where a boundary between 
KAM regions and chaotic seas can be exactly deter-
mined. The only known exceptions are mushroom bil-
liards and some piecewise linear discontinuous systems 
[1, 2]. Therefore it is virtually impossible to understand 
how coexistence of various KAM islands influence the dy-
namics in chaotic region(s) (see e.g. [3–5] for some repre-
sentatives of the vast literature on the numerical studies 
of the problem). In this paper we develop an approach 
which allows to approximate generic billiards with co-
existence of KAM tori and the chaotic sea by billiards 
with a finite number of KAM i slands which are in strict 
correspondence with the islands of the original system. 
The sequence of billiards with the sharply divided phase-
space approximates the original billiard in the sense that 
its boundary point-wise converges to the boundary of the 
original billiards.

Each sharp-boundary island in the approximating sys-
tem is a sub-island of the one in the initial system, and
typically has a substantially smaller phase-space area.
We demonstrate that by considering approximating sys-
tems with increasing number of islands, systems with pre-
sumably sharply divided phase space are obtained, which
contain more and more islands of the initial system which
has an infinite number of KAM islands.

It is well known that a typical Hamiltonian system ex-
hibits a mixed behavior, i.e. in some parts of its phase 
space the dynamics is regular while on the complemen-
tary part it is chaotic [6]. This picture which everybody 
believes, even in the mathematical community, is how-
ever not rigorously proven to hold. The major obstacles

are that totally different methods were developed to anal-
yse regular (integrable) dynamics and chaotic dynamics 
and that it is virtually impossible to find a  boundary be-
tween the regions with chaotic and those with regular 
dynamics. In fact, such boundary exists only in (i) 2-
dimensional systems where a one dimensional torus sep-
arates the two-dimensional phase space into the interior 
and the exterior of the torus and (ii) in time-periodically 
perturbed one-dimensional systems possessing the sepa-
ratrix, provided the perturbation is asymptotically weak 
and being resonant to the eigenoscillations at the bound-
ary of the separatrix layer [7]. In higher dimensions, the 
KAM torus does not separate the phase space and com-
pletely different phenomena occur. Even the construc-
tion of special concrete examples where the boundaries 
of KAM islands were exactly found and the dynamics rig-
orously analysed, was not very successful with the excep-
tion of a very narrow class of high-dimensional mushroom 
billiards [8, 9].

To be more precise, mushroom billiards [1] as well as 
some piecewise linear symplectic maps [2], are the only 
examples which allowed to better understand some fea-
tures of the dynamics in Hamiltonian systems with di-
vided phase space. Classical [10, 11] and quantum [12–16] 
mushroom billiards were extensively studied both the-
oretically and experimentally. However, these systems 
have a serious restriction which does not allow them to 
be considered as true representatives of Hamiltonian sys-
tems with divided phase space. Indeed, each KAM island 
sits in a specially constructed region in the phase space (a 
cap containing this island). Moreover, in typical Hamil-
tonian systems large islands correspond to lower order 
resonances and they are surrounded by chains of islands 
corresponding to higher order resonances. In mushroom 
billiards there are no such natural chains of islands.
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In this paper we present a totally new approach for the
construction of Hamiltonian systems with a finite num-
ber of KAM islands. This approach allows to approx-
imate a given Hamiltonian system with divided phase
space and with an infinite number of families of KAM
tori (KAM islands in 2D) by a sequence of Hamilto-
nian systems with increasing (finite) number of KAM
tori families (islands). We should note immediately (as
already mentioned above) that the approximation of the
original system has to be understood in a very weak
sense (e.g. point-wise convergence of the billiard’s bound-
aries) which does not imply approximation of the detailed
structure of phase space.

The most important features of our approach are: (1)
each island in each approximating system corresponds to
an island in the initial Hamiltonian system (which has
infinitely many islands) and (2) all the approximating
systems presumably have sharply divided phase space.
By making accurate numerical analysis we demonstrate
that each island in the approximating systems is included
in the corresponding island of the initial system. The
main idea of our procedure is exactly based on the fact
that in typical Hamiltonian systems each family of KAM
tori is surrounded by other KAM families corresponding
to higher resonances. Therefore, by cutting the boundary
around stable periodic orbit which gives rise to the main
island we destroy all satellite islands (resonances) and
only the central (main) island remain.

We demonstrate the efficiency of our approach on the
example of lemon-shaped billiards. Besides being the
most paradigmatic and popular models of generic Hamil-
tonian dynamical systems, the billiards allow to operate
only in configuration space in order to obtain the ap-
propriate sequence of approximating billiards with finite
number of islands.

II. LEMON BILLIARDS

Our starting system is a lemon billiard (Fig.1) whose
classical and quantum dynamics has been extensively
studied [17–22]. A lemon billiard table results from inter-
secting two identical circles with radius R and with the
distance 2B between their centers being less than the di-
ameter of the circles. The boundary of a lemon billiard
is described by the following implicit equations:

(x+B)2 + y2 = R2, x ≥ 0,

(x−B)2 + y2 = R2, x < 0, (1)

In Fig.1 we show the configuration space and the sur-
face of section (SOS) of our lemon billiard with B = 0.05
and R = 1. This is the only lemon billiard configuration
which will be used in the present paper. The points on
the Poincaré Surface of section (SOS) are plotted each
time the billiard particle crosses the line x = 0. The SOS
phase portrait of the lemon billiard has regular islands

FIG. 1: Lemon billiard: a) configuration space (x, y) with
0 < x < 0.95 = (1− B) and 0 < y < 0.999 (R = 1); b) SOS:
ySOS (abscisa), (py)SOS (ordinate) at each bounce at x = 0.

with fractal structure of the resonant islands around the
main islands. This billiard is an example of a typical
Hamiltonian system which contains an infinite number of
KAM islands. The islands correspond to periodic orbits
m : n of the (full lemon) billiard: m counts the number of
revolutions of the orbit around the center before closing
on itself, n counts the total number of bounces with the
boundary.

Due to geometric reflection symmetry only one half of
the billiard, x ≥ 0, will be considered in the following.

III. CUT-OFF BILLIARDS

The sequence of so-called cut-off billiards (that may
asymptotically approximate the shape of the original
lemon billiard) is generated in the following way: the
boundary of the lemon billiard with B = 0.05 and R = 1
is cut with several lines (chords) such that a chosen set
of stable periodic orbits of the lemon billiard remain and
all other stable periodic orbits of the lemon billiard are
eliminated (by chords). The circular arcs – parts of the
original lemon boundary – of length εm:n, symmetrically
placed around the points where the periodic orbit m : n
touches the boundary of the lemon billiard, are connected
with straight lines. Five such billiards have been con-
structed for our example and their SOSs calculated: they
are labeled as cut-off billiard No.1, No.2 — No.5, where
the cut-off billiard No.k includes the first k most rele-
vant stable periodic orbits. If more (than one) periodic
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FIG. 2: Cut-off billiard No. 1 - one periodic orbit in-
cluded: a) billiard boundary with 1:2 periodic orbit shown,
and ε1:2 = 0.78; green = periodic orbit, red = circular parts
of the billiard’s boundary, blue = chord parts of the billiard’s
boundary; b) SOS at bounces at x = 0; c) enlargement at the
border of the island of periodic orbit 1:2.

orbits touch the arc of the billiard at the same point,
then εm:n with the lower n is taken into account. In our
calculations of the SOS we have considered with particu-
lar attention the boundaries between the regular islands
and the chaotic sea, and the possibility of secondary (and
higher) resonant islands have been carefully investigated.

Fig. 2 shows the configuration space and the SOS at
x = 0 of the cut-off billiard No. 1 with ε1:2 = 0.78 which
is the largest allowed value ε1:2 = π/4 around the peri-
odic orbit 1:2 with accuraccy to 2 decimal places, while
at ε1:2 > π/4 the periodic orbit 1:4 starts to appears. In
Fig. 2 c) we present an enlarged view of the boundary
between the regular island and chaotic sea. One can see
that in the cut-off billiard No. 1 no secondary resonant
island appears around the main island. We have per-
formed even much more careful numerical checks of this
observation than shown here, and up to machine resolu-
tion with double-precision floating point arithmetic, we
have indeed found no traces of the resonant island chains.

Fig. 3 shows the configuration space and the SOS of
the phase space at x = 0 of the cut-off billiard No. 2 with
ε1:2 = 0.78 around the periodic orbit 1:2 and ε1:3 = 0.020
around the periodic orbit 1:3. The reason for the choice
of the ε1:2 = 0.78 is the same as in cut-off billiard No 1.
The ε1:3 = 0.020 is the largest allowed ε1:3 with accuracy
to 3 decimal places where the periodic orbit 1:6 does not
appear yet. In Fig. 3 c) an enlargement of the boundary
between a regular island from the periodic orbit 1:3 and

FIG. 3: Cut-off billiard No. 2 - 2 periodic orbits included:
a) billiard boundary with periodic orbits 1:2 and 1:3 shown,
and ε1:2 = 0.78, ε1:3 = 0.020; green = periodic orbit, red =
circle part of the billiard, blue = linear parts of the billiard’s
boundary; b) SOS at bounces at x = 0: c) enlargement of one
of the 1:3 islands and its boundary with the chaotic sea.

the chaotic sea is shown additionally. One sees that no
secondary resonances appear. From the periodic orbit 1:3
there are 4 mirror regular islands sitting at the centers
y0 = ±0.6024 and (py)0 = ±0.536. In the same way
the boundary between the central regular island from the
periodic orbit 1:3 and the chaotic sea has been checked.
Due to the symmetric mirror positions of other 3 regular
1:3 islands one can conclude that no secondary resonant
islands around the periodic orbits’ islands in the cut-off
billiard No. 2 appear.

Fig.4 shows the configuration space and the SOS at
x = 0 of the cut-off billiard No. 3 with ε1:2 = 0.2,
ε1:3 = 0.020 and ε1:4 = 0.25. The reason for the choice of
ε1:3 = 0.020 is the same as in the cut-off billiard No. 2.
The largest possible ε1:4 = 0.25 was chosen so that curved
arcs from ε1:3 and ε1:4 do not overlap, whereas the choice
of ε1:2 = 0.2 is such that stickiness would qualitatively
not appear. The stickiness which results from partial bar-
riers to transport in phase space (such as cantori) is not
a desired property here, because it would make it more
difficult to detect secondary resonances around the main
islands. Therefore a lower value than the maximally al-
lowed one for the parameter ε1:2 has been taken (the max-
imally allowed ε1:2 determined by the condition that the
higher order islands do not appear, is ε1:2 = 0.379). We
will discuss more about stickiness in section V. It should
be stressed, however, that the phenomenon of stickiness
does not in principle compromise the main idea of the
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FIG. 4: Cut-off billiard No. 3 - 3 periodic orbits included: a)
billiard boundary with periodic orbits 1:2, 1:3 and 1:4 shown,
and ε1:2 = 0.2, ε1:3 = 0.020, ε1:4 = 0.25; green = periodic or-
bit, red = circle part of the billiard, blue = linear parts of the
billiard’s boundary; b) SOS at bounces at x = 0; c) enlarge-
ment of one of the 1:3 islands of stability and its boundary
with the chaotic sea.

present paper. In Fig. 4 c) an enlargement of the bound-
ary between (one of the 4) regular island(s) from the
periodic orbit 1:3 and the chaotic sea is shown addition-
ally. One sees again that around the enlarged island 1:3
no secondary resonant islands appear. In the same way
the boundary between the central regular island from pe-
riodic orbit 1:2 and the chaotic sea has been checked as
well the boundary between regular islands from the pe-
riodic orbit 1:4 (2 mirror islands centerd at y0 = ±π/4
and (py)0 = 0) and chaotic sea. From all our empirical
data we can conclude that no secondary resonant islands
appear around the main periodic orbits’ islands in cut-off
billiard No. 3.

Fig. 5 shows the configuration space and the SOS
at x = 0 of the cut-off billiard No. 4 with ε1:2 = 0.2,
ε1:3 = 0.020, ε1:4 = 0.14 and ε3:8 = 0.041. The reason
for the choice of the ε1:2 = 0.2 and ε1:3 = 0.020 is the
same as in cut-off billiards No. 2 and No. 3. The reason
for the choice of the ε1:4 = 0.14 is elimination of higher
order islands’ set associated to a higher order periodic
orbit. The ε3:8 = 0.041 is the largest possible value so
that periodic orbit 1:8 and another set of islands associ-
ated to another higher order periodic orbit do not appear
in the system. In Fig. 5 c) enlargement of the boundary
between (one of the 4) regular island(s) from the periodic

FIG. 5: Cut-off billiard No. 4 - 4 periodic orbits included;
a) billiard boundary with periodic orbits 1:2, 1:3, 1:4 and 3:8
shown, and where ε1:2 = 0.2, ε1:3 = 0.020, ε1:4 = 0.14 and
ε3:8 = 0.041; green = periodic orbit, red = circle part of the
billiard, blue = linear parts of the billiard’s boundary; b) SOS
at bounces at x = 0; c) enlargement of the 1:3 island (left)
and two of the 3:8 islands (middle and right) of stability and
their boundary with the chaotic sea.

orbit 1:3 and chaotic sea is shown additionally and en-
largement of both kinds of islands from the periodic orbit
3:8 (6 island all together): 2 mirror islands with the cen-
ters at y0 = ±0.4208, (py)0 = 0 and 4 mirror islands with
the centers at y0 = ±0.591, (py)0 = ±0.761. One again
sees that around all the enlarged islands no secondary
resonant islands appear. In the same way the boundary
between the central regular island from the periodic orbit
1:2 and chaotic sea as well as the boundary between reg-
ular islands from the periodic orbit 1:4 and chaotic sea
have been checked. From all our data we can conclude
that no secondary resonant islands appear around the
main periodic orbits’ islands in the cut-off billiard No. 4.

Fig. 6 shows the configuration space and the SOS at
x = 0 of the cut-off billiard No. 5 with ε1:2 = 0.2, ε1:3 =
0.020, ε1:4 = 0.14, ε3:8 = 0.041 and ε1:5 = 0.010. The
reason for the choice of the ε1:2, ε1:3, ε1:4 and ε3:8 is the
same as in cut-off billiard No. 4. The reason for the
choice of ε1:5 = 0.010 is that it is the largest possible ε1:5
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FIG. 6: Cut-off billiard No. 5 - 5 periodic orbits included; a)
billiard boundary with periodic orbits 1:2, 1:3, 1:4, 3:8 and
1:5 shown, and where ε1:2 = 0.2, ε1:3 = 0.020, ε1:4 = 0.14,
ε3:8 = 0.041 and ε1:5 = 0.010; green = periodic orbit, red =
circle part of the billiard, blue = linear parts of the billiard’s
boundary; b) SOS at bounces at x = 0; c) enlargement of
the 1:3 island (upper left), two of the 3:8 islands (bottom
right and upper right) and 1:5 island (bottom left) and their
boundary with the chaotic sea.

with accuracy to 3 decimal places so that periodic orbit
2:5 does not appear yet. In Fig. 6 c) an enlargement of
the boundary between small regular islands and chaotic
sea is shown additionally like in in Fig. 5 c). The new
islands from periodic orbit 1:5 have the centers at y0 =
±0.879, (py)0 = ±0.383. One can see that in the cut-
off billiard No. 5, around all the enlarged islands, no
secondary resonant islands appear. In the same way the
boundary between the central regular island from the
periodic orbit 1:2 and chaotic sea as well as the boundary
between regular islands from the periodic orbit 1:4 and
chaotic sea have been checked. Again, from our data we
can conclude that no secondary resonant islands appear
around the periodic orbits’ islands in cut-off billiard No.
5.

From the above procedure of the construction of the

cut-off billiards No. 1, No. 2, No. 3, No. 4 and No. 5 it is
obvious that it can only be done in such a way that each
next cut-off billiard No.(k + 1) has, apart from the new
regular island(s) that appeared, also smaller sized (or in
some cases equal) corresponding islands in comparison to
the previous step (in cut-of billiard No.k). The previous
islands have to be made smaller in order to prevent emer-
gence of higher order resonant islands (without a sharp
boundary) as well as to avoid stickiness due to emergence
of cantori (which is the precursor of higher order KAM is-
land chains). It is also clear that the length of the largest
chord becomes smaller with increasing k in this approx-
imating billiard sequence, since we want more and more
regular orbits to be included which populate the bound-
ary densely in the limit. Based on reported numerical
observations for the first five cut-off billiards, we con-
jecture that our conclusions (namely on the sharpness
of the island’s boundary) will apply also to higher order
billiards No.k.

IV. PHASE SPACE PORTRAITS OF THE
FIRST CHORD-HIT TIMES

We shall now attempt to quantitatively characterize
the agreement in dynamics between the original KAM
billiard and the set of cut-off billiards. For each trajec-
tory, the agreement between the corresponding pair of
billiard dynamics’ is perfect as long as no chord is hit,
namely as long as all collisions with the boundary hap-
pen on circular arcs. However, when the trajectory of
the cut-off billiard hits the chord, it enters the chaotic
domain and at the same time deviates from the trajec-
tory of the original billiard. Nevertheless, the deviation
is smaller the shorter the chord is – since shorter chords
are more tangential to the boundary – and the maximal
length of the chord decreases with increasing k in the
cut off billiard sequence. Therefore, one has better and
better agreement of dynamics up to any fixed number of
collisions with increasing k.

We plot in Fig. 7 the first chord-hit time SOS charts
for all the five cut-off billiards that we have studied pre-
viously. The figure illustrates nicely how the sharp phase
space boundary is formed between regions when the first
chord-hit times are finite and infinite (white regions).
Progressing in the cut off billiard sequence No. k, the
set with first chord-hit times smaller than a fixed prede-
termined value t∗ seems to become fractal.

V. STICKINESS

Stickiness is a property of typical dynamical systems
where chaotic orbits are hindered by cantori to escape
from the region close to a regular island [23]. It implies
a temporary concentration of chaotic orbits in regions
smaller than the entire asymptotically accessible chaotic
region. The stickiness in mushroom billiards was studied
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FIG. 7: Phase space (surface of section) color plots of the
number of collisions (as a function of orbit’s initial phase
space coordinate) with the arcs before the first collision with
any straight line segment (chord) – i.e. the first chord-hit
times, for all 5 consecutive cut-off billiards analysed in the pa-
per. Resulting numbers are presented in logarithmic scale, see
scale on the vertical bar. Note that the region of SOS where
the "survival time" (time in number of collisions where the
billiard motion follows the original KAM billiard) is smaller
than some fixed number, seems to become a fractal set with
zero measure.

in [10, 11, 24, 25].
As mentioned above, if some curved boundary sections

corresponding to appropriate periodic orbits in our cut-
off billiards are too large, then stickiness appears (see
Fig. 8 where ε1:2 = 0.379).

We quantitatively describe the stickiness by calculat-
ing the time tescape an orbit in chaotic sea (close to the
boundary of the regular island) needs to escape from a
given region. The results are shown in Fig. 9 for four dif-
ferent cases. On the abscissa we plot, for varying y, the
distance ∆y = y−ya from the most left starting point ya,
which is slightly smaller than the regular island border
y∗. On the ordinate we plot the escape time of the orbit
with the initial condition (y, py = 0) on SOS and escaping
from the region {(y, py); |y| < ymax

⋃
|py| > (py)max}.

The region of y-coordinates of the initial conditions be-
tween y = ya and y = yb = ya+0.07 has been divided into
105 equidistant starting points. Each orbit runs maxi-

FIG. 8: Quarter of (de-symetrized) SOS of cut-off billiard No.
5, for a sticky case with ε1:2 = 0.379, ε1:3 = 0.020, ε1:4 = 0.14,
ε3:8 = 0.041 and ε1:5 = 0.01.

FIG. 9: Escape times tescape as a function of the distance
∆y = y−ya from an initial point (ya, py = 0) placed near the
edge of an island: a) from the set {|y| < 0.45}

⋃
{|py| > 0.5}

for cut-off billiard No. 5 from Fig. 8 around the 1:2 island
with ya = 0.0841; b) from the set {|y| < 0.45}

⋃
{|py| > 0.5}

for the lemon billiard around the 1:2 island and with ya =
0.3042; c) from the set {|y| < 0.45}

⋃
{|py| > 0.5} for cut-

off billiard No. 5 from Fig. 6 around the 1:2 island with
ya = 0.04462; d) from the set {|y| < 0.8} for cut-off billiard
No. 5 from Fig. 8 around the 1:4 island with ya = 0.72515. In
all plots we show moving averages over 50 consecutive points
which reduces oscillations and retains high resolution of the
figures.

mally for 106 iterations, i.e. returns to the SOS.
In Fig. 9 a) escape times tescape around the periodic

orbit 1:2 for the sticky case with 5 periodic orbits from
Fig. 8 are shown. In Fig. 9 c) the "non-sticky" case from
No. 5 cut-off billiard from section III (Fig. 6) around the
same periodic orbit 1:2 is shown. One can see that in the
neighbourhood of a regular island the "non-sticky" cut-
off billiard has more than an order of magnitude lower
escape times in comparison to "sticky" one, which indeed
proves the stickiness. In Fig. 9 b) escape times for lemon
billiard around periodic orbit 1:2 are presented. In the
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plot existences of few small higher order regular islands
as well as stickiness are detected via orders of magnitude
increases of escape times. In Fig. 9 d) the same billiard
as in Fig. 9 a) is presented, but now the region around
island 1:4 has been investigated - no stickiness was found
in this last case.

Summarizing, our study indicates that for cuts with
sufficiently long straight lines around the boundary-
collision points corresponding to a set of pre-selected (say
shortest) stable periodic orbits, one obtains a non-sticky
chaotic component with only the desired finitely many
KAM island chains. By decreasing the sizes of cuts we
eventually obtain stickeness either due to cantori or birth
of higher-order island chains. Due to this restriction, the
regular parts of phase space of the sequence of cut-off bil-
liards are, strictly speaking, only a fraction of the regular
phase space of the original KAM billiard.

VI. CONCLUSIONS AND OPEN PROBLEMS

In this paper we demonstrated numerically that it is
possible to approximate two-dimensional billiards with
divided phase space by a sequence of billiards with di-
vided phase space and a finite number of KAM islands.
Each billiard in this sequence has one more KAM is-
land (or more precisely, island chain corresponding to a
specific stable periodic orbit) than the previous billiard.

Moreover each KAM island for any billiard in this se-
quence is a sub-island of some KAM island in the initial
billiard which has, as a typical Hamiltonian system with
divided phase space, an infinite number of KAM islands.
Therefore, even though the boundary of this billiard se-
quence piecewise converges to the boundary of the origi-
nal KAM billiard, the area of each island centered around
a fixed stable orbit is, in general, decreasing along the
sequence. Nevertheless, finite time dynamics seem to be
approximated arbitrarily well with sufficiently late mem-
bers of the approximating billiard sequence. Although
the consideration of billiards is easier because one can ef-
ficiently make cuts in configuration space (billiard table),
we are quite confident that this approach will prove to be
efficient for approximating generic Hamiltonian systems
with divided phase space (and thus with infinite number
of families of KAM-tori) by a sequences of Hamiltonian
systems with sharply divided phase space with finite and
increasing numbers of such KAM-tori families.
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