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Abstract. Among the class of functions with Fourier modes up to
degree 30, constant functions are the unique real-valued maximizers for
the endpoint Tomas–Stein inequality on the circle.

1. Introduction

We are interested in the sharp constant of the endpoint Tomas–Stein
adjoint restriction inequality [To] on the circle S1 = {ω ∈ R2 : |ω| = 1}.
More precisely, we seek a maximizer for the functional Φ defined on nonzero
f ∈ L2(S1) by

Φ(f) := ‖f̂σ‖6L6(R2)‖f‖
−6
L2(S1).

We have written σ for the arc length measure on the circle S1, and we have
used the Fourier transform

f̂σ(x) :=

∫
S1
f(ω) e−ix·ω dσω, (x ∈ R2).

It is known that maximizers of Φ exist [Sh1] and are smooth [Sh2], and that
the constant function 1 is a local maximizer of Φ, see [CFOT, Theorem
1.1]. Moreover, real-valued maximizers of Φ are known to be nonnegative,
antipodally symmetric functions, that is

f(ω) ≥ 0, f(ω) = f(−ω),

for every ω ∈ S1. It is natural to conjecture that constant functions are
global maximizers of Φ, in which case a complete characterization of complex-
valued maximizers is given by [CFOT, §1, Step 6].

In this paper, we report on numerical verification of a finite dimensional
variant of this conjecture:

Theorem 1. Let f ∈ L2(S1) be non-negative and antipodally symmetric.

Assume that f̂(n) = 0 if |n| > 30. Then

Φ(f) ≤ Φ(1),

with equality if and only if f is constant.

A numerical difficulty in this problem is that there are close competitors
for maximizers, namely functions that concentrate in the vicinity of two
antipodal points. Heisenberg uncertainty allows for functions with Fourier
modes up to degree 30 to localize roughly in a 2π

30 -neighborhood of these
points.

This paper continues efforts to implement Foschi’s program [Fo] for the
2-sphere in the case of the circle, see also [CFOT]. The approach works
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through positive semi-definiteness of a certain quadratic form on the rele-
vant finite dimensional space. It would be nice to establish positive semi-
definiteness for the full space. For recent similar work on the paraboloid,
see [Go].

2. Proof of Theorem 1

With f as in Theorem 1, we compute

‖f̂σ‖6L6(R2) = (2π)2
∫
(S1)6

δ
(∑6

j=1 ωj

)( 3∏
j=1

fj(ωj) dσωj

)( 6∏
j=4

fj(−ωj) dσωj

)

= 5π2
∫
(S1)6

δ
(∑6

j=1 ωj

)
(|ω4+ω5+ω6|2−1)

( 3∏
j=1

fj(ωj) dσωj

)( 6∏
j=4

fj(−ωj) dσωj

)

≤ 5π2
∫
(S1)6

δ
(∑6

j=1 ωj

)
(|ω4 + ω5 + ω6|2 − 1)

( 3∏
j=1

fj(ωj)
2
) 6∏
j=1

dσωj

≤ 5π2
‖f‖6L2(S1)

‖1‖6
L2(S1)

∫
(S1)6

δ
(∑6

j=1 ωj

)
(|ω4+ω5+ω6|2−1)

6∏
j=1

dσωj = Φ(1)‖f‖6L2(S1).

Here the first line is simply Plancherel’s identity. The second line is Fos-
chi’s idea to improve the situation by artificially inserting a weight, which
after symmetrization over the indices j reverts to a constant, see the compu-
tation following [CFOT, Lemma 1.3]. The third line is the crucial inequality.
We defer its proof for the moment. The inequality in the fourth line is an
application of the main result proved in [CFOT, Theorem 1.2]. Equality is
attained if and only if f is constant. Identification of the constant in the
fourth line is then easy and was also observed in [CFOT].

This proves Theorem 1, safe for verification of the crucial inequality in
the third line. Note that this inequality would follow from

|ω1 + ω2 + ω3| = |ω4 + ω5 + ω6|
and the inequality between the arithmetic mean and the geometric mean,

3∏
j=1

fj(ωj)
6∏
j=4

fj(−ωj) ≤
1

2

( 3∏
j=1

fj(ωj)
2 +

6∏
j=4

fj(−ωj)2
)
,

if the weight were positive. Unfortunately, the weight is not positive. One
reason to believe that the inequality still holds as stated is that the negative
part of the weight is small, and via antipodal symmetry the values of the
function on the negative part of the weight have a strong correlation with
the values on the positive part. However, the support of the measure

δ
(∑6

j=1 ωj

)
is not preserved under antipodal symmetry, which makes it difficult to ex-
ploit this correlation. We resort to numerical verification of the crucial
inequality in the given finite dimensional space of functions.

Consider the index set

Z = {k ∈ 2Z, |k| ≤ 30},
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and expand the band-limited function f into a Fourier series

f(ω) =
∑
k∈Z

akω
k,

where we identify R2 with the complex plane and correspondingly define
products and powers of elements in R2. Note that

(1) a−k = ak

for every k ∈ Z. We write a constant multiple of the left-hand side of the
crucial inequality as ∑

k∈Z6

Lk

( 3∏
j=1

akj

)( 6∏
j=4

a−kj

)
,

Lk := (2π)−5
∫
(S1)6

δ
(∑6

j=1 ωj

)
(|ω4+ω5+ω6|2−1)

( 3∏
j=1

ω
kj
j

)( 6∏
j=4

ω
−kj
j

) 6∏
j=1

dσωj ,

and the same multiple of the right-hand side as

∑
k∈Z6

Rk

( 3∏
j=1

akj

)( 6∏
j=4

a−kj

)
,

Rk := (2π)−5
∫
(S1)6

δ
(∑6

j=1 ωj

)
(|ω4+ω5+ω6|2−1)

( 3∏
j=1

ω
kj−kj+3

j

) 6∏
j=1

dσωj .

Define for m ∈ Z3

sm := am1am2am3 ,

and note that (sm)m∈Z3 is an element of Sym(Z3), the vector space of
functions on Z3 symmetric under permutation of the three indices. At this
point we do not require the symmetry (1), instead we pass to a larger space
allowing for a convenient orthogonal splitting later.

The crucial inequality then follows from positive semi-definiteness of the
quadratic form∑

m,n∈Z3

Qm,nsmsn :=
∑

m,n∈Z3

1

6

∑
σ∈S3

(Rm,nσ − Lm,nσ)smsn

on Sym(Z3), where we write S3 for the group of permutations of three
elements and

nσ = (nσ(1), nσ(2), nσ(3)).

Note that the symmetrization over S3 does not change the value of the
quadratic form whenever the coefficients sn are symmetric. It merely sym-
metrizes the coefficients of the quadratic form, and allows to reduce the
dimension of the matrix by identifying equivalent tuples. Letting X̃ be the
space of tuples in Z3 satisfying m1 ≤ m2 ≤ m3, it therefore suffices to prove
positive definiteness of the quadratic form

Q(s, s) =
∑

m,n∈X̃

Qm,nsmsm.



4 OLIVEIRA E SILVA, THIELE, AND ZORIN-KRANICH

Note that the matrix (Qm,n)m,n∈X̃ is Hermitian. Moreover, for all m ∈ Z3

we have
Rm,(0,0,0) = Lm,(0,0,0)

and hence the Dirac delta vector δ(0,0,0) corresponding to constant functions
on the circle is in the kernel of the matrix (Qm,n)m,n∈X̃ . Therefore we

replace X̃ by X = X̃ \ {(0, 0, 0)}.
A change of variables

(ω1, ω2, ω3, ω4, ω5, ω6) 7→ (ω1 · ω, ω2 · ω, ω3 · ω, ω4 · ω, ω5 · ω, ω6 · ω)

for some arbitrary ω of modulus one in the expressions for Rk and Lk shows
that

Qm,n = ωd(m)−d(n)Qm,n,

where we have denoted

d(m) = m1 +m2 +m3.

We conclude
Qm,n = 0

whenever d(m) 6= d(n). The matrix (Qm,n)m,n∈X therefore has the struc-
ture of a diagonal block matrix, with blocks enumerated by D := d(m).
It suffices to prove positive semi-definiteness for each block (Qm,n)m,n∈XD
separately, where XD = {m ∈ X : d(m) = D}. This will be done in the
following section.

3. Numerical computations

In order to verify that the matrix (Qm,n)m,n∈XD is positive definite, we
split it into a numerically computed approximation and an error term. The
smallest eigenvalue of the numerical approximation will be larger than the
operator norm of the error term.

D λmin D λmin D λmin D λmin

0 0.00035 24 0.00061 48 0.00121 72 0.00407
2 0.00037 26 0.00064 50 0.00133 74 0.00501
4 0.00038 28 0.00067 52 0.00144 76 0.00596
6 0.00042 30 0.00069 54 0.00154 78 0.00668
8 0.00045 32 0.00073 56 0.00171 80 0.00937
10 0.00049 34 0.00077 58 0.00188 82 0.01258
12 0.00052 36 0.00081 60 0.00203 84 0.01332
14 0.00055 38 0.00086 62 0.00229 86 0.02997
16 0.00057 40 0.00092 64 0.00255 88 0.04400
18 0.00057 42 0.00097 66 0.00278 90 0.20081
20 0.00058 44 0.00105 68 0.00324
22 0.00059 46 0.00113 70 0.00369

Table 1. Minimal eigenvalue for the approximation for the
blockD ∈ {0, 2, 4, . . . , 90}, calculated with 5 significant digits
of precision. In the case of D = 0, the null block of the vector
δ(0,0,0) has been removed.



BAND-LIMITED MAXIMIZERS ON THE CIRCLE 5

Numerical approximation of the integrals Lk and Rk will rely on the
following family of Bessel integrals for

∑6
j=1 kj = 0:

Ik := (2π)−5
∫
(S1)6

δ
(∑6

j=1 ωj

)( 6∏
j=1

ω
kj
j dσωj

)

= (2π)−1
∫
R2

6∏
j=1

Jkj (|x|) dx =

∫ ∞
0

6∏
j=1

Jkj (r)r dr,

where the Bessel function Jk is defined by∫
S1
ωke−ix·ω dσω = 2π(−i)kJk(|x|)(x/|x|)k.

Indeed, writing

|ω4 + ω5 + ω6|2 − 1 = 2 +
∑

j,k∈{4,5,6},k 6=j

ωjω
−1
k ,

we obtain
Lm,n = 2Im,n +

∑
σ∈S3

Im,n+(1,−1,0)σ ,

Rm,n = 2Im+n,(0,0,0) +
∑
σ∈S3

Im+n,(1,−1,0)σ .

Using the fact that J−k = (−1)kJk and the above representation we see
that Qm,n = Q−m,−n, so it suffices to consider D ≥ 0.

To evaluate the integrals Ik, we follow the scheme in [OT]. We split the
integrals into

(2) Ik =

∫ S

0

6∏
j=1

Jkj (r)r dr +

∫ R

S

6∏
j=1

Jkj (r)r dr +

∫ ∞
R

6∏
j=1

Jkj (r)r dr,

with S = 3600 and R = 63000. The first two integrals are evaluated with a
Newton–Cotes quadrature rule. The step size is 0.003 for the first integral
and 0.05 for the second integral. In practice, this step involved tabulating the
numerical values of 61 Bessel functions at around 3× 106 points each, with
20 digit precision obtained via the software package Mathematica [W]. This
high precision lets the rounding errors be absorbed by the error estimates
below.

The approximation error for the first integral in (2) was estimated in [OT,
§8], independently of the vector k, by

Ek,1 = 1.5× 10−9.

The approximation error for the second integral in (2) was also estimated
in [OT] by

Ek,2 = C2

6∏
j=1

(
1 +

k2j
S

)
,

where

C2 = 1.016(R− S)w8 63

5

( 2

π(S − 1)

)3
cosh6(1)(R+ 1)

with S = 3600, R = 36000 and w = 0.05.
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The third integral in (2) is approximated by analytic methods. Since
R = 63000 is large when compared to n2 ≤ 612, we take advantage of the
following well-known asymptotic formulae which are a simplified version of
[OT, Corollaries 2.6 and 2.7]. 1

Lemma 2. Let ωn := z− π
4 −

nπ
2 and n̂ := max{1, n}. If n ≥ 0 and z > n̂2,

then

(3)
∣∣∣J±n (z)−

( 2

πz

) 1
2

cos(ωn)
∣∣∣ ≤ ( 2

π|z|

) 1
2 n̂2

|z|
,

(4)
∣∣∣J±n (z)−

( 2

πz

) 1
2

cos(ωn) +
4n2 − 1

8z

( 2

πz

) 1
2

sin(ωn)
∣∣∣ ≤ 1

4

( 2

π|z|

) 1
2 n̂4

|z|2
.

Here the functions J±n are obtained by writing cos(zt) = (eizt+e−izt)/2 in the
Poisson integral representation for Jn, and as such satisfy Jn = (J+

n +J−n )/2.
Using (3), we may split each Bessel function into a main term plus error.
Applying the distributive law yields one main integral of the form

(5)

∫ ∞
R

( 2

πr

)3( 6∏
j=1

cos(ωkj )
)
r dr,

which can be calculated exactly, plus 26 − 1 further terms involving one of
the two factors (

2

πr

) 1
2

cos(ωkj ), Jkj (r)−
(

2

πr

) 1
2

cos(ωkj )

for each j. We call them cosine factor and error factor. For the main integral,
observe that

cos(r − π
4 −

kπ
2 ) = (−1)b

k
2
c ·

{
sin(r − π

4 ), if k is odd,

cos(r − π
4 ), if k is even,

and so (5) equals a multiple of∫ ∞
R

cos6(r − π
4 )r−2 dr, or

∫ ∞
R

cos4(r − π
4 ) sin2(r − π

4 )r−2 dr,

with sign determined by the parity of
∑3

j=1(b
mj
2 c + bnj2 c). Mathematica

calculates these expressions with any prescribed accuracy. For the further
terms, consider first those consisting of an integral of a product of five cosine
factors and one error factor.

1We record a typo on the first formula in [OT, Corollary 2.7], which should read as
follows:∣∣∣∣∣J±

0 (z)−
(

2

πz

) 1
2

cos(ω0)− 1

8z

(
2

πz

) 1
2

sin(ω0)

∣∣∣∣∣ ≤
≤ 9

128|z|2

(
2

π|z|

) 1
2

cosh(|=(z)|)
(
|z|
|<(z)|

) 5
2

.
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To estimate these six terms, we use the finer information given by (4).
The sine term in (4) leads to integrals of the type

4m2
1 − 1

8

∫ ∞
R

( 2

πr

)3
sin(ωm1) cos(ωm2) cos(ωm3) cos(ωn) dr

and similar terms with a different cosine factor replaced by a sine factor and
corresponding prefactor. The product of the six trigonometric functions is
odd about the point π

4 . Thus the product integrates to 0 over each period.
On the period [R + 2πk,R + 2π(k + 1)], we may thus replace the weight
r−3 by the difference between itself and its mean over that interval, which
in turn is bounded by 6πr−4. Thus the sum of terms arising from the sine
term in (4) is bounded by

Ek,3 = 3π
6∑
j=1

k̂2j

∫ ∞
R

( 2

π

)3
r−4 dr,

where k̂j := max{1, kj}. The sum of the six terms arising from the right-
hand side of (4) can be estimated by

Ek,4 =
1

4

6∑
j=0

k̂4j

∫ ∞
R

( 2

π

)3
r−4 dr.

Next come fifteen terms of the original 26 − 1 terms which have four cosine
factors and two error factors. It suffices to estimate these with (3), since
they benefit from an extra integration of a negative power of r. Their sum
can be estimated by

Ek,5 =
∑
i 6=j

k̂2i k̂
2
j

∫ ∞
R

( 2

π

)3
r−4 dr,

where the sum is over
(
6
2

)
= 15 choices of distinct indices i, j ∈ {1, 2, 3, 4, 5, 6}.

The remaining 26 − 1− 6− 15 = 42 terms benefit from an integration of
at least the negative fifth power of r, and are estimated even more crudely
by

Ek,6 =
∑
i,j,`

k̂2i k̂
2
j k̂

2
`

∫ ∞
R

( 2

π

)3
r−5 dr +

∑
i,j,`,m

k̂2i k̂
2
j k̂

2
` k̂

2
m

∫ ∞
R

( 2

π

)3
r−6 dr

+
∑

i,j,`,m,n

k̂2i k̂
2
j k̂

2
` k̂

2
mk̂

2
n

∫ ∞
R

( 2

π

)3
r−7 dr + k̂21k̂

2
2k̂

2
3k̂

2
4k̂

2
5k̂

2
6

∫ ∞
R

( 2

π

)3
r−8 dr,

where the sums are over tuples of distinct indices for a total of
(
6
3

)
= 20,(

6
4

)
= 15, and

(
6
5

)
= 6 summands, respectively.

Addition of the error bounds Ek,1 + · · ·+Ek,6 yields error bounds for Ik,
which in turn give error bounds for the matrix coefficients Qm,n. Applying
Schur’s test to each block with a fixed D individually shows that the matrix
consisting of the error bounds has operator norm less than 10−5. These
steps were again performed via Mathematica. Since 10−5 is smaller than
the minimal eigenvalues shown in Table 1, we can conclude that the matrix
(Qm,n)m,n∈X is positive definite. This completes the proof of Theorem 1.



8 OLIVEIRA E SILVA, THIELE, AND ZORIN-KRANICH

4. Further remarks

We conclude our discussion with several observations.
Table 1 reveals that the smallest eigenvalues of the block D is increasing in

the parameter D ≥ 0. It might be interesting to find an analytic explanation
of this fact.

Zooming into the main block D = 0, Figure 1 shows the non-zero eigen-
values of this block. There is a cluster of very small eigenvalues. The
corresponding eigenvectors seem to suggest that many of these small eigen-
values are related to functions on the circle that are mainly supported in
neighborhoods of two antipodally symmetric points. These functions are
close competitors of constants for being maximizers. A line of attack on this
problem, say for larger or infinite bandwidth, might be to understand how to
analytically separate the effect of these antipodal functions. The remaining
eigenvalues may be sufficiently far from zero to allow for crude estimation.

20 40 60 80 100 120

0.02

0.04

0.06

0.08

Figure 1. Plot of the eigenvalues 0 < λ1 ≤ λ2 ≤ . . . ≤ λ127
of the approximation to the block D = 0.

We calculated the entries of the quadratic form Q numerically. A look at
these entries reveals some nice patterns such as circular structures, shown
Figures 2 and 3 below. We do not know how to exactly describe or explain
these structures independently of the numerical calculations. These struc-
tures merit further investigation. Each of the six figures below shows a row
of the block D = 0. This corresponds to fixing an index m0, and plotting the
matrix entries corresponding to Qm0,n, where n ranges over all admissible
values. Since n1 + n2 + n3 = 0, we may parametrize the entries of the row
by (n1, n2), which ranges in a hexagonal region in Z2, shown in the figures
as complement of the shaded region.

We close with a remark on the central Bessel integral

I(0,0,0,0,0,0) =

∫ ∞
0

J6
0 (r)r dr,

which up to a factor (2π)4 is the conjectured sharp constant Φ(1) in the
Tomas–Stein adjoint restriction inequality. This integral appears in the
following related context. An n-step uniform random walk is a walk in the



BAND-LIMITED MAXIMIZERS ON THE CIRCLE 9

Figure 2. m0 = (−24, 0, 24), m0 = (−12, 0, 12), m0 = (−6, 0, 6).

Figure 3. m0 = (−20, 8, 12), m0 = (−12, 6, 6), m0 = (−10, 2, 8).

plane that starts at the origin and consists of n steps of length 1 each taken
into a uniformly random direction.

If pn denotes the radial density of the distance travelled after n steps,
then it is a classical result that p5(1) = I(0,0,0,0,0,0), see e.g. [BSWZ]. In the
same paper, the exact value of the integral

p4(1) =

∫ ∞
0

J5
0 (r)r dr =

1

2π2

√
Γ( 1

15)Γ( 2
15)Γ( 4

15)Γ( 8
15)

5Γ( 7
15)Γ(1115)Γ(1315)Γ(1415)

is determined resorting to striking modularity properties of the function p4,
see [BSWZ, Theorems 4.9 and 5.1]. The corresponding problem with a sixth
power remains open.
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