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Abstract

We study atomic measures on [0, 1] which are invariant both un-
der multiplication by 2 mod 1 and by 3 mod 1, since such measures
play an important role in deciding Furstenberg’s ×2,×3 conjecture.
Our specific focus was finding atomic measures whose supports are far
from being uniformly distributed, and we used computer software to
discover a number of such measures (which we call outlier measures).
The structure of these measures indicates the possibility that a se-
quence of atomic measures may converge to a non-Lebesgue measure;
likely one which is a combination of the Lebesgue measure and one or
more atomic measures.

1 Introduction

Furstenberg’s ×2,×3 conjecture remains one of the major unsolved problems
in the field of ergodic theory in dynamical systems. Originally posed in [1],
it deals with the question of ergodic Borel probability measures on the circle,
represented as the interval I = [0, 1] with the endpoints collapsed to one
point, invariant under both the actions T (x) = 2x mod 1 and S(x) = 3x
mod 1.1 The Lebesgue measure λ is obviously T and S invariant, and so is the
point mass at 0. There are also infinitely many finite orbits, minimal under
the joint action of T and S. Every such orbit consists of rational numbers

1The original conjecture deals more generally with T (x) = px mod 1 and S(x) = qx
mod 1 with p, q being a pair of coprime natural numbers; the pair (2, 3) is the simplest
such pair.
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with a denominator coprime with both 2 and 3 and each of them supports
an atomic invariant measure—the normalized counting measure on the orbit.
The open question is: are there any Borel measures on I which are both T and
S invariant, other than convex combinations of λ with some atomic measures
described above? An equivalent formulation reads: are there any continuous
measures, invariant under both T and S, and singular with respect to the
Lebesgue measure λ? The original conjecture by Furstenberg is that the
answer is negative, but a definite answer has not been reached so far. There
are two major results in this direction; the first, proven by Furstenberg in the
original paper [1], states that any nonatomic measure for the action of T and
S has full support in [0, 1]. Another result, due to Rudolph [2], states that
for any Borel probability measure on I which is both T and S invariant, and
singular with respect to the Lebesgue measure, the actions of T and S both
have entropy zero. Since then there has been no significant progress towards
answering the question. Some mathematicians believe the conjecture is true,
we are inclined to give no preference to any answer.

We believe that some valuable information can be acquired from studying
the atomic measures supported by minimal finite orbits. There is a chance
that a measure defying the conjecture exists among the accumulation points
of such atomic measures. To the best of our knowledge, the structure of
atomic measures has not been extensively investigated to date. In particular,
it is unknown whether, with increasing number of atoms, the atomic mea-
sures must converge to the Lebesgue measure λ. This problem is weaker than
the main Furstenberg conjecture, because a priori atomic measures could ac-
cumulate at an atomic measure or at a convex combination of λ with some
atomic measures, without defying the main conjecture. Nevertheless, it is
an open question worth addressing. As a step in that direction, we have
computationally generated a huge collection of atomic measures with large
number of atoms (or more precisely, finite minimal orbits of large cardinality),
focusing on any hints that the set of corresponding normalized counting mea-
sures might contain sequences converging to limits other than the Lebesgue
measure λ. Interestingly, we have discovered a number of atomic invariant
measures with many atoms, whose supports do not appear to be (approxi-
mately) uniformly distributed. We have also found out that it is very likely
that such measures may converge to convex combinations of atomic measures
possibly with some nonatomic part. The motivation for our experimental ad-
venture was the hope to obtain some indication as to the existing types of
accumulation points of the set of the atomic measures, and perhaps to shift
the likelihood of either solution of Furstenberg’s problem.
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2 Atomic invariant measures

Throughout this and the following section we will consider the dynamical
system consisting of the space I = [0, 1] with the identification 0 = 1, un-
der the Z2-action generated by two commuting transformations T and S,
defined by T (x) = 2x mod 1 and S(x) = 3x mod 1. In the subsequent
discussion, whenever we use the word “orbit”, or when we refer to concepts
of invariance, minimality or ergodicity, we implicitly understand these con-
cepts with respect to the above described Z2-action. Similarly, whenever we
refer to “atomic measures”, we refer exclusively to ergodic atomic measures
(supported by minimal finite orbits). Any atomic measure is supported by
the orbit of a single element x ∈ [0, 1], that is to say by the (finite) set of
all numbers of the form T iSj(x) for i, j ∈ N (note that the actions S and
T commute, therefore the order of application does not matter), where x is
rational with a denominator n not divisible by neither 2 nor 3. Conversely,
the orbit of any such rational point is finite, minimal and supports an atomic
measure.

The following questions can be asked, progressively:

1. Can a sequence of atomic measures converge (in the weak-star topol-
ogy) to a limit measure different from the Lebesgue measure?

2. If yes, can this limit measure have any atoms?

3. If yes, may the limit measure have a nontrivial continuous part?

4. If yes, can the continuous part be different from the Lebesgue measure?

Of course, positive answer to the last question would defy Furstenberg’s
conjecture and it is highly unlikely to be within reach. But even obtaining
an answer to any of the questions (1)-(3) would be a remarkable progress on
this subject.

We pose two other, independent questions:

5. Does the closure of the set of atomic measures contain all ergodic mea-
sures?

6. Is there a subset K of atomic measures whose closure contains the
convex hull of K?

If Furstenberg’s conjecture is true then the answer to question 5 is positive,
while the converse implication does not hold. Nevertheless, even proving the
positive answer seems out of reach. The last property is of special interest.
If it held, then the closure of K would be a closed convex subset with dense
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set of ergodic measures which are extreme in K. Although other extreme
points of this subset need not be ergodic measures, nevertheless the existence
of such a subset would strongly indicate that there are uncountably many
ergodic measures.

Our main aim was to investigate questions 1–4, i.e. focus on the possible
types of accumulation points of the set of atomic measures. Since any atomic
measure is uniquely identified by its support, our direct object of study were
the finite minimal orbits of the action generated by S and T . We defer
the detailed presentation of numeric results to the next section; here we
will present a more theoretical discussion and general conclusions from our
observations.

First of all, it is easy to see than any orbit has to be the set of numbers
of the form i

n
where n is a number relatively prime to both 2 and 3, and that

T and S are both one-to-one on every orbit. This is why the only invariant
measure supported by such an orbit is the normalized counting measure. We
denote by Fn the set of all proper fractions with denominator n, i.e., we let
Fn =

{
i
n

: 0 < i < n
}

. In many cases the orbit will be simply the set Fn, for
example F5 =

{
1
5
, 2
5
, 3
5
, 4
5

}
is invariant under T and S and has no invariant

subsets. If n is not prime, then Fn contains invariant sets Fm for all divisors
m of n, and some (essential) remaining part F ′n. For example F25 decomposes
into the following orbits:

O1 =

{
1

5
,
2

5
,
3

5
,
4

5

}
.

O2 =

{
1

25
,

2

25
,

3

25
,

4

25
,

6

25
,

7

25
,

8

25
,

9

25
,
11

25
,
12

25
,

13

25
,
14

25
,
16

25
,
17

25
,
18

25
,
19

25
,
21

25
,
22

25
,
23

25
,
24

25

}
,

Because the sets Fm are (nearly) uniformly distributed, we agree that F ′n
is also nearly uniformly distributed. That is to say, without further splitting
into invariant sets, the normalized counting measures on the sets F ′n do con-
verge to the Lebesgue measure λ. However, F ′n can split into a disjoint union
of several orbits, and these orbits may reveal significant deviation from the
uniform distribution. This may happen even if n is a prime number (i.e.,
when F ′n = Fn). The smallest such example is n = 23, for which we obtain
two orbits:

O1 =

{
1

23
,

2

23
,

3

23
,

4

23
,

6

23
,

8

23
,

9

23
,
12

23
,
13

23
,
16

23
,
18

23

}
O2 =

{
5

23
,

7

23
,
10

23
,
11

23
,
14

23
,
15

23
,
17

23
,
19

23
,
20

23
,
21

23
,
22

23

}
4



The sets O1 and O2 are both invariant under the actions of T and S, therefore
each of them supports an ergodic measure. These measures deviate from
being (approximately) uniformly distributed: the one supported on O1 is
biased to the left, the one supported on O2 is biased to the right. Also note
the easy observation that O2 consists of the numbers of the form 1−x where
x ranges over the elements of O1. In general, if O is an orbit under T and S,
then either an orbit is itself invariant under the transformation f(x) = 1−x,
or f(O) is another orbit, disjoint with O. As n increases, we observe that
for some values of n (not divisible by 2 or 3), the sets F ′n decompose into an
increasing number of orbits, even when n is prime.

The fact that F ′n can be an union of several orbits indicates that there is
at least the possibility that infinitely many of these orbits have normalized
counting measures lying persistently far from λ, leading to non-Lebesque
limit measures. By necessity however such measures are “rare”, regardless
of whether the Furstenberg conjecture is true:

Theorem 2.1. For any δ > 0 and ε > 0 there exists an N such that for
every n > N , if Fn decomposes into orbits O1, . . . , Ok, then the cardinality of
the union of the orbits corresponding to measures distant from the Lebesgue
measure by at least δ is less than εn.

Proof. Let Kδ denote the set of all invariant measures whose distance from λ
is at least δ. Let n1, . . . , nk denote the cardinality of O1, . . . , Ok respectively,
and let µ1, . . . , µk denote the normalized counting measures on these orbits. If
for arbitrarily large n the cardinality of the union of the orbits corresponding
to measures belonging to Kδ was larger than εn, then the convex combination
νn =

∑k
i=1

ni

n−1µi could be written as νn = αnν
′
n +βnν

′′
n, where ν ′n is a convex

combination of the measures from Kδ and αn > ε. Therefore we could
find a subsequence (nk) such that (αnk

ν ′nk
) converges to some measure αν ′,

where α > ε and ν ′ is not the Lebesgue measure λ (Kδ is a compact set not
containing the extreme point λ, therefore the closed convex envelope of Kδ

is also a compact set not containing λ). Since νnk
is the uniform distribution

on Fnk
, the sequence (νnk

) converges to λ, and thus we get a decomposition
λ = αν ′ + βν ′′ where α > 0 and ν ′ 6= λ, which contradicts the fact that λ is
an extreme point in the set of invariant measures.

This means that even if the set Fn for large n decomposes into a large
number of orbits, the majority of points in Fn belong to orbits corresponding
to measures lying close to the Lebesgue measure λ. We will focus specifically
on finding the uncommon atomic invariant measures which are not close to
λ, and which we will refer to as the outliers.

5



Another observation concerning the outliers is that if a sequence of out-
liers converges to a measure which has atoms (and the outliers we have found
do seem to exhibit concentration of mass around periodic orbits of lower pe-
riods), then another sequence of outliers converges to a measure with just
one atom—the atom at zero.

Fact 2.2. If there exists a sequence of atomic invariant measures (µn) con-
verging to a limit measure µ which has atoms of total mass M , then there
exists a sequence of atomic invariant measures (νn) converging to an invari-
ant measure ν such that ν({0}) = M .

Proof. Fix a decreasing to zero sequence of positive numbers (εn). Since µ has
at most countably many atoms, say x1, x2, . . ., then εk = M−µ({x1, x2, . . . , xk})
is a sequence converging to zero. Let Qk be the lowest common denomina-
tor of {x1, x2, . . . , xk}. Since the map ψk(x) = Qkx mod 1 is an endo-
morphism of the dynamical system ([0, 1], S, T ), the measure νk given by
νk(A) = µ(ψ−1k (A)) is also an invariant measure, and since ψ−1k ({0}) con-
tains {x1, x2, . . . , xk}, we have νk({0}) > M − εk. Furthermore, if we set
νk,n(A) = µn(ψ−1k (A)), we will obtain a sequence of atomic invariant mea-
sures converging in n to νk. Using a diagonal argument, we can now find a
sequence of atomic measures νk,nk

converging in k to ν.

3 Methodology

We used the Mathematica software to decompose the sets F ′n for n up to
700, 000 (choosing only n coprime with both 2 and 3) into disjoint orbits,
using the following algorithm for every n (note that we decompose F ′n rather
than all of Fn, in order to avoid generating duplicate orbits):

1. Let k = 1, let x = k
n

and let On,k = {x}.

2. Repeatedly add to On,k all numbers of the form 2x mod 1 and 3x
mod 1 for x ∈ On,k, until no new numbers are added.

3. If
⋃k
i=1On,i = F ′n, then proceed to the following n; otherwise increase k

repeatedly by 1 until k
n

becomes the smallest element of F ′n which does

not belong to
⋃k−1
i=1 On,i. Then let x = k

n
, On,k = {x}, and return to

step 2.

We then selected the orbits for which the cumulative distribution func-
tion (cdf) for the normalized counting measure supported by the orbit dif-
fered from the cdf of the Lebesgue measure λ on [0, 1] by at least 1

10
at at
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least one point. The choice of threshold value 1
10

is dictated by analysis of
the histograms of the distance from λ for individual denominators (these
histograms are provided further below); in most cases, just above 1

10
, there

appears a small isolated cluster. The main observation is that such “outlier
orbits” have appeared for n as large as 609, 427. As expected from theorem
2.1, the outlier orbits are rare and relatively short compared to the size of
Fn (which consists of n − 1 points): for n = 609, 427 there are two outlier
orbits, both of length 1, 080. In general, for denominators between 10, 000
and 700, 000 we found 64 outlier orbits. As none of them were symmetric
around 1

2
, they formed 32 mirrored pairs, hence we chose just one of each

pair for subsequent study (we chose the orbit which had more points in the
left half of [0, 1] than in the right), ending up with 32 outlier orbits.

Figure on the page 8 contains the cdf and histogram of the longest out-
lier orbit we have found—the orbit of the point 31

609427
. The corresponding

normalized counting measure appears to be far from uniform, with a notable
concentration of mass to the right of 1, but also to the right of 1

2
and several

other rational points with small denominators of the form 2p and 3q. Similar
phenomena can be seen on pages 12-15 for other orbits (for smaller n). Later
we will explain why a concentration of mass near 0 forces smaller “shadow
concentrations” of mass near 1

2
, 1
3
, 2
3

and so on. It can be predicted that
if we classify some number of points, say M , in the orbit as close to zero,

then, by the same criteria of closeness, there will be approximately
√
M 2 ln 2

ln 3

points close to 1
2

and 1
2

√
M 2 ln 3

ln 2
points close to each of the points 1

3
and 2

3
.

It can be thus seen that with increasing M the contribution of the shadow
concentrations will eventually vanish.

3.1 Hypotheses

Based on our experiments, we are inclined to believe that there are arbitrarily
long outlier orbits (which exist within Fn for arbitrarily large n). By passing
to a convergent subsequence of the corresponding normalized counting mea-
sures, we would obtain a limit measure different from the Lebesgue measure
λ. Our results also suggest that (at least some of) the limit measures have
a positive atomic part. Fact 2.2 implies that then there would also exist a
sequence of outlier measures converging to a measure with a positive mass at
0 and otherwise continuous. Such behavior is also observed in our numerical
experiments. This motivates us to formulate the following conjecture (and
call for a rigorous proof):

Conjecture 3.1. There exists a sequence of atomic ergodic measures con-
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verging to a measure with a positive atomic part.

Moreover, we are inclined to believe that if the conjecture holds then
every atomic measure may appear as part of some limit measure.

Assuming Furstenberg’s conjecture is true, the continuous part of every
limit measure would have to be (proportional to) λ. But because in any finite
resolution there is no difference between the histogram of a singular measure
and a measure with many small atoms, we doubt if experimental research
can provide any hint toward answering this question.

4 Presentation of results

We begin with the histogram and CDF of the counting measure on the or-
bit of 31

609427
, which consists of 1080 points. The histogram, like all other

histograms of orbits, has been normalized to represent a probability distri-
bution (i.e. the total area of all the bars is 1). Note the concentration of
mass around 1, as well as a smaller concentrations around 1

2
, 1
3
, 2
3
, 1
4
, and 3

4
.

We will comment on these further on page 20.

The following 3 images present the histograms and CDF’s of three orbits in
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Fn for n = 609427: the first one is the outlier orbit shown on previous page,
the second one is the orbit whose corresponding atomic measure is the closest
to λ (it is the orbit of the point 461

609427
), and the last one is the orbit whose

distance to λ is the median among all the orbits within F609427, namely the
orbit of 2809

609427
. Each of the three orbits consists of 1080 points.

The histogram and CDF for the orbit of 31
609427

.

The histogram and CDF for the orbit of 461
609427

.

The histogram and CDF for the orbit of 5087
609427

.

9



To justify our choice of outliers, we present the histograms of the distances
between orbits of atomic measures for various denominators and the Lebesgue
measure λ. We limited the histograms to include orbits of length 100 or
more, which are supported by points of the form k

n
where n is the respective

denominator and k is coprime with n, and have more points in the left side
of the interval [0, 1] than in the right (in fact for the denominators for which
we discovered the outliers, no orbits were symmetric, so choosing just one
orbit out of every mirrored pair simply removes redundancy from the data).

Histogram of the distance from λ for a selected subset of most significant or-
bits in F15025 (18 orbits) and F21667(23 orbits).

Histogram of the distance from λ for a selected subset of most significant or-
bits in F22015 (12 orbits) and F33215(23 orbits).

Histogram of the distance from λ for a selected subset of most significant or-
bits in F50557 (36 orbits) and F86963(96 orbits).
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Histogram of the distance from λ for a selected subset of most significant or-
bits in F108335 (89 orbits) and F116123(76 orbits).

Histogram of the distance from λ for a selected subset of most significant or-
bits in F119795 (71 orbits) and F434815(191 orbits).

Histogram of the distance from λ for a selected subset of most significant or-
bits in F580615 (306 orbits) and F609427(212 orbits).

Observe that for most larger denominators there appears a small isolated
cluster above 0.10. Thsese are the outliers.
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Below we present some other outlier orbits corresponding to denominators
larger than 10, 000:

1. The histogram and CDF for the orbit of 1
15025

. The orbit has 300 points.

2. The histogram and CDF for the orbit of 23
21667

. The orbit has 460 points.

3. The histogram and CDF for the orbit of 1
22015

. The orbit has 576 points.

4.The histogram and CDF for the orbit of 19
33215

. The orbit has 432 points.
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5. The histogram and CDF for the orbit of 1
50557

. The orbit has 648 points.

6. The histogram and CDF for the orbit of 373
86963

. The orbit has 396 points.

7. The histogram and CDF for the orbit of 271
86963

. The orbit has 396 points.

8. The histogram and CDF for the orbit of 1
86963

. The orbit has 396 points.
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9. The histogram and CDF for the orbit of 259
108335

. The orbit has 460 points.

10. The histogram and CDF for the orbit of 29
108335

. The orbit has 460 points.

11. The histogram and CDF for the orbit of 1
108335

. The orbit has 460 points.

12. The histogram and CDF for the orbit of 1
119795

. The orbit has 576 points.
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13. The histogram and CDF for the orbit of 1
434815

. The orbit has 792 points.

14. The histogram and CDF for the orbit of 289
580615

. The orbit has 624 points.

15. The histogram and CDF for the orbit of 233
580615

. The orbit has 624 points.

16. The histogram and CDF for the orbit of 1
580615

. The orbit has 624 points.
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Note that many of the outlier orbits have a significant concentration of
mass near 0, which suggests the possibility of converging to a measure with an
atom at 0. Furthermore, several outlier orbits have concentrations of mass
near elements of short periodic orbits: the orbit of 271

86963
in figure 7 above

has visible concentrations around the points 1
5
, 2
5
, 3
5
, and 4

5
. Furthermore,

in accordance with the reasoning in the proof of theorem 2.2, applying the
transformation x 7→ 5x mod 1 to the orbit in figure 7 yields an orbit with a
concentration of mass near 0 — in this case it is specifically the orbit of the
point 1

86963
shown in figure 8. A similar example is shown in figure 14, where

the orbit has concentrations of mass near points belonging to the orbit of 1
7
.

Again, applying the transformation x 7→ 7x mod 1 to the orbit in figure 14
“moves” these concentrations to the vicinity of 0, however in this case the
resulting orbit is the orbit of 1

82945
whose atomic measure is not far enough

from the Lebesgue measure λ (the distance is 1986949
25878840

≈ 0.077) to consider
it one of the outliers by our criteria. The decrease in distance may appear
surprising, since the new orbit should have a concentration of mass near 0:
this concentration does in fact appear, but the orbit of 1

82945
, unlike that of

289
580615

, is symmetric around 1
2
, and as a result the distance between its atomic

measure and λ is smaller, as seen in the following images:

The histogram and CDF for the orbit of 1
82945

.

4.1 Another way to view the orbits

For each of our 32 chosen outlier orbits we also generated two-dimensional
bitmap images based on the orbit of a point x closest to 0 in the orbit. For a
given x, the first row of the bitmap is the binary expansion of x (with 0 corre-
sponding to a black pixel, and 1 corresponding to a white pixel), the second
row is the binary expansion of 3x, and so on. In other words, for a given
starting point x (which we always took to be the smallest element of a given
orbit), the pixel in the i-th row and j−th column (counting from the top
left corner) is colored white or black depending on whether the point 3i2jx
mod 1 is smaller or greater than 1

2
, respectively. In the resulting binay repre-

sentation, the transformation x 7→ 2x mod 1 corresponds to the horizontal
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left shift, while x 7→ 3x mod 1 is the vertical upward shift. We generated
bitmaps of size 128× 128 pixels: each such bitmap consists of 16, 384 pixels,
which is far more than the cardinality of any orbit we consider, hence all
the images exhibit various kinds of periodicity. We begin with a side-by-side
comparison of the image corresponding to the orbit of 271

86963
(which had con-

centrations of mass around the orbit of 1
5
) and the image corresponding to

the orbit of 1
5
:

Observe that the left image has areas where the pattern is exactly the same
as in the right image, which corresponds to the fact that the orbit of 271

86963
at

certain times closely shadows the orbit of 1
5
. A similar phenomenon can be

observed by comparing the symbolic visualizations of the orbit of 289
580615

and
the orbit of 1

7
:
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Again, the more complex pattern corresponding to the longer orbit includes
sections where it is identical to the pattern corresponding to the shorter or-
bit, i.e. the orbit of 233

580615
at times shadows the orbit of 1

7
. Below we present

the bitmap visualizations of several other outlier orbits:

Symbolic visualisations of the orbits of 23
21667

and 61
86963

.
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Symbolic visualisations of the orbits of 179
108335

and 103
116123

.

Symbolic visualisations of the orbits of 233
580615

and 31
609427

.

Since we specifically chose the outlier orbits which have more points in the
left half of [0, 1], the images have more white than black pixels. Furthermore,
the triangular white areas correspond to times where 2j3jx mod 1 remains
in the left half of [0, 1] for several consecutive values of i and j. This is only
possible when the orbit includes points very close to 0, which corresponds
to the atomic measure having a concentration of mass near 0. Observe that
images with larger area of white triangles correspond to orbits with larger
concentrations of mass near 0: if we denote by x the starting point of the
orbit, then a white triangle with the upper left corner in row n and column
m, whose horizontal side has a pixels and vertical side has b pixels, occurs
when the point y = 3n2mx mod 1 is so close to 0 that 2y, 4y, . . . , 2ay are
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all in [0, 1
2
], and the same is true of 3y, 9y, . . . , 3by, which implies that the

same is also true for numbers of the form 2i3jy for i and j up to certain
values. Also observe that in fact every row of the image is determined by the
preceding one, since row i of the image can be interpreted as the fractional
part of the binary expansion of 3i−1x mod 1, where x is the starting point
of the orbit. It follows that every row can be used to determine the next
one by adding it to its own copy shifted to the left by one pixel (this process
corresponds to adding x to 2x modulo 1, thus producing 3x mod 1).

Finally, we present two other bitmap visualizations: our longest outlier
orbit, that of 31

609427
(left), and the orbit of 1

580615
(right).

Since the latter orbit includes the point 1
580615

, the presence of large white

triangles is not surprising. Also observe repeated occurrences of the pattern
from the bitmap visualization of the orbit of 1

7
, and note that the histogram

of this orbit on page 15 also exhibits concentrations of mass near the points
1
7
, . . . , 6

7
. In terms of measures this can be seen as indicating the fact that

we may hope to find a sequence of atomic measures converging to a measure
whose ergodic decomposition will include the atomic measures corresponding
to the fixed point 0 and the periodic orbit of 1

7
.

We shall now explain the presence of “shadow concentrations” of mass
around 1

2
, 1
3

and 2
3
, whenever a concentration near zero occurs. The point

x closest to zero in the orbit generates a white triangle with vertical and
horizontal dimensions a and b, respectively. Since a is determined as the
minimal solution of the inequality 3ax > 1

2
and similarly, b is the minimal

solution of the inequality 2bx > 1
2
, there is an approximate relation b = a ln 3

ln 2
.

The area of the white triangle is M = a2 ln 3
2 ln 2

which represents the number
of units of (two-dimensional) time spent by the orbit near zero. The left
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margin of the triangle consists of black pixels, each followed to the right
by several white pixels. This corresponds to the binary expansion of points
near 1

2
. So, the orbit spends a units of time near 1

2
. The top margin of the

triangle is always a periodic pattern with alternating black and white pixels,
corresponding to binary expansions of points close to, alternately, 1

3
and

2
3
. This explains the shadow concentrations with proportions b =

√
M 2 ln 2

ln 3

points close to 1
2

and a
2

= 1
2

√
M 2 ln 3

ln 2
points close to each of the points 1

3
and

2
3
. Arguing similarly, we can derive “second order” shadow concentrations

near 1
4
, 3
4

and likewise 1
9
, 2
9
, 4
9
, 5
9
, 7
9
, 8
9
. Because no invariant atomic measure has

atoms with denominators of the form 2i3j, these shadow concentrations must
vanish relatively to the length n of the orbit as n increases, and apparently
they do.
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