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Abstract

We discuss, and make partial progress on, the peaceable queens
problem, the protagonist of OEIS sequence A250000. Symbolically,
we prove that Jubin’s construction of two pentagons is at least a local
optimum. Numerically, we find the exact numerical optimums for
some specific configurations. Our method can be easily applied to
more complicated configurations with more parameters.

Accompanying Maple package

This article is accompanied by a Maple package, PeaceableQueens.txt,
available from the url

http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/peaceable.html,

where readers can also find an input and an output file, and nice pictures.

Introduction

One of the fascinating problems described in the recent article [S2], about the
great On-Line Encyclopedia of Integer Sequences, and in the beautiful
and insightful video [S3] is the peaceable queens problem. It was chosen,
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by popular vote, to be assigned the milestone ‘quarter-million’ A-number,
A250000.

The question is the following:

What is the maximal number, m, such that it is possible to place m white
queens and m black queens on an n×n chess board, so that no queen attacks
a queen of the opposite color.

Currently only thirteen terms are known:

n : 1 2 3 4 5 6 7 8 9 10 11 12 13

a(n) : 0 0 1 2 4 5 7 9 12 14 17 21 24

In this paper, we’d like to consider this peaceable queens problem as a
continuous question by normalizing the chess board to be the unit square
U := [0, 1]2 = {(x, y) | 0 ≤ x, y ≤ 1}. Let W ⊆ U be the region where white
queens are located. Then the non-attacking region B of W can be defined
as

B = {(x, y) ∈ U | ∀(u, v) ∈ W,x 6= u, y 6= v, x + y 6= u + v, y − x 6= v − u}.

So the continuous version of the peaceable queens problem is to find

max
W∈2U

(min(Area(W ),Area(B))).

Considering that the queen is able to move any number of squares vertically,
horizontally and diagonally, it is reasonable to let W be a convex polygon or
a disjoint union of convex polygons whose boundary consists of vertical, hor-
izontal and slope ±1 line segments, otherwise in many cases we can increase
the area of white queens without decreasing the area of black queens.

In this paper, we use a list L of lists [ [a1, b1] , [a2, b2] , . . . , [an, bn] ] to denote
the n-gon whose vertices are the n pairs in the list L and whose sides are the
straight line segments connecting [ai, bi] and [ai+1, bi+1], (1 ≤ i ≤ n− 1), and
[an, bn] and [a1, b1].

This paper is organized as follows. At first we look at Jubin’s construction
and prove that it is a local optimum. Though there is no rigorous proof,
we conjecture and reasonably believe that it is indeed a global optimum at
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least for “the continuous chess board”, after numerous experiments with one,
two and more components. Then we consider the optimal case under more
restrictions, or under certain configurations, e.g., only one component or two
identical squares or two identical triangles, etc. In some cases, the exact
optimal parameters and areas can be obtained. Note that in this paper’s
figures, for convenience of demonstration, the color red is used to represent
white queens and blue is for black queens.

Jubin’s Construction

As mentioned in [S2] (and [S1], sequence A250000), it is conjectured that
Benoit Jubin’s construction given in Fig. 5 of [S2], see also here:

http://sites.math.rutgers.edu/~zeilberg/tokhniot/peaceable/P1.html

or Figure 1, is optimal for n ≥ 10. Its value is b7n2

48
c.

While we are, at present, unable to prove this, we did manage to prove
that when one generalizes Jubin’s construction and replaces the sides of the
two pentagons with arbitrary parameters (of course subject to the obvious
constraints so that both white and black queens reside in two pentagons),
then Jubin’s construction is indeed (asymptotically) optimal, i.e. in the limit
as n goes to infinity.

Lemma 1 Normalizing the chess board to be the unit square {(x, y) | 0 ≤
x, y ≤ 1}, if the white queens are placed in the union of the interiors of the
following two pentagons

[ [0, 0] , [a, a] , [a, a + b− e] , [a− e, a + b− e] , [0, b] ],

and

[ [g, 0] , [g + c, 0] , [g + c, c− 2 f + d] , [g + c− f, c− f + d] , [g, d] ],

where a, b, c, d, e, f, g are between 0 and 1 and all coordinates and side lengths
in Fig. 1 are non-negative and appropriate so that black queens also reside
in two pentagons, then the black queens are located in the interiors of the
pentagons

[ [g, 1] , [a, 1] , [a, g+2 c−2 f+d−a] , [
1

2
g+

1

2
d−1

2
b+c−f, 1

2
g+

1

2
d+

1

2
b+c−f ] ,

http://sites.math.rutgers.edu/~zeilberg/tokhniot/peaceable/P1.html
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Figure 1: Benoit Jubin’s Construction for a Unit Square

[g, g + b] ],

and

[ [1, 1] , [g+c, g+c] , [g+c, a+b−e] , [a+b−e+g−d, a+b−e] , [1, 1+d−g] ].

Proof. Since we only consider cases when the black queens also reside in two
pentagons, this requirement provides natural constraints for these parame-
ters a, b, c, d, e, f, g. Just to name a few, a ≤ g because the two pentagons are
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not overlapped, g + c ≤ 1 because the right pentagon of white queens should
entirely reside in the unit square, d ≤ g because otherwise the right pentagon
of black queens will not exist and c− f + d, which is the y-coordinate of the
highest point in the right pentagon of white queens, cannot be too large to
ensure the right pentagon of black queens does not degenerate to a parallel-
ogram. In these constraints we always use “≤” instead of “<” so that the
Lagrange multipliers will be able to work in a closed domain.

With school geometry, it is obvious that black queens cannot reside in 0 ≤
x < a since it is attacked by the left pentagon of white queens. Similar
arguments work for the area 0 < y ≤ a + b and g < x < g + c. Now
the leftover on the unit square is a union of two rectangles. By excluding
x+ y < g+ 2c−2f +d, 0 < y−x < b and y−x < d− g, these two rectangles
are shaped into two pentagons and the coordinates of their vertices follow
immediately.

Lemma 2 The area of the white queens is

ab − 1

2
e2 + cd +

1

2
c2 − f 2,

while the area of the black queens is

−a−3

4
d2+2 g−d−cd−ab−f 2−1

2
e2−3

2
c2+2 bc−2 af+3 ac+2 ad+2 cf−ec−ed+be

+ae− bf + fd +
3

2
bd− a2 − 3

4
b2 − 2 gc +

1

2
gd− 1

2
gb + ag + gf − 7

4
g2.

Proof. For white queens, the left pentagon is a rectangle minus two triangles.
Hence the area is

a(a + b− e)− 1

2
a2 − 1

2
(a− e)2 = ab− 1

2
e2.

The area of the right pentagon is

c(d + c− f)− 1

2
f 2 − 1

2
(c− f)2 =

1

2
c2 + cd− f 2.

So the area of the white queens follows. For black queens, similarly, with
the coordinates of the vertices in Lemma 1, simple calculation leads to the
formula of its area.
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Theorem The optimal case of the two-pentagon configuration is Jubin’s
construction.

Proof. The procedure MaxC(L,v) in the Maple package PeaceableQueens.txt
takes a list of length 2, L, consisting of polynomials in the list of variables
v, and v as inputs and outputs all the extreme points of L[1], subject to the
constraint L[1] = L[2], using Lagrange multipliers.

Optimally, the areas of the white queens and black queens should be the
same. Maximizing this quantity with the procedure MaxC under this con-
straint shows that the maximum value is

7

48
,

and this is indeed achieved by Jubin’s construction, in which the white queens
are located inside the pentagons

[ [0, 0] , [
1

4
,
1

4
] , [

1

4
,
1

2
] , [

1

6
,
1

2
] , [0,

1

3
] ],

and

[ [
1

2
, 0] , [

3

4
, 0] , [

3

4
,
1

4
] , [

2

3
,
1

3
] , [

1

2
,
1

6
] ],

and the black queens reside inside the pentagons

[ [
1

2
, 1] , [

1

4
, 1] , [

1

4
,
3

4
] , [

1

3
,
2

3
] , [

1

2
,
5

6
] ],

and

[ [1, 1] , [
3

4
,
3

4
] , [

3

4
,
1

2
] , [

5

6
,
1

2
] , [1,

2

3
] ].

It seems natural that two components are optimal because if there is only one
connected component for white queens, black queens still have two connected
components. From the view of symmetry, it seems good to add the other
component for white queens. In the rest of the paper, it is shown that with
only one connected component it is unlikely to surpass the 7

48
result. And

by experimenting with three or more connected components for the white
queens, it seems that it is not possible to improve on Jubin’s construction,
hence we believe that it is indeed optimal (at least asymptotically). By
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the way, Donald Knuth kindly informed us that what we (and the OEIS)
call Jubin’s construction already appears in Stephen Ainley’s delightful book
”Mathematical Puzzles”[A], p. 31, Fig, 28(A) .

Single Connected Component

In this section, we try to find the optimal case when W is a single connected
component and when the configuration is restricted to rectangles, parallelo-
grams, triangles and finally obtain a lower bound for the optimal case of one
connected component.

A Single Rectangle

Let the rectangle for white queens be [ [0, 0] , [a, 0] , [a, b] , [0, b] ], with the
obvious fact that for a rectangle with a given size, placing it in the corner
will lead to the largest non-attacking area. The area for white queens is ab
and the area for black queens is (1− a− b)2. We’d like to find the maximum
of ab under the condition

ab = (max(1− a− b, 0))2, 0 ≤ a, b ≤ 1.

Since a and b are symmetric, the maximum must be on the line a = b. Hence
the optimal case is when

a = b =
1

3

and the largest area for peaceable queens when the configuration for white
queens is a rectangle is 1

9
.

A Single Parallelogram

Let the parallelogram for white queens be [ [0, 0] , [a, a] , [a, a+b] , [0, b] ].

Note that as mentioned in the beginning of this section, because the line
segment must be vertical, horizontal or of slope ±1 and the corner is the
best place to locate a shape, there are only two kinds of parallelograms, the
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Figure 2: The Optimal Rectangle for a 120 by 120 Chess Board

other one being [[0, 0], [b, 0], [a + b, a], [a, a]]. Obviously they are symmetric
with respect to the line y = x, so let’s focus on one of them.

The area for white queens is still ab and the area for black queens is still
(max(1−a− b, 0))2. So similarly with the rectangle case, the maximum area
1
9

is reached when

a = b =
1

3
.
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Figure 3: The Optimal Parallelogram for a 120 by 120 Chess Board

A Single Triangle

With similar arguments as in the last subsection, the optimal triangle must
have the format: [ [0, 0] , [0, a] , [a, a] ]. The area for white queens is

1

2
a2
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and the area for black queens is

1

2
(1− a)2.

with the condition 0 ≤ a ≤ 1.

Hence, when a = 1
2

the area reaches its maximum 1
8
, which is better than

the rectangle or parallelogram configuration.

Figure 4: The Optimal Triangle for a 120 by 120 Chess Board
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By the way, [ [0, 0] , [0, a] , [a, 0] ] won’t be a good candidate for optimal trian-
gles because we can always extend it to a square [ [0, 0] , [0, a] , [a, a] , [a, 0] ]
without decreasing the area of black queens. Then its maximum cannot
exceed the maximum of rectangles, which is 1

9
.

A Single Hexagon

After looking at specific configurations in the above three subsections, we’d
like to find some numerical lower bounds for the single connected compo-
nent configuration. It is interesting to find out or at least get a numerical
estimation how large the area of white or black queens can be if the white
queens are in a single connected component. Note that from rectangles and
parallelogram we get a lower bound 1

9
≈ 0.1111 and from triangles we get a

better lower bound 1
8

= 0.125.

The natural thing is that we want to place the polygon in a corner. Because
of the restriction of the orientations of its sides, at most it can be an octagon.
Let’s place the polygon in the lower left corner. Then we immediately realize
that it is a waste if the polygon doesn’t fill the lower left corner of the unit
square. It is the same for the upper right side of the polygon. If part of its
vertices are [ [a, b] , [a, b+c] , [a−d, b+c+d] , [a−d−f, b+c+d] ], then we can
always extend the polygon to [ . . . , [a, b] , [a, b+c+d] , [a−d−f, b+c+d] , . . . ]
without decreasing the area of black queens.

Hence the general shape is a hexagon

[ [0, 0] , [a, 0] , [a + b, b] , [a + b, b + c] , [d, b + c] , [0, b + c− d] ]

with four parameters. Then the area for white queens is

(a + b)(b + c)− 1

2
(b2 + d2),

and the area for black queens is

1

2
(1− a− b− c)2 +

1

2
(1− a− 2b− c + d)2.

With the procedure MaxC, one of the local maximums found using Lagrange
multipliers is when

a = c = d =
1

2
, b = 0.
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Figure 5: The Nearly Best Lower Bound Configuration for a 100 by 100
Chess Board

However, actually this is the optimal triangle with an area of 1
8
.

Another local maximum is when a = b = c = d. In that case, we have

3a2 = (1− 3a)2.

Hence when

a =
3−
√

3

6
≈ 0.2113248654,
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the area of white queens is maximized at

3a2 =
2−
√

3

2
≈ 0.1339745962.

The best configuration of hexagons is found and at least we have a numerical
lower bound 0.1339745962 for the best single component configuration.

Two Components

Since in Jubin’s construction, there are two pentagons, it is natural to think
of the optimum of certain two-component configurations. The difficulty for
analyzing the two-component is that more parameters are introduced and the
area formula for black queens becomes a much more complicated piece-wise
function.

In this section, the cylindrical algebraic decomposition algorithm in quanti-
fier elimination is applied to find out the exact optimal parameters and the
maximum areas. Given a set S of polynomials in Rn, a cylindrical algebraic
decomposition is a decomposition of Rn into semi-algebraic connected sets
called cells, on which each polynomial has constant sign, either +, - or 0.
With such a decomposition it is easy to give a solution of a system of in-
equalities and equations defined by the polynomials, i.e. a real polynomial
system.

Two Identical Squares

To keep the number of parameters as few as possible, the configuration of two
identical squares is the first we’d like to study. There are two parameters,
the side length a and the x-coordinate s of the lower left vertex of the right
square, the left square’s lower left vertex being the origin.

The two squares are
[ [0, 0] , [a, 0] , [a, a] , [0, a] ]

and
[ [s, 0] , [s + a, 0] , [s + a, a] , [s, a] ].
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Figure 6: The Nearly Optimal Two Identical Squares Configuration for a 200
by 200 Chess Board

Based on this configuration, the domain is

0 ≤ a ≤ 1

2
, a ≤ s ≤ 1− a.

The area of white queens is
2a2.
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Actually the formula for black queens is very complicated, especially when a
is small there may be a lot of components for B. However, by experimentation
(procedure FindM2Square), we found that for all mid-range s ∈ [0.24, 0.76],
a around 0.23 will always maximize the area. Then we just need to focus on
the shape of B when a is not far from its optimum.

The area of black queens is

(s−a)(1−s−a)+
1

4
(s−a)2+(max(1−s−2a, 0))2+max(s−2a, 0)(1−s−a).

The domain for a and s is a triangle. The area formula for black queens
shows that the two lines s = 2a and s = 1 − 2a separate the domain into 4
regions. In each region, we have a polynomial formula for the area of black
queens. Since the area of white queens W is just a simple formula of a, we
need to maximize a with the condition W = B.

When s ≥ 2a and s ≥ 1 − 2a, by cylindrical algebraic decomposition we
obtained

1
2
(−1 +

√
2) ≤ a < 1

27
(1 + 2

√
7) s = 4+a

7
+ 2

7

√
4− 19a + 9a2

1
27

(1 + 2
√

7) ≤ a < 1
18

(19−
√

217) s = 4+a
7
± 2

7

√
4− 19a + 9a2

a = 1
18

(19−
√

217) s = 4+a
7
− 2

7

√
4− 19a + 9a2

.

When s ≤ 2a and s ≥ 1− 2a, the result is an empty set.

When s ≤ 2a and s ≤ 1− 2a, we obtained

2

9
≤ a ≤ 1

7
(3−

√
2), s = 2− 7a− 2

√
−2a + 9a2.

When s ≥ 2a and s ≤ 1− 2a, we obtained

2

9
≤ a ≤ 1

27
(1 + 2

√
7), s = 3a− 2√

3

√
1− 7a + 12a2.

Comparing the four cases, we found that the largest area occurred in case 1,
when

a =
1

18
(19−

√
217) ≈ 0.2371711193,

s =
13

18
− 1

126

√
217 ≈ 0.6053101598.

The largest area is 289
81
− 19

√
217

81
≈ 0.112500281.
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Two Identical Triangles

The configuration of two identical isosceles right triangles with the same
orientation is the next to be considered. There are also two parameters, the
leg length a and the x-coordinate s of the lower left vertex of the triangle on
the right. Note that the slopes of both triangles’ hypotenuses are +1.

The two isosceles right triangles are

[ [0, 0] , [a, 0] , [a, a] ]

and
[ [s, 0] , [a + s, 0] , [a + s, a] ].

The domain for the two parameters a and s is also

0 ≤ a ≤ 1

2
, a ≤ s ≤ 1− a.

The area of white queens is a2 and for the area of black queens, by numerical
experimentation, we found that for all mid-range s ∈ [0.32, 0.68], the area is
maximized when a is around 0.31. Hence for a around 0.31, we have that
the area of black queens is

2(s− a)(1− s− a) +
1

2
(s− a)2 +

1

2
(1− s− a)2 +

1

2
(max(1− s− 2a, 0))2.

When s ≥ 1− 2a, by cylindrical algebraic decomposition we obtained
1
2
(2−

√
2) ≤ a < 1

4
(−1 +

√
5) s = 1

2
+ 1

2

√
3− 12a + 8a2

1
4
(−1 +

√
5) ≤ a < 1

4
(3−

√
3) s = 1

2
± 1

2

√
3− 12a + 8a2

a = 1
4
(3−

√
3) s = 1

2
− 1

2

√
3− 12a + 8a2

.

When s ≤ 1− 2a, we obtained

1

11
(5−

√
3) ≤ a ≤ 1

4
(−1 +

√
5), s = 2a−

√
2− 10a + 12a2.

Hence the area is maximized when

a =
1

4
(3−

√
3) ≈ 0.316987298,
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Figure 7: The Nearly Optimal Two Identical Isosceles Right Triangles with
the Same Orientation Configuration for a 200 by 200 Chess Board

s =
1

2
.

The largest area is 3
4
− 3

8

√
3 ≈ 0.1004809470.

Thanks to the referee’s suggestions, a larger area can be obtained if two
identical isosceles right triangles with different orientations are considered.
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For example, if we take the two triangles to be

[ [0, 0] , [a, 0] , [a, a] ]

and
[ [1− a, 0] , [1, 0] , [1− a, a] ],

then the area of black queens is

a(1− 2a) + (
1

2
− a)2 = −a2 +

1

4
.

Equalizing the areas of white queens and black queens, we get

Area(W ) = a2 =
1

8
,

which is greater than the optimal case of two identical isosceles right triangles
with the same orientation.

One Square and One Triangle with the Same Side Length

With the same notations as the above two subsections, let W be the union
of the square

[ [0, 0] , [a, 0] , [a, a] , [0, a] ]

and the triangle
[ [s, 0] , [a + s, 0] , [a + s, a] ].

Then the area of white queens is 3
2
a2 and the area of black queens is

a(s− a)(1− s− a) +
1

4
(s− a)2 + (max(1− s− 2a, 0))2

when a is around its optimum 0.27 and s ∈ [0.28, 0.72]. It is obtained that
when s ≥ 1− 2a

1
2
(−2 +

√
6) ≤ a < 1

21
(1 +

√
22) s = 4−a

7
+ 1

7

√
16− 64a + 22a2

1
21

(1 +
√

22) ≤ a < 2
11

(8−
√

42) s = 4−a
7
± 1

7

√
16− 64a + 22a2

a = 2
11

(8−
√

42) s = 4−a
7
− 1

7

√
16− 64a + 22a2

,
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Figure 8: An Example of Two Identical Isosceles Right Triangles with Dif-
ferent Orientations Configuration for a 200 by 200 Chess Board

and when s ≤ 1− 2a

1

15
(6−

√
6) ≤ a ≤ 1

21
(1 +

√
22), s =

7a

3
− 1

3

√
12− 72a + 106a2.

Consequently, we have the maximized area when

a =
2

11
(8−

√
42) ≈ 0.276228965
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Figure 9: The Nearly Optimal One Square and One Triangle (with the same
side length) Configuration for a 200 by 200 Chess Board

s =
112

33
− 14

33

√
42− 50

33

√
7 +

52

33

√
6 ≈ 0.495622162.

The largest area is 636
121
− 96

121

√
42 ≈ 0.1144536616. Among the three configu-

rations in this section, we found that this configuration with one square and
one triangle has the largest area.
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Future Work and Final Remarks

Our method can be easily generalized for configurations with more compo-
nents and/or more parameters. For instance, let’s consider the configuration
of two squares, not necessarily identical. Then there are three parameters,
the side length a of the left square, the side length b of the right square and
the x-coordinate s of the right square’s lower left vertex. For fixed b and s,
we can find the interval of a in which the optimum is located. Then for each
fixed s, we are able to find the interval of b such that its corresponding a will
lead to the largest area a2 + b2. When the estimated optimal parameters are
determined, a piece-wise function of the area of black queens follows.

The main difficulty of this peaceable queens problem lies in the number of
parameters and the complexity of the area formula of black queens. When
there are multiple components, as long as the number of parameters is lim-
ited, it should be still doable. For example, the configuration of three identi-
cal squares which are placed equidistantly has only one parameter, the side
length a. When the chess board is 240 by 240, the optimal a is around 40,
which means in the unit square the optimal side length is around 1

6
.

In conclusion, in this paper we prove that Jubin’s configuration is a local
optimum. Optimal cases of some certain configurations are discussed. Future
work includes the exact solution of complicated configurations with numerous
parameters, whether the white queens have two components under the best
configuration, and proof or disproof that Jubin’s configuration is indeed the
best.
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