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Abstract. We study the density of the invariant measure of the Hurwitz complex continued

fraction from a computational perspective. It is known that this density is piece-wise real-analytic
and so we provide a method for calculating the Taylor coefficients around certain points and also

the results of our calculations. While our method does not find a simple “closed form” for the

density of the invariant measure (if one even exists), our work leads us to some new conjectures
about the behavior of the density at certain points.

In addition to this, we detail all admissible strings of digits in the Hurwitz expansion. This

may be of independent interest.

1. Introduction

Given a transformation of a subset of Rn to itself, one common question is whether or not
there exists an absolutely continuous (with respect to Lebesgue) invariant measure (or a.c.i.m),
and if it exists, to find a simple closed form of it. This is a very common concern in the study
of fibred systems, the symbolic expansions of numbers. The transformation Tx = bx (mod 1)
on [0, 1) associated to the base-b transformation has Lebesgue itself as its invariant measure. The
transformation Tx = βx (mod 1) on [0, 1) associated to β-expansions (β > 1) has the Parry measure
as its invariant measure. The transformation Tx = 1/x (mod 1) on [0, 1) associated to the regular
continued fraction expansion has the Gauss measure µ(A) =

∫
A

dx
log 2(1+x) as its invariant measure.

(See [3].)
Of particular interest to us are the invariant measures of the many continued fraction (CF)

variants. Explicit closed forms are known for the invariant measure of the backwards CF, even CF,
odd CF, Rosen CF, and some, but not all, of Nakada’s α-CFs [2, 6]. These are all one-dimensional
real CF expansions. The simplest complex CF expansion is the Hurwitz complex CF (see Section 2
for definitions).1 While the Hurwitz complex CF is well-studied [1, 4, 5, 7, 10], little is yet known
about the corresponding invariant measure. It is known (see Theorem 2.1) that the density h of
the invariant measure is piece-wise real-analytic with 12 pieces of analyticity and it is known that
it satisfies certain symmetries, but that is all. Some of Doug Hensley’s computational work on the
invariant density h can be found at his website: http://www.math.tamu.edu/~dhensley/.

In Section 4 of this paper, we will describe a method for numerically approximating a truncated
Taylor expansion of the invariant density h around a given point. In Section 5, we describe the results
of our computation. The precision of our calculations relied on a variable k, which determines the
quality of the numerical approximation. We found that increasing k by one roughly reduced the
error in our computation of the coefficients by a multiplicative factor of around .57 (see Table 4),
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which suggests that as we increase k linearly, our numerical approximations converge exponentially.
At the limit of computation on our personal computers, this suggests we were able to compute the
coefficients to an accuracy of around ±10−3. As an example of our calculations, we approximated
h near the point (−.5,−.5) (using the usual identification of C with R2) with the following function
(again, see Table 4):

0.7149 + 0.3411(x+ .5)2 + 0.3411(y + .5)2 + 0.0875(x+ .5)4 + 0.0875(y + .5)4

+ 0.4974(x+ .5)2(y + .5)2 + 0.0180(x+ .5)6 + 0.0180(y + .5)6

+ 0.2652(x+ .5)4(y + .5)2 + 0.2652(x+ .5)2(y + .5)4

Mathematica files including the implementation of our calculations can be found at http://github.
com/JVandehey/HurwitzInvariantMeasure.

Figure 1 shows the complete invariant density produced using our data, with all 12 regions of
analyticity and 90 degree rotational symmetry around the origin clearly visible. It is difficult to see
in this picture, but all 12 regions show some curvature to them. We also produced Figure 2, which
shows an enlarged image of 3 of the regions of analyticity, with more of the curvature now visible.

While this information does not give a simple, closed-form expression for the invariant density,
our calculations did suggest the following conjecture:

Conjecture 1.1. The Taylor series of the invariant density h is an even function in both the x and
y coordinates around the points ±.5± .5i, ±.5, and ±.5i. In other words, if x0 + y0i is any of the
above points, then

∂m+n

∂mx∂ny
h(x+ yi)

∣∣∣∣
x+yi=x0+y0i

is 0 whenever m or n is odd.

We are being somewhat informal in talking about the Taylor series. In particular, when we
discuss the Taylor series of h at a point, we mean the Taylor series of the corresponding analytic
piece that the point lies in. Also, each analytic piece of h could be extended to an analytic function
on a larger set (this is a consequence of a proof in [5]), and thus it is reasonable to discuss the Taylor
series at points on the boundary of the domain of h.

In Section 6, we briefly describe some other methods we used to try and compute the invariant
density and why they didn’t work. One method lead us to the question of what admissible sequences
of digits can appear in the Hurwitz complex CF expansion. We answer that in Section 3. One
consequence of our work is the following result.

Theorem 1.2. If one allows the digits of a Hurwitz CF expansion to include Gaussian integers
and marked Gaussian integers, then admissible strings of digits can be completely determined by
the length-2 admissible strings of digits. That is, if [a1, a2, . . . , an] is an admissible string, then the
possible values for an+1 such that [a1, a2, . . . , an, an+1] is also admissible are determined solely by
the value of an.

We note that marked numbers, such as (1 + i)′, are distinct from regular numbers, such as 1 + i,
only symbolically. They take the same numerical value.

2. Fundamentals of Hurwitz Continued Fractions

Let K ⊂ C denote the set

K := {x+ yi : x, y ∈ [−1/2, 1/2)}.

http://github.com/JVandehey/HurwitzInvariantMeasure
http://github.com/JVandehey/HurwitzInvariantMeasure
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Figure 1. A plot of the density function h(z) of the invariant measure

It is clear that the shifts of this set by Gaussian integers tesselate the complex plane. By this we
mean that

⋃
α∈Z[i](K + α) = C and for any two distinct α, α′ ∈ Z[i], we have

(K + α) ∩ (K + α′) = ∅.

As such, to each element z ∈ C we may define a unique element [z] ∈ Z[i] such that z ∈ K + [z].
This function [·] we may interpret as the nearest integer to z and can write explicitly in terms of
the real-valued nearest-integer function by [x+ yi] = [x] + i[y].

From this we may define a Gauss map T : K → K given by

T (z) =


1

z
−
[

1

z

]
, if z 6= 0,

0, if z = 0.
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Figure 2. A zoomed-in plot of three regions of the density function h(z) of the
invariant measure

For a given point z ∈ K we define (possibly finite, possibly infinite) sequences zn, an, defined
inductively by z0 = z and then, provided zn 6= 0, we let an+1 = [1/zn] and zn+1 = (1/zn)− an+1 =
T (zn). If zn = 0, then we terminate the sequences at n. From this we see that

z =
1

a1 + z1
=

1

a1 +
1

a2 + z2

=
1

a1 +
1

a2 +
1

a3 + z3

.

We would like to prove the meaningfulness and convergence of the infinite continued fraction
expansion,

z =
1

a1 +
1

a2 +
1

a3 + . . .

.

The convergence is immediate if the sequence is finite (which happens if and only if z ∈ Q[i]).
To indicate why convergence happens in the infinite case, we must consider the convergents. We
let p−1 = q0 = 1 and p0 = q−1 = 0, and then let for n ≥ 1, let pn = anpn−1 + pn−2 and
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qn = anqn−1 − qn−2. It is an easy induction proof to show that

pn
qn

=
1

a1 +
1

a2 +
1

a3 + · · ·+ 1
an

,

and that this fraction is in lowest terms. Moreover, with slightly more difficulty, one can show that∣∣∣∣z − pn
qn

∣∣∣∣ < 2
√

2|zn|
|qn|2

and that |qn+2/qn| ≥ 3/2, proving that the convergents pn/qn do indeed converge to z as desired.
(For details, see [5, Ch. 5])

Since one can write an+1(z) = [1/Tnz], we also have that an(Tz) = [1/Tnz], and hence T acts
as a forward-shift on the string of digits, i.e., if we connect a point z ∈ K to its string of digits
[a1, a2, a3, . . . ], then

(1) T ([a1, a2, a3, . . . ]) = [a2, a3, a4, . . . ].

Particularly relevant for our purposes, we know that there exists a probability measure µ on K,
absolutely continuous with respect to Lebesgue, that is invariant—that is, µ(T−1A) = µ(A)—and
ergodic—that is, if T−1A = A, then µ(A) = 0 or µ(A) = 1—with respect to the transformation
T . This was first shown by Nakada [7]. As a consequence of further investigations into the map
T , Schweiger [10, 11] showed that µ is piecewise Lipschitz with respect to a certain partition of K.
Hensley [5] further proves the following result.

Theorem 2.1. The measure µ has a density function ρ—that is, µ(A) =
∫
A
ρ dλ(z) with λ being

Lebesgue measure on C—where ρ is continuous except perhaps along the arcs |z±1| = 1, |z± i| = 1,
and |z ± 1 ± i| = 1. It is moreover real-analytic on each of the 12 open regions that these arcs
partition K into. µ also obeys the following symmetries: µ(iA) = µ(A) and µ(A) = µ(A).

In order to better understand the measure µ, we introduce the natural extension. Let C∗ =
C ∪ {∞}

We extend T to T̂ : K × C∗ → K × C∗, that acts by

T̂ (z, w) =


(

1

z
−
[

1

z

]
,

1[
1
z

]
+ w

)
, z 6= 0,

(z, w) , z = 0.

We then define K̂ ⊂ (C∗)2 by

K̂ =
{
T̂ i(z, 0) : z ∈ K, i ∈ Z≥0

}
.

Whereas typically we use the overline to refer to taking conjugates, in this case we use it to define
the closure. Note that it can be shown further (see again [5, Ch. 5]) that K̂ ⊂ B2 where B is the
unit ball around the origin in C.

Similar to (1), we have that

T̂ i


1

a1 +
1

a2 +
1

a3 + . . .

, 0

 =


1

ai+1 +
1

ai+2 +
1

ai+3 + . . .

,
1

ai +
1

ai−1 + · · ·+ 1

a1

 .
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It is true, although not immediate, that by ignoring an appropriate measure-zero set, T̂ acts as a
bijection from K̂ to itself, as was shown in Ei, Ito, Nakada, and Natsui [8].

Let V ⊂ C denote the projection of K̂ onto its second coordinate. It is not the case that
K̂ = K × V (up to some zero-measure set); however, it is thankfully not much more complicated
than that.

Let us define the 12 open regions of K more precisely.2 Let Kk,` for k ∈ {1, 2, 3}, ` ∈ {1, 2, 3, 4},
be given by

K1,` = i
`−1 · {z ∈ K : |z + 1 + i| < 1}

K2,` = i
`−1 · {z ∈ K : |z + 1 + i| > 1, |z + 1| < 1, |z + i| < 1}(2)

K3,` = i
`−1 · {z ∈ K : |z + 1| < 1, |z ± i| > 1}.

Note that these cover K up to a zero-measure set. (See the left-hand side of Figure 4.)

Now to each Kk,` there exists a set Vk,` ⊂ V such that K̂ =
⋃
k,`Kk,` × Vk,`, again up to a

zero-measure set. (For a depiction of some of the Vk,`, see the right-hand side of Figure 4.) We note
several symmetries are apparent from the pictures and are in fact as we see them. For example,
V1,1 is symmetric along the line b = −a, if we think of complex points as being written as a + bi.
Likewise V2,1 is also symmetric along b = −a and V3,1 is symmetric along b = 0.

Ei, et al, [8] study the sets Vk,` very closely and in particular prove a number of useful facts.
In particular, each Vk,` has positive Lebesgue measure with path-connected and simply connected
interior and a boundary given by a Jordan curve, which appears to be fractal in nature.

2.1. Properties of the invariant measure. These properties allow us to nicely define an abso-
lutely continuous invariant measure µ̂ for T̂ on K̂. In particular, we will show that if we define µ̂
by

µ̂(E) =

∫
E

1

|zw + 1|4
dλ(z) dλ(w), where (z, w) ∈ E

for any measurable set E ⊂ K̂, then this is an invariant measure. That this integral is actually
integrable follows from the properties in the previous paragraph. That this measure is invariant is
fairly straight-forward. Since T̂ is a bijection, it suffices to show µ̂(T̂E) = µ̂(E), for any measurable

E ⊂ K̂. Moreover, since µ̂ is countably additive and there are countably many digits, it suffices to
consider a set E such that for each (z, w) ∈ E, the first continued fraction digit of z is the same.

Thus T̂ acts by

T̂ (z, w) =

(
1

z
− a, 1

a+ w

)
,

where a = a1(z). Thus,∫
T̂E

1

|zw + 1|4
dλ(z) dλ(w) =

∫
E

1∣∣∣( 1z − a) ( 1
a+w

)
+ 1
∣∣∣4
dλ(z)

|z|4
dλ(w)

|a+ w|4

=

∫
E

1

|(1− za) + z(a+ w)|4
dλ(z) dλ(w)

=

∫
E

1

|zw + 1|4
dλ(z) dλ(w).

2Although we use somewhat similar notation to the Ei, et al, paper, our definitions are distinct and should not be
mistaken for one another.
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Figure 3. Some pictures of Kk,` and Vk,`. Note that the picture of V3,1 is scaled
differently than V1,1 and V2,1.

(a) The region K1,1 (b) The region V1,1

(c) The region K2,1 (d) The region V2,1

(e) The region K3,1 (f) The region V3,1

Figure 4

We note briefly that when we do the change of variables, we get dλ(z)/|z|4 instead of dλ(z)/|z|2
because dλ(z) is the differential with respect to Lebesgue measure and since this is seen as a
transformation on the complex plane, areas are shrunk by the square of the derivative.

So this does define an invariant measure for T̂ on K̂.
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This gives us a way to define µ by projecting from µ̂. Let πK : K̂ → K be the projection onto the
first coordinate. (Since K̂ was defined using a closure and K does not contain its entire boundary,

this projection will not be defined for a Lebesgue-measure-zero subset of K̂, but this will ultimately
not matter.)

Briefly, we will show that π−1K T−1 = T̂−1π−1K . Namely, (z, w) ∈ π−1K T−1A if and only if z ∈ T−1A
if and only if Tz ∈ A. Moreover, (z, w) ∈ T̂−1π−1K A if and only if T̂ (z, w) ∈ π−1K A if and only if

Tz ∈ π−1K A.

And thus if we define a measure µ = µ̂ ◦ π−1K then for any measurable set A ⊂ K, we have

µ(T−1A) = µ̂(π−1K T−1A) = µ̂(T̂−1π−1K A) = µ̂(π−1K A) = µ(A),

so this measure is invariant and one can also see that it is absolutely continuous by the absolute
continuity of µ̂. So this measure must be the same µ as before. (We are eliding over a small step
here: to show this measure and the previous one were the same, we must invoke that we already
knew the previous measure was ergodic and use the ergodic decomposition theorem.)

Thus, if we only knew the shapes Vk,` perfectly (and perfectly how to integrate over them), then
the problem of understanding µ would be trivialized. While we cannot yet do that, we can use the
simple form of µ̂ to help us estimate µ better.

In particular, suppose h is the density of µ (with respect to Lebesgue measure). Then we can
express h by

h(z) =

∫
Vk,`

1

|zw + 1|4
dw, if z ∈ Kk,`

We may express this as a function h(x, y) where z = x + iy and since it is real-analytic, we may
express its derivatives via

(3) hm,n(x, y) :=
∂m+n

∂xm∂yn
h(x, y) =

∫
a+bi∈Vk,`

∂m+n

∂xm∂yn
1

((ax− by + 1)2 + (ay + bx)2)2
da db.

This equation comes from taking w = a+ bi.
When the choice of k, ` is not clear, we will use hk,`m,n(x, y). In general, we will assume that

x+ yi ∈ Kk,`, but in at least one case, we will not make this assumption.
Equation (3) will be the primary tool we use to calculate the Taylor series for h at appropriate

points.
Finally, we conclude this section with a discussion of the Perron-Frobenius operator. This oper-

ator P is defined in this case by∫
A

Pf(z)dλ(z) =

∫
T−1A

f(z)dλ(z), for all measurable A ⊂ K.

If f = h, where h is the density of the measure µ, then clearly Pf = f . On the other hand, if
Pf = f , then by the above equation, the measure µf given by µf (A) =

∫
A
fdλ is T -invariant.

By the ergodic decomposition theorem, we know that µf can be, loosely speaking, written as a
linear combination of ergodic measures. We also know that any two ergodic measures are mutually
singular—that is, the support of one ergodic measure is of measure zero with respect to any other
ergodic measure—so since we already know that µ is ergodic and has K as its support, the support
of any other ergodic measure must have zero Lebesgue measure. Since µf is continuous with respect
to Lebesgue, it must therefore be a constant times µ, and so, up to a constant, f is equal to h almost
everywhere.

Moreover, it can be shown that

Pf(z) =
∑

z′∈T−1z

f(z′)

|T ′(z′)|
,
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where here the denominator represents the Jacobian of T seen here as two-dimensional real-valued
map. This gives us a functional equation for the invariant density h, which could also be used to
calculate it. In particular,

h(z) =
∑

(a+z)−1∈T−1z

1

|a+ z|4
h

(
1

a+ z

)
, z ∈ K.

3. Admissible strings of digits

In Figure 5a, we see the region K. When we try to calculate z1, the first thing we must do is
invert, i.e., apply the map z 7→ 1/z. This map applied to the region K gives Figure 5b. We have
divided the map up into tiles centered around each Gaussian integer, each of which corresponds to
a unique possibility of a1, with the correspondence being the obvious one: each tile corresponds to
the Gaussian integer it is centered at. If there is any intersection between the tile and the inversion
of K, we know that that digit is a possibility for a1. In particular, a1 can be any element of the set

G = Z[i] \ {0, 1,−1, i,−i}.

(a) The region K (b) The region K inverted

Figure 5. The initial picture

This picture is extremely important. Although z = z0 could be anything in K, this is not true of
z1. The possible values of z1 are dependent on a1. For example, if a1 = 2 (which is possible because
in Figure 5b we see that the shaded region intersects the tile centered at 2) then we cannot have
that z1 = −1/2, because when we shift this tile back to be centered at the origin the point −1/2 is
not included in the shaded region.

Extending this analysis slightly, if a1 = 2, then z1 cannot satisfy |z1 + 1| < 1, and then, by
inverting the corresponding circle, we see that <(1/z1) ≥ −1/2, and thus we cannot have any digit
a2 for which the real part is negative. This corresponds to part of the first line in Table 1.

However, even though the possible regions z1 can exist in depend on a1, they are not extremely
complex. There are 13 possible regions: the full region, and 12 subregions. The 12 subregions can
be broken down further into 3 examples, with the remaining 9 obtained by rotating these by π/2,
π, or 3π/2. The full region, as well as the 3 initial subregions, are given in Figure 6. We note that
these regions are obtained by taking unions of the various Kk,` regions defined in (2), up to a finite
measure set along their boundaries.

Now, in order to figure out the possibilities for a2 (depending on a1, of course), we must take
each of these 13 regions and invert them as well. For completion, we will give all the pictures
now in Figures 7, 8, and 9. It is immediately clear that all the subregions that result after this
second iteration are the same as those that resulted after the first iteration. Thus these 13 regions
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Figure 6. The four possible new regions (up to rotation)

are the only 13 that will ever appear or need to be analyzed. This happens due to a miraculous
happenstance: the inversion of the arcs that make up the borders of the Kk,` regions, when taken
mod 1, map back onto the exact same arcs again.

In particular, the boundary of K is composed of pieces of the four lines <(z) = ±1/2 and
=(z) = ±1/2. These lines, when inverted become the four circles |z ± 1| = 1 and |z ± i| = 1. When
reduced modulo 1, these become the arcs of the circles |z + α| = 1 for α ∈ {±1,±i,±1 ± i}. The
circles |z+α| = 1 for α ∈ {±1,±i} when inverted go back to the lines <(z) = ±1/2 or =(z) = ±1/2.
The circles |z + α| = 1 for α ∈ {±1± i} when inverted are all mapped back onto themselves. This
is easily checked by confirming that both they and their inversions must intersect the unit circle at
the origin twice (at two of the points ±1,±i); and if we check a third point, say the point 1 + 2i on
the circle |z− (1+ i)| = 1, then when inverted this becomes the point .2− .4i which lies on the circle
|z − (1− i)| = 1. Thus we will only ever see segments of the four lines <(z) = ±1/2, =(z) = ±1/2
and arcs of the 8 circles |z + α| = 1 for α ∈ {±1,±i,±1± i}.

We may now consider these pictures in the following way: if zi−1 belongs to the subregion on the
left (in Figures 5, 7, 8, or 9) then the allowable digits ai are the digits corresponding to tiles which
intersect the region on the right of the same figure. Moreover, the possible region for zi (given a
particular region for zi−1 and choice of ai) is the corresponding tile shifted back to be centered at
the origin.

It is clear from a visual inspection that for most ai in G, the corresponding region for zi is always
the same. For example, the digit ai = 2 is allowable in the pictures given by Figures 5b, 7d, 7f, 7h,
9f, and 9h, and all of Figure 8. In every case, the resulting possible region for zi is 7c.

We see that the only cases where ai can have multiple corresponding regions for zi are when
ai = ±2± i,±1± 2i,±2± 2i, and in each case there are only two possibilities for the corresponding
region for zi. We therefore will add to our collection of possible digits a selection of “marked” digits.
For each of these 12 digits, for example 2 + i, we will also include the marked digit (2 + i)′. One
should consider these marked digits in a similar way as one considers colored partitions. Both 2 + i
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(a) A subregion... (b) ...and its inverse

(c) A subregion... (d) ...and its inverse

(e) A subregion... (f) ...and its inverse

(g) A subregion... (h) ...and its inverse

Figure 7. The first subregion, its rotations, and their inversions
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(a) A subregion... (b) ...and its inverse

(c) A subregion... (d) ...and its inverse

(e) A subregion... (f) ...and its inverse

(g) A subregion... (h) ...and its inverse

Figure 8. The second subregion, its rotations, and their inversions



INVARIANT MEASURE FOR HURWITZ CFS 13

(a) A subregion... (b) ...and its inverse

(c) A subregion... (d) ...and its inverse

(e) A subregion... (f) ...and its inverse

(g) A subregion... (h) ...and its inverse

Figure 9. The third subregion, its rotations, and their inversions
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Value of ai Corresponding region for zi Possible values of ai+1

2, (2 + i)′ Figure 7c {x+ yi ∈ G : |x| ≥ 0}
2i, (1 + 2i)′ Figure 7g {x+ yi ∈ G : |y| ≤ 0}

1 + i Figure 9g {x+ yi ∈ G : |x| ≥ 0, |y| ≤ 0}
2 + i, 1 + 2i, or (2 + 2i)′ Figure 8g G \ {−1 + i,−1 + 2i,−2 + i,−2 + 2i}

∪{(−1 + 2i)′, (−2 + i)′, (−2 + 2i)′}
Table 1. Admissible digit successors

and (2 + i)′ have the same numerical value for computing the continued fraction but exist to help
separate the two possible regions for the next zi. In particular, we will let the unmarked digit, such
as 2+i, be such that if ai = 2+i, then the allowable region for zi is the same one that would appear
had the allowable region for zi−1 been Figure 5b, in this case, the region would be given by that of
Figure 8g. For the marked digit, such as (2 + i)′, we obtain the other allowable region for the next
zi: in the example of ai = (2 + i)′, the allowable region for zi will be Figure 7c, which appears as a
result of the allowable region for zi−1 being Figure 8f.

We let G′ = G ∪ {(±2 ± i)′, (±1 ± 2i)′, (±2 ± 2i)′}. With the definitions of the marked digits,
we see that each ai ∈ G′ corresponds to a uniquely defined allowable region for zi, and thus to a
uniquely defined set of possible ai+1’s. We can thus describe all allowable strings of digits in the
Hurwitz continued fraction expansion by a simple one-step process: that is, the only thing that is
needed to understand whether a digit can occur in a given position is to know what the previous
digit was. This is the content of Theorem 1.2.

As such, we have the table given in Table 1. We obtain the necessarily relations for the remaining
digits in the following way: if we take the negative and/or conjugate on the left-hand column, we
also take negatives and/or conjugates in the right-hand column. For all remaining possible values
of ai, the corresponding region for zi is given by Figure 5a and the possible values of ai+1 are
everything in G.

To create an allowable string for the Hurwitz expansion, one follows the above rules and then,
erases any marks from marked digits.

4. Our method

We will now detail the program we used to achieve our calculations.
Let us emphasize to begin with that our method is really based on the following two-step process.

First, we generate an array of boolean “pixels” that represent a rough plot of the points contained in
a given Vk,`. (We will throughout this section consider V1,1 for simplicity.) Second, to approximate
the Taylor series of h(z), we approximate the integral in (3) by a sum over the points in our array of
pixels. Again, for simplicity, we will approximate the Taylor series at the point −.5− .5i. In other
words, we are calculating hm,n = h1,1m,n(−.5,−.5).

The choice of −.5 − .5i was initially chosen since it was a rational point in V1,1 with small
denominator (a “simple” point in some sense), but as it turned out, it was a very good choice to
make and greatly simplified the resulting calculations, see Conjecture 5.2.

Let us expand this and work through our method in more thorough detail.
Step 1: Initialization
First, we need a point whose orbit we believe to be dense. We will use the point (z0, w0) =

((log 4 − 1) + (log 7 − 2)i, 0), which was also used by Hensley in some of his calculations available
on his website.
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We will choose a positive integer k (not related to the k in Kk,`) that will help represent the
degree of approximation we achieve. We will then let Q = 2k. Then let PixelArray denote a
2Q× 2Q array of boolean values all set to false to begin with.

Each point in the array is meant to correspond to a small square in the complex plane. In
particular, the (i, j) value is meant to correspond to the square of side-length 1/Q centered at

i+ ji

Q
− (1 + i)

(
1 +

1

2Q

)
.

In particular, (i, j) corresponds to the square[
i− 1

Q
− 1,

i

Q
− 1

]
×
[
j − 1

Q
− 1,

j

Q
− 1

]
considered by treating C as R2 in the usual way. Note that these squares are all disjoint except for
their borders and that their union is the entire square centered at the origin with side-length 2. In
the next step, we will attempt to flip the value at (i, j) from false to true if this square intersects
V1,1, so if we represented true values of (i, j) as a filled-in black square and false faluse of (i, j) as a
filled-in white square, we would essentially have a rough pixel depiction of V1,1, hence the name.

Finally, since we performed our calculations in Mathematica, we found it beneficial to precalculate
the function

(4) Hm,n(a, b) =
∂m+n

∂xm∂yn
1

((ax− by + 1)2 + (ay + bx)2)2

∣∣∣∣
x=y=−.5

as a compiled function. In particular these derivatives quickly would become computationally in-
tensive to recalculate every time we wanted to call the function. To demonstrate this, here are some
of the Hm,n(a, b) functions:

H0,0(a, b) =
1

(1− a+ a2/2 + b+ b2/2)2

H0,1(a, b) =
2(−a2 − 2b− b2)

(1− a+ a2/2 + b+ b2/2)3

H0,2(a, b) =
2(−a2 + a3 + a4 + 5a2b+ 5b2 + ab2 + 2a2b2 + 5b3 + b4)

(1− a+ a2/2 + b+ b2/2)4
,

and so on.
In fact, to save on time, we generated a matrix H(a, b) = (Hm,n(a, b))Lm,n=1 for some choice of L.
For studying V1,1 around −.5− .5i, we could use the natural symmetries of V1,1 to only calculate

the lower-triangular matrix of H(a, b) isntead of the full matrix. We will ultimately sum Hm,n over
values of (a, b) corresponding to the center of true pixels in PixelArray. Since V1,1 is symmetric
around a = −b (seeing w = a + bi), we could replace a with −b (and vice-versa), in the sum.
However, if in (4) we replace a with −b and x with y, the value of the function is unchanged. Again,
replacing a with −b has no effect once we have completed the sum and replacing x with y has the
effect of swapping m and n, hence why we could, if we desired, look only over the lower-triangular
matrix.

This behavior is expected. Recall that µ(iA) = µ(A) = µ(A) by Theorem 2.1. As a consequence
K1,1 is symmetric along the line x = y, and since −.5− .5i is on this line, we have that hm,n = hn,m.

Note that V2,1 is symmetric over a = −b as well, but V3,1 is instead symmetric over b = 0. See
Figure 4.

Step 2: Populating the pixel array
We will illustrate the simple method to do this in this section, and later on will give a more

complex (but in some cases, time-saving) method later on.
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Let (z, w) = (z0, w0). Perform the following operation 100 × Q2 times: Let (z, w) := T̂ (z, w) in
the usual assignment sense, and then if z ∈ K1,1, let the (i, j) coordinate of PixelArray be true,
where

i = b<(w)Q+ 1c and j = b=(w)Q+ 1c

In particular, w will belong to the square that coordesponds to the coordinates (i, j).
We note that 100 ∗Q2 here is somewhat arbitrary. It was merely a value we used that seemed to

fill the array rather well.
Step 3: (Optional) Fill the holes in the array
(This step is entirely optional and if not used may just be skipped over completely.)
As was shown in [8], the region V1,1 is simply connected and should not contain any “holes.”

However, our pixel array, as it is generated in an ad hoc and somewhat probabilitistic fashion,
might contain holes, by which we mean pixels (i, j) that are false despite the entire corresponding
square belonging to V1,1.

There are a number of methods one could employ to fill in these holes. We illustrate a few here.

(1) The simplest method would be to make use of the natural symmetry inherent in V1,1. In
particular, it is symmetric around the line a = −b. Thus, one could create a new array of
pixels where (i, j) is true if and only if either (i, j) or (2Q+ 1− j, 2Q+ 1− i) is true in the
original array of pixels.

(2) One could alternately tweak the original array of pixels by making (i, j) be true if its
neighbors, (i+ 1, j), (i− 1, j), (i, j + 1), and (i, j − 1), are all true.

(3) By far the most effective but also most time- and memory-intensive method is to use a
flood-fill algorithm.

In particular, one creates a new 2Q × 2Q pixel array, let us call it NewPixelArray,
that is false in every coordinate. Then one turns the (1, 1) coordinate of NewPixelArray
true and performs a flood-fill algorithm: we look above, below, to the left and right of every
pixel in NewPixelArray that we have turned true and also turn those true unless the
corresponding pixel in PixelArray is true. When completed, this will give us essentially
a photo-negative of the desired array. We can then let PixelArray be NewPixelArray
after applying negation in every coordinate.

Our preferred method was to mix the flood-fill algorithm with facts about symmetry. Flood-fill
algorithms are inherently memory-intensive, so we implemented the following three optimizations:
we first used a scanline variant which saves considerably on memory, we made use of the symmetry
of V1,1 to realize that we only needed to calculate NewPixelArray for i ≤ 2Q + 1 − j (i.e., the
lower-triangular portion), and then we made use of the symmetry a second time to compare (i, j)
of NewPixelArray to both (i, j) and (2Q + 1 − j, 2Q + 1 − i) of PixelArray, choosing to turn
(i, j) true in NewPixelArray unless either of the pixels in PixelArray is true.

Finally, we note that regardless of which process we use, we might accidentally fill in holes that
we were not supposed to, due to the fractal nature of the boundary; however, in various experiments
we felt that the benefit from doing this outweighed the downsides.

Step 4: Approximate the invariant measure
Now, we wish to approximate

hm,n =
∂m+n

∂mx∂ny
h(x, y)

∣∣∣∣
x=y=−.5

.
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We will do this quite simply, by taking smoothed sum over H(a, b) over (a, b) corresponding to
the centers of true pixels (i, j). In particular, we approximate it by

(5)
∑

(i,j)∈PixelArray
(i,j) true

F (i, j)

Q2
·Hm,n(ai, bj),

where

ai =
i

Q
− 1

2Q
− 1, bj =

j

Q
− 1

2Q
− 1,

and Fi,j is the number of the pixels (i+α, j+β), α, β ∈ {−1, 0, 1} that are true divided by 9. Loosely
speaking, Fi,j can be seen as a generalization of the trapezoidal rule of numerical integration. It’s
presence is not necessary for the method to work, but we found it promoted faster convergence.

To save time, we could replace Hm,n in (5) with the matrix H.

4.1. A variant on step 2. In step 2, as described above, even after running 100 ∗ Q2 iterations,
we were often left with a large number of holes that needed to be filled, and even then the boundary
was not as precise as we would like. This is for two reasons.

First, z only visits K1,1 a small portion of the time, and hence the information from lots of
iterates is not being used. Mathematica calculations suggest that µ(K1,1) = 0.066, so that z visits
K1,1 roughly 1/15 of the time.

Second, we spend a long time filling in the middle of V1,1 when this information is completely
ignored when we use the flood-fill algorithm.

We can mitigate both of these problems using a slightly different method. Let V −11,1 denote the

set of points 1/w for w ∈ V1,1. We know that T̂ (z, w) = (Tz, 1/(w + α)) for some integer α ∈ Z[i]

depending only on z. So let us abuse notation for a moment. If z ∈ Kk,`, then T̂ (z, Vk,`) =

(Tz, 1/(Vk,` + α)). So if Tz ∈ K1,1, then (Vk,` + α)−1 ⊂ V1,1. In particular, this tells us that V −11,1

is a union of translates of the Vk,`’s. In fact, from [8], it can be shown that this is a disjoint union,

and the boundary of V −11,1 intersects finitely many of these translates. This can be seen directly in
Figure 10.

So what we do is, like in step 2 above, perform the assignment (z, w) := T̂ (z, w) a large number
of times (we found 3 ∗Q2 was sufficient), and now at every iteration, we calculate the k, ` such that
z ∈ Kk,`, find all the α’s such that the translate Vk,`+α is a part of the boundary of V −11,1 , and then

turn each of the (i, j)’s in PixelArray true that correspond to the points 1/(w+α) for each of these
α’s. The values of the α’s for each k and ` can be precalculated to speed up this process: this can
be accomplished by using the admissible digits sequences studied previously, although for practical
purposes, they can be read directly from pictures such as Figure 10. A table of the corresponding
α’s for V1,1 can be seen in Table 2.

For example, by examining Figure 10, we can see that if z ∈ K1,1, then since the only copy of
V1,1 that appears in this image has been translated by −1 + 2i, we have that (z − 1 + 2i)−1 ∈ V1,1.
If z ∈ K2,1, then since the copies of V2,1 that appear in this image have been translated by −2 + i,
−2 + 2i, and −1 + 3i, we have that (z − 2 + i)−1, (z − 2 + 2i)−1, (z − 1 + 3i)−1 ∈ V1,1. And so on.

We can even optimize this further, since if we know that w ∈ Vk,` for a given k, `, then (−i)jw ∈
·Vk,`+j mod 4 for j = 1, 2, 3.

5. Results

We performed several iterations of the methods listed above. We ran calculations from k = 7 up
to k = 13. In our implementation, for V1,1 centered at x+ yi = −.5− .5i, we were able to calculate
approximations to hm,n = h1,1m,n(−.5,−.5) for 0 ≤ m,n ≤ 8 with k = 7 in three seconds and using
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Figure 10. The boundary of V −11,1 , showing the translates of the Vk,`’s that compose it.

7.5 megabytes of memory. The same calculations run for k = 13 took 10840 seconds, around three
and a half hours, and just over 22 gigabytes of memory. Increasing k by 1 typically increased both
the memory required and the running time by a factor of a little more than 4.

Clearly, the biggest obstacle to extending these results further is the amount of fast memory
used and the primary contributor to the memory used is the flood-fill algorithm. More precise
calculations will likely require slower but less memory-intensive methods, likely dropping any form
of filling algorithm and running more iterations in Step 1 of the procedure instead.
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Table 2. For a given, Kk,`, the α ∈ Z[i] such that Vk,`+α is part of the boundary

of V −11,1 .

Kk,` α

K1,1 −1 + 2i
K2,1 −2 + i, −2 + 2i, −1 + 3i
K3,1 −2
K1,2 2 + 2i
K2,2 1 + 2i, 2 + 2i, 3 + 2i, 3 + i

K3,2 3i
K1,3 2− i

K2,3 1− 2i, 2− 2i, 3− i

K3,3 3
K1,4 −1− i

K2,4 −1− 2i, −2− i

K3,4 −2i

Table 3 shows the hm,n = h1,1m,n(−.5,−.5) values we calculated for k ranging from k = 7 to
k = 13. What we note from these is that they show a very regular convergence that appears to
be exponential in k—that is, that the behavior of the approximation to hm,n in k is like a + b · ck
for appropriate variables a, b, c with |c| < 1. The value of a that we calculate should be a better
approximation to the true value of hm,n. We used a least-squares approximation (via Mathematica’s
FindFit function) to estimate these a, b, c and compiled the results in Table 4. In Table 4, we only
calculate a, b, c for those hm,n where m,n are both even, because the others did not display very
good behavior for the methods used by FindFit to converge.

In fact, by examining Table 3 more closely, we see that hm,n is very, very small whenever m or
n is odd. This leads us to the following conjecture.

Conjecture 5.1. We have h1,1m,n(−.5,−.5) = 0 whenever m or n is odd.

First, we emphasize that this conjecture is not a simple consequence of the symmetries of K1,1

and V1,1. Recall (3):

hm,n = h1,1m,n(−.5,−.5) =

∫
a+bi∈V1,1

∂m+n

∂xm∂yn
1

((ax− by + 1)2 + (ay + bx)2)2

∣∣∣∣
x+yi=−.5−.5i

da db.

The set V1,1 is symmetric under the transformation a 7→ −b, b 7→ −a, so if the integrand at odd m
or n is negated by this same transformation, we should get that hm,n = 0. However, if we examine
the derivative inside this equation with, say, m = 1, n = 0, then we get

∂

∂x

1

((ax− by + 1)2 + (ay + bx)2)2

∣∣∣∣
x+yi=−.5−.5i

=
−4a+ 2(a2 + b2)

(1− a+ a2/2 + b+ b2/2)3
,

and this is not negated by the transformation.
However, we can still give a heuristic explanation for why Conjecture 5.2 is true. Consider the

functional equation that we know the invariant density must obey:

(6) h(z) =
∑

(α+z)−1∈T−1z

1

|α+ z|4
h

(
1

α+ z

)
, z ∈ K.

If z is treated as x+ yi, then by taking appropriate real derivatives with respect to x and y, we can
use this to derive functional equations that should be satisfied by the various derivatives of h(z).
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Table 3. Approximations of h1,1m,n(−.5,−.5) with various different k’s

k 7 8 9 10 11 12 13
h0,0 0.76153 0.74149 0.73038 0.72341 0.71963 0.71732 0.71608
h0,1 −0.01852 −0.00992 −0.00695 −0.00376 −0.00222 −0.00120 −0.00071
h0,2 0.38551 0.36624 0.35565 0.34916 0.34562 0.34346 0.34231
h0,3 −0.01156 −0.00595 −0.00413 −0.00223 −0.00133 −0.00071 −0.00043
h0,4 0.10541 0.09730 0.09309 0.09053 0.08917 0.08836 0.08793
h0,5 −0.00397 −0.00199 −0.00136 −0.00071 −0.00043 −0.00022 −0.00014
h0,6 0.02365 0.02098 0.01969 0.01891 0.01851 0.01828 0.01816
h0,7 −0.00161 −0.00074 −0.00050 −0.00025 −0.00015 −0.00008 −0.00005
h0,8 0.00963 0.00867 0.00814 0.00783 0.00766 0.00757 0.00751
h1,1 −0.00716 −0.00433 −0.00037 −0.00064 −0.00045 −0.00022 −0.00016
h1,2 −0.01946 −0.01107 −0.00757 −0.00418 −0.00237 −0.00133 −0.00075
h1,3 −0.00458 −0.00294 −0.00023 −0.00042 −0.00032 −0.00015 −0.00011
h1,4 −0.00774 −0.00427 −0.00283 −0.00144 −0.00077 −0.00042 −0.00024
h1,5 −0.00188 −0.00018 0.00019 0.00002 0.00002 −0.00002 −5.87870 ∗ 10−6

h1,6 0.00028 0.00018 0.00019 0.00016 0.00011 0.00007 0.00004
h1,7 −0.00021 0.00029 0.00015 0.00007 0.00005 9.30540 ∗ 10−6 0.00001
h1,8 0.00185 0.00039 0.00021 0.00009 0.00004 0.00003 0.00001
h2,2 0.58500 0.54861 0.52742 0.51478 0.50756 0.50306 0.50069
h2,3 −0.02677 −0.01484 −0.01021 −0.00586 −0.00339 −0.00192 −0.00110
h2,4 0.32479 0.29977 0.28537 0.27685 0.27201 0.26901 0.26744
h2,5 −0.00519 −0.00404 −0.00277 −0.00178 −0.00109 −0.00060 −0.00036
h2,6 −0.02441 −0.03010 −0.03116 −0.03158 −0.03175 −0.03181 −0.03184
h2,7 −0.00208 0.00081 0.00088 0.00050 0.00028 0.00019 0.00011
h2,8 −0.04454 −0.04429 −0.04288 −0.04190 −0.04132 −0.04094 −0.04074
h3,3 −0.00597 −0.00743 −0.00131 −0.00124 −0.00098 −0.00034 −0.00027
h3,4 −0.03571 −0.01854 −0.01263 −0.00684 −0.00383 −0.00220 −0.00123
h3,5 −0.00513 −0.00433 −0.00071 −0.00071 −0.00057 −0.00020 −0.00016
h3,6 −0.02558 −0.00677 −0.00371 −0.00150 −0.00070 −0.00038 −0.00017
h3,7 0.01199 0.00259 0.00076 0.00041 0.00030 0.00008 0.00005
h3,8 −0.00455 0.00190 0.00203 0.00114 0.00067 0.00043 0.00025
h4,4 0.68944 0.64689 0.61713 0.59915 0.58883 0.58232 0.57890
h4,5 −0.01286 −0.01699 −0.01276 −0.00766 −0.00451 −0.00262 −0.00153
h4,6 0.31911 0.29305 0.27634 0.26633 0.26067 0.25713 0.25527
h4,7 0.00691 −0.00096 −0.00079 −0.00130 −0.00095 −0.00051 −0.00033
h4,8 −0.09596 −0.10365 −0.10263 −0.10041 −0.09941 −0.09870 −0.09825
h5,5 −0.03693 −0.01355 −0.00289 −0.00220 −0.00171 −0.00054 −0.00039
h5,6 −0.03640 −0.02237 −0.01594 −0.00806 −0.00441 −0.00261 −0.00146
h5,7 −0.01519 −0.00587 −0.00114 −0.00098 −0.00077 −0.00025 −0.00018
h5,8 −0.04348 −0.00868 −0.00369 −0.00110 −0.00031 −0.00006 1.99160 ∗ 10−6

h6,6 0.65399 0.62170 0.59129 0.57018 0.55883 0.55159 0.54765
h6,7 0.01380 −0.01494 −0.01345 −0.00802 −0.00483 −0.00298 −0.00173
h6,8 0.26594 0.24508 0.22976 0.21971 0.21429 0.21087 0.20903
h7,7 −0.07041 −0.01733 −0.00461 −0.00327 −0.00261 −0.00071 −0.00053
h7,8 −0.03244 −0.02434 −0.01788 −0.00847 −0.00448 −0.00274 −0.00154
h8,8 0.55655 0.54007 0.51596 0.49254 0.48116 0.47381 0.46970
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Table 4. Approximations to h1,1m,n(−.5,−.5) as in Table 3 of the form a+ b · ck.

hm,n a b c

h0,0 0.7149 2.6050 0.5633
h0,2 0.3411 2.4500 0.5641
h0,4 0.0875 1.1610 0.5510
h0,6 0.0180 0.4290 0.5380
h0,8 0.0075 0.1423 0.5505
h2,2 0.4974 3.8590 0.5825
h2,4 0.2652 2.7210 0.5793
h2,6 −0.0321 5.5710 0.3877
h2,8 −0.0409 −0.1466 0.6040
h4,4 0.5754 4.8780 0.5864
h4,6 0.2532 3.0290 0.5798
h4,8 −0.1003 0.1056 0.5410
h6,6 0.5484 5.7890 0.5695
h6,8 0.2085 3.1280 0.5679
h8,8 0.4762 6.8400 0.5399

However, the more interesting aspect is the sum. The sum is over (α + z)−1 ∈ T−1z. All of the
α’s must belong to Z[i]. Thus, if we let z = −.5 − .5i, then z + Z[i] is a lattice of points that is
symmetric with respect to 180 degree rotation around the origin. As a consequence the possible
values for (α + z)−1 ∈ K will also be symmetric with respect to 180 degree rotation around the
origin.

In particular, the right-hand side of (6) can be decomposed into pairs like

1

|α+ z|4
h

(
1

α+ z

)
+

1

| − (α+ z)|4
h

(
− 1

α+ z

)
.

We know that h(z) = h(−z), because the invariant measure satisfies µ(A) = µ(iA) and thus
µ(A) = µ(−A) by Theorem 2.1, so we expect odd derivatives of the above pair-sum to disappear.
This holds perfectly well on all points (a+ z)−1 which are interior to one of the regions Kk,`, since
here h is analytic; however, it is not clear how to make this process work for those (α+ z)−1 which
lie on the boundary between regions, since h is no longer analytic at these points. Moreover as
z = −.5− .5i lies on the boundary of K, such (α+ z)−1 lying on the boundary between regions will
exist. Thus, we can only describe this idea heuristically.

This heuristic cannot tell us the whole story. Z[i] − .5 − .5i is not the only lattice that is
symmetric with respect to 180 degree rotation around the origin. Z[i] itself is symmetric in this
way. So we would expect to see a similar cancellation in the odd derivatives of hm,n when starting
our calculations from z = 0 instead of z = −.5− .5i.

However, in Table 5, we calculated h2,1m,n(0, 0), since 0 is on the boundary of K2,1, and yet the

odd terms are not clearly tending towards zero. We also calculated h2,1m,n(−.5,−.5) in Table 6, but
again the odd terms are not clearly tending towards zero. We note that −.5 − .5i is not in or on
the border of K2,1, but due to the similarity of V2,1 and V1,1, we thought it would be an interesting
point to test regardless.

However, when we examined V3,1, we again noticed that the odd x-derivatives tended to zero
when we centered at z = −.5, see Table 7. As noted above, the natural symmetries of V3,1 around
the y-axis tell us that the h should be even around this point in the y direction, but our calculations
also lead us to the following conjecture.
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Table 5. Approximations of h2,1m,n(0, 0) with various different k’s

k 7 8 9 10 11 12 13
h0,0 1.05000 1.02930 1.01600 1.00920 1.00530 1.00300 1.00170
h0,1 0.52909 0.52283 0.51697 0.51422 0.51277 0.51203 0.51153
h0,2 0.91839 0.88992 0.87123 0.86185 0.85657 0.85353 0.85180
h0,3 0.47458 0.46152 0.45109 0.44623 0.44350 0.44207 0.44116
h0,4 0.36284 0.34377 0.33079 0.32429 0.32057 0.31851 0.31730
h0,5 0.08138 0.07348 0.06702 0.06391 0.06202 0.06105 0.06043
h0,6 0.02086 0.01297 0.00729 0.00446 0.00269 0.00176 0.00120
h1,1 1.11320 1.09760 1.08560 1.07920 1.07600 1.07410 1.07310
h1,2 1.67520 1.63920 1.61480 1.60210 1.59590 1.59210 1.59000
h1,3 1.79320 1.74940 1.71870 1.70320 1.69530 1.69060 1.68800
h1,4 1.17510 1.13490 1.10670 1.09200 1.08440 1.07990 1.07740
h1,5 0.15821 0.13868 0.12366 0.11567 0.11098 0.10834 0.10694
h1,6 −0.67308 −0.67146 −0.67239 −0.67308 −0.67461 −0.67549 −0.67576
h2,2 4.10900 3.99640 3.92300 3.88730 3.86880 3.85760 3.85140
h2,3 5.45500 5.30780 5.21010 5.16300 5.13990 5.12610 5.11820
h2,4 5.72110 5.53150 5.40640 5.34570 5.31510 5.29660 5.28630
h2,5 3.19890 3.05920 2.96310 2.91830 2.89430 2.88000 2.87220
h2,6 −0.17949 −0.26498 −0.32104 −0.34417 −0.36139 −0.37206 −0.37688
h3,3 11.16100 10.85000 10.64200 10.54200 10.49400 10.46400 10.44700
h3,4 15.68100 15.19900 14.88000 14.72400 14.65000 14.60600 14.58000
h3,5 15.24300 14.70500 14.34300 14.16900 14.08400 14.03400 14.00500
h3,6 8.07010 7.62960 7.33850 7.20920 7.13640 7.09120 7.06770
h4,4 29.83100 28.91500 28.30000 27.99600 27.85800 27.77600 27.72700
h4,5 41.33600 39.98400 39.06200 38.60000 38.39500 38.27600 38.20300
h4,6 39.34600 37.84100 36.81100 36.30700 36.07300 35.93600 35.85400
h5,5 78.91400 76.32900 74.53800 73.59900 73.20700 72.99000 72.84900
h5,6 109.93000 106.20000 103.50000 102.06000 101.47000 101.15000 100.93000
h6,6 216.57000 209.70000 204.22000 201.16000 199.96000 199.35000 198.92000

Conjecture 5.2. We have h3,1m,n(−.5, 0) = 0 whenever m or n is odd.

Heuristically we expect this to hold for the same reason as the previous conjecture.

6. Other methods of calculating the invariant measure

In this section, we want to briefly discuss various different methods of calculating the density of
the invariant measure and the benefits and problems with each.

6.1. The finite difference method. It is well known that derivatives can be approximated by
finite differences. So, for example, for a real differentiable function f and sufficiently small ε, we
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Table 6. Approximations of h2,1m,n(−.5,−.5) with various different k’s

k 7 8 9 10 11 12 13
h0,0 1.02990 1.00040 0.98326 0.97423 0.96892 0.96570 0.96398
h0,1 −0.47009 −0.44193 −0.42609 −0.41790 −0.41280 −0.40966 −0.40802
h0,2 0.86292 0.81620 0.78943 0.77567 0.76728 0.76222 0.75952
h0,3 −0.50773 −0.46589 −0.44346 −0.43147 −0.42418 −0.41985 −0.41758
h0,4 0.65407 0.60225 0.57285 0.55735 0.54796 0.54257 0.53969
h0,5 −0.56716 −0.51938 −0.49097 −0.47590 −0.46668 −0.46139 −0.45862
h0,6 0.52681 0.47936 0.45076 0.43584 0.42671 0.42154 0.41880
h1,1 0.90306 0.86700 0.84281 0.83173 0.82388 0.81909 0.81647
h1,2 −1.04660 −0.98469 −0.94699 −0.92931 −0.91688 −0.90900 −0.90481
h1,3 1.17640 1.09980 1.05580 1.03380 1.01890 1.00970 1.00480
h1,4 −1.68650 −1.56930 −1.49670 −1.45870 −1.43390 −1.41900 −1.41120
h1,5 2.23230 2.10270 2.00580 1.95420 1.92010 1.89980 1.88920
h1,6 −2.46230 −2.32600 −2.21390 −2.15380 −2.11390 −2.09010 −2.07770
h2,2 1.42810 1.34060 1.29480 1.27360 1.25820 1.24720 1.24150
h2,3 −0.55036 −0.46931 −0.44594 −0.43614 −0.42732 −0.42010 −0.41626
h2,4 1.58020 1.43480 1.37120 1.33820 1.31500 1.29910 1.29090
h2,5 −2.92120 −2.79160 −2.68540 −2.62610 −2.58280 −2.55440 −2.53980
h2,6 4.31290 4.21970 4.07640 3.99000 3.92570 3.88290 3.86130
h3,3 −1.33430 −1.42160 −1.37300 −1.34430 −1.32730 −1.31950 −1.31580
h3,4 1.89940 2.10410 2.05750 2.02980 2.01050 2.00080 1.99630
h3,5 −0.17617 −0.36837 −0.35618 −0.35242 −0.35211 −0.35485 −0.35659
h3,6 −2.32780 −2.27720 −2.28260 −2.25770 −2.23060 −2.20410 −2.19180
h4,4 −4.28560 −4.80100 −4.73640 −4.68480 −4.63880 −4.60840 −4.59460
h4,5 4.74050 5.40580 5.37630 5.32910 5.28310 5.24700 5.23160
h4,6 −2.29170 −2.83350 −2.77740 −2.74410 −2.71530 −2.69770 −2.69020
h5,5 −6.09960 −7.15240 −7.32090 −7.29640 −7.25190 −7.19250 −7.16990
h5,6 4.74530 5.43940 5.76110 5.75090 5.72840 5.67070 5.64970
h6,6 −4.71690 −3.02340 −3.86850 −3.79360 −3.78910 −3.68790 −3.64450

have

f ′(x) ≈ f(x+ ε)− f(x)

ε

f ′′(x) ≈ f(x+ 2ε)− 2f(x+ ε) + f(x)

ε2

f ′′′(x) ≈ f(x+ 3ε)− 3f(x+ 2ε) + 3f(x+ ε)− f(x)

ε3

and so on.
To implement this, let us consider the problem of calculating, say ∂2

∂x2h(x + yi) at a point x, y.
We pick a very small ε > 0 and let U1, U2, U3 be balls of radius ε/2 such that the center of Un is
x+ yi + (n− 1)ε for n = 1, 2, 3. These sets will be disjoint. Let z0 be some point whose orbit under
the Gauss map we expect to equidistribute over K, and let Q be some extremely large integer.

Now for n = 1, 2, 3, let un be the number of times T iz0 ∈ Un as i ranges from 0 to Q. Therefore,
h(x + yi + (n − 1)ε) is approximated by the quantity un/Q. So our desired second derivative is
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Table 7. Approximations of h3,1m,n(−.5, 0) with various different k’s

k 7 8 9 10 11 12 13
h0,0 1.12250 1.09650 1.07910 1.07040 1.06540 1.06240 1.06080
h0,2 0.91900 0.88322 0.85904 0.84794 0.84137 0.83776 0.83561
h0,4 0.41936 0.39495 0.37836 0.37117 0.36681 0.36457 0.36313
h0,6 0.27205 0.25348 0.24084 0.23545 0.23217 0.23042 0.22933
h0,8 0.15823 0.14390 0.13522 0.13149 0.12930 0.12813 0.12741
h0,10 0.06755 0.05976 0.05518 0.05324 0.05211 0.05152 0.05115
h0,12 0.03038 0.02646 0.02419 0.02322 0.02265 0.02235 0.02216
h1,0 −0.04283 −0.02533 −0.01365 −0.00820 −0.00478 −0.00263 −0.00156
h1,2 −0.07484 −0.04020 −0.02038 −0.01199 −0.00693 −0.00380 −0.00221
h1,4 −0.01383 −0.00387 −0.00026 −0.00036 0.00003 −0.00011 −0.00004
h1,6 −0.00015 −0.00174 0.00038 −0.00042 −0.00034 −0.00024 −0.00017
h1,8 −0.02442 −0.01165 −0.00476 −0.00284 −0.00166 −0.00090 −0.00054
h1,10 −0.01200 −0.00534 −0.00145 −0.00085 −0.00041 −0.00027 −0.00015
h1,12 −0.00119 −0.00174 −0.00033 −0.00032 −0.00023 −0.00016 −0.00009
h2,0 0.79788 0.76122 0.73782 0.72565 0.71870 0.71439 0.71214
h2,2 1.82330 1.71800 1.65490 1.62310 1.60550 1.59460 1.58890
h2,4 −0.05398 −0.08345 −0.09558 −0.10245 −0.10570 −0.10676 −0.10762
h2,6 −0.50402 −0.44407 −0.42695 −0.41813 −0.41414 −0.41184 −0.41082
h2,8 0.38647 0.37477 0.35858 0.35202 0.34790 0.34480 0.34324
h2,10 0.28840 0.25490 0.23269 0.22539 0.22111 0.21889 0.21759
h2,12 0.13172 0.12224 0.10761 0.10319 0.10023 0.09874 0.09766
h3,0 −0.03810 −0.02329 −0.01275 −0.00767 −0.00455 −0.00247 −0.00147
h3,2 −0.21693 −0.12028 −0.06484 −0.03720 −0.02202 −0.01171 −0.00688
h3,4 −0.12881 −0.04430 −0.02230 −0.00998 −0.00444 −0.00258 −0.00125
h3,6 0.21068 0.09479 0.04629 0.02437 0.01402 0.00716 0.00422
h3,8 0.02642 0.00261 −0.00657 −0.00540 −0.00471 −0.00191 −0.00140
h3,10 −0.12039 −0.03183 −0.01350 −0.00565 −0.00190 −0.00052 −0.00032
h3,12 0.00979 0.01732 0.01188 0.00638 0.00478 0.00227 0.00144
h4,0 0.35836 0.33653 0.32200 0.31469 0.31042 0.30773 0.30634
h4,2 3.06740 2.86920 2.75120 2.69320 2.66060 2.63950 2.62900
h4,4 2.25640 1.93880 1.81690 1.75420 1.72340 1.70700 1.69830
h4,6 −2.87200 −2.68900 −2.58070 −2.53380 −2.50730 −2.48780 −2.47870
h4,8 −1.28790 −1.04270 −0.92295 −0.88697 −0.86753 −0.86030 −0.85562
h4,10 −0.00160 −0.06368 −0.01779 −0.00903 −0.00027 0.00274 0.00710
h4,12 −1.79360 −1.59120 −1.46990 −1.41090 −1.37830 −1.35700 −1.34480
h5,0 −0.01443 −0.00960 −0.00519 −0.00327 −0.00196 −0.00107 −0.00065
h5,2 −0.26254 −0.15429 −0.08308 −0.04900 −0.02973 −0.01564 −0.00934
h5,4 −0.69504 −0.29601 −0.14757 −0.07613 −0.04180 −0.02210 −0.01259
h5,6 0.24273 0.14661 0.09344 0.05626 0.03781 0.01763 0.01134
h5,8 0.73041 0.21187 0.07405 0.02813 0.00655 0.00224 0.00083
h5,10 −0.35739 −0.19373 −0.12043 −0.06233 −0.04104 −0.01836 −0.01171
h5,12 0.25429 0.07150 0.08992 0.05615 0.04221 0.02215 0.01336
h6,0 0.05726 0.05228 0.04809 0.04605 0.04479 0.04398 0.04356
h6,2 2.18990 2.06130 1.96470 1.91870 1.89130 1.87250 1.86320
h6,4 6.68140 5.95380 5.61530 5.45410 5.36920 5.31670 5.29050
h6,6 −0.32486 −0.65476 −0.78060 −0.80787 −0.81930 −0.81160 −0.81093
h6,8 −2.94040 −2.23620 −2.12620 −2.07260 −2.05540 −2.04350 −2.04500
h6,10 7.44640 6.57510 6.17320 5.93830 5.81550 5.72740 5.68180
h6,12 2.42410 1.48330 1.07860 1.03600 1.00290 0.99715 0.99556
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approximated by
u3 − 2u2 + u1

Qε2
.

The main benefit of this method is in its simplicity. This could be implemented in only a few
lines of code with very few variables being used.

The trade-off, naturally, is in accuracy. In order to have a good approximation for our coefficient,
ε needs to be very small. But this makes the sets Un very small, and so Q needs to be very large in
order for un to accurately approximate the density h(x + yi + (n − 1)ε). Furthermore, even if the
orbit of z0 is equidistributed, it could “approach” equidistribution very slowly; the values un might
converge to µ(Un), but might do so very slowly, with lots of variance. This would encourage us to
take Q even larger.

6.2. Functional equation method. Recall that the Perron-Frobenius operator gave rise to the
functional equation

h(z) =
∑

(a+z)−1∈T−1z

1

|a+ z|4
h

(
1

a+ z

)
, z ∈ K.

Let us choose a point zk,` ∈ Kk,` in each of the twelve regions and consider expanding h(z′) when
z′ ∈ Kk,` by its Taylor series around the point zk,`. For example, if z ∈ Kk,`, then the left-hand
side becomes

h(z) =

∞∑
m,n=0

hk,`m,n(zk,`)

m!n!
<(z − zk,`)m=(z − zk,`)n.

For a fixed value of z, we can consider the quantities that look like

1

m!n!
<(z − zk,`)m=(z − zk,`)n

as fixed values, so that the functional equation becomes a functional equation in the variables
hm,n(zk,`) as m,n range from 0 to ∞ and 1 ≤ k ≤ 3, 1 ≤ ` ≤ 4. Note further that this functional
equation is linear in the variables hm,n(zk,`).

We can truncate this functional equation so that it has a finite number of terms by removing
all summands involving hm,n(zk,`) with m,n > N for some integer N . Precisely, this will have
12(N+1)2 terms. This truncation turns our exact functional equation into an approximate functional
equation, but we ignore the errors and presume they are equal.

Thus, if we take at least 12(N + 1)2 + 1 different values of z, we obtain a system of linear
(approximate functional) equations in the variables hm,n(zk,`), which we can then attempt to solve
using a least squares approximation.

The advantage of using this method is that it is completely deterministic. Our other methods
so far have all relied on having a point z0 whose orbit under the Gauss map had good properties.
We have no easy way of choosing a point with the desired property, so instead we chose a point
essentially at random, since with probability 1, we will choose a point with the desired property.

The disadvantage is that this method showed very poor convergence as m,n increased. This
happened because the coefficients multiplied to the hm,n shrink so rapidly that very large changes
in hm,n would only alter the contribution of the overall term by a very small amount.

6.3. Outline method. In the method we used to give the results above, we make use of a flood-fill
algorithm to fill in any “holes” in PixelArray. As such, we only needed an approximation to the
boundary of V1,1 rather than the entirety of V1,1. We took advantage of this in our variant of step 2,
where we in essence only looked at points that were relatively close to the boundary. We attempted
at one point to circumvent this entirely and compute those points that lie on the boundary itself.
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This was what led us to look at the admissible sequences in Section ??, but we could not implement
this in a way that was faster than the algorithm we ultimately used.
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