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On integers that are covering numbers of groups

Martino Garonzi, Luise-Charlotte Kappe, and Eric Swartz

Abstract. The covering number of a group G, denoted by σ(G), is the size of a minimal collection of
proper subgroups of G whose union is G. We investigate which integers are covering numbers of groups.
We determine which integers 129 or smaller are covering numbers, and we determine precisely or bound the
covering number of every primitive monolithic group with a degree of primitivity at most 129 by introducing
effective new computational techniques. Furthermore, we prove that, if F1 is the family of finite groups G
such that all proper quotients of G are solvable, then N−{σ(G) : G ∈ F1} is infinite, which provides further
evidence that infinitely many integers are not covering numbers. Finally, we prove that every integer of the
form (qm − 1)/(q − 1), where m 6= 3 and q is a prime power, is a covering number, generalizing a result of
Cohn.

1. Introduction

A group G is said to have a finite cover by subgroups if it is the union of finitely many proper subgroups.
A cover of size n of a groupG is called a minimal cover if no cover of G has fewer than n subgroups. Following
J. H. E. Cohn [8], we call the size of a minimal cover of a group G the covering number, denoted by σ(G).
For a survey of results about the covering number of groups (and related results about analogously defined
covering numbers of other algebraic structures), see [26].

The parameter σ(G) has received a great deal of attention in recent years. One reason for this is the
connection to sets of pairwise generators of a group. For a finite noncyclic group G that can be generated
by two elements, define ω(G) to be the largest integer n such that there exists a set S of size n consisting of
elements of G such that every pair of distinct elements of S generates G. The covering number σ(G) provides
a natural and often tight upper bound for ω(G); see [3, 4, 5, 23] for investigations on the relationship between
these two parameters for various simple and almost simple groups.

It suffices to restrict our attention to finite groups when determining covering numbers, since, by a
result of B. H. Neumann [32], a group is the union of finitely many proper subgroups if and only if it has
a finite noncyclic homomorphic image. Moreover, if a finite cover of a group G exists, then we may realize
a finite homomorphic image of G by taking the quotient over the normal core of the intersection of the
subgroups belonging to the finite cover. Determining the covering number of a group G predates Cohn’s
1994 publication [8]. It is easy to show that no group is the union of two proper subgroups. Already in
1926, Scorza [35] characterized groups having covering number 3 as those groups which have a homomorphic
image isomorphic to the Klein four-group, a result forgotten and rediscovered later.

Cohn conjectures in [8] that the covering number of a noncyclic solvable group has the form pd+1, where
p is a prime and d is a positive integer, and he shows that σ(A5) = 10 and σ(S5) = 16. In [37], Tomkinson
proves Cohn’s conjecture and shows that there is no group with σ(G) = 7. In addition, he conjectures
that there are no groups with covering number 11, 13, or 15. Tomkinson’s conjecture is confirmed only for
the case n = 11 in [12]. In fact, in [1] it is shown that σ(S6) = 13 and in [7] that σ(PSL(2, 7)) = 15.
Furthermore, Tomkinson suggests that it might be of interest to investigate minimal covers of nonsolvable
and, in particular, simple groups. For an overview of the recent contributions addressing this question, we
refer to [27]. The real question arising out of Tomkinson’s results is to find all integers that are covering

2010 Mathematics Subject Classification. Primary 20D60; Secondary 20B15.
Key words and phrases. Subgroup cover; Primitive group.
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numbers and ascertain whether there are infinitely many integers that are not covering numbers. The aim
of this paper is to investigate which integers are covering numbers of groups.

To show that there are no groups G for which σ(G) = 7, Tomkinson [37] proved that any group that
can be covered by seven subgroups can actually be covered by fewer than seven subgroups. In the long
run, this is not the way to attack this problem. In [12], the authors observe that if a group G exists with
σ(G) = n, then there must exist a group H with σ(H) = n that has no homomorphic image with covering
number n, making H minimal in this sense. The authors of [12] leverage this idea to show that no such
group G can exist with σ(G) = 11. Originally introduced in [12] and following [19], we say that a group G
is σ-elementary if σ(G) < σ(G/N) for every nontrivial normal subgroup N of G. For convenience, we say
that the covering number of a cyclic group is infinite. In [19], the first author of this paper shows that a
finite σ-elementary nonabelian group with covering number less than 26 is either of affine type or an almost
simple group with socle of prime index, which can then be used to determine which integers less than or
equal to 25 are covering numbers. From earlier results and those in [19], we have that the integers less than
26 that are not covering numbers are 2, 7, 11, 19, 22, and 25.

In this paper, we extend this classification of integers that are covering numbers up to 129. We formulate
this result by listing all integers between 26 and 129 that are not covering numbers.

Theorem 1.1. The integers between 26 and 129 which are not covering numbers are 27, 34, 35, 37, 39,
41, 43, 45, 47, 49, 51, 52, 53, 55, 56, 58, 59, 61, 66, 69, 70, 75, 76, 77, 78, 79, 81, 83, 87, 88, 89, 91, 93,
94, 95, 96, 97, 99, 100, 101, 103, 105, 106, 107, 109, 111, 112, 113, 115, 116, 117, 118, 119, 120, 123, 124,
125.

Theorem 1.1 follows from Theorem 4.5, Proposition 6.1, and Table 6. To prove this result, we need to
identify all potential candidates for σ-elementary groups with covering number between 26 and 129. Toward
this end, we show in Theorem 4.5 that the σ-elementary groups in question are among the groups with
a unique minimal normal subgroup and degree of primitivity not exceeding 129. We say a finite group is
primitive if it admits a maximal subgroup M with trivial normal core, and the index of M in G is called
the primitivity degree of G with respect to M . A finite group that has a unique minimal normal subgroup
is called monolithic.

This characterization allows us to decide if a given integer in the range is a covering number or not.
Using GAP [17], we determine all nonsolvable monolithic groups with degree of primitivity between 26 and
129. According to Theorem 4.5, these are the candidates for nonabelian σ-elementary groups with covering
number between 26 and 129 that are not solvable. It is then necessary to determine – or, at least, bound
– the covering number of these groups. Either these results are known, or, if not, we have to attain them
ourselves.

Computationally, there are two main methods that we use. The first is a method developed in [27],
where a program in GAP creates a system of equations that can be solved (either partially or totally) by the
linear optimization software GUROBI [21]. This method, which we refer to as Algorithm KNS, is detailed in
Section 5.1. The second method is introduced for the first time in this paper and is presented in Section 5.2.
It is essentially a greedy algorithm, which works roughly as follows. To build a cover, we take entire conjugacy
classes of maximal subgroups. Given a group G, we determine in GAP the minimum number of subgroups
from a single conjugacy class of maximal subgroups needed to cover each conjugacy class of elements, and
we choose the conjugacy class of elements that requires the maximum number of subgroups (among these
minimums). Rather than spending time checking precisely which maximal subgroups are absolutely necessary
(something that the first method will do), all subgroups from the entire class of subgroups are chosen to be
part of a cover. All conjugacy classes of elements that are covered by subgroups in this class of maximal
subgroups are removed, and this process is repeated until all elements of the group are covered. Perhaps
surprisingly, the cover produced this way is frequently a minimal cover and can be verified as such quickly
using a simple calculation detailed in Lemma 5.1. While the first method is extremely precise, it is often time
and memory consuming, and it becomes impractical for groups of order more than half a million on a machine
with a Core i7 processor and 16 GB of RAM. The second method, while cruder, runs much faster in practice,
and can essentially always be used to provide both upper and lower bounds for the covering number when
GAP can determine the maximal subgroups and conjugacy classes of a given group. Pseudocode for this
method is provided in Algorithm GKS. When neither of these methods is totally effective, ad hoc methods
are used; for this, see Appendix A.



ON INTEGERS THAT ARE COVERING NUMBERS OF GROUPS 3

It is a natural question to ask if every nonabelian σ-elementary group is a monolithic primitive group.
In this respect, the authors of [12] make the following conjecture.

Conjecture 1.2. [12] Every nonabelian σ-elementary group is a monolithic primitive group.

So far, no counterexamples to Conjecture 1.2 are known. In Remark 4.3, it is observed that if σ(X) <
2σ∗(X) (see Definition 2.4) for all primitive monolithic groups X with a nonabelian socle, then Conjecture
1.2 is true. (See also the preceding Lemma 4.2, which represents how close we are to proving Conjecture
1.2.) For the proof of Theorem 1.1, we establish in the proof of Theorem 4.5 that this inequality holds at
least when σ(X) < 130. The question arises if this inequality can be extended to bounds larger than 130.
On the other hand, the techniques used to determine the covering numbers of the candidate groups with
primitivity degree at most 129 were often pushed to the limit. (For instance, there is one group in particular
whose covering number cannot be determined to any smaller range than between 138 and 166 using current
methods; for this, see Table 11.) Extending the bound of the primitivity degree may then necessitate new
methods (or the use of extremely powerful computers) for determining covering numbers.

After the conjectures of Tomkinson [37] were settled, i.e., precisely which integers up to 18 are not
covering numbers, only three out of the 17 integers between 2 and 18 were found not to be covering numbers,
around 18%. One possibility is that there are only finitely many integers that are not covering numbers.
The statistics following Theorem 1.1 tell us that around fifty percent of the integers less than 130 are not
covering numbers, leading us to make the following conjecture with confidence.

Conjecture 1.3. Let E be the set of all integers that are covering numbers. Then, the set N − E is
infinite, in other words there are infinitely many natural numbers that are not covering numbers.

Our results here about integers that are not covering numbers in a certain range were obtained by
determing the complement in this range. Indications are that a proof of Conjecture 1.3 requires a similar
approach. By [12, Theorem 1], a σ-elementary group G with no abelian minimal normal subgroups is of one
of two types:

(1) G is a primitive monolithic group such that G/soc(G) is cyclic, or
(2) G/soc(G) is nonsolvable, and all the nonabelian composition factors of G/soc(G) are alternating

groups of odd degree.

The following result represents progress toward proving Conjecture 1.3 by dealing with the groups of type
(1).

Theorem 1.4. Let G be the family of primitive monolithic groups G with nonabelian socle such that
G/soc(G) is cyclic. Then there exists a constant c such that for every x > 0,

|{σ(G) : G ∈ G, σ(G) 6 x}| 6 cx5/6.

In particular, N− {σ(G) : G ∈ G} is infinite.

Given Tomkinson’s result about the covering number of solvable groups and in light of Conjecture 1.2
and Theorem 1.4, it is perhaps probable even that almost all integers are not covering numbers; that is, we
make the following conjecture.

Conjecture 1.5. Let E (n) := {m : m 6 n, σ(G) = m for some group G}. Then,

lim
n→∞

|E (n)|

n
= 0.

As a corollary of Theorem 1.4, we prove the following result, which can be viewed as additional evidence
for the validity of Conjecture 1.3.

Corollary 1.6. Let F1 be the family of finite groups G such that all proper quotients of G are solvable.
Then the set N− {σ(G) : G ∈ F1} is infinite.

Indeed, one may view Corollary 1.6 as a generalization of Tomkinson’s result about the covering numbers
of solvable groups (see Proposition 6.1 (ii)) in the following sense. Let Fn denote the set of all finite groups
with at most n nonsolvable quotients. Note that Fi ⊂ Fj for all i < j, and, if we define F :=

⋃∞
n=0 Fn,

then F is the family of all finite groups. If for a collection of groups C we define

E (C ) := {σ(G) : G ∈ C },
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then Conjecture 1.3 is that N− E (F ) is infinite. A consequence of Tomkinson’s result is that N− E (F0) is
infinite, and Corollary 1.6 above states that N−E (F1) is infinite. The next step toward proving Conjecture
1.3 would be to prove that N− E (F2) is infinite, and for this one needs to determine (among other things)
the covering number of affine groups, i.e., primitive groups with an abelian socle. As a first step in this
process, we prove the following.

Theorem 1.7. Let q = pd, where p is prime and d ∈ N, and let n > 1, n 6= 2 be a positive integer. Then

σ(AGL(n, q)) = σ(ASL(n, q)) =
qn+1 − 1

q − 1
.

In particular, for all m > 2, m 6= 3, (qm − 1)/(q − 1) is a covering number.

This result can also be viewed as a generalization of a result of Cohn [8, Corollary to Lemma 17]. There
it is shown that all integers of the form (q2 − 1)/(q − 1) = q + 1, where q is a prime power, are covering
numbers.

Our hope is to obtain further density results along the lines of Theorem 1.4 for σ-elementary groups and
eventually arrive at a proof of Conjecture 1.3. Other than the remaining primitive groups with abelian socle,
we would like to highlight the family of wreath products S wrK, where S is a nonabelian simple group and
K is a transitive group of degree k. These groups are an archetypal case among those that remain, and it
would be interesting to prove results for this family in particular.

The structure of this paper is as follows. Section 2 contains preparatory results for subsequent sections,
especially the following two sections. Section 3 contains the proof of Theorem 1.4, the density result for
a certain class of σ-elementary groups, and Section 4 contains the proof of the necessary condition that
a nonabelian σ-elementary group G with σ(G) 6 129 is a monolithic primitive group with a degree of
primitivity of at most 129. Section 5 details the two main computational methods used to determine covering
numbers.

The covering numbers or estimates of them are known for some classes of monolithic primitive groups
that are candidates to be σ-elementary groups with covering number at most 129, and these results are
summarized in Section 6. The covering number for groups in two other families of monolithic primitive
groups, the affine general linear groups and the affine special linear groups, are determined in Section 7,
which also shows that every integer of the form (qn − 1)/(q − 1), where q is a prime power and n > 3, is a
covering number. All our results for calculations and bounds are summarized in tables in Section 8, among
which we have a list of the nonsolvable σ-elementary groups with σ(G) 6 129 in Table 6. If p is a prime
and d is a positive integer, then this table together with the integers in this range of the form pd + 1 (that
is, the covering numbers of solvable groups by [37]) establish Theorem 1.1. Finally, Appendix A contains
calculations or bounds for the covering number for the various groups that could not be dealt with using the
methods of the previous sections.

2. Background

In this section for the convenience of the reader we begin with some well-known concepts used throughout
this paper and present some relevant definitions and lemmas which can be found in earlier publications
addressing this topic. The uninitiated reader is encouraged to consult [14] or [34].

The socle of a finite group G, denoted soc(G), is the subgroup of G generated by the minimal normal
subgroups of G, and, in fact, the socle of G is a direct product of some minimal normal subgroups of G.
A finite group G is said to be monolithic if it admits a unique minimal normal subgroup, which therefore
equals the socle of G.

A finite group G is said to be primitive if it admits a maximal subgroupM such that MG =
⋂

g∈G g−1Mg

(the normal core of M) is trivial, and in this case the index |G : M | is called a primitivity degree (or degree
of primitivity) of G; a primitive group in general has many primitivity degrees. This definition for abstract
groups is equivalent to the permutation group definition; that is, if Ω is a finite set, then G 6 Sym(Ω) is
primitive on the set Ω if and only if G is transitive on and stabilizes no nontrivial partition of Ω. (The
equivalence can be seen by taking the set of right cosets of M in G to be Ω under the action of right
multiplication.) It is well-known that a finite primitive group G is either monolithic or it admits precisely
two minimal normal subgroups, and, in this case, such minimal normal subgroups are nonabelian and
isomorphic; see, for instance, [2, Theorem 1.1.7].
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Any minimal normal subgroup of a finite group G is characteristically simple, so it has the form Sr for
some simple group S (which could be abelian) and some positive integer r. A minimal normal subgroup N
of G is said to be supplemented if it admits a supplement in G, that is, a proper subgroup H of G such that
HN = G, and complemented if it admits a complement in G, that is, a supplement H such that H∩N = {1}.
The minimal normal subgroup N is said to be Frattini if it is contained in the Frattini subgroup of G, which
is the intersection of the maximal subgroups of G, and non-Frattini, otherwise. (Note that a Frattini minimal
normal subgroup is automatically abelian, since the Frattini subgroup is nilpotent.)

We now present some results regarding the Frattini subgroup and minimal normal subgroups. For
a minimal normal subgroup N of G, being non-Frattini is equivalent to being supplemented, where the
supplement of N is any maximal subgroup of G which does not contain N . For an abelian minimal normal
subgroup N of G, being supplemented is equivalent to being complemented: if H is a supplement of N in
G, then H ∩ N 6= N , since HN = G; H ∩ N is normal in H , since N normal in G; and H ∩ N is normal
in N , since N is abelian. Hence, we have N ∩H ✂NH = G, and N ∩H = {1}, since N a minimal normal
subgroup. Also, observe that a monolithic group G is primitive if and only if the Frattini subgroup of G
is trivial: indeed, if G is primitive, then it is clear from the definition that the Frattini subgroup of G is
trivial; conversely, suppose that G is monolithic with trivial Frattini subgroup. Since G is monolithic, the
socle of G is contained in every nontrivial normal subgroup of G, and, since G has trivial Frattini subgroup,
there must exist a maximal subgroup with trivial normal core, since, otherwise, the Frattini subgroup would
contain the socle. Hence, G is primitive.

Following [13], the primitive monolithic group XN associated to a non-Frattini minimal normal subgroup
N of a group G is defined as follows, based on whether or not N is abelian:

• If N is abelian, then there exists a complement H of N in G. Then CH(N) ✂ G and we define
XN := G/CH(N).

• If N is nonabelian, then we define XN := G/CG(N).

The following observations can be proved easily. In the case when is N abelian the primitive monolithic
group associated to N depends on the choice of complement; however, choosing a different complement
gives an isomorphic primitive group. In any case, XN is a primitive monolithic group with socle isomorphic
with N (the socle is NCH(N)/CH(N) in the first case and NCG(N)/CG(N) in the second case). Observe
that if G is itself primitive and monolithic, then G coincides with the primitive monolithic group associated
with its socle: if G is primitive and monolithic with socle N , then the centralizer of N in G is trivial if N
is nonabelian and equals N if N is abelian; otherwise, a larger centralizer would give rise to a nontrivial
normal subgroup not containing N in both cases.

Let σ(G) denote the covering number of G, with σ(G) = ∞ if G is cyclic (with the convention that
n < ∞ for all integers n). It is easy to see that σ(G) 6 σ(G/N) for all normal subgroups N of G, and, with
this in mind, we have the following definition.

Definition 2.1. A finite noncyclic group G is said to be σ-elementary if σ(G) < σ(G/N) for all
nontrivial normal subgroups N of G.

In the following result, Φ(G) denotes the Frattini subgroup of G.

Lemma 2.2 ([12] Corollary 14). Let G be a finite σ-elementary group. If G is abelian, then G ∼= Cp×Cp

for some prime p. If G is nonabelian, then the following hold:

(1) The Frattini subgroup Φ(G) of G is trivial.
(2) G has at most one abelian minimal normal subgroup;
(3) Let soc(G) = N1 × · · · ×Nn be the socle of G, where N1, . . . , Nn are the minimal normal subgroups

of G. Then G is a subdirect product of the primitive monolithic groups Xi associated to the Ni’s,
and the natural map from G to X1 × · · · ×Xn given by the natural projections of G onto each Xi

is injective.

We also note the following additional structural result.

Lemma 2.3 ([8] Theorem 4). If G is a nonabelian σ-elementary group, then the center of G is trivial.

The following definition provides a concept that is useful for bounding the covering number of a group
from below.
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Definition 2.4 ([12] Definition 15). Let X be a primitive monolithic group with socle N . If Ω is an
arbitrary union of cosets of N in X, define σΩ(X) to be the smallest number of supplements of N in X
needed to cover Ω. Define

σ∗(X) := min{σΩ(X) | Ω =
⋃

i

ωiN, 〈Ω〉 = X}.

The values of σ∗(Xi), where the Xi are as in Lemma 2.2, provide a lower bound for σ(G) when G is a
σ-elementary group in terms of the primitive monolithic groups associated to its minimal normal subgroups.
The following is a useful lower bound.

Lemma 2.5 ([12] Proposition 16). Let G be a nonabelian group, let soc(G) = N1 × . . . × Nn, and let
X1, . . . , Xn be the primitive monolithic groups associated to N1, . . . , Nn, respectively. If G is σ-elementary,
then

σ∗(X1) + . . .+ σ∗(Xn) 6 σ(G).

For a primitive monolithic group X with socle N , we denote by ℓX(N) the minimal index of a proper
supplement of N in X . In other words, ℓX(N) is the smallest primitivity degree of X .

Lemma 2.6 ([12] Remark 17). If X is a primitive monolithic group, then

σ∗(X) > ℓX(soc(X)).

If G is a nonabelian σ-elementary group, N1, . . . , Nn are the minimal normal subgroups of G, and X1, . . . , Xn

are the primitive monolithic groups associated to N1, . . . , Nn, respectively, then
n
∑

i=1

ℓXi
(Ni) 6

n
∑

i=1

σ∗(Xi) 6 σ(G).

In particular, for every i ∈ {1, . . . , n}, the group Xi has primitivity degree at most σ(G).

The following lemmas from [12] are critical in later proofs. Note that Lemma 2.9 below includes infor-
mation contained in the proof as well as the statement of [12, Proposition 10].

Lemma 2.7 ([12] Lemma 18). Let N be a normal subgroup of a group X. If a set of subgroups of X
covers a coset yN of N in X, then it also covers every coset yαN with α prime to |y|.

Lemma 2.8 ([12] Proposition 21). Let G be a nonabelian σ-elementary group. If a proper quotient G/N
is solvable, then it is cyclic.

Lemma 2.9 ([12] Proposition 10). Let G be a group. If V is a complemented normal abelian subgroup
of G and V ∩ Z(G) = {1}, then σ(G) 6 2|V | − 1. In particular, if V is a minimal normal subgroup, where
q = |EndG(V )| and |V | = qn, and H is a complement of V in G, then the collection

{Hv : v ∈ V } ∪ {CH(W )V : W 6 V, dimGF(q)(W ) = 1}

is a cover for G and

σ(G) 6 1 + q + · · ·+ qn =
qn+1 − 1

q − 1
.

Finally, the following lemmas prove to be extremely useful when calculating covering numbers. The first
lemma is a straightforward criterion for showing that a maximal subgroup is contained in any minimal cover
containing only maximal subgroups.

Lemma 2.10. [19, Lemma 1] If H is a maximal subgroup of a group G and σ(H) > σ(G), then H
appears in every minimal cover of G containing only maximal subgroups. In particular, if H is maximal and
non-normal then σ(H) < [G : H ] implies σ(G) > σ(H).

The final lemma of this section is due to Detomi and Lucchini (also proved independently by S. M.
Jafarian Amiri [24]) and is useful when proving results about covering numbers of primitive groups with an
elementary abelian minimal normal subgroup.

Lemma 2.11. [12, Corollary 6] If G is a primitive group with stabilizer H and unique abelian minimal
normal subgroup N , then σ(G) > |N |+ 1 or σ(G) = σ(H).
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3. A density result

One of the main problems about group coverings is the following: what does the set of numbers of the
form σ(G), where G is a finite group, look like?

Recall that Conjecture 1.3 hypothesizes that there are infinitely many natural numbers that are not
covering numbers. A good strategy to approach this conjecture is the following: first, find a specific (and
“easy” to handle) family F of groups such that {σ(G) : G ∈ F} = E and then deal with the family F .
If Conjecture 1.2 is true, then, because we clearly can choose as F the family of σ-elementary groups, we
may choose as F the family of primitive monolithic groups. An important subfamily of it is the family of
primitive monolithic groups whose quotient over the socle is cyclic, since the proper solvable quotients of
σ-elementary groups are cyclic. In this section, we show that the density of the values σ(G) for G a primitive
monolithic group with G/soc(G) cyclic is zero; specifically, setting G to be the family of such primitive
monolithic groups, we show that

|{σ(G) : G ∈ G, σ(G) 6 x}| 6 cx5/6

for some constant c. This implies that N− {σ(G) : G ∈ G} is infinite.
Before we can proceed with the proof of the main theorem in this section, we need some preparatory

results. The first can be considered part of the O’Nan-Scott Theorem (see [2, Remark 1.1.40]). Let G be
a primitive monolithic group with nonabelian socle N = Tm. Let H be a maximal subgroup of G such
that N 6⊆ H , i.e. HN = G and H supplements N . Suppose H ∩ N 6= {1}, i.e., H does not complement
N . Since N is a minimal normal subgroup of G and H is a maximal subgroup of G not containing N ,
H = NG(H ∩ N). In the following, let X := NG(T1)/CG(T1), which is an almost simple group with socle
T1CG(T1)/CG(T1) ∼= T . There are two possibilities for the intersection H ∩ N , and the primitive group
G is described as having one of two types, depending on the possibility. These two types and some basic
properties of each are described as follows.

(1) Product type. In this case, the projections H ∩ N → Ti are not surjective. This implies that
there exists a subgroup M of T , which is an intersection of T with a maximal subgroup of X , such
that NX(M) supplements T in X , and there exist elements a2, . . . , am ∈ T such that H ∩N equals

M ×Ma2 × . . .×Mam .

(2) Diagonal type. In this case, the projections H ∩N → Ti are surjective. This implies that there
exists a minimal H-invariant partition P of {1, . . . ,m} into imprimitivity blocks of the action of H
on {1, . . . ,m} such that H ∩N equals

∏

D∈P

(H ∩N)πD ,

and, for eachD ∈ P , the projection (H∩N)πD is a full diagonal subgroup of
∏

i∈D Ti. (Following [2,
Definition 1.1.37], a subgroup H of

∏

i∈D Ti is said to be full diagonal if each projection πi : H → Ti

is an isomorphism.)

For a finite nonabelian simple group T , denote by m(T ) the minimal index of a proper subgroup of G,
which is equal to the minimal degree of a transitive permutation representation of T . Recall that ℓG(N)
denotes the minimal index of a proper supplement of N in G. The following lemma provides information
about ℓG(N) for primitive monolithic groups G with socle N .

Lemma 3.1. Let G be a primitive monolithic group with socle N . If N is abelian, then ℓG(N) = |N |. If
N is nonabelian, then write N = T r with T a nonabelian simple group. Let H be a maximal subgroup of G
supplementing N .

(i) If H complements N , then |G : H | = |N | = |T |r.
(ii) If H has product type, then H = NG(M ×Ma2 × . . .×Mar) for some subgroup M of T of the form

Y ∩ T , where Y is a maximal subgroup of X supplementing T , and |G : H | = |T : M |r.
(iii) If H has diagonal type, then H = NG(∆), where ∆ is a product of r/c diagonal subgroups (in

the sense of the above description of diagonal type) with c a prime divisor of r larger than 1, and
|G : H | = |T |r−r/c.

Moreover ℓG(N) > m(T )r.
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Proof. Suppose N is abelian. Since G is primitive, N is non-Frattini, so it is complemented and each
of its complements have index ℓG(N) = |N |.

Suppose N is nonabelian. The three listed facts in the statement follow easily from the fact that
|G : H | = |N : H ∩ N |. Now let us prove that ℓG(N) > m(T )r. Since m(T )r 6 |T : M |r for every proper
subgroup M of T , it suffices to show that m(T )r 6 |T |r−r/c for every divisor c > 1 of r. For this, it is enough
to show that m(T )r 6 |T |r/2, i.e., m(T )2 6 |T |. This is true by inspection, using [11]. �

Next, we will prove a technical lemma which basically says under the right conditions that, if a set of
numbers is “small,” then the set of all possible powers of those numbers is also small.

Lemma 3.2. Let A be a subset of N, and for x ∈ R let

θ(x) := |{n ∈ A : n 6 x}|.

If there exists a constant c such that log(x)θ(x
1

2 ) 6 cθ(x) for every x > 0, then there exists a constant d
such that

|{nk : n ∈ A, k ∈ N, nk 6 x}| 6 dθ(x)

for every x > 0.

Proof. Let N(x) be the smallest natural number such that 2N(x) > x. Clearly there exists a constant
b such that N(x) 6 b log(x), and

|{nk : n ∈ A, k ∈ N, nk
6 x}| 6 θ(x) + θ(x1/2) + . . .+ θ(x1/N(x))

6 θ(x) +N(x)θ(x1/2) 6 dθ(x),

where d = 1 + bc. �

The following result is due to Frobenius; see [10, Section 5] for a modern treatment. Here, if H and K
are two groups and K 6 Sn, then H wrK denotes the wreath product between H and K, i.e., the semidirect
product Hn

⋊K, where K acts on Hn by permuting the coordinates.

Theorem 3.3. Let H be a subgroup of the finite group G, let x1, . . . , xn be a right transversal for H in
G, and let ξ be any homomorphism with domain H. Then the map G → ξ(H)wrSn given by

x 7→ (ξ(x1xx
−1
1π ), . . . , ξ(xnxx

−1
nπ ))π,

where π ∈ Sn satisfies xixx
−1
iπ ∈ H for all i = 1, . . . , n, is a well-defined homomorphism with kernel equal to

the normal core (ker ξ)G.

Next, in the following remark we establish some notation and basic results about monolithic groups with
a nonabelian socle.

Remark 3.4. Let G be a monolithic group with socle N = soc(G) = T1×· · ·×Tm, where T1, . . . , Tm are
pairwise isomorphic nonabelian simple groups. We also define X := NG(T1)/CG(T1), which is an almost-
simple group with socle T := T1CG(T1)/CG(T1) ∼= T1. The minimal normal subgroups of Tm = T1× . . .×Tm

are precisely its factors T1, . . . , Tm. Since automorphisms send minimal normal subgroups to minimal normal
subgroups, it follows that G acts on the m factors of N . Let ρ : G → Sm be the homomorphism induced by
the conjugation action of G on the set {T1, . . . , Tm}. The group K := ρ(G) is a transitive permutation group
of degree m. Choosing H := NG(T1) and ξ : H → Aut(T1), the homomorphism given by the conjugation
action of H on T1, by Theorem 3.3, we see that G embeds in the wreath product X wrK.

We need some consequences of the classification of finite simple groups (henceforth CFSG); see [20]. For
T a finite nonabelian simple group, recall that m(T ) denotes the minimal index of a proper subgroup of T .
Clearly m(An) = n, and the value of m(T ) when T is a group of Lie type can be found in [11, Table 1].

Lemma 3.5. Let T be a nonabelian finite simple group.

(1) There exists a constant c such that |Out(T )| 6 c log(m(T )).

(2) If T is non-alternating and not of the form PSL(2, q), then there are at most cx
1

2 / log(x) groups T
such that m(T ) 6 x, where c is a constant.



ON INTEGERS THAT ARE COVERING NUMBERS OF GROUPS 9

Proof. Item (1) follows from CFSG by inspection. For (2), by CFSG, if q is the size of the base field
and T is not PSL(2, q), then there always is a constant b such that bq2 6 m(T ) so that m(T ) 6 x implies

q 6 (x/b)
1

2 , and by the Prime Number Theorem and Lemma 3.2, there are at most cx
1

2 / log(x) choices for q,
where c is a constant. For a given q, we need only consider the constant number of families where m(T ) ∼ q2.
Indeed, if bq3 6 m(T ), then we may replace the square root by a cube root, and there are on the order of

log(x) possible values of n, and so there are at most
(

dx
1

3 / log(x)
)

· log(x) total possibilities outside the

families when m(T ) ∼ q2, where d is a constant. The result follows. �

Let G be a family of monolithic σ-elementary groups with nonabelian socle, and for G ∈ G, let soc(G) =
T k for T a nonabelian simple group and let nσ(G) := m(T )k. The following lemma provides bounds for the
number of integers that are covering numbers of groups in G in terms of the number of integers that are of
the form nσ(G) for G ∈ G.

Lemma 3.6. Let H be a subfamily of G. Define

A := {σ(G) : G ∈ H}, B := {nσ(G) : G ∈ H}.

Let g(x) be a function such that, for all n 6 x,

|{G ∈ H : nσ(G) = n}| 6 g(x).

Then
|{n ∈ A : n 6 x}| 6 g(x) · |{n ∈ B : n 6 x}|.

Proof. Indeed,

|{n ∈ A : n 6 x}| 6 |{G ∈ H : σ(G) 6 x}| 6 |{G ∈ H : nσ(G) 6 x}|

=
∑

n6x

|{G ∈ H : nσ(G) = n}| 6 g(x) · |{n ∈ B : n 6 x}|.

�

Next, we restate a lemma from [37], since there is a misprint in the original version.

Lemma 3.7. Let N be a proper subgroup of the finite group G. Let U1, . . . , Uk be proper subgroups of G
containing N and V1, . . . , Vk be subgroups such that that ViN = G with |G : Vi| = βi and β1 6 . . . 6 βk. If

G = U1 ∪ · · · ∪ Uh ∪ V1 ∪ · · · ∪ Vk,

where U1 ∪ · · · ∪ Uh 6= G, then β1 6 k. Furthermore, if β1 = k, then β1 = · · · = βk = k and Vi ∩ Vj 6

U1 ∪ · · · ∪ Uh for all i 6= j.

We are now ready to prove Theorem 1.4 and Corollary 1.6.

Proof of Theorem 1.4. Let us use the notation established in Remark 3.4. Let g be an element of
G which generates G modulo soc(G). We know that G embeds in the wreath product X wrK, so g has
the form (x1, . . . , xk)τ , where x1, . . . , xk ∈ X and τ ∈ K is a k-cycle in Sk that generates K. Moreover,
without loss of generality, we may assume that τ is the k-cycle (1 2 . . . k). Observe that conjugating τ by
(1, 1, . . . , 1, x) for any x ∈ X gives (1, 1, . . . , 1, x, x−1)τ , and conjugating elements of T k by τ has the effect
of “cycling” the coordinates. This implies that up to replacing G by a conjugate of G in X wrK we may
assume that g = (1, . . . , 1, x)τ , where x is a generator of X modulo T ; such a generator x must exist since
G/soc(G) is cyclic. Since X/T 6 Out(T ), this implies that in G there are at most |Out(T )| isomorphism
classes of groups G with given socle T k.

We claim that for fixed j 6 x the number of simple groups T with m(T ) = j is at most cx
1

3 , where c
is a constant. This is transparent in the case of sporadic and alternating groups. Groups of Lie type are
parametrized by two numbers, q and n, where q is the size of the base field and n is the dimension of the
vector space. A simple inspection using [11, Table 1] shows that, if m(S) = j 6 x, then qn−1 6 x, and for
any n 6 3 we have exactly one choice for q. This in turn gives a bounded number of choices for T since the

table is finite. For n > 4 we have q 6 x
1

3 and at most d log(x) choices for n, so, using Lemma 3.2 and the

Prime Number Theorem, we find at most d log(x)x
1

3 / log(x
1

3 ) choices for T , where d is a constant, giving

an upper bound of 3dx
1

3 . This holds for every table entry, and the claim now follows from the fact that the
table has a constant number of entries.
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By Lemma 3.5 (1) there exists a positive constant d such that, when setting g(x) = d log(x)x
1

3 , we have

|{G ∈ G : nσ(G) = n}| 6 g(n) 6 g(x)

for every n 6 x, observing that there are o(1) log(x) choices for m(S), and hence k is uniquely determined.
We are going to use this function g(x) below when we apply Lemma 3.6.

Let A be the family of the alternating groups An with n > 5, and let P be the set of simple groups
isomorphic to PSL(2, q) with q a prime power. As in Lemma 3.5 (2), let S be the family of the nonabelian

simple groups not in P ∪ A. Observe that G is a disjoint union
⋃6

i=1 Gi where

G1 := {G ∈ G : k > 1, T ∈ S}, G2 := {G ∈ G : k = 1, T ∈ A},

G3 := {G ∈ G : k = 2, T ∈ A}, G4 := {G ∈ G : k > 3, T ∈ A},

G5 := {G ∈ G : k = 1, T ∈ P}, G6 := {G ∈ G : k > 2, T ∈ P}.

By Lemmas 3.1 and 3.7, nσ(G) 6 ℓG(soc(G)) 6 σ(G).
Using Lemma 3.2 and Lemma 3.5 (2), we see that

|{nσ(G) : G ∈ G1, σ(G) 6 x}| 6 c1x
1

2 / log(x).

Using that n3 6 σ(An), σ(Sn) for n large (see [31, Theorem 3.1] and [29, Theorem 9.2]) and that Aut(An) =
Sn for n large, we see that

|{G ∈ G2 : σ(G) 6 x}| 6 c2x
1

3 .

Since m(An) = n and Aut(An ×An) = Aut(An)wrC2, we clearly have

|{G ∈ G3 : σ(G) 6 x}| 6 c3x
1

2 ,

|{nσ(G) : G ∈ G4, σ(G) 6 x}| 6 c4x
1

3 .

If G ∈ G5 and q is the size of the base field, then q 6 x. If q is not a prime, then by the Prime Number

Theorem there are at most o(1)x
1

2 such q, since, if q = pf with p prime and f > 1, then p2 6 pf = q gives

at most o(1)x
1

2 / log(x) choices for p and at most o(1) log(x) choices for f . Using that for p a large prime we
have p2/2 6 σ(PSL(2, p)) = σ(PGL(2, p)) (see [7]) and that Aut(PSL(2, p)) = PGL(2, p), together with the
Prime Number Theorem, we see that

|{G ∈ G5 : σ(G) 6 x}| 6 c5x
1

2 .

Again using the Prime Number Theorem and Lemma 3.2, we have that

|{nσ(G) : G ∈ G6, σ(G) 6 x}| 6 c6x
1

2 / log(x).

Combining the above with Lemma 3.6, where g(x) = d log(x)x
1

3 , we obtain that

{G ∈ G : σ(G) 6 x}|

6 c1dx
1

2 x
1

3 + c2x
1

3 + c3x
1

2 + c4dx
1

3x
1

3 log(x) + c5x
1

2 + c6dx
1

2x
1

3 ,

which is at most cx5/6 with c a constant, completing the proof. �

Proof of Corollary 1.6. Since the covering numbers of solvable groups are of the form q + 1 with
q a prime power (by Tomkinson’s result [37]), we know that there are infinitely many natural numbers that
are not the covering number of a solvable group. Let now G ∈ F be nonsolvable. Up to replacing G with
a suitable σ-elementary quotient G0 of G such that σ(G) = σ(G0), we may assume that G is σ-elementary.
The group G must have a unique minimal normal subgroup N , where N is nonabelian; otherwise, if N and L
are two minimal normal subgroups of G, then N is isomorphic to a subgroup of G/L, which is solvable, and
L is isomorphic to a subgroup of G/N , which is solvable as well, contradicting the fact that G is nonsolvable.
Since G is σ-elementary and G/N is solvable, G/N is cyclic. Moreover, Φ(G) = {1} by Lemma 2.2. This
implies that G is a primitive monolithic group with G/soc(G) cyclic, and now the result follows by Theorem
1.4. �
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4. Nonabelian σ-elementary groups whose covering number is at most 129

In this section, we prove that any nonabelian σ-elementary group with covering number at most 129 is
both primitive and monolithic. When combined with the calculations of Section 8 and Appendix A, this
allows us to determine precisely which integers less than or equal to 129 are covering numbers of finite groups.
The main theorem in this section is an easy consequence of the following lemmas.

Lemma 4.1. Let G be a primitive monolithic group with nonabelian socle N . Then there exists a set
{g1N, . . . , gkN} generating G/N with the property that

σ(〈gi, N〉) 6 σ∗(G) + ω(|giN |G/N)

for every i ∈ {1, . . . , k}, where |giN |G/N denotes the order of giN in G/N and ω(m) denotes the number of
distinct prime divisors of m.

Proof. There exists a set {g1N, . . . , gkN} generating G/N with the property that σ∗(G) = σΩ(G),
where Ω = g1N ∪ . . . ∪ gkN . In particular, for i ∈ {1, . . . , k} we have σgiN (G) 6 σ∗(G). If H is a proper
supplement of N in G, then H∩〈gi, N〉 is a proper supplement of N in 〈gi, N〉, and therefore giN is contained
in a union of σgiN (G) proper subgroups of 〈gi, N〉. By Lemma 2.7, in order to cover 〈gi, N〉 with proper
subgroups it suffices to use a family of proper subgroups covering giN and the maximal subgroups of 〈gi, N〉
containing N . This implies that

σ(〈gi, N〉) 6 σgiN (G) + ω(|giN |G/N ) 6 σ∗(G) + ω(|giN |G/N ),

concluding the proof. �

Lemma 4.2. Let n be a fixed positive integer. Let F be the family of monolithic primitive groups X of
primitivity degree at most n, with nonabelian socle N , where X/N is either nonsolvable or cyclic, and where
σ∗(X) 6 2n + 1. If for all X ∈ F we have σ(X) < 2σ∗(X), then every nonabelian σ-elementary group G
with σ(G) 6 2n+ 1 is primitive and monolithic.

Proof. Let G be a nonabelian σ-elementary group, and let soc(G) = N1 × · · · × Nt. By Lemma
2.2 we know that at most one of the Ni’s is abelian. So we may assume that Ni is nonabelian whenever
i > 2. We need to show that t = 1, so assume for the purpose of contradiction that t > 2. Let Xi

be the primitive monolithic group associated with Ni for all i = 1, . . . , t. By Lemma 2.5 we know that
∑t

i=1 σ
∗(Xi) 6 σ(G) 6 2n+1 for all i; in particular, σ∗(Xi) 6 2n+1 for all i. We consider the two possible

cases.
Assume first that N1 is abelian. In this case, since the center of G is trivial by Lemma 2.3, σ(G) < 2|N1|

by Lemma 2.9, and, since ℓX1
(N1) = |N1|, we have

1

2
σ(G) + ℓX2

(N2) 6

t
∑

i=1

σ∗(Xi) 6 σ(G).

This means 2ℓX2
(N2) 6 σ(G) 6 2n+1, and therefore ℓX2

(N2) 6 n. Since X2 is a quotient of G, we conclude
that X2/N2 is either nonsolvable or cyclic by Lemma 2.8, implying σ(X2) < 2σ∗(X2) by hypothesis. Since
X2 is a quotient of G, we have σ(G) 6 σ(X2) < 2σ∗(X2), and, by Lemma 2.6, we have ℓX2

(N2) 6 σ∗(X2).
Combining this with Lemma 2.9 yields

ℓX1
(N1) + ℓX2

(N2) 6 |N1|+ σ∗(X2) 6 σ(G) < min{2|N1|, 2σ
∗(X2)}.

But |N1| + σ∗(X2) < 2|N1| implies σ∗(X2) < |N1| and |N1| + σ∗(X2) < 2σ∗(X2) implies |N1| < σ∗(X2), a
contradiction.

We may thus assume N1 is nonabelian. In this case, we may assume that

min{σ∗(Xi) : i = 1, . . . , n} = σ∗(X1).

Therefore,

2ℓX1
(N1) 6 2σ∗(X1) 6

t
∑

i=1

σ∗(Xi) 6 σ(G) 6 2n+ 1,



12 MARTINO GARONZI, LUISE-CHARLOTTE KAPPE, AND ERIC SWARTZ

which implies ℓX1
(N1) 6 n, and so, since X1 is a quotient of G, we have that X1/N1 is either nonsolvable

or cyclic by Lemma 2.8, we have σ(X1) < 2σ∗(X1) by hypothesis. Hence

t · σ∗(X1) 6

t
∑

i=1

σ∗(Xi) 6 σ(G) 6 σ(X1) < 2σ∗(X1),

which contradicts the fact that t > 2, completing the proof. �

Remark 4.3. If σ(X) < 2σ∗(X) for all primitive monolithic groups X with a nonabelian socle, then
Lemma 4.2 implies that Conjecture 1.2 is true.

Lemma 4.4. Let X be a primitive monolithic group with nonabelian socle N . If X/N is a cyclic p-group
for some prime p then σ(X) 6 σ∗(X) + 1 < 2σ∗(X).

Proof. Since X/N is a cyclic p-group, it admits exactly one maximal subgroup. Therefore a union Ω
of cosets of N in X generates X if and only if it contains a coset xN , where x does not belong to the unique
maximal subgroup of X containing N . It follows that there exists such x with σ∗(X) = σxN (X). Observe
that since X/N is a p-group, we may choose such an x of p-power order. Now we can cover xN with a family
K consisting of σ∗(X) supplements of N , which therefore cover all the cosets xkN with k coprime to p by
Lemma 2.7. What is left to cover is every coset xpkN for k > 1. Thus adding 〈N, xp〉 6= X , we conclude
that σ(X) 6 σ∗(X) + 1. �

Our main result in this section is now an easy consequence of the above lemmas.

Theorem 4.5. Let G be a nonabelian σ-elementary group with σ(G) 6 129. Then G is primitive and
monolithic with primitivity degree at most 129.

Proof. We show that G is primitive and monolithic. By Lemma 4.2, to do so it is enough to show
that σ(X) < 2σ∗(X) whenever X is a primitive monolithic group of degree at most 64 satisfying each of the
following three conditions: (1) X has nonabelian socle N , (2) X/N is either nonsolvable or cyclic, and (3)
σ∗(X) 6 129. Let X be such a group. If X/N is a cyclic p-group for some prime p, then Lemma 4.4 implies
σ(X) < 2σ∗(X). Now assume X/N is not a cyclic p-group. A GAP check shows that the only possibility
is X ∼= Aut(PSL(2, 27)), in which case X/N ∼= C6 and ℓX(N) = 28. In this case, Lemma 4.1 implies that
either σ(X) 6 σ∗(X) + 2 < 2σ∗(X), or, for one of the gi’s in this lemma, 〈N, gi〉 ∼= PGL(2, 27), and so
σ∗(X) > σ(PGL(2, 27)) − 1 = 378 holds, a contradiction to σ∗(X) 6 129. Thus σ(X) < 2σ∗(X). Lemma
2.6 implies that the smallest primitivity degree of G is at most σ(G). �

5. Computational methods

In this section, we outline the computational methods used to prove Theorem 1.1. By Tomkinson’s result
(see Proposition 6.1 below), it suffices to consider nonsolvable σ-elementary groups, and by Theorem 4.5,
any nonabelian σ-elementary group G with σ(G) 6 129 is primitive and monolithic with a primitivity degree
of at most 129. Using GAP, we are able to list every nonsolvable primitive group with degree of primitivity
at most 129. The covering number of many of these groups is known; see Section 6 below. Moreover, the
covering number of affine general linear groups and affine special linear groups when n > 3 are determined
in Section 7.

All remaining groups, i.e., those groups not explicitly discussed in Sections 6 and 7, are listed in Tables
7, 8, 9, 10, and 11, along with a reference as to how the computation was completed for each group. In many
cases, the group has a noncyclic solvable homomorphic image whose covering number is the same as the
original group. In these cases, the homomorphic image is listed in the reference column. For many primitive
groups of affine type – that is, those that have a unique elementary abelian minimal normal subgroup – a
result due to Detomi and Lucchini (also proved independently by S. M. Jafarian Amiri [24]) can be used: if
G is such a primitive group with elementary abelian minimal normal subgroup N and point stabilizer H in
the primitive action and σ(H) < |N |, then σ(G) = σ(H); see Lemma 2.11.

The covering number of many other groups can be computed exactly using either linear programming
methods or other computational techniques. The details are discussed in Subsections 5.1 and 5.2, respectively.
There are only a few groups whose covering number cannot be determined using these methods, and they
are considered on an ad hoc basis in Appendix A.
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5.1. Linear programming methods. In [27], the authors created a program in GAP [17] that takes
as input a group G, a list E of elements of G, a list M of maximal subgroups of G, and the name of a file
of type .lp to which output is written. This output file is read by the linear optimization software GUROBI
[21], which then determines the least number of subgroups conjugate to one of the subgroups in M needed
to cover the elements conjugate to the elements of E . This function is referred to in the remainder of the
paper as “Algorithm KNS,” and the GAP code for this program can be found in [27].

For a group of order approximately 500000 or less, Algorithm KNS generally will return a .lp file within
24 hours. The calculations done here were completed with a laptop that has a Core i7 processor and 16 GB
of RAM. The optimization software GUROBI sometimes is able to determine the exact covering number
within seconds; other times, the program runs out of memory, but is still able to provide good bounds. For
instance, the previous bounds on the covering number of J2 were 380 6 σ(J2) 6 1220, given in [23]. With
the aid of Algorithm KNS and GUROBI, we have improved these bounds to 1063 6 σ(J2) 6 1121.

5.2. A verification method for minimal covers and a greedy algorithm. Maróti introduced the
following technique for showing that a cover is minimal. Following [31], if Π ⊆ G, we define σ(Π) to be the
least integer m such that Π is a subset of the set-theoretic union of m subgroups of G; clearly, σ(Π) 6 σ(G).
A set H = {H1, . . . , Hm} of m proper subgroups of G is definitely unbeatable on Π if both of the following
conditions hold:

(i) the elements of Π are partitioned among the subgroups in H, and
(ii) for all subgroups K 6 G that are not contained in H, we have |K ∩ Π| 6 |Hi ∩ Π| for each i,

1 6 i 6 m.

If H is definitely unbeatable on Π, then |H| = σ(Π) 6 σ(G).
However, definite unbeatability is often too stringent a condition. With this in mind, a more complicated

but more generally applicable condition was introduced in [36]. The following lemma is a slight modification
of that condition (in that the parameter c(M) may equal 1 here) and is useful in cases when the minimal
cover is not unique.

Lemma 5.1. Let Π be a union of conjugacy classes of elements of G; let I ⊆ IG, where IG is an index
set for the conjugacy classes of maximal subgroups of G; and let C =

⋃

i∈I Mi be a cover of Π such that each
Mi denotes a conjugacy class of maximal subgroups, the elements of Π are partitioned among the subgroups
in C, and each subgroup in C contains elements of Π. For a maximal subgroup M 6∈ C, define

c(M) :=
∑

i∈I

|M ∩ Πi|

|Mi ∩ Πi|
,

where Mi is a maximal subgroup in Mi. If c(M) 6 1 for all maximal subgroups M 6∈ C, then C is a minimal
cover of the elements of Π. Moreover, if c(M) < 1 for all maximal subgroups M 6∈ C, then C is the unique
minimal cover of the elements of Π that uses only maximal subgroups.

Proof. The statement with c(M) < 1 was proved in [36]; the proof here is nearly identical, save for
some strict inequalities being changed to allow for equalities, but it is included for the sake of completeness.
Let C and Π be as in the statement of the lemma, and assume that c(M) 6 1 for all maximal subgroups
not in C. Suppose that B is another cover of the elements of Π, and let C′ = C\(C ∩ B) and B′ = B\(C ∩ B).
The collection C′ consists only of subgroups from classes Mi, where i ∈ I, and we let ai be the number of
subgroups from Mi in C′. Similarly, the collection B′ consists only of subgroups from classes Mj , where
j 6∈ I, and we let bj be the number of subgroups from Mj in B′. Note that, since B is a different cover, for
some j 6∈ I, we have bj > 0.

By removing ai subgroups in class Mi from C, the new subgroups in B′ must cover the elements of Π
that were in these subgroups. Hence, for all i ∈ I, if Mk denotes a subgroup in class Mk for each k,

ai|Mi ∩ Πi| 6
∑

j 6∈I

bj |Mj ∩ Πi|,

which in turn implies that, for all i ∈ I, we have

ai 6
∑

j 6∈I

bj
|Mj ∩ Πi|

|Mi ∩ Πi|
.
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This means that

|C′| =
∑

i∈I

ai 6
∑

i∈I

∑

j 6∈I

bj
|Mj ∩Πi|

|Mi ∩ Πi|
=
∑

j 6∈I

∑

i∈I

bj
|Mj ∩ Πi|

|Mi ∩Πi|

=
∑

j 6∈I

(

∑

i∈I

|Mj ∩ Πi|

|Mi ∩ Πi|

)

bj =
∑

j 6∈I

c(Mj)bj 6
∑

j 6∈I

bj = |B′|,

which shows that

|C| = |C′|+ |C ∩ B| 6 |B′|+ |C ∩ B| = |B|.

Hence, any other cover of the elements of Π using only maximal subgroups contains at least as many
subgroups as C. Therefore, C is a minimal cover of the elements of Π. �

Algorithm GKS CoveringNumberBounds

Input: A finite group G.
Output: A triple (ℓ, u, c), where ℓ 6 σ(G) 6 u and c is True if it is verified that σ(G) = u and False

otherwise.
1: max := list of representatives of each class of maximal subgroups of G
2: eltM := for each subgroup M in max, a list of representatives of each conjugacy class of elements

of M
3: conj := list of nonidentity conjugacy classes of elements of G
4: u := 0
5: minlist := an empty list
6: cvalues := list with every entry 0 of length the size of max
7: while conj is nonempty do

8: elts := for each class xG left in conj, the elements of eltM that are in xG

9: ints := for each class xG left in conj, a list of the sizes of the intersection of xG with each
subgroup M in max, created using the list elts by summing the sizes of the conjugacy classes in M
over the set of elements in eltM that are in xG

10: mins := for each class xG left in conj, the minimum number of subgroups needed to cover xG,
calculated by dividing the size of xG by the maximum intersection size from ints corresponding to
xG

11: best := maximum ofmins, which can be thought of as the minimum number of subgroups needed
at this stage to get a cover

12: add best to minlist
13: xG

0 := the conjugacy class in conj that needed best subgroups to be covered
14: M0 := a maximal subgroup from max from the class used to cover xG

0 with best subgroups
15: cvalueupdate := list with entry |M ∩ xG

0 |/|M0 ∩ xG
0 | for each M ∈ max

16: cvalue:= cvalue + cvalueupdate (addition is entrywise)
17: if best 6= |G : M0| then

18: c := False

19: u := u+ |G : M0|
20: conj := any remaining conjugacy classes that do not intersect M0

21: ℓ := the first entry in minlist
22: if c = True then

23: for i in cvalue do

24: if i > 1 then

25: c := False
return (ℓ, u, c)

In practice, there is often a union of conjugacy classes Π of elements of G and a minimal cover C of the
elements of Π that satisfies the hypotheses of Lemma 5.1. We can design an algorithm exploiting this idea
that works roughly as follows: each conjugacy class of elements and representatives for each conjugacy class
of maximal subgroups are computed in GAP. Next, the conjugacy class xG of elements that requires the
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most maximal subgroups to cover is determined. Greedily, we take as part of a cover all subgroups from a
conjugacy class M of maximal subgroups that most efficiently covers xG. All elements that are covered by
the subgroups of M are removed, and this process is repeated again and again until all elements are covered.
Often, the cover produced this way is a minimal cover, and this can typically be verified by using Lemma
5.1. Even if the cover is not verifiably minimal, the function returns upper and lower bounds for σ(G). The
steps of this procedure are listed in Algorithm GKS, which is written in pseudocode.

We remark that, while it would be “simpler” to calculate ints in Step 10 of Algorithm GKS by taking
the intersection of class xG with each subgroup in max, for many groups the sizes of the conjugacy classes
are quite large, and it is much faster for such groups to calculate the intersection sizes as described in the
pseudocode. Algorithm GKS can also be altered to return additional information, such as the classes xG

0

and subgroups M0 chosen in various iterations of the while loop, which is useful for ad hoc calculations like
those in Appendix A.

6. Known bounds on and values of covering numbers

We collect in this section a list of known results regarding the covering number of specific families of
groups. We use the notation Sn to refer to the symmetric group of degree n and An to refer to the alternating
group of degree n. The first proposition combines the results of Cohn and Tomkinson and completely solves
the problem of which integers are covering numbers of solvable groups. In the tables we also indicate the
smallest primitivity degree m(G) of any given primitive group G.

Proposition 6.1. (i) [8, Corollary to Lemma 17] For every prime p and positive integer d, there
exists a group G with covering number pd + 1.

(ii) [37, Theorem 2.2] Let G be a finite solvable group and let H/K be the smallest chief factor of G having
more than one complement in G. Then σ(G) = |H/K|+ 1. In particular, the covering number of any
(noncyclic) solvable group has the form pd + 1, where p is a prime and d is a positive integer.

The following table summarizes what is currently known about covering numbers of symmetric groups.

Group m(G) Covering Number Citation
S5 5 16 [8]
S6 6 13 [1]
S8 8 64 [27]
S9 9 256 [27]
S10 10 221 [27]
S12 12 761 [27]
S14 14 3096 [33]
S18 18 36773 [36]

S6k, k > 4 6k 1
2

(

6k
3k

)

+
2k−1
∑

i=0

(

6k
i

)

[36]

S2k+1, k 6= 4 2k + 1 22k [31]

S2k, k > 16 2k > 1
2

(

2k
k

)

[31]

Table 1. Covering numbers of symmetric groups

The following table summarizes what is currently known about covering numbers of alternating groups.
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Group m(G) Covering Number Citation
A5 5 10 [8]
A6 6 16 [7]
A7 7 31 [28]
A8 8 71 [28]
A9 9 157 [16]
A10 10 256 [31]
A11 11 2751 [16]

A4k+2 4k + 2 24k [31]
An, n > 12 n > 2n−2 [31]

Table 2. Covering numbers of alternating groups

The following table summarizes what is currently in the literature regarding covering numbers of pro-
jective linear groups of dimension 2.

Group m(G) Covering Number Citation
PSL(2, 5) 6 10 [8]
PGL(2, 5) 6 16 [8]
PSL(2, 7) 7 15 [7]
PGL(2, 7) 8 29 [7]
PSL(2, 9) 10 16 [7]
PGL(2, 9) 10 46 [7]
PΓL(2, 8) 9 29 [19]

PSL(2, q), PGL(2, q), q > 8 even q + 1 1
2q(q + 1) [7]

PSL(2, q), PGL(2, q), q > 9 odd q + 1 1
2q(q + 1) + 1 [7]

Table 3. Covering numbers of 2-dimensional linear groups

By [30], if q = 22m+1 for some m ∈ N, then σ(Sz(q)) = 1
2q

2(q2 + 1).
The following table summarizes what is currently in the literature regarding covering numbers of sporadic

simple groups with a degree of primitivity less than or equal to 129. Using Algorithm KNS and GUROBI
[21], we have improved the bounds for J2 to 1063 6 σ(J2) 6 1121.

Group m(G) Covering Number Citation
M11 11 23 [22]
M12 12 208 [27]
M22 22 771 [22]
M23 23 41079 [22]
M24 24 3336 [15]
HS 100 1376 [23]
J2 100 > 380 [23]

Table 4. Covering numbers of various sporadic simple groups

The following result was the main application of Lemma 2.11 in [24] and proves results about 2-
dimensional affine general linear groups.

Lemma 6.2. [24] Let p > 3 be a prime. Then σ(AGL(2, p)) = p(p+ 1)/2 + 1.

However, when combined with the results about PSL(2, q) and PGL(2, q) when q is not a prime (see
Table 3), Lemma 2.11 can be used to prove the following stronger result.

Lemma 6.3. Let q be a prime power, q > 4. Then σ(AGL(2, q)) = σ(ASL(2, q)) = σ(PSL(2, q)), and
consequently AGL(2, q) and ASL(2, q) are never σ-elementary when q > 4.
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Finally, we have the following result about the covering numbers of two other primitive groups.

Proposition 6.4. [18] For A5 wr 2 and (A5 ×A5) : 4 we have:

(i) σ(A5 wr 2) = 57;
(ii) σ((A5 × A5) : 4) = 126, where (A5 × A5) : 4 is the preimage of the normal cyclic subgroup of order 4

in D8 via Aut(A5 ×A5) → Out(A5 ×A5) ∼= D8.

7. Covering affine general linear groups and affine special linear groups with proper

subgroups

This section is dedicated to proving Theorem 1.7, which can be interpreted as a generalization of Cohn’s
result [8] listed in Proposition 6.1.

Proof of Theorem 1.7. Since the proof is analogous for ASL(n, q), we will only show the result in
each case for AGL(n, q).

First, if n = 1, then we have σ(AGL(1, q)) = q + 1 = (q2 − 1)/(q − 1). This follows from [37, Lemma
2.1].

When n > 3, we consider the group AGL(n, q). By Lemma 2.9,

σ(AGL(n, q)) 6 (qn+1 − 1)/(q − 1).

It remains to show that there is no smaller cover.
Let AGL(n, q) = V ⋊ H , where V is the underlying vector space over GF(q) (defined additively) and

H , which is isomorphic to GL(n, q), is the stabilizer of 0 ∈ V . Define the cover C = C1 ∪ C2 to be the union
of two classes C1 and C2 of maximal subgroups. Let C1 consist of all point stabilizers of AGL(n, q) in its
natural primitive action on qn points; that is, C1 consists of all conjugates of H in AGL(n, q). In this case,
|C1| = qn. Let C2 consist of all subgroups isomorphic to V ⋊ K, where V is the unique minimal normal
subgroup of AGL(n, q) of order qn and K is the stabilizer of a 1-dimensional subspace. Since there are
(qn − 1)/(q − 1) lines through the origin, there are (qn − 1)/(q − 1) such groups in C2. This implies that
|C| = (qn+1 − 1)/(q − 1). By Lemma 2.9, the collection C is a cover of the elements of AGL(n, q).

We will show that no smaller collection of subgroups can cover the elements of AGL(n, q). First, by a
result of Kantor [25], the only maximal subgroups of GL(n, q) containing Singer cycles are field extension
groups isomorphic to GL(n/b, qb), where b > 1 is a divisor of n. Moreover, the Singer cycles are partitioned
among these subgroups. Since

qn(n−1)(q − 1)n =

n−1
∏

i=0

(qn − qn−1) 6 |GL(n, q)| =

n−1
∏

i=0

(qn − qi) 6

n−1
∏

i=0

qn = qn
2

,

we have

σ(GL(n, q)) >
|GL(n, q)|

|GL(n/b, qb)|
>

qn(n−1)(q − 1)n

(qb)
(n/b)2

= qn
2(1− 1

b )−n(q − 1)n > q
n
2

2
−n(q − 1)n >

qn+1 − 1

q − 1
,

when n > 4 and when n = 3 and q > 3. When n = 3 and q = 2, we have GL(3, 2) ∼= PSL(2, 7), and hence
σ(GL(3, 2)) = σ(PSL(2, 7)) = 15 by Table 3. By Lemma 2.10, the groups in C1 must appear in any minimal
cover of the elements of AGL(n, q).

In V , there is a natural bijection between 1-dimensional subspaces and hyperplanes, and so for any
nonzero v ∈ V we define φ(v) to be the hyperplane of V such that V = 〈v〉 ⊕ φ(v). Let v ∈ V , v 6= 0, and,
if s is a Singer cycle on φ(v) that fixes both 0 ∈ φ(v) and v, then define g to be element of AGL(n, q) that
corresponds to s followed by a translation by v. The element g fixes no points of V . To see this, consider
w ∈ V . Since φ(v) complements 〈v〉, there exist a unique a ∈ GF(q) and u ∈ φ(v) such that w = av + u. If
wg = w, this implies that (a+1)v+ us = av+ u, that is, we have v = u− us ∈ φ(v), a contradiction. Hence
g is not contained in any group in C1.

Moreover, |g| = p · (qn−1 − 1)/(q − 1), since translation by v has order p and the Singer cycle on φ(v)
fixes v and hence commutes with translation by v. For nonzero vectors v1, v2 ∈ V , let g1 be an element
that corresponds to a Singer cycle on the hyperplane φ(v1) followed by translation by v1, and let g2 be an
element that corresponds to a Singer cycle on the hyperplane φ(v2) followed by translation by v2. Then gp1
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and gp2 are Singer cycles of hyperplanes, and both gp1 and gp2 are elements of H . By [4, Theorem 4.1 (2)] (see
also [5]), if n > 4, (n, q) 6= (4, 2), (11, 2), and a maximal subgroup M of H contains gp1 and gp2 , then both
gp1 and gp2 leave the same 1-dimensional subspace (and hyperplane) fixed; that is, 〈v1〉 = 〈v2〉. When n = 3,
we can derive the same result using [6, Tables 8.3-8.4] by considering a primitive prime divisor of q3 − 1
when q 6= 4. Furthermore, when (n, q) = (3, 4), (4, 2), the result follows by computation in GAP, and, when
(n, q) = (11, 2), the result follows by considering [6, Tables 8.70-8.71]. We deduce from the above that, if
〈v1〉 6= 〈v2〉, then 〈gp1 , g

p
2〉 = H . Since g1 fixes no points of V and H is the stabilizer of 0 ∈ V , it follows that

g1 6∈ H . Because H is a maximal subgroup of AGL(n, q) and g1 6∈ H , this implies that

AGL(n, q) = 〈g1, H〉 = 〈g1, g
p
2〉 6 〈g1, g2〉,

and in this case g1 and g2 generate all of AGL(n, q). Hence, if g1 and g2 do not stabilize the same 1-
dimensional subspace, they pairwise generate all of AGL(n, q). Therefore, we need at least as many subgroups
as there are 1-dimensional subspaces to cover the elements of this type, i.e., we need at least (qn− 1)/(q− 1)
subgroups in addition to those from C1, and the result follows. �

It is unclear which integers of the form (q3 − 1)/(q − 1) = q2 + q + 1, where q is a prime power, are
covering numbers. What is known so far is summarized in Table 5, and there does not appear to be any clear
pattern. The smallest open case is when q = 11, and no group has been found yet with covering number
133 = 112 + 11 + 1.

q q2 + q + 1 Covering number? σ-elementary groups
2 7 No ∅

3 13 Yes S6

4 21 No ∅

5 31 Yes A7, AGL(4, 2)
7 57 Yes A5 wr 2
8 73 Yes (A6 ×A6) : 4
9 91 No ∅

11 133 ? ?

Table 5. Integers of the form q2 + q + 1 and whether or not they are covering numbers

8. Tables and computational results

The purpose of this section is to provide a summary of the calculations of the covering numbers of
the primitive monolithic groups with a degree of primitivity of at most 129. We remark that Theorem 1.1
follows from Theorem 4.5, Proposition 6.1, and Table 6. Table 6 contains the complete list of nonsolvable σ-
elementary groups G where σ(G) 6 129, which summarizes the information about nonsolvable σ-elementary
groups. Table 6 follows from the known results in Section 6 and the results of calculations which are listed
in Tables 7, 8, 9, and 10.
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Covering Number Nonsolvable σ-elementary groups
10 A5

13 S6

15 PSL(2, 7)
16 S5, A6

23 M11

29 PGL(2, 7), PΓL(2, 8)
31 A7, AGL(4, 2)
36 PSL(2, 8)
40 ASL(3, 3), AGL(3, 3)
46 M10, PGL(2, 9)
57 A5 wr 2
60 PΓU(3, 3)
63 AGL(5, 2)
64 S7, S8, PSU(3, 3), PSp(4, 3) : 2, Sp(6, 2)
67 PSL(2, 11), PGL(2, 11), PSp(4, 3)
71 A8

73 (A6 ×A6) : 4
85 ASL(3, 4), AGL(3, 4), AΣL(3, 4)
86 PΓL(2, 16), PSL(2, 16).2
92 PSL(2, 13), PGL(2, 13)
114 PSL(2, 7)wr 2
121 ASL(4, 3), AGL(4, 3)
126 (A5 ×A5) : 4
127 AGL(6, 2), PΣL(2, 25)

Table 6. The nonsolvable σ-elementary groups G with σ(G) 6 129

The following tables list groups and their covering numbers, along with references. Excluded are groups
whose covering number was determined previously. Specifically, we have excluded the groups Sn, An,
PSL(2, q), PGL(2, q), PΓL(2, 8), Sz(q), M11, M12, M22, M23, M24, HS, AGL(2, q), A5 wr 2, and (A5×A5) : 4,
since these are dealt with in Section 6. In the reference column, when a specific group H is listed, it means
that the group has H as a homomorphic image and the same covering number as H . For instance, “S3”
means the group projects onto the symmetric group S3 and has covering number 4, since σ(S3) = 4. If it says
“Algorithm KNS” in the reference column, this means that Algorithm KNS was used with representatives of
all conjugacy classes of elements and representatives of all conjugacy classes of maximal subgroups as inputs
to generate a .lp file that was then optimized using GUROBI [21]. Different groups in GAP can be given
the same name; for instance, (A6 × A6).2

2 means some extension of A6 × A6 by a Klein 4-group. When it
says “(all such groups)” in a table, we mean that all such groups listed by GAP with that name and degree
of primitivity have the same covering number. In Table 9, there are two groups listed as (A6 × A6).4, and
they are distinguished by saying that one is “(#16 in the list)” and the other is “(#18 in the list).” This is
referring to the position in the list of all primitive groups of degree 100 that is generated by GAP.
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Group Degree Covering Number Reference
PΓL(2, 9) 10 3 C2 × C2

M10 10 46 Algorithm KNS
PSL(3, 3) 13 157 Algorithm KNS
AΓL(2, 4) 16 4 S3

24 : A5 16 10 Lemma 2.11
24 : S6 16 13 Lemma 2.11

ASL(2, 4) : 2 16 16 Algorithm KNS
24 : A6, 2

4 : S5 16 16 Lemma 2.11
AGL(4, 2) 16 31 Theorem 1.7
24 : A7 16 31 Algorithm KNS

PSL(2, 16).2 17 86 Algorithm KNS
PΓL(2, 16) 17 86 Algorithm KNS
PΓL(3, 4) 21 3 C2 × C2

PSL(3, 4) 21 141 Algorithm KNS
PΣL(3, 4) 21 141 Algorithm KNS
PGL(3, 4) 21 981 Algorithm KNS
M22 : 2 22 331 Algorithm GKS

(A5 ×A5) : 2
2, S5 wr 2 25 3 C2 × C2

ASL(2, 5) : 2 25 10 Lemma 2.11
PΓL(2, 25) 26 3 C2 × C2

PΣL(2, 25) 26 127 Algorithm KNS
PSL(2, 25).23 26 326 Algorithm KNS

ASL(3, 3), AGL(3, 3) 27 40 Theorem 1.7
PSp(4, 3) : 2 27 64 Algorithm KNS
PSp(4, 3) 27 67 Algorithm KNS
PΣL(2, 27) 28 > 167 Algorithm KNS
PΓU(3, 3) 28 60 Algorithm KNS
PSU(3, 3) 28 64 Algorithm KNS
Sp(6, 2) 28 64 Algorithm GKS

PΓL(2, 27) 28 353 Algorithm KNS
PSL(5, 2) 31 64698 Algorithm GKS
PSL(3, 5) 31 4031 Algorithm KNS
AGL(5, 2) 32 63 Theorem 1.7
PΓL(2, 32) 33 497 Algorithm KNS

(A6 ×A6) : 2
2, S6 wr 2 36 3 C2 × C2

(A6 ×A6) : 4 36 73 Algorithm KNS
A6 wr 2 36 137 Algorithm KNS

PSL(4, 3), PGL(4, 3) 40 2146 Algorithm GKS
(A7 ×A7) : 2

2, S7 wr 2 49 3 C2 × C2

ASL(2, 7) : 2, ASL(2, 7) : 3 49 15 Lemma 2.11
PSL(3, 2)wr 2 49 114 Algorithm KNS
(A7 ×A7) : 4 49 1716 Algorithm GKS

A7 wr 2 49 > 447 Proposition A.2 (i)
PΓL(2, 49) 50 3 C2 × C2

PSU(3, 5), PSU(3, 5) : 2 50 176 Algorithm GKS
PΣL(2, 49) 50 226 Algorithm KNS

PSL(2, 49).23 50 1226 Algorithm KNS
PSL(3, 3).2 52 170 Algorithm KNS
PSL(3, 4).22 56 3 C2 × C2

PSL(3, 4).21 56 162 Algorithm KNS
PSL(3, 4).22 56 > 138 Algorithm KNS

Table 7. Covering numbers of various nonsolvable primitive groups of degree at most 56
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Group Degree Covering Number Reference
PSL(3, 4).23 56 141 Algorithm KNS

PSL(3, 7), PGL(3, 7) 57 32985 Algorithm GKS
PSL(6, 2) 63 > 56313 Algorithm GKS

26 : (S3 ×GL(3, 2)), (A8 ×A8).2
2 64 3 C2 × C2

S8 wr 2, (PSL(2, 7)× PSL(2, 7)).22 64 3 C2 × C2

PGL(2, 7)wr 2 64 3 C2 × C2

AΓL(3, 4) 64 4 S3

26 : (S3 ×GL(3, 2)) 64 4 S3

AΓL(2, 8) 64 8 C7 : C3

26 : (3.S6) 64 13 Lemma 2.11
26 : (3 ×GL(3, 2)) 64 15 Lemma 2.11

26 : (3.A6) 64 16 Lemma 2.11
AΣL(2, 8) 64 29 Lemma 2.11

26 : PGL(2, 7) 64 15 Lemma 2.11
26 : A7 64 31 Lemma 2.11

26 : ΣU(3, 3) 64 60 Lemma 2.11
26 : Sp(6, 2) 64 64 Lemma 2.11

26 : GO−(6, 2) 64 64 Lemma 2.11
26 : S8 64 64 Lemma 2.11
26 : S7 64 64 Lemma 2.11

26 : SU(3, 3) 64 64 Lemma 2.11
26 : O−(6, 2) 64 67 Proposition A.1 (i)

26 : A8 64 71 Proposition A.1 (ii)
AΣL(3, 4) 64 85 Algorithm GKS

ASL(3, 4), AGL(3, 4) 64 85 Theorem 1.7
26 : (GL(3, 2)wr 2) 64 114 Lemma 2.11

AGL(6, 2) 64 127 Theorem 1.7
(PSL(2, 7)× PSL(2, 7)).4 64 498 Proposition A.1 (iii)

(A8 ×A8).4 64 2074 Algorithm GKS
A8 wr 2 64 3426 Algorithm GKS

PSL(2, 7)wr 2 64 114 Algorithm KNS
PSU(3, 4).2, PΓU(3, 4) 65 274 Algorithm GKS
PSL(2, 64).2, PΓL(2, 64) 65 586 Algorithm GKS

Sz(8) : 3 65 1457 Algorithm GKS
PSU(3, 4) 65 1745 Algorithm KNS

PSL(2, 64).3 65 2080 Proposition A.1 (iv)
PSL(2, 16).2 68 86 Algorithm KNS
PΓL(3, 8) 73 56138 Algorithm GKS
PSL(3, 8) 73 75337 Algorithm GKS

34 : SL(2, 9) : 22, 34 : 2.A6 : D8 81 3 C2 × C2

34 : 2.A6 : Q8, AΓL(2, 9) 81 3 C2 × C2

34 : 4.S5, 3
4 : 4.S5, 3

4 : 8.S5 81 3 C2 × C2

34 : (2× S6), 3
4 : (2 ×A6.2) 81 3 C2 × C2

34 : 2.PΓL(2, 9), 34 : (2× S5) 81 3 C2 × C2

(A9 ×A9).2
2, S9 wr 2 81 3 C2 × C2

(PSL(2, 8)× PSL(2, 8)).S3, PΣL(2, 8)wr 2 81 4 S3

34 : 2.A5, 3
4 : 4.A5, 3

4 : 8.A5 81 10 Lemma 2.11
34 : 21+4.A5, 3

4 : A5, 3
4 : 2.A5 81 10 Lemma 2.11

Table 8. Covering numbers of various nonsolvable primitive groups of degree 56 to 81
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Group Degree Covering Number Reference
34 : 2.S6, 3

4 : S6 81 13 Lemma 2.11
34 : 2.A6, 3

4 : 4.A6, 3
4 : 8.A6 81 16 Lemma 2.11

34 : 2.A5 : 2, 34 : 2.A5 : 2, 34 : 21+4.A5 : 2 81 16 Lemma 2.11
34 : A6, 3

4 : (2×A6), 3
4 : S5, 3

4 : S5 81 16 Lemma 2.11
34 : 4.A6.2, 3

4 : A6.2, 3
4 : 2.PGL(2, 9) 81 46 Lemma 2.11

34 : Sp(4, 3) : 2 81 64 Lemma 2.11
34 : Sp(4, 3) 81 67 Lemma 2.11

ASL(4, 3), AGL(4, 3) 81 121 Theorem 1.7
PSL(2, 8)wr 2 81 586 Proposition A.1 (v)

(PSL(2, 8)× PSL(2, 8)).6 81 586 Algorithm GKS
(A9 ×A9).4 81 24310 Algorithm GKS

A9 wr 2 81 > 10978 Algorithm GKS
PSL(2, 81).22, PΓL(2, 81) 82 3 C2 × C2

PSL(2, 81).4 82 452 Algorithm KNS
PSL(2, 81).4 82 3322 Algorithm GKS
PSL(2, 81).2 82 > 621 Algorithm KNS
PSp(4, 4) 85 256 Algorithm GKS
PSL(4, 4) 85 24277 Algorithm GKS
PΣL(4, 4) 85 45778 Algorithm GKS
PSp(4, 4).2 85 > 196 Proposition A.2 (ii)
PΓL(3, 9) 91 7652 Algorithm GKS
PSL(3, 9) 91 155611 Algorithm GKS

(A10 ×A10).2
2, S10 wr 2 100 3 C2 × C2

(A6 ×A6).2
2 (all such groups) 100 3 C2 × C2

(A6 ×A6).D8 (all such groups) 100 3 C2 × C2

(A6 ×A6).2
3 100 3 C2 × C2

(A6 ×A6).(2× 4) (all such groups) 100 3 C2 × C2

(A6 ×A6).(2 ×D8) (all such groups) 100 3 C2 × C2

PΓL(2, 9)wr 2 100 3 C2 × C2

(A6 ×A6).4 (#16 in list) 100 1387 Proposition A.1 (vi)
(A6 ×A6).4 (#18 in list) 100 2026 Algorithm GKS

J2.2 100 2921 Algorithm GKS
A10 wr 2 100 30377 Algorithm GKS

J2 100 > 1063 Algorithm KNS
HS : 2 100 > 11859 Proposition A.2 (iii)

(A10 ×A10).4 100 > 22746 Proposition A.2 (iv)
PSL(3, 4).22, PSL(3, 4).D12 105 3 C2 × C2

PSL(3, 4).S3 105 4 S3

PSL(3, 4).6 105 386 Algorithm GKS
PSU(4, 3).22 (all such groups) 112 3 C2 × C2

PSU(4, 3).D8 112 3 C2 × C2

PSU(4, 3) 112 > 344 Proposition A.2 (v)
PSU(4, 3).21 112 > 256 Proposition A.2 (vi)
PSU(4, 3).22 112 > 239 Proposition A.2 (vii)
PSU(4, 3).23 112 > 412 Proposition A.2 (viii)
PSU(4, 3).4 112 > 540 Algorithm GKS
PSL(3, 3).2 117 170 Algorithm KNS

Table 9. Covering numbers of various nonsolvable primitive groups of degree 81 to 117
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Group Degree Covering Number Reference
PSL(4, 3) 117 2146 Algorithm GKS
PSL(4, 3).2 117 > 242 Proposition A.2 (ix)
PSO−(8, 2) 119 256 Algorithm GKS
O−(8, 2) 119 > 25706 Proposition A.2 (x)

PSL(3, 4).22 120 3 C2 × C2

Sp(8, 2) 120 256 Proposition A.1 (vii)
PSO+(8, 2) 120 256 Algorithm GKS
O+(8, 2) 120 > 204 Proposition A.2 (xi)

(A11 ×A11).2
2, S11 wr 2 121 3 C2 × C2

112 : (2.A5), 11
2 : (5× 2.A5) 121 10 Lemma 2.11

112 : (SL(2, 11) : 2), 112 : (5 × SL(2, 11)) 121 67 Lemma 2.11
M11 wr 2 121 266 Algorithm GKS
A11 wr 2 121 6380772 Algorithm GKS

PSL(2, 11)wr 2 121 > 570 Proposition A.2 (xii)
PSL(5, 3) 121 > 393030144 Proposition A.3 (i)

(A11 ×A11).4 121 > 213444 Proposition A.3 (ii)
PΓL(2, 121) 122 3 C2 × C2

PSL(2, 121).23 122 7382 Algorithm GKS
PΣL(2, 121) 122 > 671 Algorithm GKS

A5 wrS3, A
3
5.S3, (A5 ×A5 ×A5).S4 125 4 S3

(A5 ×A5 ×A5).2
2.3, S5 wr 3 125 5 A4

53 : A5, 5
3 : (2 ×A5), 5

3 : (4×A5) 125 10 Lemma 2.11
53 : S5, 5

3 : (2.S5) 125 16 Lemma 2.11
ASL(3, 5), AGL(3, 5) 125 156 Theorem 1.7
53 : (SL(3, 5) : 2) 125 156 Algorithm GKS

A5 wr 3 125 > 216 Algorithm GKS
(A5 ×A5 ×A5).6 125 > 1000 Algorithm GKS

PΓU(3, 5) 126 4 S3

PΣL(2, 125) 126 7876 Algorithm GKS
PGU(3, 5) 126 > 6000 Algorithm GKS
PΓL(2, 125) 126 > 7750 Algorithm GKS
PSL(7, 2) 127 > 184308203520 Proposition A.3 (iii)
AGL(7, 2) 128 255 Theorem 1.7
PΓL(2, 128) 129 8129 Algorithm GKS

Table 10. Covering numbers of various nonsolvable primitive groups of degree 117 to 129

We conclude this section with a table that lists the primitive monolithic groups G such that G has a
degree of primitivity at most 129 and σ(G) has not yet been determined exactly, and, for each such group
G, Table 11 lists the best known bounds on σ(G).
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Group Degree Lower bound Upper bound Reference
PΣL(2, 27) 28 167 184 Algorithm KNS
A7 wr 2 49 447 667 Proposition A.2 (i)

PSL(3, 4).22 56 138 166 Algorithm KNS
PSL(6, 2) 63 56313 57010 Algorithm GKS
A9 wr 2 81 10978 30178 Algorithm GKS

PSL(2, 81).2 82 621 731 Algorithm KNS
PSp(4, 4).2 85 196 222 Proposition A.2 (ii)

J2 100 1063 1121 Algorithm KNS
HS : 2 100 11859 22375 Proposition A.2 (iii)

(A10 ×A10).4 100 22746 30377 Proposition A.2 (iv)
PSU(4, 3) 112 344 442 Proposition A.2 (v)

PSU(4, 3).21 112 256 554 Proposition A.2 (vi)
PSU(4, 3).22 112 239 365 Proposition A.2 (vii)
PSU(4, 3).23 112 412 554 Proposition A.2 (viii)
PSU(4, 3).4 112 540 652 Algorithm GKS
PSL(4, 3).2 117 242 365 Proposition A.2 (ix)
O−(8, 2) 119 25706 26283 Proposition A.2 (x)
O+(8, 2) 120 204 765 Proposition A.2 (xi)

PSL(2, 11)wr 2 121 570 926 Proposition A.2 (xii)
PSL(5, 3) 121 393030144 Proposition A.3 (i)

(A11 ×A11).4 121 213444 Proposition A.3 (ii)
PΣL(2, 121) 122 671 794 Algorithm GKS

A5 wr 3 125 216 342 Algorithm GKS
(A5 ×A5 ×A5).6 125 1000 1217 Algorithm GKS

PGU(3, 5) 126 6000 6526 Algorithm GKS
PΓL(2, 125) 126 7750 7876 Algorithm GKS
PSL(7, 2) 127 184308203520 Proposition A.3 (iii)

Table 11. Bounds on covering numbers of various nonsolvable primitive groups

A. Calculations for specific groups

We use the following notation in the tables. The notation Mi indicates a conjugacy class of maximal
subgroups. Below the symbol Mi, the number in parentheses indicates the number of conjugate subgroups
in the class. The notation “clm,j” refers to a class of elements of order m; the “j” will be omitted when we
are considering a single class of this order. If the (clm,Mi)-entry of the table is nk, then each subgroup of
Mi contains n elements of class clm, and each element in clm is contained in k subgroups of Mi. Instead of
writing n1, we will write n, P to indicate that the elements of clm are partitioned among the subgroups in
Mi. If the (clm, Mi)-entry is written as n, then the information about how many subgroups in Mi contain
a given element of clm is unimportant to the proof and is omitted. We observe that the smallest primitivity
degree of each of the following subgroups is an index of one of its maximal subgroups, and hence this value
appears as an index in the corresponding table (when such a table is provided).

One argument that is used repeatedly in the following propositions is the following, which we state here
for emphasis: if there are c elements from class clj remaining to be covered and the (clj ,Mi)-entry of the
table is nk, then at least ⌈c/n⌉ subgroups from Mi are needed to cover the c elements of class clj. In
particular, if a class of maximal subgroups Mi has size m and the (clj ,Mi)-entry of the table is nk, then at
least m/k subgroups from Mi are needed to cover the elements of class clj.

Proposition A.1. We have the following covering number values:

(i) σ(26 : O−(6, 2)) = 67;
(ii) σ(26 : A8) = 71;
(iii) σ((PSL(2, 7)× PSL(2, 7)).4) = 498;
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(iv) σ(PSL(2, 64).3) = 2080;
(v) σ(PSL(2, 8)wr 2) = 586;
(vi) σ((A6 ×A6).4) = 1387;
(vii) σ(Sp(8, 2)) = 256.

Proof. (i) Using Algorithm GKS, we have that σ(O−(6, 2)) = 67, and so σ(26 : O−(6, 2)) 6 67.
Suppose, for the purpose of contradiction, that σ(26 : O−(6, 2)) < 67, and let B be this smaller cover. By
Lemma 2.10, this means that all 64 conjugates of the point stabilizer in the primitive action on 64 points
are contained in B. By GAP [17], there is a class of elements of order 12 that are not contained in the point
stabilizers. The most number of elements of this class that are contained in a maximal subgroup is 1920, and
so at least an additional 18 subgroups are needed to cover this class. However, 64+ 18 > 67, a contradiction
to minimality. Therefore, the covering number of 26 : O−(6, 2) is 67.

(ii) Since σ(A8) = 71, if σ(26 : A8) < 71, then by Lemma 2.10, any minimal cover of 26 : A8 would have
to contain all maximal subgroups isomorphic to A8. However, by GAP, there are a total of 128 maximal
subgroups isomorphic to A8, a contradiction.

(iii) By GAP, there are four classes of maximal subgroups, and we have the following distribution of
elements:

M1 M2 M3 M4

(1) (64) (441) (784)
cl24 4704, P 0 0 0
cl16 0 0 16, P 0
cl12,1 0 2942 0 12, P
cl12,2 0 2942 0 12, P

Table 12. Element distribution in PSL(2, 7)2.4

The unique minimal normal subgroup is the only class containing elements from cl24. Moreover, the
elements of cl16 are partitioned among the 441 subgroups in M3, so these 441 subgroups are also contained in
a minimal cover. Only the two classes cl12,1 and cl12,2 are left uncovered after including these 442 subgroups.
Using Algorithm KNS and GUROBI [21] for the elements in these two classes, we find that the minimal
cover of these two classes contains 56 subgroups. Therefore, the covering number of (PSL(2, 7)×PSL(2, 7)).4
is 498.

(iv) By GAP, we have the following distribution of elements:

M1 M2 M3 M4 M5 M6

(1) (65) (520) (2016) (2080) (4368)
cl63 12480, P 384 0 0 6 0
cl15 0 0 0 26, P 0 12
cl9,1 0 26882 168 0 42 0
cl9,2 0 26882 168 0 42 0

Table 13. Element distribution in PSL(2, 64).3

The classes cl15, cl9,1, and cl9,2 are not contained in the minimal normal subgroup in M1. The elements
of cl15 are partitioned among the 2016 subgroups of M4, and no subgroup contains more elements of cl15
than a subgroup in M4 does. Using Algorithm KNS and GUROBI, the minimal cover of cl9,1 and cl9,2 has
size 64, and calculations in GAP show that a random choice of 64 subgroups from M2 (say, the first 64
in a given list, excluding the last) plus the 2016 aforementioned maximal subgroups from M4 are a cover.
Therefore, the covering number of PSL(2, 64).3 is 2080.

(v) By GAP, we have the following distribution of elements in PSL(2, 8)wr 2:
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M1 M2 M3 M4 M5

(1) (504) (81) (784) (1296)
cl63 8064, P 0 0 0 0
cl18 0 56, P 0 36 0
cl4 0 0 392, P 162 98

Table 14. Element distribution in PSL(2, 8)wr 2

By Algorithm KNS and GUROBI, the subgroups from M2 and M3 are a minimal cover of cl18 and cl4.
However, these two classes together are not a cover, whereas including the minimal normal subgroup from
M1 with these is a cover. Therefore, the covering number of PSL(2, 8)wr 2 is 586.

(vi) Here (A6×A6).4 is number 16 of the list AllPrimitiveGroups(NrMovedPoints,100) returned by GAP.
A class of elements of order 40 is only contained in the minimal normal subgroup, and a class of elements of
order 20 is only contained in the 1296 subgroups from another class. The only elements not covered by this
class are four classes of elements of order 16. By Algorithm KNS and GUROBI, a minimal cover of these
elements contains 90 subgroups. The result follows.

(vii) Using Algorithm GKS, σ(O+(8, 2) : 2) = σ(O−(8, 2) : 2) = 256. By Lemma 2.10, if σ(Sp(8, 2)) <
256, then all maximal subgroups isomorphic to either O+(8, 2) : 2 or O−(8, 2) : 2 are in such a minimal cover.
However, there are 136 + 120 = 256 such subgroups, so σ(Sp(8, 2)) > 256. On the other hand, calculations
in GAP show that all 256 subgroups isomorphic to either O+(8, 2) : 2 or O−(8, 2) : 2 are a cover. The result
follows. �

Proposition A.2. We have the following lower and upper bounds for the indicated covering number
values:

(i) 447 6 σ(A7 wr 2) 6 667;
(ii) 196 6 σ(PSp(4, 4).2) 6 222;
(iii) 11859 6 σ(HS : 2) 6 22375;
(iv) 22746 6 σ((A10 ×A10).4) 6 30377;
(v) 344 6 σ(PSU(4, 3)) 6 442;
(vi) 256 6 σ(PSU(4, 3).2) 6 554;
(vii) 239 6 σ(PSU(4, 3).2) 6 365;
(viii) 412 6 σ(PSU(4, 3).2) 6 554;
(ix) 242 6 σ(PSL(4, 3).2) 6 365;
(x) 25706 6 σ(O−(8, 2)) 6 26283;
(xi) 204 6 O+(8, 2) 6 765;
(xii) 570 6 σ(PSL(2, 11)wr 2) 6 926.

Proof. (i) Using GAP, we find the following distribution of elements:

M1 M2 M3 M4 M5 M6 M7 M8

(1) (2520) (2520) (1225) (441) (49) (225) (225)
cl14 0 360 0 0 0 0 4032, P 4032, P
cl12 0 0 420 432 24002 0 0 0
cl3 39200, P 0 0 320 0 3200 0 0

Table 15. Element distribution in A7 wr 2

Either M7 or M8 along with the minimal normal subgroup in M1 constitute a minimal cover of cl14 and
cl12. For the lower bound, it takes at least 221 subgroups from M5 to cover the elements cl12. The upper
bound comes from Algorithm GKS.

(ii) First, by GAP, we have the following distribution of elements:



ON INTEGERS THAT ARE COVERING NUMBERS OF GROUPS 27

M1 M2 M3 M4 M5 M6 M7 M8

(1) (85) (85) (120) (120) (136) (136) (1360)
cl10 0 0 0 0 0 1440, P 1440, P 144
cl8 0 1440, P 1440, P 20402 20402 0 0 0

Table 16. Element distribution in PSp(4, 4).2

The elements of cl10 are partioned among the subgroups in M6 and M7 in each class, and each of these
classes contains 136 subgroups, so at least 136 subgroups are necessary to cover these elements. On the other
hand, no maximal subgroup containing an element of cl10 contains an element from cl8. The most number of
elements from cl8 in a single maximal subgroup is 2040, and each element of cl8 is contained in exactly two
of the 120 subgroups in each of M4 or M5. Hence it takes at least 120/2 subgroups to cover these elements,
giving a lower bound of 136+ 60 = 196. On the other hand, using GAP, it can be verified that the minimal
normal subgroup in M1 together with M2 and M6 is a cover, giving the upper bound of 222.

(iii) By GAP, we have the following distribution of elements in HS : 2:

M1 M2 M3 M4 M5

(1) (100) (1100) (1100) (3850)
cl11 8064000, P 80640, P 0 0 0
cl30 0 0 0 2688, P 0
cl20,1 0 0 0 0 0
cl20,2 0 0 0 0 0
cl10 0 88704, P 8064 0 2304

Table 17. Element distribution in HS : 2

M6 M7 M8 M9 M10

(4125) (5775) (15400) (22176) (36960)
cl11 0 0 0 0 0
cl30 0 0 0 0 80
cl20,1 0 768, P 0 200, P 0
cl20,1 0 0 288, P 4002 120, P
cl10 0 0 0 400, P 0

Table 18. Element distribution in HS : 2, cont.

Now, using GAP, the subgroups in classes M2, M4, M7, and M8 form a cover, giving the upper bound.
On the other hand, the elements of cl30 are covered by the 1100 maximal subgroups in M4. At least 5775
different subgroups are needed for cl20,1, and the minimal normal subgroup in M1 is a minimal cover of a
class of elements of order 11. At this point, at most 2442000 elements can possibly be covered from cl20,2,
being 120 · 1100 + 5775 · 400 = 2442000. Since 15400 · 288 − (120 · 1100 + 5775 · 400) = 1993200, this
leaves at least 1993200 elements still uncovered. The most elements of this class in any maximal subgroup
is 400, which means at least an additional 4983 subgroups are required to cover these elements. Since
1100 + 5775 + 1 + 4983 = 11859, the covering number is bounded below by 11859.

(iv) Using GAP, we obtain the following information about some classes of elements in (A10 ×A10).4.
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M1 M2 M3 M4

(1) (44100) (14400) (2025)
cl72 182891520000, P 0 0 0
cl20 0 0 0 0
cl28 0 0 3259200, P 232243200
cl24,1 0 2073600 127008002 0
cl24,2 0 2073600 127008002 0

Table 19. Element distribution in (A10 ×A10).4

M5 M6 M7 M8

(100) (893025) (15876) (6350400)
cl72 0 0 0 0
cl20 0 737280 41472000, P 103680
cl28 4702924800, P 0 0 0
cl24,1 0 307200 0 0
cl24,2 0 307200 0 0

Table 20. Element distribution in (A10 ×A10).4, cont.

Using Algorithm GKS, the subgroups in classes M1, M3, M5 and M7 collectively form a cover, giving the
upper bound. On the other hand, the information in Tables 19 and 20 shows the necessity of the subgroup
in M1 to cover the elements in cl72, and it takes at least 15876 additional subgroups to cover cl20. At this
point, since

14400 ·
12700800

2
− 15876 · 307200 = 86568652800,

at least 86568652800 elements from each of cl24,1 and cl24,2 are still uncovered. Because

86568652800

12700800
= 6816,

at least 6816 subgroups are still needed to cover the elements from these classes. Noting that
⌈

470292480000− 6816 · 32659200

4702924800

⌉

= 53,

at least 53 more subgroups from M5 are needed to cover the elements of cl28, giving a lower bound of 22746.
(v) Using GAP, we have the following information about elements of PSU(4, 3).

M1 M2 M3 M4 M5 M6 M7 M8

(112) (126) (126) (162) (162) (280) (540) (567)
cl7 0 0 0 2880, P 2880, P 0 864, P 0
cl9,1 1080, P 28803 0 0 0 432, P 0 0
cl9,2 1080, P 0 28803 0 0 432, P 0 0
cl8 0 0 0 0 0 29162 15122 720, P

Table 21. Element distribution in PSU(4, 3)
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M9 M10 M11 M12 M13 M14 M15 M16

(567) (1296) (1296) (1296) (1296) (2835) (4536) (4536)
cl7 0 360 360 360 360 0 0 0
cl9,1 0 0 0 0 0 0 0 0
cl9,2 0 0 0 0 0 0 0 0
cl8 720, P 0 0 0 0 144 180 180

Table 22. Element distribution in PSU(4, 3), cont.

First, Algorithm GKS shows that the 442 subgroups in M4 and M6 form a cover. On the other hand,
the information in Tables 21 and 22 shows that at least 162 subgroups are needed to cover cl7. Suppose
that we use 162 − m subgroups from M4 and M5 and that we use m7 subgroups from M7. This means
we use (162 − m) + m7 groups to cover cl7. This implies that 864m7 > 2880m, that is, this implies that
m 6 3m7/10, and so 162+(m7−m) > 162+7m7/10. For each group that we use from class M7, potentially
1512 elements from cl8 are covered. Since

408240− 1512m7

2916
= 140−

14m7

27
,

we still need at least 140− 14m7/27 groups to cover cl8. Noting that

(

162 +
7m7

10

)

+

(

140−
14m7

27

)

= 302 +
49m7

270
> 302,

at least 302 subgroups are required to cover classes cl7 and cl8. Since 120960− 140 ·432 = 60480, at the very
least 60480 of the elements from each of cl9,1 and cl9,2 are still uncovered. Because 2 · 60480/2880 = 42, an
additional 42 subgroups are needed, and hence at least 344 subgroups are needed to cover PSU(4, 3).

(vi) PSU(4, 3).2 is the group U(4, 3).21 in the ATLAS [9]. Using GAP, we have the following information
about elements of PSU(4, 3).2.

M1 M2 M3 M4 M5 M6 M7

(1) (112) (126) (126) (162) (162) (280)
cl14 0 0 0 0 2880, P 2880, P 0
cl10 0 116642 5184, P 5184, P 0 0 0
cl6 0 0 0 0 0 0 108, P

Table 23. Element distribution in PSU(4, 3).2

M8 M9 M10 M11 M12 M13

(540) (567) (567) (2835) (4536) (4536)
cl14 864, P 0 0 0 0 0
cl10 0 0 0 0 144 144
cl6 56010 0 0 969 0 0

Table 24. Element distribution in PSU(4, 3).2, cont.

First, using GAP, the subgroups in M2, M5, M7 are a cover, giving the upper bound of 554. On the other
hand, examining Tables 23 and 24, we see that at least 54 subgroups are needed to cover cl6. Supposing that
54 subgroups from M8 are used to cover cl6, which would be optimal, we would then have covered 864 · 54
elements from cl14. Since

⌈864(540− 54)/2880⌉ = 146,
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at least 146 subgroups are still needed to cover cl14. Finally, at least 56 subgroups are still needed to cover
cl10, since no subgroup that contains an element of cl14 or cl6 contains an element of cl10. Therefore, at least
256 subgroups are needed to cover PSU(4, 3).2.

(vii) PSU(4, 3).2 is the group U(4, 3).22 in the ATLAS [9]. Using GAP, we have the following information
about elements of PSU(4, 3).2.

M1 M2 M3 M4 M5 M6

(1) (112) (126) (126) (280) (540)
cl10 0 0 5184, P 5184, P 0 0
cl18 0 3240, P 0 2880 1296 0
cl12,1 0 4860, P 4320 0 0 0
cl12,2 0 0 0 43202 972 2016
cl8 0 0 64802 0 2916 1512
cl7 933120, P 0 0 0 0 1728

Table 25. Element distribution in PSU(4, 3).2

M7 M8 M9 M10 M11

(567) (567) (1296) (1296) (2835)
cl10 0 2304 504 504 0
cl18 0 0 0 0 0
cl12,1 960 0 420 420 192
cl12,2 0 0 0 0 96
cl8 720 720 0 0 144
cl7 0 0 720 720 0

Table 26. Element distribution in PSU(4, 3).2, cont.

Using GAP, we see that the subgroups in M1, M2, M3, and M4 constitute a cover, demonstrating the
upper bound. On the other hand, Tables 25 and 26 show that at least 126 subgroups are needed for cl10.
Assume that m3 subgroups from M3 and m4 subgroups from M4 are used in the cover; thus m3+m4 > 126.
Since

112 · 4860− 4320m3

4860
= 112−

8m3

9
,

112 · 3240− 2880m4

3240
= 112−

8m4

9
,

at least 112 − 8m3/9 subgroups are still needed to cover elements from cl12,1 and at least 112 − 8m4/9
subgroups are still needed to cover elements from cl18. Because

(

112−
8m3

9

)

+

(

112−
8m4

9

)

= 224−
8

9
· (m3 +m4),

at least 224− 8(m3 +m4)/9 subgroups are needed to cover the remaining elements from these two classes.
Since

(m3 +m4) +

(

224−
8

9
· (m3 +m4)

)

= 224 +
1

9
(m3 +m4) > 224 +

1

9
· 126 = 238,

at least 238 subgroups are needed to cover classes cl10, cl12,1, and cl18, collectively. Nothing from cl7 has yet
been covered, so the subgroup in M1 is still needed. This gives the lower bound of 239.

(viii) PSU(4, 3).2 is the group U(4, 3).23 in the ATLAS [9]. Using GAP, we note the following distribution
of elements in PSU(4, 3).2.
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M1 M2 M3 M4 M5 M6

(1) (112) (162) (162) (280) (540)
cl24 0 0 0 0 972, P 0
cl10 0 0 80642 0 0 0
cl8 0 145802 0 10080 0 0

Table 27. Element distribution in PSU(4, 3).2

M7 M8 M9 M10 M11

(2835) (4536) (4536) (45366) (8505)
cl24 96 0 0 0 0
cl10 0 144 144 144 0
cl8 288 0 0 360 96

Table 28. Element distribution in PSU(4, 3).2, cont.

Using GAP, we see that the subgroups in M2, M3, and M5 constitute a cover, giving the upper bound.
On the other hand, Tables 27 and 28 show that it takes at least 280 subgroups to cover the elements in cl24.
No maximal subgroup that contains elements from cl24 contains elements of cl10, so it takes at least 162/2
subgroups to cover these elements. Finally, because

⌈

112 · 14580
2 − 288 · 280

14580

⌉

= 51,

it takes at least an additional 51 subgroups to cover the elements of cl8. Hence it takes at least 412 groups
to cover these three classes. The result follows.

(ix) The upper bound comes from using Algorithm GKS. On the other hand, using GAP, we have the
following distribution of elements in PSL(4, 3).2.

M1 M2 M3 M4 M5 M6 M7 M8 M9

(1) (117) (117) (130) (520) (1080) (2106) (8424) (10530)
cl12,1 0 0 4320, P 3888, P 0 0 240 0 48
cl12,2 0 4320, P 0 3888, P 0 0 240 0 48
cl6 0 0 0 103682 1296, P 1872 0 240 64
cl20 606528, P 0 0 0 0 0 288 0 0
cl8 0 6480, P 6480, P 0 29162 1404 0 180 0

cl10,1 0 103682 0 0 0 0 288 0 0
cl10,2 0 0 103682 0 0 0 288 0 0

Table 29. Element distribution in PSL(4, 3).2

Assume that 117−m2,3 subgroups are used from classes M2 and M3 to cover cl8. In this case, an additional
m subgroups from classes M5, M6, and M8 are needed to cover cl8. Now, 6480m2,3 6 2916m, and so
117−m2,3+m > 117+11m/20. At this point, we have covered at most 1872m elements of cl6, and so there
are 673920− 1872m elements still to cover. Since

673920− 1872m

10368
= 65−

13m

72
,
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at least 65− 13m/72 subgroups are needed to cover the remaining elements of cl6. So far, we have used at
least 182 subgroups, since

(

117 +
11m

20

)

+

(

65−
13m

72

)

= 182 +
133m

360
> 182.

None of the subgroups that contain elements from cl6 or cl8 contain elements from cl20, so including the
subgroup from M1 means at least 183 subgroups are needed to cover cl6, cl8, and cl20. Of the elements in
cl12,1 and cl12,2, we have covered at most 4320 · 117+ 3888 · 65, which leaves at least 252720 still uncovered.
This means at least an additional ⌈252720/4320⌉more subgroups are needed, and, since ⌈252720/4320⌉= 59,
we have a lower bound of 242 subgroups.

(x) The upper bound comes from Algorithm GKS. Using GAP, we have the following distribution of
elements in O−(8, 2).

M1 M2 M3 M4 M5 M6 M7 M8

(119) (136) (765) (1071) (1632) (24192) (45696) (1175040)
cl17 0 0 0 0 0 480, P 0 0
cl30 0 0 0 6144, P 0 0 144 0
cl21 0 0 245762 0 5760 0 0 0
cl9 3686402 161280, P 0 0 0 0 0 0
cl15 0 967683 0 0 5376 0 96 0

Table 30. Element distribution in O−(8, 2)

It is clear from Table 30 that at least 24192+1071 subgroups are needed to cover cl17 and cl30. No maximal
subgroups that contain elements in cl17 or cl30 contain elements in cl21, so at least another ⌈765/2⌉ are
needed. Finally, no subgroup that contains elements in cl17, cl30, or cl21 contains elements in cl9, which
takes at least ⌈119/2⌉ additional subgroups, giving a lower bound of 25706.

(xi) Algorithm GKS shows that the covering number of O+(8, 2) is at most 765. Using GAP, we have
the following element distribution.

M1 M2 M3 M4 M5 M6 M7 M8

(120) (120) (120) (135) (135) (135) (960) (960)
cl15,1 0 0 96768, P 1720322 0 0 0 0
cl15,2 96768, P 0 0 0 0 1720322 24192 0
cl15,3 0 96768, P 0 0 1720322 0 0 24192

Table 31. Element distribution in O+(8, 2)

M9 M10 M11 M12 M13 M14 M15 M16 M17

(960) (1120) (1120) (1120) (1575) (11200) (12096) (12096)) (12096))
cl15,1 24192 0 10368 0 0 0 0 960 0
cl15,2 0 0 0 10368 0 0 0 0 960
cl15,3 0 10368 0 0 0 0 960 0 0

Table 32. Element distribution in O+(8, 2), cont.
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It is clear from Tables 31 and 32 that no maximal subgroup contains elements from more than one of the
classes cl15,1, cl15,2, or cl15,3. A minimal cover for each class consists of at least ⌈135/2⌉ subgroups, and so
at least 204 subgroups are needed in any cover.

(xii) The upper bound comes from Algorithm GKS. Using GAP, we have the following distribution of
elements.

M1 M2 M3 M4 M5 M6 M7

(1) (660) (660) (121) (121) (144) (3025)
cl12 0 0 2202 0 0 0 24
cl22 0 60, P 0 0 0 275, P 0
cl6,1 0 220, P 0 12002 12002 0 24
cl6,2 220, P 0 0 0 0 0 4

Table 33. Element distribution in PSL(2, 11)wr 2

Examining Table 33, it is clear that at least 660/2 + 144 subgroups are needed to cover cl12 and cl22, since
these elements lie in disjoint classes of maximal subgroups. Since

⌈

145200− 144 · 220

1200

⌉

= 95,

at least 95 more subgroups needed for cl6,1. Finally, not all elements from cl6,2 are covered, and so the
subgroup from M1 is needed, giving the lower bound of 570. �

Proposition A.3. We have the following lower bounds for the indicated covering number values:

(i) σ(PSL(5, 3)) > 393030144;
(ii) σ((A11 ×A11).4) > 213444;
(iii) σ(PSL(7, 2)) > 184308203520.

Proof. (i) A Sylow 11-subgroup of PSL(5, 3) has order 121 and is cyclic. Using GAP (and/or [6, Tables
8.18-8.19]), there are 8 classes of maximal subgroups, and only one has order divisible by 121 (and hence
is the only maximal subgroup containing an element of order 121). A maximal subgroup in this class is
isomorphic to 121 : 5, and the index of one of these groups in G is 393030144. The result follows.

(ii) By Algorithm GKS (or, more accurately, one iteration of the loop in Algorithm GKS), there exists
a class cl60 of elements of order 60 that are distributed as follows.

M1 M2 M3 M4 M5 M6 M7

(1) (213444) (108900) (27225) (3025) (121) (131681894400)
cl60 0 124416000 0 0 0 0 0

Table 34. Element distribution in (A11 ×A11).4

The elements in the class cl60 are partitioned among the subgroups in M2, so at least 213444 subgroups are
needed.

(iii) This follows immediately from considering the elements of order 27−1 and the result of Kantor [25]
that only field extension subgroups contain a Singer cycle. �
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