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Abstract

We determine which non-crystallographic, almost-crystallographic groups of dimen-
sion 4 have the R∞-property. We then calculate the Reidemeister spectra of the 3-
dimensional almost-crystallographic groups and the 4-dimensional almost-Bieberbach
groups.

1 Introduction

Let G be any group and ϕ : G → G an endomorphism of this group. Define an equivalence
relation ∼ϕ on G given by

∀g, g′ ∈ G : g ∼ϕ g′ ⇐⇒ ∃h ∈ G : g = hg′ϕ(h)−1.

An equivalence class [g]ϕ is called a Reidemeister class of ϕ or ϕ-twisted conjugacy class.
The Reidemeister number R(ϕ) is the number of Reidemeister classes of ϕ and is therefore
always a positive integer or infinity. The Reidemeister spectrum of a group G is the set of
all Reidemeister numbers when considering all possible automorphisms of that group:

SpecR(G) := {R(ϕ) | ϕ ∈ Aut(G)}.

If SpecR(G) = {∞} we say that G has the R∞-property.
Reidemeister numbers originate in Nielsen fixed point theory, where they are defined as

the number of fixed point classes of a self-map of a topological space [11], although they
also yield applications in algebraic geometry and representation theory [8].

It turns out that many (infinite) groups admit the R∞-property. This is also the
case for most almost-crystallographic groups, e.g. in [6] it was shown that 207 of the
219 3-dimensional crystallographic groups and 15 of the 17 families of 3-dimensional (non-
crystallographic) almost-crystallographic groups all have the R∞-property. Furthermore, in
[5] it was shown that 4692 of the 4783 4-dimensional crystallographic groups admit the R∞

property. Moreover, the Reidemeister spectra of all crystallographic groups of dimensions
1, 2 and 3 were calculated, as well as the spectra of the 4-dimensional Bieberbach groups.
In this paper we extend these results by studying the 4-dimensional almost-crystallographic
groups.
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This paper is structured as follows. In the next two sections, we provide the necessary
preliminaries on Reidemeister numbers and almost-crystallographic groups. In section 4 we
determine which almost-crystallographic groups of dimension 4 possess the R∞-property.
Sections 5 and 6 are devoted to calculating the Reidemeister spectra of the 3-dimensional
almost-crystallographic groups and the 4-dimensional almost-Bieberbach groups respect-
ively. The final section summarises the obtained results.

2 Reidemeister numbers and spectra

In this section we introduce basic notions concerning the Reidemeister number. For a general
reference on Reidemeister numbers and their connection to fixed point theory, we refer the
reader to [11].

The definitions of the Reidemeister number and Reidemeister spectrum were given in
the introduction. However, nothing was said on how we actually determine whether a group
has the R∞-property, and if not, how we calculate its Reidemeister spectrum. The following
lemma is an essential tool for the former.

Lemma 2.1 (see [8, Section 2.2], [9, Lemma 1.1]). Let N be a normal subgroup of a group
G and ϕ ∈ Aut(G) with ϕ(N) = N . We denote the restriction of ϕ to N by ϕ|N , and the
induced automorphism on the quotient G/N by ϕ′. We then get the following commutative
diagram with exact rows:

1 N G G/N 1

1 N G G/N 1

ϕ|N ϕ ϕ′

We obtain the following properties:

(1) R(ϕ) ≥ R(ϕ′),

(2) if R(ϕ′) < ∞, R(ϕ|N ) = ∞ and |Fix(ϕ′)| < ∞, then R(ϕ) = ∞.

A direct consequence for characteristic subgroups is the following:

Corollary 2.2. Let N be a characteristic subgroup of G. If either

(1) the quotient G/N has the R∞-property, or

(2) N has finite index in G and has the R∞-property,

then G has the R∞-property as well.

3 Almost-crystallographic groups

Let G be a connected, simply connected, nilpotent Lie group with automorphism group
Aut(G). The affine group Aff(G) is the semi-direct product Aff(G) = G ⋊ Aut(G), where
multiplication is defined by (d1, D1)(d2, D2) = (d1D1(d2), D1D2). If C is a maximal compact
subgroup of Aut(G), then G⋊ C is a subgroup of Aff(G). A cocompact discrete subgroup
Γ of G ⋊ C is called an almost-crystallographic group modelled on the Lie group G. The
dimension of Γ is defined as the dimension of G.

If Γ is torsion-free, then it is called an almost-Bieberbach group. If G = R
n, then it is

called a crystallographic group, or a Bieberbach group if it also torsion-free.
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Crystallographic groups were historically studied first, and are well understood by the
three Bieberbach theorems. These theorems have since been generalised to almost-crystal-
lographic groups, which we will briefly discuss below. We refer to [14] and [3] for more
information on the original and generalised theorems respectively.

The generalised first Bieberbach theorem says that if Γ ⊆ Aff(G) is an n-dimensional
almost-crystallographic group, then its translation subgroup N := Γ∩G is a uniform lattice
of G and is of finite index in Γ. Moreover, N is the unique maximal nilpotent normal
subgroup of Γ, and is therefore characteristic in Γ. The quotient group F := Γ/N is a finite
group called the holonomy group of Γ. In fact F = {A ∈ Aut(G) | ∃a ∈ G : (a,A) ∈ Γ}.
If Γ is crystallographic (G = R

n), we may assume that N = Z
n and F is a subgroup of

GLn(Z).
The generalised second Bieberbach theorem tells us more about automorphisms of al-

most-crystallographic groups.

Theorem 3.1 (generalised second Bieberbach theorem). Let ϕ : Γ → Γ be an automorphism
of an almost-crystallographic group Γ ⊆ Aff(G) with holonomy group F . Then there exists
a (d,D) ∈ Aff(G) such that ϕ(γ) = (d,D) ◦ γ ◦ (d,D)−1 for all γ ∈ Γ. To shorten notation,
we will write ϕ = ξ(d,D).

An automorphism Φ : G → G of a Lie group G induces an automorphism Φ∗ : g → g

of the associated Lie algebra g. We will henceforth always denote an induced automorph-
isms on a Lie algebra with a star (∗) subscript, for example A∗ is the Lie algebra auto-
morphism induced by some A ∈ F where F ⊆ Aut(G) is the holonomy group of an
almost-crystallographic group. In particular, an automorphism ϕ = ξ(d,D) of an almost-
crystallographic group has an associated matrix D∗.

The generalised third Bieberbach theorem is less straightforward to generalise. Unlike
for crystallographic groups, it is not true that there are only finitely many n-dimensional
almost-crystallographic groups for a given dimension n. However, we can state that for a
given finitely generated torsion-free nilpotent group N , there are (up to isomorphism) only
finitely many almost-crystallographic groups Γ such that the translation subgroup of Γ is
isomorphic to N .

In [3, Section 2.5], this generalisation is proved using the concept of an isolator, which
shall prove useful to us as well.

Definition 3.2. Let G be a group with subgroup H . The isolator of H in G is defined as

G
√
H := {g ∈ G | gk ∈ H for some k ≥ 1}.

Although much can be said about isolators, for the purposes of this paper we only care
about a very specific result.

Lemma 3.3 (see [3, Lemma 2.4.2]). Let Γ be an almost-crystallographic group with transla-
tion subgroup N of nilpotency class c. Then the isolator N

√

γc(N) ≤ Z(N) is a characteristic

subgroup of Γ. Moreover, the quotient group Γ/ N

√

γc(N) is an almost-crystallographic group

whose translation subgroup N/ N

√

γc(N) has nilpotency class c−1. If c = 2, then this quotient
is a crystallographic group.

We will now give the most important results for Reidemeister theory applied to almost-
crystallographic groups. A first result allows us to easily determine whether an almost-
crystallographic group admits the R∞-property or not.

Theorem 3.4 (see [6, Corollary 3.10]). Let Γ be an n-dimensional almost-crystallographic
group with holonomy group F ⊆ Aut(G) and ϕ = ξ(d,D) ∈ Aut(Γ) (where we use the notation
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of theorem 3.1). Then

R(ϕ) = ∞
⇐⇒ ∃A ∈ F such that det(1n −A∗D∗) = 0

⇐⇒ ∃A ∈ F such that A∗D∗ has eigenvalue 1.

The second result only holds for almost-Bieberbach groups, and allows for an easy com-
putation of the Reidemeister number of an automorphism.

Theorem 3.5 (averaging formula, see [10, Theorem 6.11] and [12, Theorem 4.3]). Let
Γ be an n-dimensional almost-Bieberbach group with holonomy group F ⊆ Aut(G), and
ϕ = ξ(d,D) ∈ Aut(Γ) with R(ϕ) < ∞. Then

R(ϕ) =
1

#F

∑

A∈F

| det(1n −A∗D∗)|.

In general, this formula does not hold for automorphisms of almost-crystallographic
groups, examples can be found in [5] and later in this paper. Therefore, the calculation of
the Reidemeister spectra usually requires a deeper understanding of how the Reidemeister
classes are formed in a specific group.

4 The R∞-property for 4-dimensional almost-crystallo-

graphic groups

Every almost-crystallographic group of dimension 1 or 2 is crystallographic. In [6] it was
determined which 3-dimensional almost-crystallographic groups admit the R∞-property. We
extend these results to dimension 4. In this case the translation subgroup N is a finitely
generated, torsion-free, nilpotent group of rank 4 and nilpotency class at most 3. Nilpotency
class 1 is of course the crystallographic case, which was done in [5].

4.1 Nilpotency class 2

Let Γ be an almost-crystallographic group whose translation subgroupN is a nilpotent group
of rank 4 and nilpotency class 2. In [3] it was shown that N can be given the following
presentation:

〈

e1, e2, e3, e4

∣

∣

∣

∣

∣

[e2, e1] = 1 [e3, e2] = el11
[e3, e1] = 1 [e4, e2] = el21
[e4, e1] = 1 [e4, e3] = el31

〉

.

Moreover, let G be the Lie group that Γ is modelled on. By [2, Theorem 4.1], there exists
a faithful affine representation λ : G ⋊ Aut(G) → Aff(R4) such that its restriction to Γ is

4



again a faithful affine representation. In particular,

λ(e1) =













1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













, λ(e2) =













1 0 − l1
2 − l2

2 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













,

λ(e3) =













1 l1
2 0 − l3

2 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1













, λ(e4) =













1 l2
2

l3
2 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1













,

where the values of l1, l2 and l3 are determined by the relations [e3, e2] = el11 , [e4, e2] = el21
and [e4, e3] = el31 .

Lemma 3.3 tells us that the subgroup 〈e1〉 = N

√

γ2(N) is characteristic and the quotient
Γ′ := Γ/〈e1〉 is a 3-dimensional crystallographic group. Using corollary 2.2, we know that
if Γ′ has the R∞-property, then so does Γ. In [3, 4] the almost-crystallographic groups
were classified into families based on which crystallographic group Γ′ is. Since only twelve
3-dimensional crystallographic groups do not have the R∞-property, we need only consider
the corresponding twelve families of 4-dimensional almost-crystallographic groups.

Each of these families can be split in smaller subfamilies, determined by the action of
F on N

√

γ2(N): every A ∈ F acts on e1 by Ae1 = eǫA1 with ǫA ∈ {−1, 1}. The following

proposition quickly deals with the subfamilies where F does not act trivially on N

√

γ2(N).

Proposition 4.1. Let Γ be an almost-crystallographic group with translation subgroup N of
rank 4 and nilpotency class 2, and holonomy group F . If F acts non-trivially on N

√

γ2(N),
then Γ has the R∞-property.

Proof. Let A ∈ F arbitrary and ϕ = ξ(d,D) ∈ Aut(Γ). Since A acts on 〈e1〉 = N

√

γ2(N) by
Ae1 = eǫA1 with ǫA ∈ {−1, 1} and ϕ(e1) = eν1 with ν ∈ {−1, 1}, A∗ and D∗ must have the
following forms:

A∗ =









ǫA ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗









, D∗ =









ν ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗









.

Thus, 14 −A∗D∗ is of the form

14 −A∗D∗ =









1− νǫA ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗









.

Now let us look at specific A ∈ F . First, let A be the neutral element of F , which necessarily
acts trivially on e1. The above matrix then has upper left entry 1−ν, hence det(14−D∗) 6= 0
if and only if ν = −1.

Second, let A be an element of F for which ǫA = −1. Such element exists since we
assumed F acts non-trivially on N

√

γ2(N). Then the matrix 14−A∗D∗ has upper left entry
1 + ν, and det(14 −A∗D∗) 6= 0 if and only if ν = 1.

As ν cannot be −1 and 1 at the same time, we always have some A ∈ F for which
det(14 − A∗D∗) = 0, and by theorem 3.4 this means that R(ϕ) = ∞. Since this holds for
any automorphism, Γ has the R∞-property.
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Family δ

1,2

(

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)

3,4

(

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

)

5

(

1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

)

143

(

1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

)

146





1 −
k1

2
+k2+2k3 −k2+k3 0 0

0 1 0 0 0
0 −1 1 0 0
0 −1 0 1 0
0 0 0 0 1





Table 1: Conjugacy matrices between representations

From the proof of the theorem above, we can also conclude the following:

Proposition 4.2. Let Γ be an almost-crystallographic group with translation subgroup N
of rank 4 and nilpotency class 2, and let e1 be a generator of N

√

γ2(N). If ϕ ∈ Aut(Γ) has
finite Reidemeister number, then ϕ(e1) = e−1

1 .

We will number the twelve families under consideration according to the crystallographic
group Γ/ N

√

γ2(N), using the classification in the International Tables in Crystallography
[1]: they are families 1-5, 16, 19, 22-24, 143 and 146. When we write Γn/m, we mean the
n-dimensional crystallographic group with IT-number m.

Using the techniques in [3, Section 5.4], we find that for an almost-crystallographic group
belonging to one of the families 16, 19 or 22-24, F acting trivially on N

√

γ2(N) implies that
the group is actually crystallographic. Therefore we may omit these families and we are left
with only 7 families to study.

Note that the presentations given in this paper may vary from those in [3, 4]. Let Γ and
λ denote a group and its faithful representation as given in this paper, and let Γ′ and µ be
the corresponding group and representation as given by [3] or [4]. Table 1 contains a matrix
δ such that

λ(Γ) = δµ(Γ′)δ−1,

hence λ(Γ) and µ(Γ′) are conjugate subgroups of Aff(R4) and therefore Γ and Γ′ are iso-
morphic.

Family 1. This family consists of the finitely generated, torsion-free, nilpotent groups of
nilpotency class 2 and rank 4. It was shown in [7, Section 3.2] that these groups do not
have the R∞-property.

Family 2. Every group in this family has a presentation of the form

6



〈

e1, e2, e3, e4, α

∣

∣

∣

∣

∣

[e2, e1] = 1 αe1 = e1α

[e3, e1] = 1 αe2 = ek4

1 e−1
2 α

[e4, e1] = 1 αe3 = ek5

1 e−1
3 α

[e3, e2] = ek1

1 αe4 = ek6

1 e−1
4 α

[e4, e2] = ek2

1 α2 = ek7

1

[e4, e3] = ek3

1

〉

,

and the faithful representation λ is given by

λ(α) =













1 k4 k5 k6
k7

2
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1













.

Set k := gcd(k1, k2, k3) and g := e
k3/k
2 e

−k2/k
3 e

k1/k
4 , then the centre Z(N) of the translation

subgroup is generated by e1 and g. Let ϕ : Γ → Γ be any automorphism. Since 〈e1〉 and
Z(N) are both characteristic in Γ, we have that ϕ(g) = gǫem1 for some ǫ ∈ {−1, 1} and
m ∈ Z. Consider the induced automorphism ϕ′ = ξ(d′,D′) on Γ/〈e1〉 ∼= Γ3/2. Then

ϕ′(g〈e1〉) = D′(g〈e1〉) = ϕ(g)〈e1〉 = gǫ〈e1〉.

Depending on the value of ǫ, D′
∗ has either eigenvalue 1, in which case det(13 −D′

∗) = 0,
or eigenvalue −1, in which case det(13 + D′

∗) = 0. Since the holonomy group of Γ3/2 is
{13,−13}, we obtain by theorem 3.4 that R(ϕ′) = ∞ and by lemma 2.1 that therefore
R(ϕ) = ∞. Since this holds for an arbitrary automorphism, Γ has the R∞-property.

Families 3, 4 and 5. Every group in one of these families has a presentation of the form

〈

e1, e2, e3, e4, α

∣

∣

∣

∣

∣

[e2, e1] = 1 αe1 = e1α
[e3, e1] = 1 αe2 = e2α

[e4, e1] = 1 αe3 = ek2

1 e−ν
2 e−1

3 α

[e3, e2] = 1 αe4 = ek3

1 e−1
4 α

[e4, e2] = 1 α2 = ek4

1 eµ2
[e4, e3] = ek1

1

〉

,

and the faithful representation λ is given by

λ(α) =













1 0 k2 k3
k4

2
0 1 −ν 0 µ

2
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1













.

Family 3 is given by µ, ν = 0, family 4 by µ = 1, ν = 0 and family 5 by µ = 0, ν = 1. Define
an automorphism ϕ = ξ(d,D) by

ϕ(e1) = e−1
1 ,

ϕ(e2) = e−1
2 ,

ϕ(e3) = ek1−k2−k3

1 eν2e3e
2
4,

ϕ(e4) = e3k1−k2−2k3

1 eν2e
2
3e

3
4,

ϕ(α) = e−k4

1 e−µ
2 α,
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then D∗ is of the form

D∗ =









−1 ∗ ∗ ∗
0 −1 ∗ ∗
0 0 1 2
0 0 2 3









.

We can apply theorem 3.4 to show that R(ϕ) < ∞ and hence Γ does not have the R∞-
property.

Families 143 and 146. Every group in one of these families has a presentation of the
form

〈

e1, e2, e3, e4, α

∣

∣

∣

∣

∣

[e2, e1] = 1 αe1 = e1α
[e3, e1] = 1 αe2 = e2α

[e4, e1] = 1 αe3 = ek2

1 e4α

[e3, e2] = 1 αe4 = ek3

1 eµ2e
−1
3 e−1

4 α

[e4, e2] = 1 α3 = ek4

1

[e4, e3] = ek1

1

〉

,

and the faithful representation λ is given by

λ(α) =













1 0 k2 −k1

2 + k3
k4

3
0 1 0 µ 0
0 0 0 −1 0
0 0 1 −1 0
0 0 0 0 1













.

Family 143 is given by µ = 0 and family 146 by µ = 1. Using an argument identical to the
proof of [6, Theorem 4.4, family 13], we may conclude that all groups in these families have
the R∞-property.

4.2 Nilpotency class 3

By an argument analogous to [9, Example 5.2], a finitely-generated, torsion-free, nilpotent
group of nilpotency class 3 and rank 4 has the R∞-property. Applying corollary 2.2 then
proves that every 4-dimensional almost-crystallographic group with translation subgroup of
nilpotency class 3 has the R∞-property.

5 The Reidemeister spectra of the 3-dimensional al-

most-crystallographic groups

Let Γ be an almost-crystallographic group whose translation subgroup N is a nilpotent
group of rank 3 and nilpotency class 2. Such N can be given the following presentation:

〈

e1, e2, e3

∣

∣

∣

[e2, e1] = 1 [e3, e2] = el11
[e3, e1] = 1

〉

,

with l1 > 0. Moreover, let G be the Lie group that Γ is modelled on. By [2, Theorem
4.1], there exists a faithful affine representation λ : G ⋊ Aut(G) → Aff(R3) such that its
restriction to Γ is again a faithful affine representation. In particular,

λ(e1) =









1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1









, λ(e2) =









1 0 − l1
2 0

0 1 0 1
0 0 1 0
0 0 0 1









, λ(e3) =









1 l1
2 0 0

0 1 0 0
0 0 1 1
0 0 0 1









,
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where the value of l1 is determined by the relation [e3, e2] = el11 . Like in section 4.1, we

have that the subgroup 〈e1〉 = N

√

γ2(N) is characteristic in Γ, and an automorphism ϕ must
satisfy ϕ(e1) = e−1

1 to have finite Reidemeister number.
As mentioned before, in [6, Theorem 4.4] it was shown that there are only 2 families of

almost-crystallographic groups that do not admit the R∞-property. We again number these
families according to the IT-number of the quotient Γ/ N

√

γ2(N).

Family 1. The groups in this family are exactly the finitely generated, torsion-free, nil-
potent groups of nilpotency class 2 and rank 3. In [13, Section 3] it was shown that these
groups have Reidemeister spectrum 2N ∪ {∞}. This was shown specifically for the case
k1 = 1, but the argument holds for any k1 > 0.

Family 2. Every group in this family has a presentation of the form

〈

e1, e2, e3, α

∣

∣

∣

∣

∣

[e2, e1] = 1 αe1 = e1α

[e3, e1] = 1 αe2 = ek2

1 e−1
2 α

[e3, e2] = ek1

1 αe3 = ek3

1 e−1
3 α

α2 = ek4

1

〉

,

and the faithful representation λ is given by

λ(α) =









1 k2 k3
k4

2
0 −1 0 0
0 0 −1 0
0 0 0 1









.

Let ϕ be an automorphism with finite Reidemeister number R(ϕ). Under the representation
λ, this automorphism will correspond to a matrix δ ∈ Aff(R4) such that

λ(ϕ(γ)) = δλ(γ)δ−1.

for all γ ∈ Γ. Since we assumed that R(ϕ) < ∞, we have that ϕ(e1) = e−1
1 . Moreover, ϕ

induces an automorphism ϕ′ on Γ′ := Γ/〈e1〉. Thus, δ must be of the form

δ =









−1 n1 n2 0
0 m1 m3 d1/2
0 m2 m4 d2/2
0 0 0 1









,

where the constants mi, dj are integers, m1m4 − m2m3 = −1 and n1, n2 ∈ R. Using a
computer, one can calculate the (unique) values of n1, n2 and l1, l2, l3 such that

δλ(e2)δ
−1 = λ(e1)

l1λ(e2)
m1λ(e3)

m2 ,

δλ(e3)δ
−1 = λ(e1)

l2λ(e2)
m3λ(e3)

m4 ,

δλ(α)δ−1 = λ(e1)
l3λ(e2)

d1λ(e3)
d2λ(α).

From the obtained values of l1, l2 and l3, we get

ϕ(e1) = e−1
1 ,

ϕ(e2) = e
k1

2
(m1m2+m1d2−m2d1)−

k2

2
(m1+1)−

k3

2
m2

1 em1

2 em2

3 ,

ϕ(e3) = e
k1

2
(m3m4+m3d2−m4d1)−

k2

2
m3−

k3

2
(m4+1)

1 em3

2 em4

3 ,

ϕ(α) = e
k1

2
d1d2−

k2

2
d1−

k3

2
d2−k4

1 ed1

2 ed2

3 α,

where all exponents must be integers. This places four conditions on the mi and dj :
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(a) k1(m1m2 +m1d2 −m2d1)− k2(m1 + 1)− k3m2 ≡ 0 mod 2,

(b) k1(m3m4 +m3d2 −m4d1)− k2m3 − k3(m4 + 1) ≡ 0 mod 2,

(c) k1d1d2 − k2d1 − k3d2 ≡ 0 mod 2,

(d) m1m4 −m2m3 = −1.

For ease of notation, let us set

M :=

(

m1 m3

m2 m4

)

∈ GL2(Z), d :=

(

d1
d2

)

∈ Z
2.

We will determine R(ϕ) in a very similar way to the proof of [5, Proposition 5.11]. Let [x]ϕ
be a Reidemeister class of Γ, then for any k ∈ Z,

x = (e−k
1 )xe2k1 ϕ(e−k

1 )−1,

therefore x ∼ϕ xe2k1 for all k ∈ Z. Consider the quotient group Γ′ = Γ/〈e1〉 and let
ϕ′ = ξ(d/2,M) be the induced automorphism on this quotient. Since we assumed that
R(ϕ) < ∞, we have that R(ϕ′) < ∞ as well. [5, Proposition 5.10] tells us that R(ϕ′) =
| tr(M)|+O(12 −M,d) with

O(A, a) := #
{

x̄ ∈ Z
2
2 | Āx̄ = ā

}

,

where the bar-notation denotes the element-wise projection to Z2. A Reidemeister class
[x〈e1〉]ϕ′ of Γ′ will lift to at most 2 Reidemeister classes of Γ: [x]ϕ and [xe1]ϕ; so the number
of lifts is either 2 (when x 6∼ϕ xe1) or 1 (when x ∼ϕ xe1). The latter happens if and only if

∃z ∈ Γ : xe1 = zxϕ(z)−1. (1)

Projecting this to the quotient Γ′, we have

∃z ∈ Γ : x〈e1〉 = zxϕ(z)−1〈e1〉. (2)

Since e1 is central in Γ and x appears exactly once on each side of the equality sign in (1),
the e1-component of x does not matter. Set x = ex2

2 ex3

3 αǫx and z = ez11 ez22 ez33 αǫz . Let us
first assume that ǫz = 0, then (2) is equivalent to

∃z2, z3 ∈ Z : (12 −AM)

(

z2
z3

)

= 0,

with A the holonomy part of x〈e1〉. As R(ϕ′) < ∞, we must have z2 = z3 = 0. But then
z = ez11 , and (1) then becomes xe1 = xe2z11 . As z1 is an integer, this is impossible. So,
let us assume that ǫz = 1. Writing out (1) component-wise, we find that this condition is
equivalent to the following:

There exist z1, z2, z3 ∈ Z such that:

(i) 2

(

x2

x3

)

= (12 − (−1)ǫxM)

(

z2
z3

)

− (−1)ǫxd,

(ii) k1z2z3 − k2z2 − k3z3 − k4 + 1 = 2z1.
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Condition (i) is independent of the e1-components, and hence can be interpreted in terms
of the quotient group Γ′. In the proof of [5, Proposition 5.11] it was shown that, for a fixed
value of ǫx, the number of Reidemeister classes [x〈e1〉]ϕ′ for which a pair (z2, z3) satisfying
(i) exists is exactly O(12 − M,d), i.e. the number of solutions (z̄2, z̄3) ∈ Z

2
2 of the linear

system of equations

(i’)
(

12 −M
)

(

z̄2
z̄3

)

= d̄.

Note that the above equation is exactly condition (i) taken modulo 2.
Since ǫx can take two values (1 and −1), there are in total 2O(12 −M,d) Reidemeister

classes [x〈e1〉]ϕ′ satisfying condition (i). On the other hand, there are | tr(M)|−O(12−M,d)
Reidemeister classes of Γ′ for which condition (i) does not hold (see [5, Section 5]).

Recall that the variable z1 appears only in condition (ii). If we have a Reidemeister class
[x〈e1〉]ϕ′ and a pair (z2, z3) for which (i) holds, then we can find a z1 ∈ Z to make condition
(ii) hold if and only if

(ii’) k̄1z̄2z̄3 − k̄2z̄2 − k̄3z̄3 − k̄4 + 1̄ = 0̄,

which is exactly condition (ii) taken modulo 2.
We partition the solutions of (i’) into those that do not satisfy condition (ii’) and those

that do. Let S be the number of the former and T the number of the latter, then S + T =
O(12−M,d). Of the 2O(12−M,d) Reidemeister classes [x〈e1〉]ϕ′ satisfying condition (i), 2S
lift to two distinct Reidemeister classes [x]ϕ and [xe1]ϕ, and 2T lift to a single Reidemeister
class [x]ϕ. All together, we have

R(ϕ) = 2(| tr(M)| − S − T ) + 2(2S) + 2T

= 2(| tr(M)|+ S).

In particular, we get that R(ϕ) ∈ 2N. Taking the parity of tr(M) into account, we can
further determine the possible Reidemeister numbers:

R(ϕ) ∈
{

4N+ 2S if tr(M) ≡ 0 (mod 2),

4N+ 2S − 2 if tr(M) ≡ 1 (mod 2),

where

S ≤ O(12 −M,d) ≤
{

4 if tr(M) ≡ 0 (mod 2),

1 if tr(M) ≡ 1 (mod 2).

There is one special case, however. If M ≡ 12 mod 2 all entries of 12−M will be multiples
of 2; so | det(12 −M)| = | tr(M)| ∈ 4N and therefore R(ϕ) ∈ 8N+ 2S.

For a fixed group Γ in this family (i.e. a fixed 4-tuple of parameters (k1, k2, k3, k4)),
an automorphism ϕ ∈ Aut(Γ) is uniquely determined by the matrix M ∈ GL2(Z) and the
vector d ∈ Z

2. Our goal is to find out, for each group in the family (or equivalently, for
each tuple (k1, k2, k3, k4)), which M and d satisfy conditions (a) - (d) and thus produce an
automorphism.

Conditions (a) - (c) are actually conditions over Z2, and none of the parameters ki appear
in condition (d). Therefore, only the parity of the ki will play a role, so we need to check
16 cases, each corresponding to an element of Z4

2. Furthermore, a group with parameters
(k1, k2, k3, k4) is isomorphic to the group with parameters (−k1, k3, k2, k4), which allows
us to omit the cases (0, 1, 0, 0), (0, 1, 0, 1), (1, 1, 0, 0) and (1, 1, 0, 1), leaving only 12 cases.
Rather than trying to find all couples (M,d) (of which there are likely to be infinitely many),
we can start by finding all couples (M̄, d̄) ∈ GL2(Z2)× Z

2
2 satisfying conditions (a)-(c).
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The function MakeList defined in algorithm 1 does exactly this. Moreover, it assigns
to every couple a set R, which is the set of possible Reidemeister numbers the corresponding
automorphisms can have. The results can be found in tables 2 to 13. The Reidemeister
spectrum of a group is a subset of (or the entirety of) the union of all these sets R.

Next, for each quadruplet of parameters, we tried to find a family of automorphisms
whose Reidemeister numbers produce the union of these sets R. We succeeded in this for
every choice of parameters, hence the Reidemeister spectrum always equals the union of
the R. These automorphisms and their Reidemeister spectra, for all (k1, k2, k3, k4), can be
found in table 14. For the sake of brevity, we omitted ∞ from the spectra in this table.

We may thus conclude that, depending on the parity of the parameters k1, k2, k3 and k4,
the Reidemeister spectrum is 2N∪{∞}, 4N∪{∞}, (4N− 2)∪{∞} or (2N+2)∪{∞}. Note
that all almost-Bieberbach groups have parameters with parities (0, 0, 0, 1) and therefore
have spectrum 2N ∪ {∞}.

Algorithm 1 MakeList function

1: function MakeList(k1, k2, k3, k4)
2: AutList := ∅

3: for M̄ ∈ GL2(Z2), d̄ ∈ Z
2
2 do

4: if conditions (1), (2), (3) are met then
5: S := 0
6: for z̄ ∈ Z

2
2 do

7: if z̄ satisfies (i’) but not (ii’) then
8: S := S + 1
9: end if

10: end for

11: if tr(M) ≡ 0 mod 2 then

12: if M ≡ 12 mod 2 then

13: R := 8N+ 2S
14: else

15: R := 4N+ 2S
16: end if

17: else

18: R := 4N+ 2S − 2
19: end if

20: AutList := AutList ∪
{

(M̄, d̄, R)
}

21: end if

22: end for

23: return AutList
24: end function

6 Spectra of 4D almost-Bieberbach groups

We already determined in section 4 which families of four-dimensional almost-crystallo-
graphic groups do not have the R∞-property. In [3] it is determined which groups among
these families are almost-Bieberbach groups. We use the presentations from section 4.

Family 1. Every group in this family is a finitely generated, torsion-free, nilpotent group
of rank 4 and nilpotency class 2. In [7, Section 3.2] it was shown that the Reidemeister
spectrum of such group is always 4N ∪ {∞}.
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Family 3. The almost-Bieberbach groups in this family are those with (k1, k2, k3, k4) =
(2k, 0, 0, 1) for some k ∈ N. An automorphism ϕ = ξ(d,D) with R(ϕ) < ∞ must be of the
form

ϕ(e1) = e−1
1 ,

ϕ(e2) = el1e
−1
2 ,

ϕ(e3) = e
k(m1m2+m1d2−m2d1)
1 em1

3 em2

4 ,

ϕ(e4) = e
k(m3m4+m3d2−m4d1)
1 em3

3 em4

4 ,

ϕ(α) = ekd1d2−1
1 ed1

3 ed2

4 α,

with m1, m2, m3, m4, d1, d2, l ∈ Z and m1m4 −m2m3 = −1. Then D∗ is of the form

D∗ =









−1 ∗ ∗ ∗
0 −1 ∗ ∗
0 0 m1 m3

0 0 m2 m4









.

Using theorem 3.5, we find that R(ϕ) = 4|m1 + m4| ∈ 4N. Now, take the automorphism
ϕm given by

ϕm(e1) = e−1
1 , ϕm(e4) = ekm1 e3e

m
4 ,

ϕm(e2) = e−1
2 , ϕm(α) = e−1

1 α,

ϕm(e3) = e4,

with m ∈ N. Then R(ϕm) = 4m and hence SpecR(Γ) = 4N ∪ {∞}.

Family 4. The almost-Bieberbach groups in this family are those where either (k1, k2, k3,
k4) = (k, 0, 0, 0) with k ∈ N or (k1, k2, k3, k4) = (2k, 1, 0, 0) with k ∈ N. In the former case,
such almost-Bieberbach group can be seen as an internal semidirect product Hk ⋊Z, where
Hk = 〈e1, e3, e4〉 and Z = 〈α〉. Similarly, in the latter case, a group is an internal semidirect
product H2k ⋊ Z.

Both of these semidirect products were studied in [7, Proposition 5.23], their Reidemeis-
ter spectra are respectively 4N ∪ {∞} and 8N ∪ {∞}.

Family 5. The almost-Bieberbach groups in this family are those where (k1, k2, k3, k4) =
(k, 0, 0, 1) with k ∈ N. An automorphism ϕ = ξ(d,D) with R(ϕ) < ∞ must be of the form

ϕ(e1) = e−1
1 ,

ϕ(e2) = e−1
2 e

k(2m1m2+2m1d2−2m2d1−m2−d2)−2l
1 ,

ϕ(e3) = em1

2 e−1+2m1

3 em2

4 el1,

ϕ(e4) = em3

2 e2m3

3 e1+2m4

4 e
k(2m3m4+m3d2+m3−2m4d1−d1)
1 ,

ϕ(α) = ed1

2 e2d1

3 ed2

4 ekd1d2−1
1 α,

with m1, m2, m3, m4, d1, d2, l ∈ Z and m1 −m4 +2m1m4 −m2m3 = 0. Then D∗ is of the
form

D∗ =









−1 ∗ ∗ ∗
0 −1 ∗ ∗
0 0 −1 + 2m1 2m3

0 0 m2 1 + 2m4









.

13



Using theorem 3.5, we find that R(ϕ) = 8|m1+m4| ∈ 8N∪{∞}. Now, take the automorph-
ism ϕm given by

ϕm(e1) = e−1
1 , ϕm(e4) = ekm1 em2 e2m3 e4,

ϕm(e2) = e
k(2m−1)
1 e−1

2 , ϕm(α) = e−1
1 α,

ϕm(e3) = em2 e2m−1
3 e4,

with m ∈ N. Then R(ϕm) = 8m and hence SpecR(Γ) = 8N ∪ {∞}.

7 Conclusion

We have determined which (non-crystallographic) almost-crystallographic groups of di-
mension 4 admit the R∞ property, and calculated the Reidemeister spectra of the non-
crystallographic 3-dimensional almost-crystallographic groups, as well as the spectra of the
non-crystallographic 4-dimensional almost-Bieberbach groups. Together with the results of
[5], this completes the calculation of the Reidemeister spectra of the 3-dimensional almost-
crystallographic groups and of the 4-dimensional almost-Bieberbach groups.

Acknowledgement The author would like to thank the referee for their careful reading
and useful suggestions for the paper.
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M̄ d̄ R

( 0 1
1 0 ) ( 00 ) 4N

( 0 1
1 0 ) ( 01 ) 4N

( 0 1
1 0 ) ( 10 ) 4N

( 0 1
1 0 ) ( 11 ) 4N

( 0 1
1 1 ) ( 00 ) 4N− 2

( 0 1
1 1 ) ( 01 ) 4N− 2

( 0 1
1 1 ) ( 10 ) 4N− 2

( 0 1
1 1 ) ( 11 ) 4N− 2

( 1 0
0 1 ) ( 00 ) 8N

( 1 0
0 1 ) ( 01 ) 8N

( 1 0
0 1 ) ( 10 ) 8N

( 1 0
0 1 ) ( 11 ) 8N

( 1 0
1 1 ) ( 00 ) 4N

( 1 0
1 1 ) ( 01 ) 4N

( 1 0
1 1 ) ( 10 ) 4N

( 1 0
1 1 ) ( 11 ) 4N

( 1 1
0 1 ) ( 00 ) 4N

( 1 1
0 1 ) ( 01 ) 4N

( 1 1
0 1 ) ( 10 ) 4N

( 1 1
0 1 ) ( 11 ) 4N

( 1 1
1 0 ) ( 00 ) 4N− 2

( 1 1
1 0 ) ( 01 ) 4N− 2

( 1 1
1 0 ) ( 10 ) 4N− 2

( 1 1
1 0 ) ( 11 ) 4N− 2

Table 3: MakeList(0, 0, 0, 1)

M̄ d̄ R

( 1 0
0 1 ) ( 00 ) 8N+ 4

( 1 0
0 1 ) ( 10 ) 8N

( 1 1
0 1 ) ( 00 ) 4N+ 4

( 1 1
0 1 ) ( 10 ) 4N

Table 4: MakeList(0, 0, 1, 0)

M̄ d̄ R

( 1 0
0 1 ) ( 00 ) 8N+ 4

( 1 0
0 1 ) ( 10 ) 8N

( 1 1
0 1 ) ( 00 ) 4N

( 1 1
0 1 ) ( 10 ) 4N+ 4

Table 5: MakeList(0, 0, 1, 1)

M̄ d̄ R

( 0 1
1 0 ) ( 00 ) 4N+ 4

( 0 1
1 0 ) ( 11 ) 4N

( 1 0
0 1 ) ( 00 ) 8N+ 4

( 1 0
0 1 ) ( 11 ) 8N

Table 6: MakeList(0, 1, 1, 0)
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M̄ d̄ R

( 0 1
1 0 ) ( 00 ) 4N

( 0 1
1 0 ) ( 11 ) 4N+ 4

( 1 0
0 1 ) ( 00 ) 8N+ 4

( 1 0
0 1 ) ( 11 ) 8N

Table 7: MakeList(0, 1, 1, 1)

M̄ d̄ R

( 0 1
1 0 ) ( 00 ) 4N+ 2

( 0 1
1 1 ) ( 01 ) 4N− 2

( 1 0
0 1 ) ( 00 ) 8N+ 6

( 1 0
1 1 ) ( 01 ) 4N+ 2

( 1 1
0 1 ) ( 10 ) 4N+ 2

( 1 1
1 0 ) ( 10 ) 4N− 2

Table 8: MakeList(1, 0, 0, 0)

M̄ d̄ R

( 0 1
1 0 ) ( 00 ) 4N+ 2

( 0 1
1 1 ) ( 01 ) 4N

( 1 0
0 1 ) ( 00 ) 8N+ 2

( 1 0
1 1 ) ( 01 ) 4N+ 2

( 1 1
0 1 ) ( 10 ) 4N+ 2

( 1 1
1 0 ) ( 10 ) 4N

Table 9: MakeList(1, 0, 0, 1)

M̄ d̄ R

( 0 1
1 0 ) ( 11 ) 4N+ 2

( 0 1
1 1 ) ( 10 ) 4N− 2

( 1 0
0 1 ) ( 00 ) 8N+ 6

( 1 0
1 1 ) ( 00 ) 4N+ 2

( 1 1
0 1 ) ( 10 ) 4N+ 2

( 1 1
1 0 ) ( 11 ) 4N− 2

Table 10: MakeList(1, 0, 1, 0)

M̄ d̄ R

( 0 1
1 0 ) ( 11 ) 4N+ 2

( 0 1
1 1 ) ( 10 ) 4N

( 1 0
0 1 ) ( 00 ) 8N+ 2

( 1 0
1 1 ) ( 00 ) 4N+ 2

( 1 1
0 1 ) ( 10 ) 4N+ 2

( 1 1
1 0 ) ( 11 ) 4N

Table 11: MakeList(1, 0, 1, 1)
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M̄ d̄ R

( 0 1
1 0 ) ( 00 ) 4N+ 2

( 0 1
1 1 ) ( 00 ) 4N

( 1 0
0 1 ) ( 00 ) 8N+ 2

( 1 0
1 1 ) ( 00 ) 4N+ 2

( 1 1
0 1 ) ( 00 ) 4N+ 2

( 1 1
1 0 ) ( 00 ) 4N

Table 12: MakeList(1, 1, 1, 0)

M̄ d̄ R

( 0 1
1 0 ) ( 00 ) 4N+ 2

( 0 1
1 1 ) ( 00 ) 4N− 2

( 1 0
0 1 ) ( 00 ) 8N+ 6

( 1 0
1 1 ) ( 00 ) 4N+ 2

( 1 1
0 1 ) ( 00 ) 4N+ 2

( 1 1
1 0 ) ( 00 ) 4N− 2

Table 13: MakeList(1, 1, 1, 1)

(k1, k2, k3, k4) M d R(ϕ) Spec
R
(Γ)

(0, 0, 0, 0) ( 0 1

1 2m
) ( 0

1
) 4m 4N

(0, 0, 0, 1) ( 0 1

1 m
) ( 0

0
) 2m 2N

(0, 0, 1, 0)
(

1 1

2m 2m−1

)

( 1

0
) 4m 4N

(0, 0, 1, 1)
(

1 1

2m 2m−1

)

( 0

0
) 4m 4N

(0, 1, 1, 0) ( 0 1

1 2m
) ( 1

1
) 4m 4N

(0, 1, 1, 1) ( 0 1

1 2m
) ( 0

0
) 4m 4N

(1, 0, 0, 0)
(

0 1

1 2m−1

)

( 0

1
) 4m− 2 4N− 2

(1, 0, 0, 1)
(

1 1

m m−1

)

( 1

0
) 2m+ 2 2N+ 2

(1, 0, 1, 0)
(

0 1

1 2m−1

)

( 1

0
) 4m− 2 4N− 2

(1, 0, 1, 1) (m 1

1 0
) ( 1

1
) 2m+ 2 2N+ 2

(1, 1, 1, 0) ( 0 1

1 m
) ( 0

0
) 2m+ 2 2N+ 2

(1, 1, 1, 1)
(

0 1

1 2m−1

)

( 0

0
) 4m− 2 4N− 2

Table 14: Automorphisms and Reidemeister spectra and for all (k1, k2, k3, k4)
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