
A MARKOV CHAIN SAMPLER FOR PLANE CURVES
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Abstract. A plane curve is a knot diagram in which each crossing is replaced by a 4-valent
vertex, and so are dual to a subset of planar quadrangulations. The aim of this paper is to
introduce a new tool for sampling diagrams via sampling of plane curves. At present the
most efficient method for sampling diagrams is rejection sampling, however that method is
inefficient at even modest sizes. We introduce Markov chains that sample from the space
of plane curves using local moves based on Reidemeister moves. By then mapping vertices
on those curves to crossings we produce random knot diagrams. Combining this chain with
flat histogram methods we achieve an efficient sampler of plane curves and knot diagrams.
By analysing data from this chain we are able to estimate the number of knot diagrams
of a given size and also compute knotting probabilities and so investigate their asymptotic
behaviour.

1. Introduction

1.1. Background. A beautiful aspect of knot theory is that it brings together many differ-
ent aspects of mathematics and leverages their tools so efficiently. An apt example of this
phenomenon are knot diagrams, wherein the entanglement of a smooth string in space is
studied as a combinatorial cartoon. From this view, any of the infinite manipulations of a
loop of string are simply sequences of a finite number of diagram operations called Reide-
meister moves [AB26; Rei48]. This combinatorial regime also serves an essential role in knot
identification; many knot polynomials are calculated more naturally for diagrams than for
space curves [EM97]. Other invariants, like the important crossing number of a knot, are
defined in terms of diagrams.

(A) (B) (C) (D)

Figure 1. By replacing crossings with vertices, knot diagrams (A) are
mapped onto plane curves (B). However, not all 4-valent plane graphs cor-
respond to knots. For example, the Hopf-link (C) maps to a 4-valent graph.
To avoid complications caused by symmetries, we study rooted plane curves,
in which one edge is selected and assigned an orientation (D).

Knot theory is an important tool in many applied disciplines. Ring polymers exhibit
knotting [FW61; Tri+01], which affects their function [BZ04] and their chemical proper-
ties [Van95]. Knotted configurations of polymers are studied through random knot models,
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where knots are sampled from some probability distribution with the aim of modeling phys-
ical behavior; for a good overview see [OW07]. A canonical model of random knotting
is that of self-avoiding polygons on the cubic lattice Z3 [SW88]. A self-avoiding polygon
is constructed by embedding a simple closed curve into Z3 and by sampling these objects
uniformly at random, one obtains a distribution over the space of knot embeddings. A sur-
prising amount is still unknown for all but the most simple of such models. For example, it is
still unproven (despite overwhelming evidence) that the exponential growth rates of knotted
polygons of fixed knot type are independent of knot type [RR11].

As knot diagrams are more naturally suited for the study of invariants, in [CCM16], the
first author together with Cantarella and Mastin proposed the random diagram model. In
this model, one samples a random knot by, for a fixed number of crossings n, picking one of
the finite number of knot diagrams with n crossings uniformly. The diagram model behaves
like many other physically motivated models in that unkotted diagrams are exponentially
rare [Cha17; Del62; Dia95; FW61; SW88]. At the same time, this diagram model has
advantages over other models of knotting. It is possible, for example, to show, via a pattern
theorem, that unknot diagrams almost certainly contain slipknots [Cha18], a result which
remains a conjecture for unknotted self-avoiding polygons and Gaussian polygons [Mil10].

Another major problem of combinatorial models of knots, is that the underlying objects
are difficult to enumerate. The diagram model is no different — the best algorithms for enu-
merating knot diagrams require time that grows exponentially with the number of crossings
[ZZ09]. If an efficient enumeration method were to exist, then this could be readily adapted
to give a random sampling method (see, for example, [FS09]). In the absence of such a
method, the most obvious approach has been to generate random 4-valent maps and then
randomly assign crossings (see Figure 1). However, 4-valent maps corresponding to knots are
exponentially rare. Experiments suggest that roughly only 1% of samples are accepted for
60-crossing diagrams and a prohibitively small 0.01% of samples are accepted for 150-crossing
diagrams [Cha17]. This makes rejection sampling of 4-valent maps extremely inefficient at
even moderate sizes. One way to overcome this is to manipulate a sampled 4-valent map
until a knot diagram is obtained [DEZ12; Dun+14], however the resulting space of knots is
not uniform.

The absence of an efficient random knot diagram sampler is a major impediment to the
study of random knots. The aim of this paper is thus to describe a new efficient method to
sample knot diagrams directly with uniform probability using Metropolis style Markov chain
Monte Carlo (MCMC) sampling [Met+53]. Such Markov chains have been used to study
other models of random knotting, particularly on the simple cubic lattice. Foremost among
these are the pivot algorithm [Lal69] and the BFACF algorithm [AC83; BF81; CCF83].
The former is extremely efficient [MS88], while the latter has the advantage of conserving
topology [RW91b]. Guitter and Orlandini [GO99] augmented the BFACF algorithm with
Reidemeister moves to study a model of flat-knots on the square-diagonal lattice.

This paper focuses on sampling plane curves, which can be thought of as knot diagrams
without crossing-sign information (see Figure 1 and Section 2). Each plane curve of n-
vertices maps to a unique set of 2n knot diagrams. Consequently if we can sample plane
curves uniformly, then we can also sample knot diagrams uniformly. To avoid complications
caused by symmetries, we sample from the space of rooted diagrams (explained below).

The main result of the paper is a Markov Chain over the space of plane curves. By selecting
transition probabilities we can sample from this chain with a Boltzmann distribution.
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Theorem 1. Let D be a plane curve with 1 ≤ n vertices and let µ is the exponential growth
rate of plane curves. The Markov chain described in Section 3.1 has stationary distribution
given by

π(D) ∝ zn,

provided 0 ≤ z < µ−1. Consequently, plane curves of a fixed size are sampled uniformly.

When running this Markov chain, we found that it was very difficult to obtain a good
number of samples at large range of lengths. To overcome this problem we modified our
transition probabilities based on Wang Landau density of states estimation [WL01]. This
method allows us to sample diagrams nearly uniformly in length (while still sampling uni-
formly within any given length) and additionally provides estimates of the number of plane
diagrams. Let k` be the number of rooted plane curves with ` vertices, and let g` be the
estimate of k` from the Wang-Landau algorithm. Then we have the following result.

Theorem 2. Let N ∈ N and D be a plane curve with 1 ≤ n ≤ L vertices. The Markov
chain described in Section 3.2 has stationary distribution given by

π(D) ∝ 1

gn

Since gn ≈ kn, plane curves are sampled uniformly within a given size, and approximately
uniformly across sizes.

The remainder of Section 1 defines key knot theory concepts and provides some additional
context on the problem of enumerating plane curves. Section 2.2 describes the transitions
used by our Markov chain. In Section 3, we describe the actual algorithms and prove the
main theorem. Section 4 presents the results of experiments which verify the validity of
the main theorem as well as explore the structure of large random knot diagrams. Finally,
in the concluding Section 5 we discuss progress on additional “diagram Markov chains” for
different types of diagram objects, and some obstructions.

2. Preliminaries and Definitions

2.1. Definitions. A knot is an embedding K : S1 ↪→ R3 of a loop into Euclidean 3-space.
Typically, knots are considered up to ambient isotopy, wherein two knots are equivalent if
one can be manipulated as a closed loop into the other, without self-intersection. For clarity,
we call a specific loop embedding a knot and an equivalence class of knots a knot type.
Reidemeister’s theorem [AB26; Rei48] transfers this topological theory into a combinatorial
one as follows: A knot diagram of a knot K is a generic projection of the loop in space to the

RI RII RIII

Figure 2. The three Reidemeister moves, RI, RII, RIII.

sphere, together with extra information at each double point indicating where one piece of the
loop passes over the other (called crossings), as in Figure 1A, up to oriented homeomorphisms
of the sphere. Then two knots K1 and K2 are equivalent if and only if their diagrams are
related by a sequence of Reidemeister moves, depicted in Figure 2. A significant advantage
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of the diagram view is that most knot invariants, properties of knots which only depend on
their knot type, are naturally computed from their diagram representation [Fre+85; Kau87].

There is a natural projection from knot diagrams to a strict subset of 4-valent planar
maps called plane curves; simply replace each crossing with a vertex. A planar map is a
(multi-)graph G, together with an embedding ι into the sphere S2 so that each component
of S2 \ ι(G) is a topological disk. Necessarily, this means all planar maps are connected. A
map is 4-valent if each vertex has degree 4.

Unfortunately, knot diagrams and plane curves are cumbersome to deal with as a result of
potential symmetries. To avoid these complications can asymmetrize by marking one edge
with a direction. Such objects are called rooted. In particular, each rooted n-vertex plane
curve corresponds to a unique set of exactly 2n rooted knot diagrams. For a discussion of the
techniques and difficulties involved with considering plane curves and knot diagrams with
symmetry see [CCM16; CZ16; Val16].

It will be useful for computations to consider the following equivalent view of maps. A
4-valent planar map D with n vertices can be viewed as a combinatorial map [Cha17; CZ16],
i.e. a pair D = (σ, τ) of permutations of 4n flags (sometimes called half-edges or arcs). In
this view, σ is a product of n disjoint cycles of length 4 and τ is a product of 2n disjoint
cycles of length 2. Each cycle in σ represents a vertex (it permutes the flags attached at each
vertex counterclockwise) and each cycle in τ represents an edge (it involutes the two flags
that form an edge). The cycles of στ correspond to the faces of the map (each permutes the
flags of a face clockwise). For 4-valent maps we also have σ2τ , whose cycles correspond to
orientations of link components or Gauss components. Each flag is contained in exactly one
vertex, edge, face and component.

Given an flag a, let e(a) be its edge (i.e. cycle in τ), v(a) be its vertex (i.e. cycle in σ),
and f(a) be its face (i.e. cycle in στ).

Figure 3. A plane curve, with its flags marked and a root flag chosen (in blue).

Then the condition that D is a planar map is precisely that product στ consists of n+ 2
cycles by Euler’s formula. Relaxing this condition and allowing στ to consist of k cycles
makes D a map on a surface of genus g = 1− k−n

2
. We forbid this for our objects, although

in general it is interesting to consider maps on an arbitrary fixed surface Σ. If σ2τ consists of
precisely two cycles, each necessarily of length n, then D is a plane curve and each cycle in
σ2τ corresponds to following the single immersed circle in one of its two possible orientations.
Figure 3 shows an example plane curve. Figure 4 shows a random decorated plane curve
(knot diagram) and a random decorated 4-valent map (link diagram). The curve condition
(that σ2τ has precisely 2 cycles) makes plane curves exponentially rare within the class of
all 4-valent maps.

We note that if we relax either the planarity or the curve condition, the problem greatly
simplifies. 4-valent planar maps themselves are well-understood, owing in part to Schaeffer’s
bijection with blossom trees [Sch97]. This has been used to prove a stunning closed formula
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for the growth rate of alternating link types [ST98; Thi98; ZZ02] as well as precise statistics
for hyperbolic volumes of random alternating link diagrams [Obe16]. On the other hand,
relaxing planarity and considering curves on arbitrary surfaces leads one to the study of
Gauss codes (usually depicted as signed chord or Gauss diagrams), which themselves are
counted and well understood [Now09].

Denote by K the class of all rooted plane curves indexed by number of vertices, and let
K(t) =

∑∞
n=1 knt

n be its generating function. For a plane curve D, let |D| be the number of
vertices in D (equivalently, the size of D). Then the generating function can also be written
as K(t) =

∑
D∈K t|D|. The asymptotic behavior of the coefficients kn is expected [SZ04;

ZZ09] to be

(1) kn ∼ Cµnnγ−2(1 +O(1/ log n)).

Neither a closed formula for kn nor exact values of µ, γ are known. Conformal field theory
arguments suggest [SZ04] that

γ = −1 +
√

13

6
.

Additionally, it is known that µ exists [Cha17], with the best numerical estimate [ZZ09]
µ ≈ 11.416± 0.005. This sort of asymptotic growth is similar to that of self-avoiding walks
and polygons in the cubic lattice Z3 [Ham61; MS13] (with different constants). Indeed a
great many combinatorial objects are known to be counted by sequences which have similar
exponential growth with power-law correction; see Flajolet and Sedgewick [FS09] for (a great
many) examples. It should be noted, however, that conformal field theory arguments [SZ04]
suggest the presence of an inverse logarithmic correction to scaling for plane curves. This
is contrast with the observed correction of n−∆ for many objects (again, see Flajolet and
Sedgewick [FS09] for many examples with n−1 corrections, and also [CG96] for evidence of
a n−3/2 correction in self-avoiding walks).

2.2. Shadow Reidemeister moves. In the subsection above, we have defined the set of
rooted plane curves that we wish to sample. Unfortunately, as noted above, it is difficult to
construct a rooted plane curve. Instead, we will describe a Markov chain that produces new
plane curves by performing small local changes. The set of plane curves is closed under these
manipulations. Further, any two plane curves are linked by a sequence of these changes.

Reidemeister moves in Figure 2 are an obvious choice of local changes for knot diagrams,
and we use a similar set of moves for plane curves. Define the flat (or shadow) Reidemeister
moves (also known as homotopy moves [CE17]) to be the same as the Reidemeister moves,
except ignoring crossing information [HN10]. Any two plane curves are related by a sequence
of flat Reidemeister moves, as;

Theorem 3 (Hass and Scott [HS94], de Graaf and Schrijver [GS97]). Any plane curve
can be brought to the trivial figure-eight twist curve seen in Figure 6 by a sequence of flat
Reidemeister moves that never increase the size of the plane curve.

This result implies that there exists a sequence of moves between any two plane curves
D,N . Furthermore, it implies that at each intermediate state between D and N the curve
has no more vertices than the larger of D and N . Chang and Erickson have proven in the
arbitrary case that the maximum number of moves required is a small polynomial:

Theorem 4 ([CE17]). The maximum number of non-increasing flat Reidemeister moves
required to trivialize a plane curve with n vertices grows as Θ(n3/2). Consequently, it takes
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(A) Random knot diagram (B) Random link diagram

Figure 4. A random knot diagram and a random link diagram, each of 100
vertices. Different link components are given different colors. These diagrams
were sampled uniformly (using a rejection sampler in the case of the knot
diagram) using an interface in plCurve [ACC17] to PlanarMap [Sch99b], and
graphics were generated using an orthogonal projection algorithm in pLink,
part of SnapPy [Cul+17]. Knot diagrams become exponentially rare as the
number of vertices increases [Cha17; SZ04], so are difficult to sample through
rejection.

RI RII RIII

Figure 5. The three flat Reidemeister moves, RI, RII, RIII which act on
plane curves. These are the natural analogues of Reidemeister moves on knot
diagrams.

Figure 6. The figure-eight twist curve is the “trivial” plane curve for the sake
of implementation; allowing for a trivial curve of 0 vertices is more difficult
and provides no benefit. By Theorem 3 all other plane curves can be brought
to this shape by a sequence of non-crossing-increasing flat Reidemeister moves.

no more than Θ(n3/2) moves to transform a curve of m ≤ n vertices into a curve of n
vertices.

A similar pair of results, if flat Reidemeister I moves are forbidden, was proven by
Nowik [Now09]. In this case, the path of curves between a curve with n vertices and its
trivialization takes no more than Θ(n2) moves and involves no intermediate curves with
more than n+ 2 vertices.

These flat Reidemeister moves form the transitions for our Markov chain on K . A key
property is that they are all reversible. We define each transition in detail, noting their
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unique inverses, since such details are necessary for efficient implementation. Let D be a
rooted plane curve with root flag a.

a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2 a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1

a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3

a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2

a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4 a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1

a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a6a6a6a6a6a6a6a6a6a6a6a6a6a6a6a6a6RI+(M,a1)

RI−(M ′, a6)

Figure 7. The flat Reidemeister I moves

2.2.1. Shadow Reidemeister I loop addition, RI+. See Figure 7 (left) and consider the edge
to be oriented from right to left. This defines two flags, a1 and a2, and we take a1 to be the
root flag. The addition of a loop on a1 is always possible through the move RI+.

Let (a1a2) = e(a1), and let a3, a4, a5, a6 be four new flags. Then RI+(D, a1) is the rooted
map produced by deleting edge e(a1) from D, then adding the vertex (a3a4a5a6) and edges
(a1a4), (a5a6), and (a3a2). The new root is the flag a6. One can verify that this process is
invertible, in particular that:

D = RI−(RI+(D, a1), a6).

2.2.2. Shadow Reidemeister I loop deletion, RI−. See Figure 7 (right). Loop deletion RI−

is possible whenever, given the root flag a = a6, the face f(a6) is a singleton (i.e. the
corresponding face is a monogon).

If this is true, then RI−(D, a6) is the rooted map produced from deleting the vertex
v(a6) = (a3a4a5a6) and the edges e(a6) = (a6a5), e(a3) = (a3a2), e(a4) = (a4a1) from D, and
adding the edge (a1a2). The flags a3, a4, a5, a6 are discarded. The new root is the flag a1.
This process is invertible:

D = RI+(RI−(D, a6), a1).

a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2 a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1

a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3

a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2

a9a9a9a9a9a9a9a9a9a9a9a9a9a9a9a9a9

a6a6a6a6a6a6a6a6a6a6a6a6a6a6a6a6a6

a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5

a12a12a12a12a12a12a12a12a12a12a12a12a12a12a12a12a12 a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1

a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4

a11a11a11a11a11a11a11a11a11a11a11a11a11a11a11a11a11

a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8

a7a7a7a7a7a7a7a7a7a7a7a7a7a7a7a7a7

a10a10a10a10a10a10a10a10a10a10a10a10a10a10a10a10a10
a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3

RII+(M,a1, a3)

RII−(M ′, a6)

Figure 8. The flat Reidemeister II moves

2.2.3. Shadow Reidemeister II bigon addition, RII+. See Figure 8 (left). Bigon addition
RII+ requires a second flag b ∈ f(a) which is different from the root flag a. Let a = a1 and
b = a3.

The rooted map RII+(D, a1, a3) is constructed from D as follows. Delete the edges e(a1) =
(a1a2) and e(a3) = (a3a4) from D. Add eight new flags a5, a6, a7, a8, a9, a10, a11, a12. Add the
vertices (a6a10a9a7) and (a5a8a12a11). Insert the edges (a2a9), (a3a10), (a7a8), (a5a6), (a1a12),
and (a4a11). The new root is the flag a6. This process is invertible:

D = RII−(RII+(D, a1, a3), a6).
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2.2.4. Shadow Reidemeister II bigon deletion, RII−. See Figure 8 (right). Bigon deletion
RII− is possible provided the root flag a = a6 is on a face f(a6) which consists of precisely
two flags (i.e. a bigon).

Additionally, it is required that the two exterior faces which are merged by the transition
be distinct ; this is required to preserve connectedness and genus. Indeed, Suppose that D is
a curve embedded on an orientable surface of genus g, so that v(D)−e(D)+f(D) = 2(g−1),
but that the faces to be merged are not distinct. The number of vertices and edges decrease
by 2 and 4 respectively by a RII− operation, as usual, but the number of faces now remains
fixed. This implies that the produced curve lives in either a surface of one fewer genus, or if
the original map was embedded on the sphere, two disjoint spheres.

The rooted map RII−(D, a6) is constructed from D as follows. Delete the vertex v(a6) =
(a6a10a9a7) and the edges e(a9) = (a2a9), e(a10) = (a3a10), e(a7) = (a7a8) and e(a6) = (a6a5).
Delete the vertex v(a5) = (a5a8a12a11) and the edges e(a12) = (a1a12) and e(a11) = (a4a11).
Add the edges (a1a2) and (a3a4). The flags a5, a6, a7, a8, a9, a10, a11, a12 are discarded. The
new root is the flag a1. This process is invertible:

D = RII+(RII−(D, a6), a1, a3).

a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1

a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8
a9a9a9a9a9a9a9a9a9a9a9a9a9a9a9a9a9

a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4

a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3

a10a10a10a10a10a10a10a10a10a10a10a10a10a10a10a10a10

a11a11a11a11a11a11a11a11a11a11a11a11a11a11a11a11a11

a6a6a6a6a6a6a6a6a6a6a6a6a6a6a6a6a6

a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5

a12a12a12a12a12a12a12a12a12a12a12a12a12a12a12a12a12

a7a7a7a7a7a7a7a7a7a7a7a7a7a7a7a7a7

a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2

a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5

a12a12a12a12a12a12a12a12a12a12a12a12a12a12a12a12a12

a7a7a7a7a7a7a7a7a7a7a7a7a7a7a7a7a7

a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2

a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3a3

a10a10a10a10a10a10a10a10a10a10a10a10a10a10a10a10a10

a11a11a11a11a11a11a11a11a11a11a11a11a11a11a11a11a11

a6a6a6a6a6a6a6a6a6a6a6a6a6a6a6a6a6

a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1

a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8a8
a9a9a9a9a9a9a9a9a9a9a9a9a9a9a9a9a9

a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4

RIII(M,a8)

RIII(M ′, a11)

Figure 9. The flat Reidemeister III move

2.2.5. Shadow Reidemeister III triangle flip, RIII. See Figure 9. Triangle flipping RIII is
possible provided the root flag a = a8 lies on a face f(a8) with precisely three flags, all of
whom are contained in different vertices (i.e. a nondegenerate triangle).

The rooted map RIII(D, a8) is constructed from D as follows. Say that v(a8) = (a1a2a7a8),
e(a8) = (a8a9), e(a7) = (a6a7), v(a6) = (a5a11a12a6), and v(a9) = (a3a9a10a4). Delete vertices
v(a7), v(a6), v(a9) and edges e(a7), e(a8), and e(a10). Insert vertices (a6a8a11a1), (a2a10a7a3),
(a4a12a9a5) and edges (a6a9), (a7a12), and (a10a11). The new root is the flag a11. This process
is invertible:

D = RIII(RIII(D, a8), a11).

3. Markov Chain

The five flat Reidemeister moves described in the previous section allow us to define a
Markov chain on the space plane curves. That the chain can move between any two given
plane curves follows immediately from Theorem 3.
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3.1. A Boltzmann Markov chain on plane curves. Our Markov chain sampler for plane
curves will have a stationary Boltzmann distribution; one which samples curves of different
sizes with different probabilities but is uniform on curves of fixed size. In other words, for
0 ≤ z < µ−1 an arbitrary parameter, it has stationary distribution such that a curve D has
probability

(2) π(D) ∝ z|D|

The parameter z then is then maybe used to control mean size of sampled curves, and smaller
values of z will prevent the samples from growing infinitely large.

Let p1, p2, p3 > 0. These numbers correspond to the probabilities of performing, respec-
tively, a Reidemeister I, II, or III move. Consequently, we must have pi > 0. Further, we
must also have 1− (p1 + p2 + p3) > 0, as this quantity will correspond to the probability of
selecting a new root flag. Let Di be the input rooted plane curve with n vertices and root
flag a and perform one of the following six subprocedures with different probabilities. If a
move fails then set Di+1 := Di.

[0] Re-rooting, with probability 1− (p1 + p2 + p3). Given the rooted diagram Di, forget
the root and select a new root b for Di+1 from the (autDi)/(4|D|) choices. The
probability that this transition succeeds is 1 − (p1 + p2 + p3). Note that autDi

needn’t be calculated for this operation, as it is equivalent to choose one flag from
the old rooted curve.

[1+] Loop addition, with probability p1/2. Sample 0 ≤ α < 1 and fail immediately if
α > z. Return Di+1 := RI+(Di, a). The probability that this transition succeeds on
an n-crossing plane curve D is zp1/2.

[1−] Loop deletion, with probability p1/2. Provided f(a) is a loop, return Di+1 :=
RI−(Di, a). The probability that this transition succeeds if root flag a has f(a) a
loop in D is p1/2.

[2+] Bigon addition, with probability p2/2. Sample 0 ≤ α < 1 and fail immediately if
α > z2. The flag a lies along a face of d edges; provided d 6= 1 (otherwise fail),
uniformly sample the integer k between 1 and d − 1. The flag a′ = (στ)k(a) is a
distinct flag along the same face as a. Then return Di+1 := RII+(Di, a, a

′). The
probability that this transition succeeds on any given additional flag a′ along the
root d-face is

z2p2

2(d− 1)
.

[2−] Bigon deletion, with probability p2/2. Fail if the flag a does not lie along a bigon. The
size d of the face which would be produced by bigon deletion is the sum |f(τσ(a))|+
|f(σ3τ(a))|−2 = d. Sample 0 ≤ β < 1 uniformly and fail if β > (d−1)−1. Otherwise,
return Di+1 := RII−(Di, a). The probability that this transition succeeds on a root
a along a bigon is

p2

2(d− 1)
.

[3] Triangle flipping, with probability p3. Fail if the flag a does not lie along a nonde-
generate triangle. Otherwise, return Di+1 := RIII(Di, a). The probability that this
transition succeeds assuming the root lies along a nondegenerate triangle is p3.
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We will prove that in the limiting distribution the probability that any given n-crossing
rooted plane curve D is chosen is

(3) π(D) =
zn

K(z)
,

where K(z) is the value of the generating function K(t) at z so if K(z) converges to a
number, π(D) ∝ zn (this happens provided z < µ−1). It follows that, if we ignore the
roots of the sampled diagrams in order to sample unrooted diagrams, the probability of an
unrooted diagram D being sampled is

(4) π(D) =
4n

autD
zn.

We note that as the probability that the automorphism group of a plane curve is trivial
tends exponentially quickly to 1 [Cha17], the typical probability of an unrooted diagram D
will be π(D) = 4nzn.

This Markov chain is ergodic as it satisfies the following three properties;

(1) It is connected: It is possible to get from any one plane curve to another in a finite
number of transitions. Provided p1, p2, p3 > 0 it is possible to get between any two
pairs of unrooted curves (by Theorem 3); provided p1 + p2 + p3 < 1 it is guaranteed
that any flag may be chosen as the root.

(2) It is aperiodic: Since at each step there is a non-zero probability that the transition
failes, there is no periodicity in the Markov chain.

(3) The chain satisfies detailed balance: For any two curves D and N , the transition
probabilities P and curve probabilities π satisfy,

P (D → N)π(D) = P (N → D)π(N).

This last point requires the most care and we discuss it below, with more details in
Appendix A.

The fundamental theorem of Markov chains then yeilds the following result.

Theorem 1 (Slightly restated). This Markov chain satisfies detailed balance. Furthermore,
if p1, p2, p3 6= 0, (p1 + p2 + p3) 6= 1, and z < µ−1 the chain is ergodic with stationary
distribution,

π(D) =
z|D|∑
` k`z

`
∝ z|D|.

The proof of this result is primarily routine. We have omitted some details which can be
found in Appendix A.

Proof. We will begin by assuming that

π(D) =
z|D|∑
` k`z

`
∝ z|D|,(5)

and proving that detailed balance holds with this hypothesis. Notice that z has been chosen
sufficiently small so that the denominator converges [Cha17]. In all cases the denominator
is the same and a common factor in the calculations that follow, so we omit it.

Let D be a rooted plane curve of n vertices and a be the root flag in D. Observe first that
the three pairs of reversing transitions (RI+,RI−), (RII+,RII−), and (RIII,RIII) all change
the number of vertices by distinct complementary amounts; hence any two diagrams can
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be related by at most one pair of these transitions. Notice that if the vertex counts agree,
then a pair of diagrams may be related by re-rooting. The main concern now is to prove the
detailed balance equations for all possible transitions. Full details are in Appendix A; we
demonstrate that detailed balance holds in the case of the RII moves, as an example.

Suppose that N = RII+(D, a, a′) with root flag b. This means that N is unique in that
D = RII−(N, b). The flags a, a′ lie along a face in D of degree d. Then

P (D → N)π(D) = P (N → D)π(N)(6)

z2p2

2(d− 1)
zn =

p2

2(d− 1)
zn+2.(7)

In all other cases, the transition probabilities are symmetrically zero. Hence we conclude
that detailed balance holds with the hypothesized probability distribution.

Provided p1, p2, p3 6= 0 and (p1 + p2 + p3) 6= 1, the Markov chain can reach all rooted
plane curves as all flat Reidemeister moves and the rerooting move have nonzero transition
probability. Hence in this case, the Markov chain is ergodic. �

Notice that, by Theorem 3, any plane curve can be reduced to the trivial plane curve by
a sequence of flat Reidemeister moves which never increases the number of vertices. This
property implies that if we restrict our Markov chain to the set of plane curves of size at
most L, then the chain remains ergodic. This is definitely not true for knot diagrams [KL06].
There exist diagrams of knots which are locally minimal in the sense that they can be reduced
in crossing number, but only through sequences of moves which increase the crossing number
at some point.

Corollary 5. Imposing the further restriction on the loop addition and bigon addition
transitions that we fail if the input plane curve D would transition to have more than L
vertices ( i.e. if D has L or L−1 vertices, respectively) yields a Markov chain which explores
all of Ki≤L and is ergodic. Furthermore, the probability of sampling any plane curve D with
m ≤ L crossings is,

π(D) =
zm∑L
`=1 k`z

`
∝ zm.

Proof. This follows from Theorem 3 and the proof of the previous theorem. �

At this stage we are free to choose p1, p2, p3. It is not obvious, how they should be chosen
to produce the most efficient sampling method. In practice, we simplified the problem by
choosing p1 +p2 +p3 = 1 and then applying a rerooting move after each step. The ergodicity
of this chain follows by very similar arguments.

Corollary 6. For p = (p1, p2, p3) with p1 + p2 + p3 = 1, consider the Markov chain which
differs from the prior by, before and after each transition step, uniformly randomly re-rooting
the state curve. Setting p1+p2+p3 = 1 eliminates the re-rooting transition. Then this Markov
chain is ergodic.

The proof is quite standard, we give it in Appendix A. Notice that in practice, there is
no need between consecutive transitions to re-root more than once. In our experiments, we
choose the five flat Reidemeister moves by taking p1 = 2/5, p2 = 2/5 and p3 = 1/5.
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3.2. Flat histogram sampling by Wang-Landau state density estimation. Our sim-
ulations in Section 4.1.1 show that the output curve sizes have high variance and change
rather drastically with the parameter z. There are several different approaches that one
might use to overcome this — such as multiple Markov chain Monte Carlo [Gey91; Orl98].
We have, instead, chosen the flat histogram method invented by Wang and Landau [WL01].
The transition probabilities are chosen so that the number of objects sampled at size n is
approximately equal to the number of objects sampled at size m. This requires that

π(D)

π(N)
≈ k|N |
k|D|

(8)

Wang and Wang and Landau’s algorithm [WL01] achieves this by estimating the density of
states — i.e. by estimating kn. Consequently we must fix a maximum size L and set the
probabilities of transitions to diagrams with more than L vertices to zero. The algorithm
begins with a tuning phase which runs through the Markov chain adjusting transition prop-
erties until the above condition approximately holds. These final transition properties are
then used for a MCMC sampler.

There are three advantages to this strategy over Boltzmann MCMC sampling:

(1) Mixing of the Markov chain is more efficient: Rather than get caught up in one small
range of sizes (in part due to the local minimum bottleneck; see Section 4.1.1), with
Wang-Landau tuning the Markov chain moves frequently between all sizes. This
improves the independence of two samples of the same size.

(2) Guarantee of sampling objects of given size: The Markov chain produces objects of
sizes up to L with nonzero probability, so given enough tuning and enough random
samples, a sufficient number of objects of a desired size will be sampled.

(3) Approximate enumeration: Transition probabilities found during the tuning step are
directly related to the counts of objects of each size. We use this data to estimate
the number kn in Section 4.1.2.

Rather than depending on a single parameter z, sampling via a Wang-Landau implemen-
tation requires a data structure (`, L,G), where:

• ` is the minimum size of plane curves. To ensure ergodicity, we always have ` = 1,
although further results on plane curves may allow ` to vary (possibly in terms of L)
while still guaranteeing ergodicity.
• L is the maximum size of plane curves.
• G = (Gi)

L
i=` is a vector approximate enumeration data in the following sense: If

gn = eGn , then gn/gn−1 ≈ kn/kn−1. Since we do not know kn for n ≥ 28), this data
is gathered via a tuning phase (described in Section 3.3 below).

Given the approximate enumeration data Gn = log(gn), define probabilities

tp(n,m) = min {1, exp(Gn −Gm)} = min {1, gn/gm} ≈ kn/km,(9)

unless m < ` or m > L in which case tp(n,m) = 0. Wang-Landau flattened MCMC
sampling then works as follows. The implementation which follows is largely the same as
the Boltzmann implementation, with each transition instead required to pass a check of
probability min {1, gn/gn+k}, where n is the size of the input curve and k is the change in
size of the transition operation. Let p1, p2, p3 > 0 and (p1 + p2 + p3) < 1 and let Di be the
input rooted plane curve with ni vertices and root flag a and perform one of the following
six moves with different probabilities. If a move fails then set Di+1 := Di.
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[0] Re-rooting, with probability 1− (p1 + p2 + p3). Given the rooted diagram Di, forget
the root and select a new root b for Di+1 from the (autDi)/(4|D|) choices. The
probability that this transition is chosen and succeeds is 1− (p1 + p2 + p3).

[1+] Loop addition, with probability p1/2. Sample 0 ≤ α < 1 and fail immediately if
α > tp(ni, ni+1). Return Di+1 := RI+(Di, a). The probability that this transition is
chosen and succeeds on an n-crossing rooted plane curve is

tp(n, n+ 1)
p1

2
= min

{
1,

gn
gn+1

}
p1

2

[1−] Loop deletion, with probability p1/2. Sample 0 ≤ α < 1 and fail immediately if
α > tp(ni, ni−1). Provided f(a) is a loop, return Di+1 := RI−(Di, a). The probability
that this transition is chosen and succeeds is f(a) is a loop is

tp(n, n− 1)
p1

2
= min

{
1,

gn
gn−1

}
p1

2
.

[2+] Bigon addition, with probability p2/2. Sample 0 ≤ α < 1 and fail immediately if
α > tp(ni, ni+2). The flag a lies along a face of d edges; provided d 6= 1 (otherwise
fail), uniformly sample the integer k between 1 and d− 1. The flag a′ = (στ)k(a) is
a distinct flag along the same face as a. Then return Di+1 := RII+(Di, a, a

′). The
probability that this transition is chosen and succeeds on an n-crossing plane curve
with an given cofacial flag a′ is

tp(n, n+ 2)
p2

2(d− 1)
= min

{
1,

gn
gn+2

}
p2

2(d− 1)

[2−] Bigon deletion, with probability p2/2. Sample 0 ≤ α < 1 and fail immediately if
α > tp(ni, ni−2). Fail if the flag a does not lie along a bigon. The size d of the face
which would be produced by bigon deletion is the sum |f(τσ(a))|+|f(σ3τ(a))|−2 = d.
Sample 0 ≤ β < 1 uniformly and fail if β > (d − 1)−1. Otherwise, return Di+1 :=
RII−(Di, a). The probability that this transition is chosen and succeeds if f(a) is a
bigon and d > 1 is,

tp(n, n− 2)
p2

2
= min

{
1,

gn
gn−2

}
p2

2(d− 1)
.

[3] Triangle flipping, with probability p3. Fail if the flag a does not lie along a nonde-
generate triangle. Otherwise, return Di+1 := RIII(Di, a). The probability that this
transition is chosen and succeeds if a lies along a nondegenerate triangle is p3.

3.3. Wang Landau tuning. Before sampling, we have to gather data for gn (the approx-
imate enumeration) via a tuning algorithm with parameters `, the smallest size diagram to
allow in the sample space (always in this article ` = 1, as otherwise it is not necessarily clear
if the Markov chain is ergodic), L, the largest size diagram in the sample space, ε, which
describes the desired flatness of the sampling histogram, and ∆, a threshold for flatness of a
histogram of occurrences.

A starting point D0 in the sample space of diagrams is chosen; our algorithm starts with
the figure-eight diagram in Figure 6. The values gn are initialized to 0. Finally, a scaling
factor f is initialized; we start it at f = 1.

The algorithm then proceeds as follows.

(1) If f < ε, terminate.
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(2) A histogram H = (Hn)Ln=` of bins ` to L inclusive is initialized empty. This histogram
will track the occurrences of diagrams of size n at each step of the Markov chain.

(3) Step, via the Wang-Landau weighted algorithm described above, producing Di+1

from the current Di.
(4) Every S0 steps, increment H|Di+1| by 1, and increment g|Di+1| by f .
(5) Every S1 steps, check if the histogram is ∆-flat, i.e., check if

(10)
minH

1−∆
>

∑L
i=`Hi

L− ` >
maxH

1 + ∆
.

If so, let f := f/2 and proceed with step (1). Otherwise repeat step (3).

The numbers S0, S1 are somewhat arbitrary, however S1 should be chosen to allow sufficient
time for the chain to diffuse over all sizes. We note that, especially for large spreads of
` and L, the tuning phase may be time-consuming. As the algorithm is tuning and g is
being updated, the chain is not ergodic as it does not satisfy the detailed balance condition.
However, the tuning phase approaches a limiting state where gm+1/gm ≈ km+1/km. At that
point, one may cease updating g and use those now fixed probabilities. This chain will satisfy
detailed balance and so be ergodic. This tuned g data may then be reused for a number of
further simulations without recalculation.

Theorem 2. Let N ∈ N and D be a plane curve with 1 ≤ n ≤ L vertices and let gn be fixed.
The Markov chain described in Section 3.2 has stationary distribution given by

π(D) ∝ 1

gn

Since gn ≈ kn, plane curves are sampled uniformly within a given size, and approximately
uniformly across sizes.

Proof. We will begin by assuming that

(11) π(D) ∝ 1

g|D|
.

where gn data is fixed from the tuning phase of the algorithm.
Let D be a rooted plane curve of n vertices and a be the root flag in D. Observe first that

the three pairs of reversing transitions (RI+,RI−), (RII+,RII−), and (RIII,RIII) all change
the number of vertices by distinct complementary amounts; hence any two diagrams can
be related by at most one pair of transitions, or, if their vertex counts agree, a re-rooting.
The detailed balance proofs are nearly identical to the Boltzmann case, substituting in the
new value of π and the new transition probabilities. Additional details can be found in
Appendix A. Provided p1, p2, p3 > 0, (p1 + p2 + p3) < 1, and ` = 1, the Markov chain can
reach all plane curves (as all plane curves can be changed through a crossing-non-increasing
pathway to the curve with one crossing). Hence in this case, the Markov chain is ergodic. �

By Corollary 6, we are able to simplify the Markov chain by re-rooting between steps,
and only using the five Reidemeister transition operations as we did in the Boltzmann case.
Again, in our simulations (detailed in the next section) we chose (p1, p2, p3) = (2/5, 2/5, 1/5).
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4. Simulations and Data

We implemented both MCMC samplers in c++. Plane curves are stored as combinatorial
maps; a collection of vertices, edges, and flags with bidirectional references between flags
and their vertices, as well as flags and their edges. At each step, an flag is selected from the
diagram at random; this takes O(1) time, and the parameter 0 ≤ α < 1 is sampled uniformly
at random. Both of the RI moves, as well as the RIII move take constant time. The RII+

move requires an extra random number 0 ≤ γ < 1 which determines the second flag for the
transition and is performed in constant time. The RII− move requires both the sampling of
the additional number 0 ≤ β < 1 as well as a count of the face sizes diagonal to the bigon.
A plane curve has average face degree strictly increasing and limiting on 4, so counting a
face size requires a constant number of operations on average.

For low numbers n of crossings, it is also possible to sample plane curves uniformly through
rejection sampling. A single sample is produced by sampling 4-valent maps uniformly until a
plane curve is obtained. The maps are sampled via Gilles Schaeffer’s bijection with blossom
trees [Sch97] using his PlanarMap software[Sch99a; Sch99b]. The rejection step is simple, but
plane curves are exponentially rare [SZ04], making this approach ineffective even for relatively
small sizes: On a quad core 3.4Ghz Intel i5-7500 machine, sampling 105 10-crossing curves
takes 4.9 seconds, but sampling the same number of 100-crossing curves takes 712.6 seconds.
For comparison, it only takes 21.9 seconds to sample 105 100-vertex 4-valent maps.

In this section, we examine data from our simulations. First, we examine the distributions
of plane curve sizes that our implementations produce. Then, we check how well our Wang-
Landau implementation converges to the uniform distribution across fixed sizes by comparing
statistics to the rejection sampler. The data of these sections are based on the following
sampler runs:

(1) Wang-Landau (WL). After tuning a Wang-Landau Markov chain to f < 10−8 with
histogram flatness threshold ∆ = 0.99, we drew a total of 2×107 samples for sizes 1 ≤
n ≤ 500 with 103 steps between each sample. The tuning phase took approximately
500 minutes, and the sampling took 160 minutes. The sampled size probability
distribution for this run is presented in Figure 12. The minimum number of samples
for any size is 3.8933× 104.

(2) Rejection. Using a rejection sampler for plane curves, we gathered 104 samples of
plane curves with n vertices, for each n = 5m from 5 to 100. This took approximately
40 minutes.

(3) All 4-valent maps. Using a uniform sampler for all 4-valent maps, we gathered pre-
cisely 104 samples of 4-valent maps with n vertices, for each n = 5m from 5 to 100.
This took approximately 30 seconds.

Finally, we examine how our Wang-Landau sampler augmented to sample knot diagrams
compares to the rejection sampler, as another check on the theoretical limiting distribution
and our implementation.

4.1. Size distributions. We first examine the sample histograms of the Boltzmann and
Wang-Landau samplers. This serves several purposes: First, as we are unable to sample
diagrams of given fixed size, we would like to know how frequently we will sample a particular
size using these methods. Second, in order to avoid correlated samples we would like our
Markov chain to explore the full range of lengths frequently. Last, we can use comparisons
of the sampled size distribution to better understand the counting sequence of plane curves.
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4.1.1. Boltzmann sampler implementation and the Boltzmann parameter z. The MCMC
sampler approximating the Boltzmann distribution on plane curves (described in Section 3.1)
samples from a distribution,

(12) π(D) ∝ z|D|,

where the parameter z affects the size of plane curves produced. Hence the probability of
sampling any plane curve of size n is proportional to knz

n. As noted above, we choose
z < 1/µ and so by Equation 1 this probability is asymptotic to (µz)nnγ−2. Note that γ is
expected to be negative so any choice of z < µ−1 ≈ 0.0876 will not, a priori produce a finite
local maximum.

To observe this we ran a number of experiments sampling 106 plane curves of a maximum
size of 200 crossings with varying z. These data produce the approximate size distributions
of Figure 10. This figure implies that it is difficult to pick z to obtain samples at large size
while still sampling many objects of small size.
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Figure 10. Histogram of samples from various MCMC runs, with different
z-values. The maximum-size plane curve was 200 vertices. The mixing time
was 103 steps, and a total of 106 samples were drawn. The run for z = 0.05
took 65 seconds to complete, the run for z = 0.1 took 93 seconds, and run
time generally increased with z.

We note that we want our algorithm to return to small sizes on a regular basis. First,
returning to small sizes “erases” the entire object before producing a new sample. Second,
the best known result on ergodicity relies on paths through small plane curves. Not enough
is known about the connectivity of the space of plane curves to alleviate these concerns,
providing strong justification for using the Wang-Landau sampler variant instead.

4.1.2. Wang-Landau implementation. In comparison with the MCMC Boltzmann sampler,
the tuning phase of the Wang-Landau sampler ensures that the size distribution sampled is
actually approximately flat. Figure 11 demonstrates how values of gn approach the exact
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Figure 12. Distribution of plane curve sizes from a run of the Wang-Landau
sampler. The sample histogram flatness is max{0.973325, 1−(1.030075−1)} =
96.9925%.

numbers of rooted plane curves, kn. Figure 12 presents the size distribution of a run of
2× 107 samples of size between 1 and 500 produced after tuning to f < 10−8 with ∆ = 0.99.

As mentioned, the Wang-Landau algorithm tuning step provides an estimation of ratios
in the counting sequence for plane curves. We can use this data to provide approximations
to the numbers of curves of given sizes. Using the tuning data for the run above (` = 1, L =
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500, f < 10−8,∆ = 0.99) we obtained approximate counts for n = 1 to n = 27 and can
compare the approximations to the precise counts from [ZZ09] in Table 1. All approximate
counts are within 0.004 of their exact value.

n WL estimated kn Exact kn % Error
1 2 2 0
2 8 8 −4.07 · 10−2

3 42.01 42 3.49 · 10−2

4 260.15 260 5.61 · 10−2

5 1,796.5 1,796 2.79 · 10−2

6 13,404.48 13,396 6.33 · 10−2

7 1.06 · 105 1.06 · 105 5.25 · 10−2

8 8.71 · 105 8.71 · 105 6.43 · 10−2

9 7.42 · 106 7.42 · 106 3.99 · 10−2

10 6.5 · 107 6.5 · 107 6.25 · 10−2

11 5.82 · 108 5.83 · 108 −4.42 · 10−2

12 5.32 · 109 5.32 · 109 7.57 · 10−2

13 4.95 · 1010 4.94 · 1010 0.12
14 4.66 · 1011 4.65 · 1011 0.16
15 4.44 · 1012 4.43 · 1012 0.16
16 4.28 · 1013 4.27 · 1013 0.12
17 4.16 · 1014 4.16 · 1014 8.45 · 10−2

18 4.08 · 1015 4.08 · 1015 0.1
19 4.04 · 1016 4.03 · 1016 0.19
20 4.02 · 1017 4.02 · 1017 0.18
21 4.04 · 1018 4.02 · 1018 0.3
22 4.07 · 1019 4.06 · 1019 0.25
23 4.12 · 1020 4.11 · 1020 0.24
24 4.19 · 1021 4.18 · 1021 0.19
25 4.29 · 1022 4.28 · 1022 0.3
26 4.41 · 1023 4.39 · 1023 0.38
27 4.54 · 1024 4.53 · 1024 0.25

Table 1. Comparison of counts of rooted plane curves from the Wang-Landau
tuning step with ` = 1, L = 500, ε = 10−8,∆ = 0.99, versus exact values
gathered using another method [ZZ09].

We are able to obtain estimates for the unknowns µ and γ in the predicted asymptotic
growth formula kn ∼ Cµnnγ−2 from Wang-Landau gn data. We attempted to use simple
ratio estimates rn = gn+1/gn ∼ µ

(
1 + γ−2

n

)
, however the results are extremely noisy. Instead

we used linear regression to fit to the model

log gn = logC + n log µ+ (γ − 2) log n(13)

Since we expect the gn data to be noisier for larger n we fitted the above linear form to a
subset of the data {gn | 10 ≤ n ≤ nmax}. We then varied nmax to get a rough estimate of
corrections to the above asymptotic form. The resulting estimates (as functions of nmax) are
shown in Figure 13. These results are consistent with earlier estimates [ZZ09] of µ ≈ 11.416

and γ = −1+
√

13
6
≈ −0.768.

4.2. Face degrees in plane curves. In this section we seek statistic which distinguish
plane curves from all 4-valent maps. A simple class of statistics to gather from random maps
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Figure 13. Estimates of µ and γ using least squares fits on {gn | 10 ≤ n ≤
nmax} plotted as a function of nmax.

are vertex and face degrees. Plane curves, as a subclass of 4-valent planar maps, only ever
have vertex degree 4, so only face statistics are nontrivial. Euler’s formula implies that the
average face degree for any 4-valent map of n crossings is 4n/(n + 2), so this also cannot
distinguish plane curves from its superclass. However, we will see that the distribution of
face degrees differs.

4.2.1. Face degree probabilities. We check the counts of faces of fixed degree which appear
(for a curve of n crossings, this takes O(n) time to compute as all plane curves have 4n flags,
each of which needs only be visited once). These quantities are expected to exhibit linear
growth, in agreement with the results for a large number of map classes [Lis99]. In fact, it
is known:

Theorem 7. Let k ≥ 1, and let pn,k denote the probability that an arbitrary face of a random
plane curve of n crossings has degree k. Namely, notice that (n+2)pn,k is the expected number
of degree k faces in a random plane curve of n crossings. Then

(14) 1 > lim sup
n→∞

pn,k ≥ lim inf
n→∞

pn,k > 0.

Proof. Certainly, 0 ≤ pn,k ≤ 1 for all n, k as they denote probabilities; furthermore,
∑n

k=1 pn,k =
1. The pattern theorem for plane curves [Cha17] says that, for any prime substructures Tk
containing a k-gon, there are constants ck > 0, 1 > dk > 0 and N ≥ 0 so that for all n ≥ N
the probability that an arbitrary plane curve of size n contains more than ckn copies of Tk
is at least 1− dnk .

So for n ≥ N , (n+ 2)pn,k > (1− dn)ckn. Solving for pn,k and passing to lim inf yields,

(15) lim inf
n→∞

pn,k > lim inf
n→∞

(1− dn)ck
n

n+ 2
= ck.

That 1 > lim supn→∞ pn,k for any k follows from that for ` 6= k the existence of a `-gon
lowers the number of faces which may be k-gons. That all lim infn→∞ pn,` > 0 yields the
result. �

The following proposition summarizes the results we will use for planar 4-valent maps.
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Theorem 8 (Follows from [GR94; Lis99]). The limiting expected number (as maps grow
large) of faces of degree k in a random 4-valent map is,

(16)
n+ 2

k
[yk]

(
(1/3)(1 + y/2)−

1
2 (1− 5y/6)−

3
2

)
.

Proof. This is a rephrasing of selected results in [GR94; Lis99] in the language of 4-valent
maps. Theorem 1 of [GR94] says that the generating series of limiting probabilities qk (as
maps grow large) that the root vertex in an arbitrary map has degree k is,

(17)
∑
k≥0

qky
k = (1/12)(1 + y/2)−

1
2 (1− 5y/6)−

3
2 .

Duality of the class of rooted planar maps says the same result holds for faces. The bijection
between m-edged rooted planar maps and m-faced rooted planar quadrangulations then
says the same result holds for vertices in quadrangulations (see for instance the proof of
Proposition 12 in [BC13]).

Section 2.5 in [Lis99] relates, for a quadrangulation of m vertices, the probability qk,m that
the root vertex has degree k to the probability pk,m that an arbitrary vertex has degree k by,

(18) pk,m =
4(m− 2)

m

qk,m
k
∼ 4

qk,m
k
,

whence pk = limm→∞ pk,m and qk = limm→∞ qk,m are related by pk = 4qk/k. Noting that
4-valent maps with n vertices are dual to quadrangulations with n + 2 vertices yields the
result. �

We have computed linear regressions using least squares for 4-valent maps sampled using
the Schaeffer bijection, plane curves sampled using rejection, and plane curve sampled using
our Wang-Landau sampler for face degrees from 1 to 9 and presented these data in Table 2
alongside precise densities obtained via Taylor series expansion on the result of Theorem 8.
We present these data for small faces sizes in Figure 14. In all cases, the data of the Wang-
Landau sampler resides within the error bars of the rejection curve sampler data, and away
from the arbitrary 4-valent map data.

We note that: Random curve diagrams have fewer bigons and quadrangles than generic
4-valent maps. This phenomenon is specific to degrees 2 and 4 (at least for face degrees at
most 9); every other degree face is more common in random plane curves.

It is furthermore expected of classes of random maps that, for fixed size, number of faces
of fixed degree k is a normally distributed statistic [DP13]. In Figure 15 below, we compare
distributions of different k-gon ratios for n = 40 and n = 100 crossings. As expected, the
curves show a close similarity between the uniformly sampled curves and the Wang-Landau
MCMC sampled curves. In the cases of 1- and 2-gons, it is easy to see a difference from
the all 4-valent map sampler. In the case of larger faces, the differences in averages are on
a much smaller order, and the curves are no longer possible to distinguish. In all cases, it
seems that as the number of crossings n grows large, the distributions are approximately
normal.

We note here that the face degree probabilities are closely related to the probability that
a given Markov chain transition succeeds on a given diagram, although it is actually the

quantity qk,n =
kpk,n(n+2)

4n
≈ kpn,k

4
discussed prior which is at play (transitions by definition

occur at the root along the root face). Namely, the probability that an RIII move can succeed
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k 4-valent pk, theor. 4-valent pk Rejection pk WL pk

1 1
3

= 0.3 0.3328± 2 · 10−4 0.3496± 2 · 10−4 0.35036± 4 · 10−5

2 1
6

= 0.16 0.1662± 2 · 10−4 0.1407± 1 · 10−4 0.14056± 3 · 10−5

3 13
108

= 0.12037 0.1200± 2 · 10−4 0.1222± 1 · 10−4 0.12257± 3 · 10−5

4 55
648
≈ 0.08488 0.0846± 1 · 10−4 0.0831± 1 · 10−4 0.08298± 2 · 10−5

5 83
1296
≈ 0.06404 0.0641± 2 · 10−4 0.0663± 2 · 10−4 0.06624± 2 · 10−5

6 377
7776
≈ 0.048448 0.0484± 2 · 10−4 0.0500± 1 · 10−4 0.04977± 2 · 10−5

7 1751
46656

≈ 0.03753 0.03769± 8 · 10−5 0.0395± 1 · 10−4 0.03941± 1 · 10−5

8 101
3456
≈ 0.02922 0.0292± 1 · 10−4 0.0305± 1 · 10−4 0.03059± 1 · 10−5

9 115825
5038848

≈ 0.02299 0.0232± 1 · 10−4 0.02419± 8 · 10−5 0.02419± 1 · 10−5

Table 2. Limiting face degree densities. Theoretical fits for 4-valent pk come
from Taylor series expansion of the result in Theorem 8. Experimental columns
are the slopes of linear functions fit to data using least squares.

is q3,n+2 ≈ 0.09193, the probability that an RI− operation will succeed is q1,n+2 = 0.08759,
and the probability that an RII− operation will succeed is q2,n+2 ≈ 0.07028 (not taking into
account the extra Metropolis-Hastings step required to create large faces or sites which would
create monogons, see the description of move RII− in Section 3).

We reinterpret briefly the probabilities pk,n+2 in the context of random knot diagrams.
We note that in the case of prime alternating diagrams, face degrees are related to the
hyperbolic volume of the resulting knot [Obe16]. We further note that a random curve has
≈ 0.35(n+2) > (n+2)/3 monogons says that a random knot diagram has, on average, at least
.35(n+ 2) vertices that have no impact on the knot type and could be immediately reduced
by a Reidemeister I move. One half of all crossing assignments for bigon vertices can be
reduced by Reidemeister II moves, so a random knot diagram will have around 0.14(n+2)/2
bigons that can be removed by Reidemeister II moves.

4.2.2. Maximum face degree. Another quantity of interest in the study of planar maps is the
maximum vertex degree ∆n and the maximum face degree ∆∗n. As noted above, ∆n = 4
because all vertices are 4-valent, so we examine expectation of ∆∗n. It is expected that this
quantity exhibits Θ(log n+ log log n) growth as it does for general maps. A result of [GW00]
has that for general maps the expected maximum face degree is precisely:

(19) E(∆∗n) =
ln(n)− 1

2
ln(ln(n))

ln(6/5)
.

We present the difference between expectations and that of general maps in Figure 16.
From this, it does not appear that plane 4-valent maps exhibit the same behavior as the
general map case: Indeed, as the bijection between arbitrary maps and 4-valent maps makes
both faces and vertices into 4-valent map faces, the expected maximum vertex degree ∆∗n
is in fact an expectation of a maximum E(max (∆n,∆

∗
n)) over both vertex and face degrees

of arbitrary maps. We have plotted histograms of the maximum face degree distribution
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Figure 14. Average counts pk,n+2(n+ 2) of faces of degrees 1–6.

in curves and 4-valent maps for fixed size in Figure 17. These distributions are clearly not
Gaussian. We note that the histograms of all cases look similar even though they have
differing means (see Figure 16), this can be explained by noting that the difference between
the means is small and growing very slowly in n.

We present the data for E(∆∗n) of the Wang-Landau MCMC sampler up to 500 crossings—
it is impractical to gather samples of this size from the rejection sampler—in Figure 18. The
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Figure 15. Distribution of k-gon counts for n = 40 and n = 100 crossings,
for various k.
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Figure 17. Distribution of largest face degree ∆∗n for n = 40 and n = 100
crossings.

Θ(log n) trend continues, as hypothesized. We note that the quantity E(∆∗n) is related to
the success rate of the RII− transition, and suggests that the rejection rate for creating large
faces through this transition is roughly bounded by 1/Θ(log n).

4.3. Average Casson invariant. Our results above suggest that objects we sample using
our Wang-Landau algorithm are giving the same statistics as those generated using rejection
sampling. To further test this idea, we can compare further plane curve statistics.

Plane curves are equivalent to Arnol’d’s spherical curves [Arn95]. Thus, we can check
Z-valued spherical curve invariants for plane curves (these are not defined in the case of a
general 4-valent map). These are both simple to compute and interesting knot theoretically:
By following the crossings in order around the plane curve and counting those which are
“interlaced”, we are able to compute −1

2
(2St + J+) in O(n2) time (we direct the reader

to [Arn95] for more details). This curve invariant is in fact related to a knot invariant, the



25

101.7 101.8 101.9 102 102.1 102.2 102.3 102.4 102.5 102.6

18

20

22

24

26

28

30

# crossings n

E(
∆

∗ n
)

Maximum face degrees in shadows (log scale x)

WLMC
4.706 lnx− 0.004

Figure 18. Expected maximum face valence in plane curves appears to grow
logarithmically.

finite type invariant v2, also called the Casson invariant: −1
8
(2St+J+) is the expected value

of v2 over all possible over-under crossing sign assignments to the plane curve. A comparison
of E(v2) data for Wang-Landau MCMC and rejection samples are presented in Figure 19;
the data are remarkably consistent.
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Figure 19. (Left) Average −1
8
(2St + J+) = E(v2). (Right) Same statistic

with approximate leading linear behavior subtracted to amplify detail. As
this statistic is not well-defined for an arbitrary 4-valent map, that data is not
present.
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We present the data for E(v2) up to 500 vertices generated from the Wang-Landau algo-
rithm in Figure 21. Our data suggest that the average v2 invariant grows linearly with the
number of crossings with a limiting slope of 0.0268±0.001. As a comparison, Even-Zohar et
al. [Eve+16] prove that for the Petaluma model of random knots, the expectation of v2 grows
quadratically with size with leading coefficient 1/24 ≈ 0.0417. As the petal diagrams of size

n of the Petaluma model can be viewed as “star diagrams” with n2−3n
2

crossings, size in the
Petaluma model is related quadratically to that of our model. Thus, it is reasonable that
our average v2 data should grow linearly. It is also expected that the distribution of E(v2)
over curves of a fixed size tends to be normal; we present histograms of this in Figure 20
that appears to agree with this hypothesis.
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Figure 20. Distribution of mean v2 invariant for n = 40 and n = 100 crossings.

4.4. Knotting probabilities. The main aim of constructing these Markov chains was to
provide an efficient mechanism to sample large random knot diagrams. We have used the
Wang Landau chain to sample random plane curves which we then use to construct random
knot diagrams. This last step is done by mapping each vertex to an over or under crossing
uniformly at random. We then use knot invariants to determine the topology of the result-
ing diagram and we compare the resulting knotting probabilities to those found using the
rejection sampler.

In [Cha17] the first author gathered data for knotting probabilities in knot diagrams of
size up to 100 crossings. We have used our Wang-Landau sampler to produce random knot
diagrams and classify them by HOMFLY-PT polynomial using lmpoly [EM91; EM97] of size
up to 230 crossings. There are two reasons that we have not investigated beyond this size.
First, the version of lmpoly included with plCurve [ACC17] will not compute HOMFLY-PT
polynomials of diagrams of more than 255 crossings. Second, the difficulty of computing the
HOMFLY-PT polynomial increases dramatically with the number of crossings; the algorithm
employed by lmpoly has exponential run time[EM91] and computation is known to be NP-
hard. We gathered data using two runs (from the same tuning data for 1 ≤ n ≤ 230 with
f < 10−8 and ∆ = 0.99). In each run we took 103 steps between samples, and a total
of 1.15 × 107 diagrams were sampled. Each run took approximately 9 hours to compute,
with HOMFLY-PT polynomial calculation being the primary bottleneck. The histograms
for sizes sampled are presented in Figure 22. We note some caveats for these experiments:

(1) The HOMFLY-PT polynomial is not sufficient to distinguish all knot types, and
indeed there are infinite families of knots demonstrating this [Kan86]. However, it
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10−2.

is still unknown whether the unknot 01 is the only knot with trivial HOMFLY-PT
polynomial; this is related to the still open Jones Conjecture [Kau87].

(2) To facilitate a greater number of samples, we imposed a timeout on lmpoly’s HOMFLY-
PT calculation of 10ms. See Figure 23. Knots whose HOMFLY-PT failed to be
calculated before this cutoff are still counted and categorized as unclassified. Hence
it is possible that probabilities presented in our data which follows are smaller than
the actual. There is evidence that these failures are rare for simple knots such as the
trefoil and the unknot — see Figure 24. We note that the uniform data presented
alongside our MCMC sampled data was gathered at a larger timeout.

(3) We ignore chirality in these data. A chiral knot is a knot which is different than its
mirror, such as the trefoil 31, while an achiral knot like the figure-eight knot 41 is
equivalent to its mirror image. By symmetry (i.e. by flipping all crossing signs simul-
taneously), it can be seen that the probability of drawing a chiral knot is equivalent
to that for its mirror image. For the case of the chiral granny 31#31 and achiral
square 31#3∗1 composite knots, our data suggests that the square knot is as likely as
either chiral image of the granny knot; we hence suppress data for the granny knot.

It is believed that for lattice models of random knots the number κn(K) of knot diagrams
with fixed knot type K has asymptotic growth rate

(20) κn(K) ∼ CKτ
n
Kn

αK+NK ,

where CK depends on the knot type and NK is the number of prime components making up
the knot type K. It is believed that the constant τK does not depend on the knot type [DT97;
Orl+98; RW91a]. It has been proved that τ0 exists for many lattice models (this follows
from standard supermultiplicativity arguments) and also for random knot diagrams [Cha17],
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Figure 24. The probability of a knot being classified as an unknot and a
trefoil as a function of the number of crossings and the time-cutoff of the
HOMFLY-PT computation. This data shows that increasing the cutoff does
not significantly affect this probability. This is consistent with the hypothesis
that most HOMFLY-PT computation failures are for complicated knots.

Figure 25. A random trefoil knot diagram of 50 crossings; the knotted por-
tion of the curve is highlighted. We see that the knotted portion is quite small
and this is expected to be typical.

however it is still an open problem to prove the existence of τK for any other knot type. It
is known, however, that τ0 is strictly smaller than 2µ for random knot diagrams [Cha17];
which is comparable to a similar result for self-avoiding polygons [Pip89; SW88]. There is
strong numerical evidence for self-avoiding polygons that the exponent αK is independent of
knot type [Orl+98; RR11]. Consequently we conjecture that for random knot diagrams that

(21) κn(K) ∼ CKτ
n
0 n

α+NK ,

where α = γ− 2, where γ is the same “universal” critical exponent [SZ04] in the asymptotic
formula for plane curves. This asymptotic form is consistent with the idea that the knotted
portion of a random knot diagram is localized — see Figure 25.
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Figure 26. Plots for a WL sample against the data for a rejection sampler
in [Cha17]. Plots for other knot types are similar, and rejection data is con-
sistent with WL sampled data throughout.

Under this assumption, the probability that a random knot diagram of size n exhibits
knot type K scales as

(22) pn(K) = κn(K)/κn ∼ DKρ
nnNK ,

where 0 < ρ < 1. We plot knot probability data from both our Wang Landau sampler and
rejection sampling in Figure 26. We see that both sampling methods agree and that the
data is consistent with the scaling form in Equation 22. In particular, in Figure 27, we plot
the logarithm of the knotting probabilities divided by nNK and see that the resulting slopes
are extremely similar. A simple linear regression of this data shows that ρ ≈ 0.95. This is
evidence that the growth rate of random knot diagrams of fixed knot type K is independent
of K and that

τK = τ0 ≈ 2× 11.41× 0.95 = 21.7.(23)

The authors intend to test this hypothesis further in future work.
As a final comparison to the uniform sampler data, we compute ratios of knot probabilities

as in [RR11]. Namely, the expected growth rates of knot probabilities has that, for two knot
types K and L, the ratio of probabilities should obey,

(24)
pn(K)

pn(L)
∼ DKρ

nnNK

DLρnnNL
=
DK

DL

nNK−NL

Hence we expect pn(K)/pn(L)·nNL−nK to tend to a constant as n increases. We plot this data
for ratios of prime knots in Figure 28, and for ratios of unknots to prime knots Figure 29.
We also show the ratios of square knots to trefoils and unknots in Figure 30. While this
ratio data is noisy for larger n it is consistent with the above scaling form.

5. Conclusion

We have described a new Markov chain Monte Carlo method for sampling random plane
curves efficiently. This then trivially extends to sample random knot diagrams by mapping
vertices to crossings. This enables us to sample of large knot diagrams which are otherwise
simply too rare to sample by rejection sampling methods. Due to the difficulty of tuning
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Figure 28. Ratios of probabilities of prime knot types in diagrams. Prob-
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sampler. Legend entries are sorted by their values at 1/n = 0.05.

the Boltzmann MCMC to sample diagrams of a wide range of sizes, we modified our original
Markov chain to use the flat histogram methods of Wang and Landau. This results in a
chain that samples approximately uniformly across a wide range of sizes, and additionally
gives estimates of the numbers of plane curves and knot diagrams. These estimated counts
are in agreement with previously conjectured asymptotic forms. Hence we conclude that our
MCMC implementation can attain similar accuracy of the uniform rejection methods in far
less time. We have then tested the data from the Wang-Landau chain against data from a
rejection sampler and find strong agreement across a wide range of statistics.
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Plane curves are a subset of 4-valent maps and it is not well undestood how different
these two sets of objects are. With this in mind, we computed the average maximum
face degree and face degree degree distributions and find significant differences. One of
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the main aims of sampling random plane curves is to study random knotting. Our Wang-
Landau sampler allows us to generate significant numbers of random knot diagrams of a
range of sizes. We have then classified the knot types of those diagrams using HOMFLY-PT
polynomials. This data allows us to conjecture that random knot diagrams have very similar
asymptotic behaviour to other models of random knotting, such as self-avoiding polygons.
These asymptotic forms are consistent with the idea that the knotted portion of a random
knot diagram is quite localized. We also give evidence that the HOMFLY-PT polynomial
software [EM97] that we used struggles to compute invariants of complicated knots, but does
succeed for simple knots, even when their embeddings might be very large.

5.1. Future work. The Markov transitions presented here are based on “shadows” of the
Reidemeister moves on knot diagrams. It is thus natural to consider a Markov chain on
knot diagrams generated by similar transitions corresponding to the proper Reidemeister
moves, taking into account over-under signing of the diagram. This would produce a Markov
process on the so-called Reidemeister graph [BC18]. Indeed, we expect this Markov chain
to be ergodic (with ergodicity classes being fixed knot types), and we expect transitions to
be of similar computational complexity. It would also have the advantage of not requiring a
knot-classification step. We note, however, that Corollary 5 fails in this case; it is known that
there are diagrams who represent the same knot type, but whose transition paths all involve
an increase in the number of crossings [KM06]. To make matters worse, unlike the spaces
of plane curves where the diameter has n3/2 growth, the upper bound on the diameters of
the spaces of knot diagrams is far larger [HL01; Lac15; Now09]. Hence in the case of knot
diagrams, care must be taken to ensure that there are satisfactory parameters for the Markov
chain to converge to the uniform distribution in a reasonable amount of time. It should also
be noted that rejection sampling becomes even less efficient for sampling fixed knot types,
since not only are knot diagrams exponentially rare in the space of 4-valent maps, but knot
diagrams of a specific type are exponentially rare in the space of knot diagrams.

Beyond sampling knot diagrams with fixed knot type, the flat Reidemeister moves dis-
cussed in this paper also apply to planar immersions of any fixed number of circles. These
diagrams are called link shadows ; the smallest such object is the unique 2-crossing 4-valent
planar map of 2 link components. In this case, the Markov chain is still ergodic (the proof of
Theorem 1 is not affected by the immersion having a different number of link components).
Hence this technique could be used to sample large immersions of any fixed number of link
components. We could also restrict or alter the transitions; for instance we could remove
the shadow Reidemeister I move, whence the ergodicity classes of the Markov chain would
be spherical curves of fixed spherical Whitney number [Arn95; Now09]. Further, by using
Reidemeister moves instead of flat Reidemeister moves, one could also sample link diagrams
of fixed link types.
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Appendix A. Complete detailed balance proofs

Detailed balance equations for Boltzmann Markov chain; Theorem 1. We check the detailed
balance equations for each transition:

(1) Suppose that N = RI+(D, a) with root flag b. This means that N is unique in that
D = RI−(N, b). Then

P (D → N)π(D) = P (N → D)π(N)
zp1

2
zn =

p1

2
zn+1,

so the equation holds.
(2) Suppose that N = RII+(D, a, a′) with root flag b. This means that N is unique in

that D = RII−(N, b). The flags a, a′ lie along a face in D of degree d. Then

P (D → N)π(D) = P (N → D)π(N)

z2p2

2(d− 1)
zn =

p2

2(d− 1)
zn+2.
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(3) Suppose that N 6= RIII(D, a) and that N is a re-rooting of D. Then,

P (D → N)π(D) = P (N → D)π(N)

(1− (p1 + p2 + p3))
autD

4n
zn = (1− (p1 + p2 + p3))

autN

4n
zn.

Because D and N differ only by a re-rooting, their underlying number of automor-
phisms are the same; autD = autN . Hence equality follows.

(4) Suppose that N = RIII(D, a) has root b and that N is not a re-rooting of D. Then
N is unique in that D = RIII(N, b), so

P (D → N)π(D) = P (N → D)π(N)

znp3 = znp3.

(5) If N = RIII(D, a) has root b and N is a re-rooting of D, then the transition prob-
abilities of the previous two cases are summed (as the different transitions are inde-
pendent), so that

P (D → N)π(D) = P (N → D)π(N)(
p3 + (1− (p1 + p2 + p3))

autD

4n

)
zn =

(
p3 + (1− (p1 + p2 + p3))

autN

4n

)
zn. �

Proof of Corollary 6. As this Markov chain can perform all flat Reidemeister transitions and
achieve all curve rootings, this Markov chain explores the space of curves. It remains to show
that detailed balance holds.

For a pair of diagrams D,N , let Pp(D → N) denote the probability of transitioning from D
to N under this modified Markov chain. Let P ′p(D → N) be the probability of transitioning
from D to N under the original Markov chain (no interstitial re-rooting). Finally, let P ′0(D →
N) be the probability of transitioning from D to N under the original Markov chain with
all pi = 0 (only re-roots are performed).

Notice that Pp(D → N) =
∑

B

∑
C P

′
0(C → N)P ′p(B → C)P ′0(D → B), where the sums

are over all rooted curves. Then,

Pp(D → N)π(D) =
∑
B

∑
C

P ′0(C → N)P ′p(B → C)P ′0(D → B)π(D)(25a)

=
∑
B

∑
C

P ′0(C → N)P ′p(B → C)P ′0(B → D)π(B)(25b)

=
∑
B

∑
C

P ′0(C → N)P ′p(C → B)P ′0(B → D)π(C)(25c)

=
∑
B

∑
C

P ′0(N → C)P ′p(C → B)P ′0(B → D)π(N)(25d)

= Pp(N → D)π(N),(25e)

so detailed balance holds for the modified Markov chain, and hence it is ergodic. �

Detailed balance equations for Wang-Landau Markov chain; Theorem 2. The main concern
now is that transitions must pass an additional Metropolis-Hastings check of min {1, gn/gm}.
Note that for any gn, gm > 0,

(26)
min {1, gn/gm}
min {1, gm/gn}

=
gn
gm
.
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We check the detailed balance equations for each transition:

(1) Suppose that N = RI+(D, a) with root flag b. This means that N is unique in that
D = RI−(N, b). Then

P (D → N)π(D) = P (N → D)π(N)

min

{
1,

gn
gn+1

}
p1

2

1

Rgn
= min

{
1,
gn+1

gn

}
p1

2

1

Rgn+1

min {1, gn/gn+1}
min {1, gn+1/gn}

p1

2

1

Rgn
=
p1

2

1

Rgn+1

gn
gn+1

p1

2

1

Rgn
=
p1

2

1

Rgn+1

,

so the equation holds.
(2) Suppose that N = RII+(D, a, a′) with root flag b. This means that N is unique in

that D = RII−(N, b). The flags a, a′ lie along a face in D of degree d. Then

P (D → N)π(D) = P (N → D)π(N)

max

{
1,

gn
gn+2

}
p2

2(d− 1)

1

Rgn
= max

{
1,
gn+2

gn

}
p2

2(d− 1)

1

Rgn+2

gn
gn+2

p2

2(d− 1)

1

Rgn
=

p2

2(d− 1)

1

Rgn+2

.

(3) Suppose that N 6= RIII(D, a) and that N is a re-rooting of D. Then,

P (D → N)π(D) = P (N → D)π(N)

(1− (p1 + p2 + p3))
autD

4n

1

Rgn
= (1− (p1 + p2 + p3))

autN

4n

1

Rgn
.

Because D and N differ only by a re-rooting, their underlying number of automor-
phisms are the same; autD = autN . Hence equality follows.

(4) Suppose that N = RIII(D, a) has root b and that N is not a re-rooting of D. Then
N is unique in that D = RIII(N, b), so

P (D → N)π(D) = P (N → D)π(N)
p3

Rgn
=

p3

Rgn
.

(5) If N = RIII(D, a) has root b and N is a re-rooting of D, then the transition prob-
abilities of the previous two cases are summed (as the different transitions are inde-
pendent), so that

P (D → N)π(D) = P (N → D)π(N)(
p3 + (1− (p1 + p2 + p3))

autD

4n

)
1

Rgn
=

(
p3 + (1− (p1 + p2 + p3))

autN

4n

)
1

Rgn
.

In all other cases, the transition probabilities are symmetrically zero. Hence we conclude
that detailed balance holds with the hypothesized probability distribution. �
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