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Abstract

We classify all cubic graphs with either non-negative Ollivier-Ricci curvature or
non-negative Bakry-Emery curvature everywhere. We show in both curvature notions
that the non-negatively curved graphs are the prism graphs and the Mdbius ladders.
We also highlight an online tool for calculating the curvature of graphs under several
variants of the curvature notions that we use in the classification. As a consequence
of the classification result we show that non-negatively curved cubic expanders do not
exist.

1 Introduction and statement of results

Ricci curvature is a fundamental notion in the study of Riemannian manifolds. This notion
has been generalised in various ways from the smooth setting of manifolds to more general
metric spaces. This article considers Ricci curvature notions in the discrete setting of
graphs. Several adaptations of Ricci curvature such as Bakry—Emery curvature (see e.g.
[19, 17, [7]), Ollivier-Ricci curvature [31], Entropic curvature introduced by Erbar and
Maas [10], and Forman curvature [I3] [35], have emerged on graphs in recent years, and
there is very active research on these notions. We refer to [29] and the references therein
for this vibrant research field.

We focus on the Bakry—Emery curvature and Ollivier-Ricci curvature in this article. Var-
ious modifications of Ollivier-Ricci curvature [I8, 28, 4] will also be considered. Those
discrete Ricci curvature notions have also been shown to play significant roles in various
applied fields, including;:

e Studying complex biological networks, such as cancer [33], brain connectivity [I1],
and phylogenetic trees [42].

e Quantifying the systemic risk and fragility of financial systems, see [34].



e Investigating node degree, the clustering coefficient and global measures on the in-
ternet topology, see [30].

e Studying the “congestion” phenomenon in wireless networks under the heat-diffusion
protocol, see [40)].

e Fast approximating to the tree-width of a graph and applications to determining
whether a Quadratic Unconstrained Binary Optimization problem is solvable on the
D-Wave quantum computer, see [41].

e Studying the problem of quantum grativity, see [36, [37].

Because of the complexity of the calculations of these curvature notions on graphs it has
proven useful to develop software for dealing with the computations. We will present an
online tool that calculates the curvature of graphs in many notions, and use it for some of
the calculations of our main theorem:

Theorem 1.1. Let G = (V, E) be a cubic graph. Then the following are equivalent:

i) Each verterx € V satisfies the Bakry-Emery curvature-dimension inequality C D (0, 00);
ii) Each edge vy € E has Olliver-Ricci curvature ko(z,y) > 0;

iit) G is a prism graph or a Mobius ladder.

An important aspect of applying spectral graph theory to theoretical computer science
is the study of the spectral gap of the Laplacian. Expander graphs are highly connected
sparse finite graphs. They play important roles in both pure and applied mathematics
(see, e.g., [24]). The construction of a family of expander graphs, i.e., a family of d-regular
graphs with increasing sizes and uniformly bounded spectral gaps, is a central topic in
this field (see, e.g., [27, 25| 26]).

It has been shown that positive lower bounds on curvature ensure the existence of spectral
gaps (see [311, 8, 2, 18, 20]). However, a graph with a positive lower bound of curvature can
not be arbitrarily large. In fact, it has a bounded diameter (see [31}, (I8, 2I]). Therefore,
in particular, there exists no families of expander graphs in the space of positively curved
graphs. An important open question in this area is on the existence of expander graphs
in the space of non-negatively curved graphs. This question for Ollivier-Ricci curvature
has been asked in [32, Problem T] (Ollivier mentioned this problem was suggested by
A. Noar and E. Milman), and for Bakry-Emery curvature in [22] Question 4.8]. We will
show under both Bakry—Emery and Ollivier-Ricci curvature notions that no non-negatively
curved cubic expanders exist.

2 Definitions

Throughout this article, let G = (V, E) be a locally finite graph with vertex set V, edge
set E, and which contains no multiple edges or self loops. Let d, denote the degree of the
vertex x € V and d(z,y) denote the length of the shortest path between two vertices z



and y. We denote the existence of an edge between = and y by z ~ y. A graph G = (V, E)
is called cubic if it is 3-regular, that is, if d,, = 3 for every v € V.

A prism graph, denoted Y,,, is a graph corresponding to the skeleton of an n-prism (see
Figure . Prism graphs are therefore both planar and polyhedral. An n-prism graph has
2n nodes and 3n edges. A Mdébius ladder M, is a graph obtained by introducing a twist
in a prism graph Y,,, see Figure [2| The Mobius ladder M,, can also be defined as a cycle
Cs,, where the opposite vertices have been joined together.

Figure 2: The Mobius ladder M,

2.1 Bakry—Emery curvature

For any function f : V — R and any vertex x € V, the (non-normalized) Laplacian A is
defined via

Af(z):= Y (fly) = f(x) (2.1)

Yy~

The notion of a Laplacian can be generalised by introducing a vertex measure and edge
weights. In this article we will only consider curvature associated to the non-normalized
Laplacian.

Definition 2.1 (I" and I'y operators). Let G = (V, E) be a locally finite simple graph.
For any two functions f,g:V — R, we define

2I(f. 9) == A(fg) — fAg — gAf;

We will write I'(f) :=T'(f, f) and Ta(f, f) := I'a(f), for short.

Definition 2.2 (Bakry—Emery curvature). Let G = (V| E) be a locally finite simple graph.
Let K € R and NV € (0,00]. We say that a vertex z € V satisfies the curvature-dimension
inequality CD(KC,N), if for any f: V — R, we have

Da(f)(e) 2 3 (AF@)? + KT () (@) (22)
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We call K a lower Ricci curvature bound of x, and N a dimension parameter. The graph
G = (V, E) satisfies CD(K,N) (globally), if all its vertices satisfy CD (K, N).

In this paper we only wish to find graphs that satisfy C'D(0,00). Thus Equation (2.2))
becomes

Ta(f)(x) > 0. (2.3)

We call such graphs non-negatively curved under the Bakry—Emery curvature notion.

2.2 Ollivier-Ricci curvature

In order to define the Ollivier-Ricci curvature on the edges of a graph, we need to define the
probability distributions that we consider and the Wasserstein distance between distribu-
tions. So, let us define the following probability distributions pf for any = € V, p € [0, 1]:

D, if z ==,
1— .

pe(2) = g2, ifz~a,
0, otherwise.

Definition 2.1. Let G = (V, E) be a locally finite graph. Let pj, p2 be two probability
measures on V. The Wasserstein distance W1 (i1, o) between pq and pug is defined as

Wl (:ula )u2) = lgf Z Z d($a y)ﬂ'(l’, y)7 (24)
yeV xeV
where the infimum is taken over all transportation plans 7 : V' x V' — [0, 1] satisfying

pa(@) = w(z,y), pa(y) =) wlx,y).

yev zeV

The transportation plan 7 takes the distribution p; to the distribution pg, and Wy (uq, o)
is a measure for the minimal effort which is required for such a transition. If 7w attains the
infimum in (2.4]) we call it an optimal transport plan transporting pq to ps.

Definition 2.2. The p—Ollivier-Ricci curvature on an edge z ~ y in G = (V, E) is

/ip(fl,'7y) =1- Wl(:u’};:vNZ)v

where the parameter p is called the idleness.

From the definition of the Wasserstein metric we see, that we get an upper bound for
W1 and thus a lower bound for the curvature by choosing some suitable 7. Using the
Kantorovich duality (see e.g. [38, Ch. 5]), a fundamental concept in the optimal transport
theory, we can approximate to the opposite direction:

Theorem 2.3 (Kantorovich duality). Let G(V, E) be a locally finite graph, and let uq, po
be two probability measures on V. Then

S o) (u () — pia(a)),

zeV

Wi(p1, p2) = sup
¢: VR
¢ € 1-Lip
where 1-Lip denotes the set of all 1-Lipschitz functions. If ¢ € 1-Lip attains the supremum
we call it an optimal Kantorovich potential transporting 1 to pa.



In this article we study cubic graphs with curvature kg > 0 on all edges, but the Graph
Curvature Calculator calculates Olliver-Ricci curvatures with any idleness p.

3 The Graph Curvature Calculator

The Graph Curvature Calculator, http://www.mas.ncl.ac.uk/graph-curvature/, is a
tool for calculating curvature of graphs under the various curvature notions described in
this article. The software provides a powerful, yet easy to use, interface to the Python
software graphcurvature.py [6]. As the interface to the tool is provided over the Web, in-
terested researchers can investigate graph curvature examples without any required knowl-
edge of Python programming. In this chapter we summarise the design and interface to
the Graph Curvature Calculator.

Graph curvature calculator [Toggle Labels]
Written by George Stagg and David Cushing [Autolayout]
Graph viz with cytoscape.js
V062
Controls
Add new verlex - Click vertex, Ihen click empty space
Connegt vertices - Click veriex, then click another .
Remove vertex - Right-click (tap-and-hold) a veriex
Remove edge - Right-click (lap-and-hold) an edge
Zoom injout - Scroll wheel (pinch-and-zoom)
Pan - Click empty space and drag 0.167 025
Move vertex - Click a vertex and drag
[Hide]
o 1]
[ ]
0 025
L2
-0.2 .
.
. 02

Ollivier-Ricci Curvature with Idleness v || 05

Adjacency Matrix [Hide]
[[0.1.,0,1.1,1,0,0,0,0,0],[1,0,1,0,0,0,0,1,0,0,0],0,1,0,1,0,0,0,0,0,0,0],[1,0,1.0,1,0,0,0,0,0,0],[1,0,0,1,0,0,0,0,0,0,0],[1,0,0,0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,1.1.,1,1].[0,1.0,0,0.0,1,0,0,0,0,[0,0,0,0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0,0,0,0],
[0.0,0.0.0,0,1,0,0,0,0]]

[Undo] [Load]

Figure 3: The Graph Curvature Calculator shown with a graph loaded and calculating
the graph’s Ollivier-Ricci Curvature with idleness 0.5.

3.1 Architecture

The calculator is designed around a client-server model, a distributed structure that of-
floads the computational workload from the user’s machine and web browser (the client)
to a remote machine or collection of machines (the server). The rationale of this design is
that the quality and performance of the user’s machine does not need to be particularly
high to be able to compute graph curvature. The sophisticated numerical calculations and
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optimisation problems are instead solved server-side and communicated back to the user’s
machine. A high level diagram of the architecture of the system is shown in Figure
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Figure 4: Architecture diagram for the Graph Curvature Calculator. The diagram show-
cases the client-server nature of the configuration, with communication over the Internet
using Hypertext Transfer Protocol (HTTP) over TCP connections.

3.2 The client-side software

The client-side part of the Graph Curvature Calculator is provided in the form of a website,
currently hosted on the public Internet [8]. The website provides a Graphical User Interface
(GUI) allowing for finite graph input and manipulation, with graph curvature calculations
displayed alongside the graph.

The website pages are constructed in HTML and CSS and the client-side software, curvature.js,
is built with JavaScript. This is a standard toolchain of web technologies and so should

be compatible with all modern web browsers. Cytoscape.js [14] provides graph visualisa-
tion, and jQuery [16] provides additional support. Both JavaScript libraries are free and
open-source. While we take full advantage of the graph visualisation routines provided by
Cytoscape.js, the curvature calculations are performed on remote machines and so we do
not use any of its available analysis routines.

The client-side software allows users to define graphs for curvature calculation in two ways.
Firstly, a graph can be loaded into the software by providing an adjacency matrix in so
called ‘JSON’ format [43]. For example, the adjacency matrix

0110
1 011
11 01
0110



can be inserted by providing the text string [[0,1,1,0],[1,0,1,1],[1,1,0,1],[0,1,1,0]]
to the software.

Alternatively, and perhaps more intuitively, the user can “draw” graphs by interacting
with the website using their mouse or touchscreen device. Inputting graphs by drawing
allows for an immediate and constantly updating display of graph curvature. The resulting
environment develops the user’s intuition for curvature and allows for rapid prototyping
of ideas or conjectures.

3.3 The server-side software

As the Graph Curvature Calculator is a website, communication between the user’s ma-
chine and a remote machine is achieved through Hypertext Transfer Protocol (HTTP)
over TCP [12]. It is natural, therefore, that the communication of user defined graphs
and computational results should also be communicated using HTTP. As such, in our
setup the web server also acts as a proxy, passing on requests and responses to and from
the computational server where graph curvature is calculated. This choice of setup is
extremely flexible with regards to the physical hardware of the remote machines:

e The computational server need not be on the same physical machine as the web
server.

e While the web server must be visible to the Internet, the computational server need
only be visible to the web server rather than the public Internet, improving security.

e The full state of the graph is transmitted with every curvature request, and so several
computational servers can be running simultaneously — automatically load-balanced
by the web server in a ‘Round-Robin’ fashion.

e Load-balancing can be further improved by running the computational servers in
the “cloud”, bringing virtual machines on-line and off-line to manage system load in
real-time.

Communication and calculation of graph curvature is achieved using Python on the com-
putational server. The software listens for HT'TP requests containing a JSON encoded
description of a graph and a requested graph curvature notion. The actual numerical
calculation of the graph curvature is performed using the software graphcurvature.py [6],
with support from the scientific packages NumPy [39] and SciPy [I5]. The curvature cal-
culations are then finally returned to the client-side software as a HI'TP response, again
encoded in JSON.

3.4 Bakry—Emery curvature as a semidefinite programming problem

We now reformulate the calculation of Bakry—Emery curvature as a semidefinite program-
ming problem. Once this has been achieved it is an easy exercise to be numerically solved.

The following reformulation can also be found in [7] and [20].



First we introduce some fundamental notations. For any r € N, the r-ball centered at x
is defined as
By (z) :={y eV :d(z,y) <r},

and the r-sphere centered at z is
Sr(z) ={y eV :d(z,y) =r}.
Then we have the following decomposition of the 2-ball By (x):
By(z) = {z} U Si(z) U S2(z).

We call an edge {y,z} € E a spherical edge (w.r.t. x) if d(z,y) = d(x, z), and a radial
edge if otherwise. For a vertex y € V| we define

d;"" ={z:z~y,d(z,z) >d(z,y)},
dy® = {z 12~y d(w, 2) = d(z,y)},
dy~ =z 2 ~y,d(x, 2) <d(z,y)}.
In the above, the notation | - | stands for the cardinality of the set. We call dj'*, d;:,o,

and d;~ the out degree, spherical degree, and in degree of y w.r.t. x. We sometimes write

d;j , dg, d,; for short when the reference vertex x is clear from the context.

We write I'(x) as a |Bi(z)| x |Bi(x)| matrix corresponding to vertices in Bj(x) given
by

dy -1 -1

-1 1 0
2I(z) = )

-1 0 1

The matrix I's(x) is of size |Ba(z)| x |B2(z)| with the following structure ([20, Proposition
3.12])
(4T2(2))a.0 (4T2(2)) 2,5, (2) (4T2(2)) 2,5, ()
Aly(z) = | (4T2(2))s)(@),e  (AT2(2))5,(2),81 () (4T2(%)) s, (2),85(2)
(AT2(2)) sy (@) (412(7)) 85(2),5:(x)  (412(2)) 85(2),52(2)

The sub-indices indicate the vertices that each submatrix is corresponding to. We will
omit the dependence on z in the above expressions for simplicity. When we exchange the
order of the sub-indices, we mean the transpose of the original submatrix. For example,
we have (4T2)s, » := ((4T2)z5,) .

Denote the vertices in Si(z) by {y1,...,94, }- Then we have

(AT2)es = 3dy +d2, (4T2)ys, = (-8 —do—djy - =3 —do—df, ),
and
(40'2)s,,,
5 —dy + 3d, + 4dy), 2 — dwy,y, oo 2 — dwy,y,,
2 — dawy, ,, 5—dy+3d), +4d), --- 2 — dwy,y,
2 — dwy,y, 2 — dwyyy, o b —dy +3df, +4dy,



where we use the notation that for any two vertices z,y € V,

1, ifz~y
w =
Y 0, otherwise.

Denote the vertices in Sa(x) by {21, ..., 2|5,(z)}. Then we have
(47305, = (d;l dz, - di <z)|) :
_walzl _wa122 e _walz\SQ(z)\
(42)s,,5, = :
Wy, 2 T2Wyy oz e —2Wy, 2|5y (2)|
and
dz—l 0 R 0
0 d; . 0
(4F2)52,52 = :2 .. :
0 0 - dyg

Note that each diagonal entry of (4I'2)s, s, is positive.

Let A(G) be the adjacency matrix of the graph G. Then we see

(4F2)51752 =-2- A(G)SLS2'

We are now ready to state the reformulation.

Proposition 3.1 ([20]). Let G = (V, E) be a locally finite simple graph and let © € V.
The Bakry-Emery curvature function K¢ »(N) valued at N € (0, 00| is the solution of the
following semidefinite programming,

maximize K

subject to Ta(z) — —A(x) A(x) > K[ (x),

=~

This problem was then numerically solved using Python. Some tools from Numpy were
used.

The available variations of Bakry-Emery curvature on the Graph Curvature Calculator
are

e Non-normalised curvature sign:
For each vertex x this computes the sign of Kg z(00).

e Non-normalised curvature:
For each vertex x this computes the value of K¢ ;(c0) to 3 d.p.



e Non-normalised curvature with finite dimension
For each vertex x this computes the value of K¢ »(N) to 3 d.p. for a input dimension

N.

For each of the above options there are “Normalised” analogues in which the above pro-
cedure is carried out but with respect to the Normalised Laplacian. See [7] for further
details.

3.5 Ollivier-Ricci curvature as a linear programming problem

The problem of calculating Ollivier-Ricci curvature can be reformulated into a linear pro-
gramming program. We will now give an explanation of how to do this. After this
reformulation it is relatively simple to solve numerically. We used the SciPy module in
Python for the Graph Curvature Calculator.

Let G = (V,E) be a locally finite simple graph. Let p and v be two probability mea-
sures, with finite supports {z1,z2,...,z,} and {y1,y2,...,ym} respectively. Recall, by
Theorem that

Wi (p,v) = sup Plzi)p(zi) — ) dyj)v(y)) ¢ (3.1)
(i) —d(y;)<d(z:,y;) ; ; ’ !
where ¢ is a function on {x1,z2,..., 2z} U{y1,v2, -+, Ym}-

We now write (3.1)) in the standard form of a linear programming problem.

Let m, ¢, ¢, £ be the following column vectors:

:(:u'(xz)7 SRR M(%% V(yi)v v 7V(ym))T € Rn+m7

m:
¢ :(QS(CCZ), ce 7¢($n)7 _Qs(yi)7 cee _¢(ym))T € Rn+m,
c:=(d(x1,91),...,d@1,ym), d(x2,91), ..., d(Tn,y1), . .. ,d(:];n,ym))T c RV,

We now define the following (nm) x (nm) matrix A. First denote by I,,, be the m x m
identity matrix and by a; the m X n matrix with all the terms in the i-th column equal to
1, and all terms in the other columns equal to 0, e.g.

10 --- 0
10 --- 0
ay = .
10 0
Then A is defined as

al Im

A= a2 Im

an Im
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Finally we can rewrite (3.1 as

Wi(p,v) = sup m - ¢. (3.2)
Ap<c

This is now just the standard form of the linear programming problem. See [23] for an
alternate derivation.

The available variations of Ollivier-Ricci curvature on the Graph Curvature Calculator are

e Ollivier-Ricci curvature:
Gives the curvature for idleness p = 0.

e Ollivier-Ricci curvature with idleness:
Gives the curvature for an in-putted idleness p € [0, 1].

e Lin-Lu-Yau Curvature:
Gives the Lin-Lu-Yau curvature. This is calculated by using

max(dy, dy) + 1
max(dy, dy) IECREmE

(z,9),

/iLLY(DC ) y) =

which is proven in [4].

e Non-normalised Lin-Lu-Yau curvature. A variant of the Lin-Lu-Yau curvature which
is based on a preprint by F. Miinch and R. Wojciechowski [28].

4 Bakry—Emery classification

Our main result of this section is to classify all cubic graphs satisfying C'D(0, o). We start
by classifying the local structure of such graphs. It is well known that the curvature at a
vertex depends only on the structure of the 2-ball of this vertex, see [7] for further details.
Thus we present the local structure of all possible 2-balls and calculate their curvatures,
that is, the lower Ricci curvature bounds K, giving us building blocks for our classification
result.

In Figures [5] to [0 are screenshots of all possible 2-balls and the curvature of their centres
(highlighted in yellow) drawn and calculated using the Graph Curvature Calculator. They
are ordered by the number of triangles in the 1-ball around the centre: in the 2-ball Al
the centre is on three triangles, in the 2-balls B1 and B2 on two, in C'1-C5 on one, and
in D1-D7 there are no triangles with the centre vertex.

Theorem 4.1. Let G = (V, E) be a simple 3-reqular graph. Then G satisfies CD(0, 00) if
and only if it is a prism graph Y, for somen > 3 or a Mdbius ladder My for some k > 2.

Proof. By looking at the curvature of the possible 2-balls of cubic graphs we see that only
Al,B1,B2,C1,C3,C4,D3, D4, D5, D6 and D7 can appear in a non-negatively curved
graph, since in C2,C5, D1 and D2 the curvature at the centre is negative. Furthermore
note that A1 and D6 are already cubic graphs, namely K4 = M> and K33 = M3s. Thus
Al and D6 do not appear locally anywhere else.

11
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Figure 8: The 2-balls D1, D2, D3 and D4
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Note that none of the 2-balls B1, B2,C1,C3,C4, D3, D4, D5 or D7 contains a bridge,
that is, an edge such that removing it would disconnect the graph, connected to the
centre vertex. Thus no non-negatively curved cubic graph contains a 2-ball with a bridge
connected to its centre (see [7, Theorem 6.4] for a more general version of this fact). Now,
if we try to extend any of the 2-balls B2, C'1, C'3, or D7 to a cubic graph, this forces a
bridge in a 2-ball of one of the vertices at distance two from the centre. Also, extending
B1 forces a bridge either at a vertex at distance two or three from the centre. Thus B1,
B2, C1, C3 and D7 cannot exist as the 2-ball in a non-negatively curved cubic graph.
The 2-ball D5 can be extended to a cubic graph without bridges only by joining together
all the three vertices with degree one, but this creates a graph with negative curvature at
most of the vertices.

We now only have the 2-balls C'4, D3 and D4. Considering one of the vertices in the 1-
sphere of C4, it is clear that the only way to extend this into the centre of one of C'4, D3
or D4 is to extend it into C'4, giving the triangular prism Y3. A similar argument shows

that the only non-negatively curved cubic graph containing D4 is the 3-dimensional cube,
i.e Y4.

This leaves us only to classify graphs that have D3 as a 2-ball everywhere. It is clear
that there are infinitely many of these graphs, i.e. the Mobius ladders and the prism
graphs. O

Remark, that of these graphs only the smallest ones, namely K4 = M>, K33 = M3, the
3-prism Y3 and the cube Yy, have positive curvature at all vertices.

5 Ollivier-Ricci classification

Let us first see how under Olliver-Ricci curvature kg non-negatively curved graphs look
locally. The following lemma shows that in order to have non-negative Olliver-Ricci cur-
vature on an edge xy, the edge must be on a triangle or a square.

Lemma 5.1. Let G = (V, E) be a 3-reqular graph, and let C, be the smallest cycle C,
supporting the edge xy € E(G). Then we have the following cases:

i) If n =3, then ko(z,y) > 1/3;
ii) If n =4, then ko(x,y) = 0;
iii) If n > 5, then ko(x,y) < 0.
Proof. Assume that n = 3, that is, the edge zy € E(G) is on a triangle. Then the
Wasserstein distance Wi (pg, pty) < 2+ & = 2, since the mass distribution at the common

neighbour of z and y does not need to me moved by the transport plan. Thus ko(z,y) >
1/3.

Assume then that n = 4, and thus that the edge xzy € E(G) is on a square but not on
a triangle. Then there exists a perfect matching between the 1l-spheres Si(x) := {z €
G | d(z,z) =1} and Si(y) := {z € G | d(y,z) = 1}: if the neighbours of x and y that lie
on a square are denoted x1 and y; and the other two neighbours x2 and yo, then choose to
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the matching the edges x1y1, xx2 and yys. The transport plan that moves masses along
this perfect matching is optimal regardless whether the vertices zo and ys are adjacent.
Thus we have W1 (i, p1y) = 3+ 1 =1 and ko(z,y) = 0.

Assume then that zy is not on a triangle or a square. We can then define a 1-Lipschitz
function ¢ as follows:

2, ifu~xandu#y
1, ifu=xoru=y
P(u) = . (5.1)
1, if u~ v for some v ~x,v#y
0, otherwise
For this function Y7oy, ¢(x) (ud () — p(u)) = 2(3-0)+2(3 -0)+1(0—-3)+1(3-0) = 3
Thus Wy (12, ,ug) > %, and by the Kantorovich duality we have ko(z,y) < —% <0. O

Let us now consider the graphs with kg > 0 on all edges. We divide the classification into
two parts, considering graphs with constant curvature kg = 0 in Theorem and then
graphs with positive curvature on at least one edge in Theorem

Theorem 5.2. Let G = (V,E) be a simple 3-reqular graph. Then rko(z,y) = 0 for all
xy € E(G) if and only if G is a prism graph Y, for some n > 4 or a Mébius ladder Mj,
for some k > 3.

Proof. Since the prism graphs Y,,, n > 4, and a Mobius ladders My, k > 3, are triangle
free and every edge of them lies on a square, they by Lemma have ko(x,y) = 0 for all
edges xy.

Assume then that ro(z,y) = 0 for all zy € E(G). From lemma [5.1] we know that all edges
of G are on a C4 and that there are no triangles in the graph.

Consider an edge zy € E(G). Since the graph is triangle free, the 1-spheres Si(x) and
S1(y) are disjoint. Denote the vertices as S1(z) = {y,z1, 22}, S1(y) = {x,y1,y2}. Since
xy lies on a square, we can assume that x1 ~ y;. Let us show that there always exists a
3-ladder L3 (see Figure [10| for n-ladder L,,) as a subgraph in G: Since ko = 0 on all edges,
also the edges xx2 and yyo must lie on squares. This is obtained either if xo ~ yo, or if
xo ~ y1 and y2 ~ x1, and in both cases we have a subgraph L3 in the graph.

a1 as as Anp—1 an,

by bo b3 b1  bn

Figure 10: The ladder graph L, with labelling

Assume now that L, C G for some n > 3, and denote the vertices as in Figure The
remaining edges from a,, and b,, also have to lie on squares. If there are no other vertices in
the graph, that can happen two ways: either a,, ~ a1 and b,, ~ by or a; ~ b, and b; ~ a,.
If there is new vertex a,41 such that a, ~ a,11, then there must also be a second new
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vertex b,y1 with b, ~ by+1 such that ap 1 ~ by1. But this creates a L, 1. Thus one of
the following holds:

i) a1 ~ a, and by ~ by,
ii) a; ~ b, and by ~ ay, or

iii) Lpyi C G

In the first case G is the prism graph Y,,, in the second case G is the Mobius ladder M,,.
Remark that the first case is only possible if n > 4, otherwise there would be a triangle

ajasas. In the third case we can continue by induction, obtaining larger prism graphs and
Mobius ladders. 0

Theorem 5.3. The only 3-reqular graphs with ko > 0 on all edges and ko(z,y) > 0 on at
least one edge are the complete graph K4 and the prism graph Ys.

Proof. By lemma we can assume, that the girth g(G) = 3. Let us construct all
possible cubic graphs starting from a triangle using the knowledge that all edges must lie
on a triangle or on a square. So, let zy be an edge that lies on a triangle zyz. Denote the
third neighbour of x by x;. Since G is 3-regular, either y ~ 21 or there is another vertex
y1 ~ 1. In the former case the only vertices with degree less than three are z and z1, and
so in order to the last edge from z to be an a triangle or a square, we must have z ~ x7.
This gives the graph K4, which is the same as the smallest M6bius ladder M.

Consider then the latter case y; ~ y. Then there exists two isomorphically different
possibilities: either z is adjacent to x1 (or, isomorphically, to y1) or to a new vertex 2.
In the former case the last edge from x; has to go to y; in order to be on a square or a
triangle. But that leaves only the vertex y; with degree less than 3, and the construction
cannot be continued. In the latter case when z is adjacent to a new vertex zj, the other
two edges from z; has to go to x1 and y; to be on squares. That leaves only the vertices
x1 and y; with degrees less than three. Since d(z1,y1) = 2, they must either be adjacent,
which gives Y3, or to have another common neighbour, say u. But then u would be the
only vertex with degree less than three, and the construction could not be continued.
Thus, the only possible graphs are K4 = M, and Y3. O

Remark, that Ms is the only cubic graph that has positive Ollivier-Ricci curvature on all
edges, namely kg = 2/3, since for Y3 the curvature on some edges is zero.

Combining these two theorems we have the following classification result:

Corollary 5.4. Let G = (V, E) be a simple 3-regular graph. Then ro(x,y) > 0 for all
xy € E(G) if and only if G is a prism graph Y, for some n > 3 or a Mdébius ladder Mj,
for some k > 2.

6 Final comments

For a finite graph G = (V, E) let A\i(G) denote the smallest non-zero eigenvalue of its
Laplacian.
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Definition 6.1. Let d € N. Let (G;);en be an infinite family of d-regular graphs such that
|Vi,| = oo. We say that (G;)en is a family of expanders if there exists an £ > 0 such that

)q(Gi) > ¢

for all - € N.

It is an open question on whether the space of non-negatively curved graphs, in both the
Bakry-Emery and Ollivier-Ricci sense, contains expanders. Our classification shows that
no cubic expanders with exist.

Theorem 6.1. There is no family of 3-reqular expanders that is non-negatively curved in
Bakry-Emery or Ollivier-Ricct sense.

Proof. By our main Theorem the only 3-regular non-negatively curved graphs under
either curvature notion are the prism graphs Y,, and the Mébius ladders M,,. We show that
these graphs do not have a spectral gap, that is, the second smallest eigenvalue converges
to zero, when n — oo, and thus they cannot form a family of expanders.

The prism graphs Y;, are Cartesian products of a cycle ), and an edge Ko. Thus their
Laplacian eigenvalues are sums of the eigenvalues of C,, and Ko, see e.g. [5]. The Laplacian
spectrum for K5 is {0,2} and for C;, {2 — 2cos(22)}, where j = 0,...n — 1. Therefore
the smallest non-zero eigenvalue of a prism graph Yy, is A1(Y,,) = 2 — 2cos(2Z), and thus
A1(Y,) — 0, when n — oc.

The Laplacian eigenvalues of the Mobius ladders can be calculated by considering them as
cycles Cy, with opposite vertices attached. Then it is easy to see that the Laplacian is a
circulant matrix, where the first columnisvg =3, v1 = -1, v =...=v,_1 =0, v, = —1,
Uptl = ... = Vop—2 = 0, vop—1 = —1, and the remaining columns are cyclic permutations
of the first one with offset equal to the column index. The Laplacian eigenvalues of 2n x 2n
circulant matrices are
2 2n—1

{vo + von—1w; + Vop—2wj + ...+ U1wW; 1,
i2mj
2n
(see [9]). Thus the Laplacian spectrum of the Mé&bius ladder M, is {3 + (-1
2cos(52)}, where j = 0,...,2n — 1. The smallest non-zero eigenvalue is A\ (M,) = 3 +
(—1)% — 2cos(Z22), and thus A (M,,) — 0, when n — oo. O

) are the jth roots of unity, and j = 0,...,2n—1
)j+1

where v is the first column, w; = exp(

Remark 6.2. This result can also be obtained by showing that the prism graphs and the
Mobius ladders are abelian Cayley graphs, and then applying the result in [I] that Abelian
Cayley graphs do not contain expanders.
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