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1. Introduction

In this paper, based on computations with the free softwares
Germenes [14] and Repuce 43, we give a conjecture that in
the case of monomial ideals links the generalized multiplic-
ities defined algebraically in [3] with volumes derived from
the Newton polyhedra of the ideals, thus extending a result
of Teissier [17].

In 1988, Teissier [17, p. 131] proved that for an
m-primary monomial ideal I of a local ring A the Samuel
multiplicity is equal to the normalized volume of the com-
plement of the Newton polyhedron of the ideal I. In 1999,
Guibert [9] generalized Teissier’s result. Precisely, Guibert
defines the local Segre class of an ideal generated by a
set of germs of holomorphic functions and, under a non-
degeneracy condition, he describes such a class by
Minkowski mixed volumes of polytopes. As a special case he
obtains that for a certain class of monomial ideals the local
Segre class is a normalized volume of the simplex generated
by the origin and the vertices of the Newton polyhedron,
see [9, 4.2]. By [4], the local Segre class is the so called j-
multiplicity of the ideal. In 2013, Jeffries and Montano [13]
gave a different proof that the j-multiplicity of a monomial
ideal is the normalized volume of the pyramid of the ideal.

The j-multiplicity of an ideal is different from zero if and
only if its analytic spread is maximal, that is, equal to the
Krull-dimension d of A. A result of Bivia-Ausina [6] states
that the analytic spread diminished by one is the maximum
of the dimensions of compact faces of the Newton polyhe-
dron of I.

According to [3] the j-multiplicity is the first coordinate
of the generalized Samuel multiplicity vector ¢(I) =
(co(I),...,cq(I)). Here we present and illustrate a conjecture
which expresses the other components of ¢(I) in terms of

the Newton polyhedron of I. Our conjecture holds for ¢,(I) 7

by the known result of Guibert and of Jeffries and Montano,

and we shall prove it here for ¢;_;(I). %0

81
2. Generalized Samuel multiplicities 82

This section is a quick review of a generalization of 83
Samuel’s multiplicity by a sequence of numbers, the so- 84
called generalized Samuel multiplicity, which we intro-
duced in [3].

Let A be a d-dimensional Noetherian local ring (A, m) 87
with unique maximal ideal m or a standard graded algebra
A =®;50A; such that Ay is a field and m = (A;)A is the 89
unique homogeneous maximal ideal of A. Let I C A be an
arbitrary ideal (not necessarily m-primary).

In order to define the generalized Samuel multiplicity 92
(), consider Gj(A) :=@j>o F/F™!, the associated graded 93
ring of A with respect to I and the bigraded ring 94

95

m'p 4 [+l 96

T= i,%o Ti.i = Gm(GI(A>> - i,%o mitl 4 [+’ 97

where Too = A/m = K is a field. 98

Let H9 (i, ) := dimgT; be the Hilbert function of the 99

bigraded ring T and let }8(1)
j_i

HD(G,j) =3 HOY(p,q) 102

q=0 p=0 103

be its twofold sum transform. For both #,j > 1 this function 104
becomes a polynomial in (i, j), which can be written in the form 105
: ) 106

k I
Zafﬁ}l)(l: )(JJ{ ) : 107
k+l<d 108

Following [3] define the generalized Samuel multiplicity }(1)(9)

to be the vector

111
A 112
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2 . R. ACHILLES AND M. MANARESI

(ag};kagf;ﬁl,...,a;}b”) - (co(T),cl(T),...,cd(T)) = o(T)
=: (co(I), c1(I), ..., ca(I)) =: c(I) .

The first coefficient ¢y(I) plays an important role as an
intersection number and was introduced in [2]. It is called
the j-multiplicity j(I) := ¢o(I). The last coefficient c;(I) is
zero if dim(A/I)<d = dim(A), see [3, Proposition 2.3]. In
particular, if I # 0 is a monomial ideal in a polynomial ring,
then ¢;(I) = 0.

The generalized Samuel multiplicities depend only on the
highest dimensional components of T, see [18] or [3,
Proposition 1.2]:

Proposition 1. Let Q; i = 1,...,q, be the highest dimensional
primary ideals in a minimal primary decomposition of the
zero ideal of the bigraded ring T = Gu(Gi(R)) and P; their
associated prime ideals. Then there is an equality of vectors

c(I) = Zlength Tp,)

i=1

c1/2) =3 el1/Q)

By analogy with the application of c¢(I) to intersection
theory, we shall call ¢x(T/Q;) # 0 a movable contribution to
ck(I) if there is an integer £>k such that ¢,(T/Q;) # 0.

3. A conjecture and some results

Let I be an ideal in R = K|x1,...,x4] =
imally generated by the monomials

K[x] (K a field) min-

x" = xf“m . 'xd”(d), X

that is, v; = (vi(1),...,v1(d)), ... vr = (v,(1), ..., v,(d)) are
the points of Z%, corresponding to the exponents of the
generators of I.

The Newton polyhedron NP(I) of I is defined as the con-

vex hull of {v € Z¢ SolX'} €1} in RY, that is,
NP(I) := conv({v € Z>0|x1 9 e1y)
= conv({vy, ..., + R>o’

where + denotes the Minkowski sum (for the equality see
[15, Lemma 4.3]). It is well-known (see, for example, [12,
Proposition 1.4.6], that the set of integer lattice points of
NP(I) equals the exponent set of the integral closure of I,
which is again a monomial ideal. Our conjectures involve
both NP(I) and the generalized Samuel multiplicities c(1),
which are also known to be invariant up to the integral clos-
ure of I, see [7, Proposition 2.7].
A hyperplane

H={veR?| (vya)=b} (withac Rdzo,b € R)
is called a supporting hyperplane of the Newton polyhedron
NP(I) if
NP(I) c H" = {v € R? | (v,a) > b} and NP(I) N H # {).
A subset F C NP(I) is called a proper face of NP(I) if

there exists a supporting hyperplane H of NP(I) such that
F =NP(I) N H. The boundary of NP(I) is a set of faces of

dimension d - 1, called facets of NP(I), some of them may
be compact.

The zero-dimensional faces are called vertices or extreme
points of NP(I). We shall denote the set of vertices by
vert(I). Note that the monomials corresponding to the
points in vert(I) are part of the set of minimal generators of
I, so by renumbering we will assume that

vert(I) = {v1, ..., v} with some s <r,

hence

NP(I) = conv({vy, ... v, }) + ]R>0 = conv({vy, ..., vs}) + Rio

The monomials corresponding to the points in vert(I)
generate the unique minimal monomial reduction ideal of I,
see [16, Proposition 2.1].

Any face F can be described using its vertices and infin-
ite-directions. Let e; denote the unit vector with non-zero
jth component, let H be a supporting hyperplane such that
F=NP(I) N H and let a be a normal vector to H. We call
the coordinate direction e; an infinite-direction of F if the jth
component a(j) of a is zero. If v;,...,v; are the vertices of

F, then
F = conv({vi, ..., vi,}) + Z R>o e;.
ja(j)=0
Often we shall write simply wv;..v; instead of
conv({vi,...,v;.}). Of course, the compact or bounded faces

are precisely those that do not have infinite-directions e;.

By the Minkowski-Weyl Theorem for convex polyhedra,
there are uniquely determined finitely many closed half
spaces

Hf ={veR!| (v,a) >
i=1,..,¢

bl}(Wlth a; € Z>0,b S Z>0)

such that
NP(I)

Then F;:=H;NNP(I), i=1,...,t, are the facets of
NP(I). We will assume that Hj,...,H, are the hyperplanes
corresponding to the unbounded facets and that H,., ..., H;
are those corresponding to the compact facets.

To each bounded facet F = conv({vi,...,vi}) of NP(I)
we associate the polytope (or pyramid)

=H/ Nn..NnH}.

E := conv(0, F) = conv({0, vj, ...

>Vb})

and denote by voly(F) its d-dimensional volume and by
Voly(F) := dlvoly(F)
A

its normalized volume.

The normalized volumes of pyramids over projections of
bounded faces of NP(I) play a crucial role in our conjec-
tures. Since it was known that ¢y(I) equals the sum of the
normalizes d-dimensional volumes of the pyramids over the
bounded facets of N(I), our guess was that c¢;_.1)(I) should
be a sum of (k + 1)-dimensional volumes coming from the
bounded faces F* of dimension k. We succeeded in proving
this for k=0 by projecting the vertices of NP(I) on the
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coordinate axes, see Theorem 2. Thus, in order to obtain
Ci—(kr1y)(I), we tried to sum wup the normalized
(k + 1)-dimensional volumes of the pyramids over the pro-
jections of the bounded faces F* of NP(I) on coordinate
(k + 1)-planes. This did not work well, and by [5, Section
2.2] we realized that one should consider only projections
along the infinite-directions of facets F~! that contain F.
Then we refined our guess by computing many examples.
To formulate our conjectures, we proceed as follows.

We call a facet F C NP(I) an h-unbounded facet if the
normal vector a to its supporting hyperplane has at least
h >0 coordinates a(j) which are zero, that is, if the facet has
at least h infinite-directions e;.

Let F (k) be the set of all (d—(k+ 1))-unbounded facets
containing at least one k-dimensional compact face F 0 <
k < d—2. We define F(d—1) to be the set of all compact or
bounded facets of NP(I).

If F¢~' € F(k) and F* is a k-dimensional compact face
contained in F*~!, then we associate to the pair (FX, F!) a
(k + 1)-dimensional normalized volume Vol(F¥, F~!) as fol-
lows. Let L C {1, ...,d} be such that {e;: £ € L} is the set of
all infinite-directions of F¢~! and let M;, ...» My be all sub-
sets of L consisting of exactly d—(k + 1) infinite-directions.

Fori=1,...,q, let
miRY— > Re xR
1<j<d, j¢M;

be the orthogonal projection which removes from v € R?
the coordinates v(m) with m € M;. Then m;(F¥) is a poly-
tope of dimension at most k. By renumbering, assume that
dim(m;(F¥)) =k for 1<i<p and dim(m(F"))<k
%forp—i—lgigq.
The volume associated to the pair (F¥, F4=1) is

Vol(Fk, F-1) .= <j% Vol (conv({0, ;(F)})).  (3-1)

1

Conjecture 1. For each k=0,..,d—1,
Samuel multiplicity of a monomial ideal I is

g = Y min{Vol(F*, F*1)},
Ferk) ©

the generalized
(3-2)

where the minimum is taken over all compact faces F* of
NP(I) that are contained in the facet F~'.

In the extremal cases k =d—1 and k=0 the formula
(3.2) can be simplified.

The case k = d—1. Since F(d—1) is the set of compact
facets of NP(I),F‘~! € F(d—1) does not have infinite-
directions. Hence L above is empty, =1, M; = () and 7, is
the identity map on RY. The only (d—1)-dimensional com-
pact face contained in F*~! is F4! itself and

Vol(FA=1, FA=1) := Vol (conv({0, 7, (F~1)}))
= Voly(conv({0, F*~11)).
Then the formula (3-2) reads

co(I) = Z Voly(conv({0, F*~1})).

Fi-1cF(d—1)

The case k = 0. At first we describe F(0).

(3-3)

EXPERIMENTAL MATHEMATICS 3

Proposition 2. Let I C K[x, ..., x4] = K[x]| be an ideal gener- 292
ated by the monomials x",...,x". For j=1,...,d, set m;:= 293

min{v (j), ... v,(j) } and 294
295

F; := conv({v € vert(I)|v(j) = mj}) + Z R0 €. 59
1<i<d, i#j 297

Then F(0) = {Fy,....,Fa}. 298
299

Proof. Since each v € NP(I) is the sum of a convex combin- 300
ation of the vertices vi,...,v; of NP(I) and of some w € 301

R?,, we have 302
s . . ) ) : ) . 303
v(j) > min{v;(j), ..., vs(j) } + w(j) > min{v1(j), ..., vs(j) }, 304

hence 305
R . A1 s . kN . 1 306

m; == min{v;(j), ... v,(j) } = min{v,(j), ..., v:(j)} = Végijr(ll){v(])}.307

308

It follows that Fy, ..., F; are precisely the (d—1)-unbounded 309
facets of NP(I), thatis, 7(0) = {Fy, ..., F;}. 0310
By the preceding proposition, for k = 0 the formula (3-2) reads g};
o 313

ci(I) = Z mvm{Vol(v,Fj)}, (34) 314

i 315

where the minimum is taken over all vertices v of NP(I) 316
that are contained in the facet F. In order to compute 317
Vol(v, Fy), note that each F; has d - 1 infinite-directions, 318
more precisely, L ={1,...,j,...,d}, hence q=1, L = M, 319
and 7, : R? — Re; sends each v € F; to its jth coordinate 320
v(j) =mj;. It follows that Vol(v,F;) = Vol (conv({0, 321
m1(v)})) = v(j) = m; for each vertex v of NP(I) that is con- 322
tained in F, and no minimum has to be taken in (3-4). 323

Thus the formula of Conjecture 1 becomes 324
325
ca—1(I) =my + -+ my. (3-5) 326

327
Conjecture 2. With the notation of Proposition 1, for each 3

k=0,...,d—1, there is a one-to-one correspondence between 329
the non-zero cq_(x41)(T/Qi) and the non-zero summands
ming{Vol(F*, F*~1)} in the formula of Conjecture 1 such 331
that the corresponding numbers are equal.

In particular, the number of compact facets of NP(I) is 334
equal to the number of d-dimensional associated prime ideals 33,4
of T that contain m = (x,...,x4)R. 335

Moreover, if Vol(F*,F*~1) # 0 contributes to cs_(k11)(I) 336
and can be obtained by more than one projection py then it 337
is a movable contribution.

338

Note that in general, if K is algebraically closed and 339
340

T = G (G;(R)) %K[xl,...,xd,yl,...,y,]/n, 341

then the bigraded ideal 1 is a binomial but not a monomial 342
ideal, see [8, Corollary 1.9]. 343

Our conjectures are confirmed by many examples, but so 344
far we do not have a proof except for Conjecture 1 in the 345
extremal cases k=0 (formula (3-3)) and k = d—1 (formula 342

(3-5)), as it is stated in the following two theorems. 48
Theorem 1. (Jeffries and Montano [13, Theorem 3.2]). 349

If I CKlxy,...x3] is a monomial ideal and F,y,...F 350
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4 . R. ACHILLES AND M. MANARESI

are the compact facets of the Newton polyhedron NP(I),
then

co(I) = i divol(F;) = i Vol(F;).

i=r+1 i=r+1

Theorem 2. Let I be a monomial ideal in R = K[xy, ..., x4] =
K[x] generated by x",...x" and mj=min{v(j),...,
v(j)}j=1,...d. Then

A

ca(l) =my+ -+ my.

Proof. By [3, Proposition 2.3], c¢;_1(I) # 0 if and only if
dimR/I = d—1. If dimR/I<d—1, then none of the variables
x; appears in all monomials generating I, hence m; = 0 for
all j, and the result is true. If dimR/I = d—1, then again by
[3, loc. cit.],

ca1(I) =) _e(IRp) - e(R/P),
P
where P runs through all (d—1)-dimensional associated
prime ideals of R/I, that is, prime ideals of the form (x;) for
some j. Therefore IRp = (x;”’)Rp and e(IRp) = m;. The
(d—1)-dimensional part of the primary decomposition of I
is  (x")N(x?)N---n(x)4),  which is  of degree
my; + -+ my. 0

Corollary 3. Let I C Klx,x;] be a monomial ideal generated
by x",...x". We assume that vi,...,vs (1 <s<r) are the
vertices of the Newton polyhedron NP(I) numbered such that
vi(1)>--->v(1), hence v1(2)<---<vs(2). Then the set of
unbounded facets of NP(I) is

F(0) = {F1 = vi + Rxg ez, F, = vi + R e},
the set of bounded facets of NP(I) is
f(l) = {V1V2,V2V3, ceey Vs—lvs}(: @ lf S = 1),

and the generalized Samuel multiplicities are

() = det<v1> +---+det<v31),
V2 Vs

a(I)=v1(2) +v(1),c, = 0.

Proof. The corollary follows immediately from Proposition
2, Theorem 1, Theorem 2 and [3, Proposition 2.3 (i)]. O

4. Examples

We illustrate the theorems and the conjecture by examples
of monomial ideals I C R = KJxy,...,x4, K an arbitrary
field. We set m := (x1,...,x4)R and T := G,,(Gi(R)). All the
examples will show a close relation between the summands
in the formula of Conjecture 1 and the highest dimensional
primary components of T and confirm Conjecture 2.

In our first two examples we consider monomial ideals in
polynomial rings of dimension two. Note that Conjecture 1

holds in this case (formulas (3-3) and (3-5)), see the
Theorems 1 and 2 and Corollary 3.

Example 1 (Figure 1). We begin with the simplest case of a
monomial ideal generated by one monomial in two variables
in order to illustrate Corollary 3 if the Newton polyhedron
has only one vertex.

Let I = (x*y*) C R = K|x,y]. We have

c(I) = (co(I), c1(I), 2 (I)) = (0,5,0) = 2-(0,1,0) + 3 - (0,1,0),

where the summands are the contributions of the compo-
nents of the bigraded ring Gin(G;(R)), see Proposition 1.

The Newton polyhedron NP(I) has only one vertex v =
(3,2) and two (unbounded) facets F; = v+ Rspe; and F, =
v+ Rxge; (see Figure 1), hence F(1) = ) and ¢o(I) = 0. We
have F(0) = {F,F,} and Vol(v,F;) =3 and Vol(v,F,) =
2, hence ¢;(I) = 5.

Example 2 (Figure 2). This example is to illustrate Corollary
3 in the case of two and more vertices. The vertices are
numbered as in the corollary.

Let I = (x°y,x*y%, 2%y, x°y*) C R = K[x,y]. We have

c(I) = (co(I), er(I); e2(1))
= (24,3,0) =16 - (1,0,0) +8-(1,0,0) + 2 - (0,1,0) + (0,1,0),

where the summands are the contributions of the compo-
nents of the bigraded ring Gy, (G;(R)), see Proposition 1.

The Newton polyhedron NP(I) has three vertices v; =
(6,1),v, = (4,2),v; = (2,5), two unbounded facets F, =
v3 + Rxpez, F, = v1 + Rxpe; and two bounded facets: the
line segments F; = conv(vy,v;), Fy = conv(vy,v;) (see
Figure 2), hence F (1) = {F;,Fs} and

co(I) = Vol(conv(0, F5)) + Vol(conv(0, Fy))
‘ 6 1 ‘ 4

= +
4 2 2

2
‘—8-1-16.
5

We have F(0) = {F;,F,} and
c1(I) =Vol(vs, F1) + Vol(v;,F,) =142 = 3.

Example 3 (Figures 3-5). The purpose of this example is
twofold. It shows that there can be compact faces of NP(I)
that do not contribute to the generalized Samuel multiplicity
¢(I). Furthermore it aims to discuss a movable contribution
(to c1(I)). In this example, because of the movable contribu-
tion, the number of the highest dimensional components of
T is one less than the number of summands in the conjec-
tured formula (3-2).

Let I = (x*y,x*z,xy%,xz*) C K[x, y,7].
computation (using [1]) we have

c(I) = (co(I), er (I), e2(1), e3(1))
=(9,3,1,0) = 3-(3,0,0,0) + (0,1,0,0) + (0,2,1,0),

By a computer

where the summands are the contributions of the highest
dimensional components of the bigraded ring T, see
Proposition 1. The contribution 2 in the last vector is a
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Figure 1. Projection along the infinite-directions of the facets gives ¢;(/), which is the red distance. 555

0
0 1 2 3 4 5 6 7 8 9
Figure 2. The red area is ¢o(/)/2, the red distance ¢; (/).

movable contribution to ¢;(I). This can be read off also
from the Newton polyhedron NP(I), see Figure 5.
According to the program Germenes [14], the compact
faces of NP(I) are the vertices v, =(2,1,0),v, =
(2,0,1),v3 = (1,2,0),v4 = (1,0,2), the line segments
V1Va, V1V3, VoV, V3 and the quadrilateral facet viv,v4v3. The
unbounded facets are
Fi =v3vs +Rxo &2 + R €3,
Fy =vivs +Rxo e + Rxo e,

Fy = vyvs + Ry e1 + Ry e3,
F4 = "1V2 +RZO er.

We observe that the set of bounded facets is F(2) =
{vivav4v3} and

556
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558

| 559
T - 560

| 561
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563
564
565
566

; N 567
2 e 568

| L 569

: S : 571
L | I R S SR

0 1 2 3 4 5 6 7 8 9 572

573
574
575
576
577
578
=3+6=09, 579
. 580
see Figure 4. 581
The set of 1-unbounded facets that contain a compact
one-dimensional face is (1) = {F,, F,, F5,Fs}, and we have 583

8

co(I) = Vol(conv(0, vy, v2, v4,v3)) =

=N
[ S R
_|_
—_ =N
S DO
N O =

1 0 584
Vol(vivy, Fy) = 0 1170 585
586


ruedi
Sticky Note
Figure 1 should be made smaller to fit in a single column (and to have a size equal to that of the other figures).


587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645

6 R. ACHILLES AND M. MANARESI

Figure 3. Infinite-directions (blue arrows) of the unbounded facets, ¢, (/) (red distance) and ¢;(/)/2 (red area).

Figure 4. The volume of the red pyramid is ¢ /6.

3 1 02 O
Vol(vyvs, F3) = mm{ 5 o ', 1 o ‘} =0,

_flo 1] ]2 o]\ _
Vol(vavy, F) = mm{‘ 0 2 ', 1 o }} =0,

1 0

Vol(v3v4,F1):m1n{ 5

10
I 2l}-

(the last minimum is given by two different projections and
is a movable contribution, see Figure 5), hence
c1(I) = Vol(v1vy, Fy) + Vol(vivs, F3) 4+ Vol(vavy, F>)
+ Vol(vsvy, Fy)
=1+0+0+2=3.
The set of 2-unbounded facets is F(0) = {Fy,F,, F3}. We

have Vol(vs, F1) = 1,Vol(vy, F) =1, Vol(vy, F,) =
0, Vol(vy, F3) = 0, Vol(vs, F;) = 0, hence

c2(I) = min{Vol(vs, F;), Vol(vs, F1)} 4+ Vol(vs, F2)+
+min{Vol(v,F;),Vol(vs,F3)} =1+ 0+ 0= 1.

Example 4 (Figure 6). Here we give a monomial ideal I
such that its Newton polyhedron has compact edges that do
not lie on any l-unbounded facet and therefore, according
to Conjecture 1, have not to be taken into account in order
to compute ¢ (I).

LetI = (xy'2°, x*y°2%, xy°2°, X y2%, x*y2°, x°y*z) C K[x, 3, 2].
By a computer computation we have

(D) = (co(I), e1(I), (1), e3(I)) = (168,26,3,0) =
=19-(1,0,0,0) + 103 - (1,0,0,0) 4+ 22 - (1,0,0,0)+
+24-(1,0,0,0) 4+ 7-(0,1,0,0) + (0,3,1,0)+
+8-(0,1,0,0) + (0,1,0,0) +4-(0,1,0,0)+
+3-(0,1,0,0) + (0,0,1,0) + (0,0, 1,0),

where the summands are the contributions of the highest
dimensional components of the bigraded ring T, see
Proposition 1. The contribution 3 in the sixth vector is a
movable contribution to ¢ (I).

The program Germenes [14] gives the following descrip-
tion of the Newton polyhedron NP(I). The compact faces of
NP(I) are the 6 vertices v; = (1,4,5), v, =(2,5,2),v3 =
(1,5,3),v4 = (5,1,2),vs = (2,1,5),vs = (5,2,1), the 9line
segments V4Veg, V2 Vg, V5Ves V4 V5, 1/31/61 V3V2, V3Vs5, V1 V5, V1V3 and
the 4 triangles (bounded facets) v4vsve, V23V, V3V5Ve, V1V3 V5.
There are 7 unbounded facets:

F, =wnvs + RZO e + RZO es, Fy=wv4v5+ RZO e
+ RZO €3,
F3 =V + RZO e; + RZO €2,

Fs =vv3 + Ry e,

Fy=vivs + Ry e3,
Fs = vyvs + R e,

F7 = WVg + RZO €.

.7:(2) = {V4V5V6,

From the set of bounded facets
V2V3V6,V3‘V5V6,‘V1V3V5} we get
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Figure 5. A movable contribution (to ¢;(/)/2, red area) can be realized by at least two projections. Here the volume associated to the pair (vsvs, F1) is obtained 780
both by the projection of v3v,4 along the y-axis and the z-axis, that is, along the two inifinite-directions of F;. 781

Figure 6. NP(/) with compact (black) and unbounded (blue) facets; projections of compact edges along infinite-directions (blue arrows) give ¢;(/)/2 (red area).

co(I) = Vol(conv(0, vy, v5,v6)) + Vol(conv(0, vy, v3, v) )+
+ Vol(conv(0, vs, vs, v6)) + Vol(conv(0, vy, v3,vs)) =
51 2 R s 2 1 5 3 1 4
=5 2 1|4+|1 5 3|4+]2 1 5|42 1
2 1 5 5 2 1 5 2 1 1 5
=244 224103 4+ 19 = 168.

5
5 =
3

We have F (1) = {Fy, F,,F4, Fs, Fs, F;} and

1 4]]1 3 .
L sl 5‘}—mln{l,2}—l,

5 1|1 2 .
> 1Pl 5‘}—m1n{3,3}—3

>

Vol(vyvs, F1) = min{’

>

Vol(vavs, Fy) = min{ ‘

(here the minimum is attained twice, that is, by two differ-
ent projections which indicates a movable contribution),

:4,

Vol(vyvs, Fy) = ‘2 1 ’

2 2
1 4 =7, Vol(vzv3,F5):‘ ‘

1 3

782
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784
785
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791
792
793
794
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796
o 797
798
799
800
801
_3 802
803

804
hence 305

C1 (I) = VOI(V1V3,F1) + VOI(V4‘V5,F2) + VOI(V1V5,F4)+ 806

+ Vol(v,v3, Fs) + Vol(vyve, Fs) + Vol(vyve, F;) = Sgg
=1+3+7+4+8+3=26 209

We observe that the compact 1-dimensional faces vsvs, 810
V3V, V35, that is, the edges of the big triangle vsvsvs, do 811
not contribute to ¢;(I) since they lie on no 1-unbounded 812
facet. Moreover, as in the previous example, there is a mov- 8§13
able contribution, namely Vol(v4vs, F,) = 3. 814
The set of 2-unbounded facets is F(0) = {Fy,F,, F3}, 815
and we have Vol(vy,F;) =1,Vol(vs,F;) = 1,Vol(vy, F,) = 816

51
2 2

2 1

VOI(V2V6,F6) = 1 2

=8, Vol(wvs F;) = ’

1, Vol(vs, F;) = 1,Vol(vs, F3) = 1, hence 57
c(I) = min{Vol(vy, F1), Vol(vs, F1)} 19

+ min{Vol(vy, F,), Vol(vs, F,) }+ S;g

+V01(V6)F3) =1+14+1=3. 821

822
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Figure 7. The triangle defined by 3 affinely independent vertices is not a com-
pact facet.

Example 5 (Figure 7). The scope of this example is to give a
monomial ideal in dimension three such that its Newton
polyhedron has three affinely independent vertices vy, v, v3,
but its local Segre class is zero and thus not equal to the
normalized volume of the simplex generated by the origin
and vy, v, v5 as erroneously stated in [9, 4.2].

Let I = (xz,x%*)% yz*) C K[x,y,z]. By a computer compu-
tation we have

(1) = (co(D), c1(I), e2(I), e5(I)) = (0,7,0,0) =
=2-(0,1,0,0) +2- (0,1,0,0) 4 2 - (0,1,0,0) + (0,1,0,0),

where the summands are the contributions of the highest
dimensional components of the bigraded ring T, see
Proposition 1.

A computation with the program Germenes [14] shows
that the compact faces of NP(I) are the vertices v; =
(1,0,1),v2 =(2,2,0),v3 = (0,1,2) and the line segments
v1vy, v1v3. There are no compact facets, but 6 unbounded
facets:

Fi=vi+Rso e +Rxp 3, Fr=v; +Ryp 1 +Rxg g3,

Fs=v;+Ryp e1 + Ry 3, Fy=viv + Ry ey,
F5 = 11V3 —+ RZO es, F6 = V1V2V3 =+ RZO €.

We observe that F(2) = (), hence

1
co(I) = 0 # Volz(conv({0, vy, v2,v3})) = | 2 =6.
0

— N O
N O =

This means that v;, v,, vs are affinely independent, but
the local Segre class is zero and not equal to the normalized
volume of the simplex generated by the origin and vy, v,, v;
as claimed in [9, 4.2]. The reason is that the triangle v;v,v;
is not a compact facet of NP(I).

The set of 1-unbounded facets which contain a compact
1-dimensional face is F (1) = {Fs, Fs, F}, and we have

VOI(VIVZ)F4) - ’3 (1)‘ == 2, VOl(V]Vz,FG) = ’i (1) ’ — 2,
Vol(vivs, Fs5) = ’(1) (l)‘ =1, Vol(vvs,Fs) = ‘(1) ;‘ =2,

hence
c1(I) = Vol(vyva, Fy) + Vol(vyv,, Fg) + Vol(vyvs, Fs)
+ Vol(vyv3, Fe)
=24+24+142=7.

The set of 2-unbounded facets is F(0) = {F, F,, F;} and we
have

V01<V3,F1) =0,
hence ¢,(I) = 0.

Vol(vi,F,) =0, Vol(v,, F3) =0,

Example 6. With the notation of the paragraph before
Conjecture 1, this example is to have pairs (F¥, F*~!) such
that dim(m;(F¥))<k for some of the projections ;. In our
example we have k=1, d=4, and the pairs (v;v,,F,) and
(v1v2, F3) have the desired property.

Let d=4, I = (x3x2x3%x4, X1%2%3X5). By a computer com-
putation we have

c(I) = (co(I), e1(I), ca(1), e3(I), e4(I)) = (0,0,7,4,0) =

=5-(0,0,1,0,0) + (0,0,1,0,0) + (0,0,1,0,0)+

+(0,0,0,1,0) + (0,0,0,1,0) + (0,0,0,1,0)+
+(0,0,0, 1,0),

where the summands are the contributions of the highest
dimensional components of the bigraded ring T, see
Proposition 1.

The compact faces of the Newton polyhedron NP(I) are
the vertices v; = (3,1,1,1),v, = (1,1,1,2) and the line seg-
ment v;v,. There are no compact facets, but 5 unbounded
facets:

Fi=v+ Ry e + Ry e3 + Ry ey,
Fy =vivy + Ry e1 + Ry e3 + Rxg ey,
Fs =viv; +Ryo e + Ry e3 + Ry ey,
Fy=vi+ Ry e1 + Ry 3 + Ry €3,
F5 ="V + RZO € —+ RZO €s3.

Obviously F(3) = F(2) =0, hence c¢(I) =c¢(I) =0.
We have F (1) = {F,, F;,Fs} and

Vol(vivy, Fy) = min{‘ ?1) i ’, } ;‘} =min{2,1} =1,
Vol(vyv,, F3) = min{‘ :;) 1 ’, } ;‘} =min{2,1} =1,
VOI(V1V2,F5) = ‘i ; = 5.

We observe that in the computations of Vol(v;v,, F,) and
Vol(viv,, F3) the projection of the line segment v;v, on the
{x2,x3 }-plane gives the point (1, 1) and must not be consid-
ered. We obtain

Cz([) = VO](V1V2,F2) + VOI(V1V2,F3) + VOl(V]‘Vz,Fs)
=1+4+1+5=7.

882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940



941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

The set of 3-unbounded facets is F(0) = {F,,F,, Fs,F},
and we have

Vol(v,, Fy)

=1, Vol(v,F)
VOl(Vl,F3) =1,

=1, VOl(Vz,Fz) =
VOl(Vz,Fg) =1,

VOI(VI, F4)

11
1:
hence

¢c3(I) = Vol(vy, F1) + min{Vol(v;, F,), Vol(v,, F,) } +
+ min{Vol(vl,F3), VOl(Vz,F3)} + VO](V],F4) =
—1+1+1+1=4.

Example 7. This example is to show that in the formula of
Conjecture 1 with k>0 one needs to take the minimum
over all compact faces F* of NP(I) that are contained in the
facet F*~!. In our example we have d=5, k=1 and three
compact 1-dimensional faces lie on the same 3-unbounded
facet F5 or F,.

Let d=5, I = (xjx2X3X4Xs, X1X3X3X4X5, X1 X2X3X4%2). By a
computer computation we have

(1) = (co(I), 1 (1), (D), e5(I), ea (1), c5(I)) = (0,0,26,6,5,0) =
=22-(0,0,1,0,0,0) + 2 - (0,0,1,0,0,0) + 2 - (0,0,1,0,0,0)+
+2-(0,0,0,1,0,0) + (0,0,0,1,0,0) + (0,0,0,1,0,0)+
+(0,0,0,1,0,0) + (0,0,0,1,0,0) + (0,0,0,0, 1,0)+
+(0,0,0,0,1,0) 4 (0,0,0,0,1,0) + (0,0,0,0, 1,0)+

+(0,0,0,0,1,0),

where the summands are the contributions of the highest
dimensional components of the bigraded ring T, see
Proposition 1.

The program Germenes [14] shows that the compact
faces of NP(I) are the vertices v; =(3,1,1,1,1), v, =
(1,2,1,1,1),vs = (1,1,1,1,5), the line segments v;v,,v1vs,
vyv3 and the triangle v;v,v;. The facets, all of them
unbounded, are:

F1 = V3 + RZO e + RZO €3 P Rzo eq4 + Rzo €s,
Fy =vivs+ Ry e1 + Ry e3 +Ryg e4 + Ry €5,
F3 =vivav3 + Rxp e1 + Ry €2 + Ry eg + R 65,
F4 = V1VV3 + Rzo e + Rzo e + Rzo es -+ RZO €s,
Fs =viva+Ryo e1 + Ry e2 + Ry €3 + Ry ey,
F6 = V1 V3 + RZO €3 —+ ]RZO [

Obviously F(4) = F(3) =0, hence c(I)=c(I) =0.
We have F(2) = {F;, Fs, Fs} and

Vol(vy1v,v3, F3) = Vol(viv,vs, Fy)

31 1 1 1 1
=min< |1 2 1,2 1 1 =
1 1 1|1 1 5
= min{2,4} =2,
3 1 1
Vol(vivavs, Fs) = |1 2 1| =22.
1 1 5

Observe that in the computations of Vol(v;v,vs, F3) and
Vol(v;v,v3,F;) four projections of the compact triangle
vivav3 give a line segment and must not be considered.
Summing up we get

EXPERIMENTAL MATHEMATICS (&) 9

Cz([) = VOI(V1V2V3,F3) + VOI(V1V2V3,F4) + VOI(V1V2V3,F6)
=2+2+22=26.

The set of 3-unbounded facets containing 1-dimensional
compact faces is F (1) = {Fy, F,, F3, Fs, F5}, and we have

. 1 1)1 1 .
Vol(v,vs, F1) = mm{ ] 2 ,’ ] 5 ‘} =min{1,4} =1,
Vol(vivs, F,) = min{ i i ,’ i ; ’} = min{2,4} =2,

Vol(vivy, F3) = Vol(vv,, Fy) = mln{ . i , ? i
=min{2,1} =1,
. 3 1 1 1
Vol(vivs, F3) = Vol(vyvs, Fy) = mm{ _ }
= min{2,4} = 2,
2 2 1 1 1
Vol(v,vs, F3) = Vol(v,v3, F4) = min A
=min{1,4} =1,
Vol(viv,, Fs) = min{ ’;’ i ,li i ’} =min{2,1} =1,

hence

c3(I) = Vol(vyvs, F) + Vol(vyvs, Fy)+
+ min{Vol(v;v,, F3), Vol(v1v3, F3), Vol(v,v3, F3) } +
+ min{Vol(v;v, Fy), Vol(v;vs, Ey), Vol(vav3, Fy) }+
+Vol(vyvy, Fs) =1+24+14+1+1=6.

From the list of the facets we see that there are five 4-
unbounded facets, precisely F(0) = {F, F,,F5,Fys,Fs} and
we have

VOI(V3,F1) =1, VOl(Vl,Fz) =1,

VOI(V3, F3) =1,

, Vol(vs,Fy) =1,

1
1

= 1, VOI(Vz,F3) =1,
1
1 VOI(VI,F5) =1,
1

¢4(I) = min{Vol(vy, F1), Vol(vs, F1)} + min{Vol(v, F,),
VOI(V3, F2)}+
+min{Vol(vy, F3), Vol(v,, F3), Vol(vs, F3) }+
+min{Vol(vy, Fs), Vol(v,, F4), Vol(vs, F4) }+
+min{Vol(v;,Fs5),Vol(v,,F5)} =1+ 1+1+1+1=5.
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