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Abstract. A Lie (super)algebra with a non-degenerate invariant sym-
metric bilinear form B is called a nis-(super)algebra. The double exten-
sion g of a nis-(super)algebra a is the result of simultaneous adding to a a
central element and a derivation so that g is a nis-algebra. Loop algebras
with values in simple complex Lie algebras are most known among the
Lie (super)algebras suitable to be doubly extended. In characteristic 2
the notion of double extension acquires specific features.

Restricted Lie (super)algebras are among the most interesting modular
Lie superalgebras. In characteristic 2, using Grozman’s Mathematica-
based package SuperLie, we list double extensions of restricted Lie su-
peralgebras preserving the non-degenerate closed 2-forms with constant
coefficients. The results are proved for the number of indeterminates
ranging from 4 to 7 — sufficient to conjecture the pattern for larger
numbers. Considering multigradings allowed us to accelerate computa-
tions up to 100 times.

Keywords: Restricted Lie superalgebra, characteristic 2, double exten-
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1 Introduction

1.1 Setting of the problem For a given Lie (super)algebra a over the ground
field K, the notion of double extension g := # & a® £ *, where # := K¢, and
A := KD, was recently distinguished, see [MR]. It simultaneously involves

1) a central extension of a (with center % := Kc),

2) a derivation D of a,

3) a non-degenerate invariant symmetric bilinear form (briefly: NIS) on a
extendable to g. Hereafter any Lie (super)algebra with a NIS is called a nis-
(super)algebra.

Most known examples of double extensions are affine Kac—-Moody algebras
g over C or R important in physics and mathematics (Google returns 482K
entries); here a is a loop algebra with values in a simple finite-dimensional Lie
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algebra s. Less known examples: the Lie superalgebra gl(ala) over C, a double
extension of psl(ala), and gl(np) in characteristic p > 0, a double extension of
psl(np).

In what follows we show that for the double extension to be “interesting”, i.e.,
not just the direct sum of two ideals (a and 2" @ ), the following conditions
should be satisfied:

a) the derivation D of a must be outer for any p; if p = 2, and D € (out a)j,
then condition D? = 0 is a must, see [BKLS];

b) the central extension has to be non-trivial, see Subsection [241

The simple Lie (super)algebras with NIS are classified for various types of
Lie (super)algebras over the field K of characteristic p # 2 in review [BKLS].

The new and most interesting results of [BeB1] are general constructions and
examples of double extensions of Lie superalgebras for p = 2. Here we recall the
main definitions and general results of [BeB1| carefully pointing at the difference
between the cases where p # 2 and the cases where p = 2.

In particular, in [BeB1], the double extensions of simple NIS-Lie superalge-
bras hg) (04) and hg) (0|5), where g(") is the derived of g, see eq. (I8), were
classified. Clearly, g) (0|n) has the Poisson Lie superalgebra po;(0|n) as its
double extension, but there are more: several new double extensions were found;
one of them gave an interpretation of a result in [BGLLI].

P. Deligne advised one of co-authors of this note to consider restricted al-
gebras first of all, as pertaining to geometry, see [LL]. In [BBH], the notion of
double extension was extended to restricted Lie algebras. If p = 2, there are
several notions of restrictedness, see [BLLSq|; here we consider the “classical”
one. Vectorial Lie (super)algebras can only be restricted if the shearing vector
is equal to 1 := (1,...,1).

Hereafter K is an algebraically closed field of characteristic 2 and
the shearing vector is equal to 1, so we do not indicate it. For details of
description of simple Lie superalgebras we study in what follows, see [BGLLS].

Our results. There are two types of super analogs of the Hamiltonian Lie
algebra: series b, and series le introduced in [Le]. If char K > 0, there are several
analogs of these series; here we consider the “standard” ones, i.e., with constant
coefficients, see [BKLS|, Subsection 4.7.12]:

a) the restricted Lie (super)algebras f)g)(a|b) on a even and b odd indeter-
minates X = (X1,...,X44p) with forms B = IIII, I1I, 11T and II on the
superspace spanned by the X; (in particular, B = IT and I on the space);

b) the restricted Lie superalgebras [e(l)(a|a) on a even and a odd indetermi-
nates.

We sharpen the conjecture from [BeBI] on the shape of double extensions

g) (Oln) for n > 5 and prove it. We computed double extensions of hg)(a|b) for
4<a+b<6and hg)(0|7), and le™ (ala) for a = 2,3: this suffices to see the
pattern for any a and b. The deforms of series h and le preserving the 2-forms
with non-constant coefficients are being considered elsewhere.
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1.2 Preliminaries: gradings A. Lebedev argued that in the modular case,
the space of roots, although a particular case of the space of weights, should
be considered over R, not over the ground field K as weights are considered
in any representation except for the adjoint one, see [BGL], Subsect. 4.3]. The
same applies to the notion of Z-graded Lie (super)algebras: all roots of det g, in
particular, Z-gradings, should be considered over R. (It is strange that this ob-
servation was not made ca 50 years earlier or any time later.) This interpretation
of the gradings and roots is implemented in SuperLie; it allowed us to accelerate
computations up to 100 times: e.g., the computation time for algebras with 6
indeterminates reduces from 8 hours to 5 minutes.

1.3 Preliminaries: Bilinear form and brackets A. Lebedev proved ([LeD])
that if p = 2 and dimV is odd, there is one equivalence class of the even
non-degenerate symmetric bilinear forms on the linear space V', whereas if dim V'
is even, there are two classes:

type I) the Gram matrix has at least one non-zero element on the main
diagonal,

type IT) if all elements on the main diagonal of the Gram matrix are zero.

For the normal shapes of these Gram matrices we take

Iy, = (102 I 0 ) if B is of type I and dimV = 2n, (1)
2n—2
0 1o\ .r » . .
Iy, = (1 O) if B is of type II and dim V' = 2a, or (2)
001,
Hyi1:=1 010 | ifdimV =2a+ 1 and B of any type. (3)
1,00

We denote the Lie algebra preserving the form B by og(V) or og(a) if dimV = a.

If V is a superspace, the even form B on it is the direct sum of the forms
on the even and odd parts of V', and hence the non-degenerate symmetric forms
can be of the types B =11, III, III, and II1I] — short for I &1, etc. We denote
the ortho-orthogonal Lie superalgebra preserving B by oop(V) or oop(alb) if
sdim V' = alb.

A. Lebedev proved ([LeD]) that for any p, there is one equivalence class of
non-degenerate odd symmetric bilinear forms B on V. In this case, sdim V = a|a
and for the normal shape of B one can take I1,, = Il2,. We denote the Lie
superalgebra preserving B by peg (V) or peg(a).

e Define the Poisson bracket on the space of Grassmann algebra generated by
either 2n odd generators &1, ...,&, and 71,...,n, (case IT), or n odd generators
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01,...,0, (case I), in accordance with ([I)—(B):

_ df dg  df dg\
{figtm = Z (agi on; + on; 5&) 4

V=% (s a): ©

of 9g
8f 89 8f 89 > 560 96 for n odd
’ = E , + + 6
thohs idnma (‘%i on;  On; 0&; D<o (3{1. 35’1,) for n even. (6)

o If, instead of the Grassmann algebra, we consider the algebra of truncated
polynomials generated by either 2n even generators qi,...,q, and p1,...,pn
(case IT), or n even generators z1, ..., z, (case I), the Poisson bracket becomes

_ of og | Of dg\ .
o= (i )t

{(f.obr=> (%gg) L (8)

of 9g
af 8g  of g 5 o for n odd
= —_ 9
{931 igzn—2 (8% Opi - Ipi 0g; i D<o aa_igi) for n even. o

We call the above (super)spaces with the Poisson brackets the Poisson algebras.
Observe that the space of truncated polynomials with the bracket {-,-}; is not
a Lie algebra, but a Leibnidl algebra: {z;, z;};1 = 1, not 0. The quotient modulo
center is, however, a Lie algebra. For all the above Poisson brackets and the
combinations thereof on a even and b odd indeterminates, the quotients modulo
center (generated by constants) is the Lie algebra of Hamiltonian vector fields
bp(alb), where B = IIII, IT1, III, or I1.

e We also consider the Buttin superalgebra b(ala); its space is the tensor
product of Grassmann algebra by the algebra of truncated polynomials gener-
ated by n even generators q1,...,q, and n odd generators 71,...,mT, with the
Schouten bracket a.k.a. Buttin bracket a.k.a. anti-bracket:

af o af 9
{f,9yBo:=) (ai a{i * 87{1- 8;—) '

Set le(ala) = b(ala)/c and hp(alb) = pog(alb)/c, where ¢ is the center (spanned
by constants).

On each of the above Poisson (Leibniz) algebras pog(a|b) and the Buttin
algebras b(a|a), define NIS by means of the Berezin integral = the coefficient of
the highest monomial: B(f,g) = f fgvol, where vol is the volume element. This
NIS is of the same parity as the number of odd indeterminates and induces a

! The (left) Leibniz algebra L satisfies [z,[y,2]] = [[z,y],2] + [y, [z, 2]] for any
xz,y,z € L; if in addition L it is anti-commutative, it is a Lie algebra. Superiza-
tion is immediate, via the Sign Rule.
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NIS of the simple subquotients, hg)(a|b) and eV (a|a). Clearly, g)(a|b) (resp.
(e (ala)) have the Poisson or Leibniz algebras (resp., the Buttin algebra) as
their double extensions; but they also have other double extensions.

For Lie superalgebras with Cartan matrices, see [BGL]; for descriptions in
terms of Cartan-Tanaka-Shchepochkina prolongations, see [BGLLS1/BGLLS];
for the classification of simple Lie superalgebras, see [BGLI/BLLSq

2 Background: Double extensions for p # 2 (after
[BKLS,ABB|/Be])

2.1 Lemma (On a central extension) (Lemma 3.6, page 73 in [BB]) Let
a be a Lie (super)algebra over a field K, let B, be an a-invariant NIS on a, let
D € det a be a deriwation such that By is D-invariant, i.e.,

Bq(Da,b) + (—1)PYPDIB (a,Db) =0 for any a,b € a. (10)

Then the bilinear form

w(a,b) := By(Da,b) (11)

is a 2-cocycle of the Lie (super)algebra a; clearly, p(w) = p(B) + p(D).

Thus, under assumptions of Lemma [2.I], we can construct a central extension
a, of a with the center spanned by an element ¢, given by cocycle w so that
a,,/Ke ~ a; moreover, we can construct a semidirect sum g = a,, X KD.

On the Lie (super)algebra g, define a bilinear form B by setting for any z € a

Bla = B4, B(D,c)=1, B(e,z)=B(D,z)= B(c,c)=B(D,D)=0. (12)

2.2 Lemma [On NIS] (For Lie algebras: [K| Exercise 2.10]; for Lie superal-
gebras: [BB| Theorem 1, page 68]) The form B defined by [I2)) is a NIS.

Thus constructed Lie (super)algebra g with NIS B on it is called the double
extension or, for emphasis, D-extension, of a. If the derivation D is inner, then
g is a direct sum of its ideal a and a 2-dimensional commutative ideal; this —
decomposable — case is not interesting.

2.3 Lie (super)algebra g that can be a double extension of a Lie
(super)algebra a Let g be a Lie algebra over any field K or a Lie superalgebra
over a field K of characteristic p # 2; let B be a NIS on g, and ¢ # 0 a central
element of g.

The invariance of the form B implies that B(c, [z, 2]) = 0 for any z,z € g,
i.e., the space ¢ contains the commutant g") = [g, g] of g, and hence is an ideal.
Since the form B is non-degenerate, the codimension of this ideal is equal to 1.

If B(c,c) # 0, then the Lie (super)algebra g is just a direct sum g = Ke@ct.

Theorem Let g be a Lie algebra over any field K or a Lie superalgebra over a
field K of characteristic p # 2; let B be a NIS on g, and 3(g) the center of g. If
g N3(g) #0, then g is a double extension of a Lie (super)algebra a.
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2.4 Central extension must be nontrivial for DE to be indecompos-
able Let g be a finite-dimensional Lie (super)algebra, and B a NIS on it. Let
D € vder g preserve B, and the 2-cocycle w(a, b) := B(Da,b) be trivial, i.e., there
exists @ € g* such that w(a,b) = a([a,b]) for all a,b € g. Let us prove that in
this case D is an inner derivation, so the double extension is decomposable.

Since B is non-degenerate, there exists an € g such that a(y) = B(z,y) for
all y € g. Then

B(Da,b) = a(la,b]) = B(z,[a,b]) = B([z,al],b) for all a,b € g.

For this z, we have Da = [z, q] for all a € g, q.e.d.

2.5 Remark on affine Kac—-Moody (super)algebras Let a be a simple
finite-dimensional Lie (super)algebra with a NIS b. Let a/®) := a ® Clz~!, 2],
where 2 = exp(ip) for the angle parameter ¢ on the circle, be the a-valued Lie
(super)algebra of loops expandable into Laurent polynomials. It is easy to see
that for any n € Z, the bilinear form

B, (f,g) := Resb(f,g)a"dx, where (13)
Res f(x)dxz =coeff. of ‘i—m in the Laurent series expansion of f(z)dx,

is a NIS on a‘®

values in Ce

. The non-trivial central extension given by the cocycle with

w(f,9) = Resb(f, dg) = Bo(/, +-0) (14)

and D, = xd%, where D,, = x"%, make g := (Cc x af(l)) x CD; a double
extension of a/ called affine Kac-Moody Lie (super)algebra. If a has Cartan
matrix, then g also has Cartan matrix; the Dynkin graph of g is the extended
Dynkin graph of a.

The above description made us wonder: (1) In the case where der a = a for
simplicity, the space of outer derivations of a‘) is vect(1) = der C[z~ ', z], What
is so special in D; to be selected for the role of outer derivation of a“? (2) Why
instead of the cocycle () with D = Dy, everybody uses eq. (I4) with D = Dg?

Let f = 2° and g = 2% be a-valued functions with values equal to u and v,
respectively. Then condition ([IQ) for By, see ([I3)), turns into

(5 +t) Resb(u,v)z" T dy = 0

true if either n + s+t # 0, or s+t = 0. Therefore, D,, preserves NIS B_,,, see
@), on a*™ and the cocycle (I4) can be obtained as

w(f,g) := Bp(f, D_ng) for any n € Z. (15)

Since only D is of degree 0, and only Dy preserves By, we see that only D; and
By lead to a Cartan matrix of g. This answers the above questions.
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3 Background: Double extensions for p = 2 (after [BeB1])

3.1 Quadratic and bilinear forms when p = 2 A given map ¢ : V — K,
where V is a K-vector space, is called a quadratic form if

q(\v) = \2q(v) for any A € K and for any v € V, and the map
(u,v) = By(u,v) := q(u + v) — q(u) — q(v) is bilinear.

The form B, is called the polar form of q. Recently, Lebedev classified non-
degenerate bilinear forms over a perfect field K (i.e., such that K? = K), see
[LeD]. This is a non-trivial result not related with a well-known classification
of quadratic forms in any characteristic, because in characteristic 2, each of the
arrows

q+— B,

is not necessarily onto, has a kernel, and two quadratic forms with different Arf
invariants may have identical polar forms.

3.2 Lie superalgebras for p = 2 For p # 2, superization of many notions
of Linear Algebra is performed, as is now well-known, with the help of the
Sign Rule. If p = 2, additional conditions appear. We recall basic definitions
retaining the minus sign from definitions for p # 2: for clarity.

o A Lie superalgebra in characteristic 2 is a superspace g = gg @ g1 over a
field K such that the even part gj is a Lie algebra, the odd part g is a gg-module
made two-sided by anti-symmetry, and on the odd part g7 a squaring is defined
as a map

Sg 101 — g5 given by f— f2 such that
(Af)? = A\2f2 for any f € g1 and X € K, and the map

[f.9] = (f+9)* — f* — g forany fg€g
is a bilinear form on g7 with values in gg.

(16)

The bracket on gg, as well as the action of gg on g7, is denoted also by the same
symbol [-,-], or [-,-]4 for clarity. The Jacobi identities for three even elements,
and involving one or two odd elements, are the same as for p # 2; the following
new identity replaces the one with three odd elements: it involves the squaring:

[f?,9] = [f.[f.g] forany f € g; and g € g. (17)

e Desuperizing (retain only the bracket) we get a Z/2-graded Lie algebra g.
e For any Lie superalgebra g in characteristic 2, its derived algebras are

0@ =g, " =[0" gV +K{f?| f € ()1} (18)
A linear map D : g — g is called a derivation of the Lie superalgebra g if
D([f.9]) = [D(f), 9] + [f, D(g)] forany f,g€g (19)

and, additionally (generalization of (IT), where D = ad,),

D(f*) = [D(f),f] forany f € gi. (20)
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We denote the space of all derivations of g by det(g).
An even linear map p : g — gl(V) is a representation of the Lie superalgebra
g in the superspace V, called g-module, if

p(1f.9]) = [p(f), p(9)] for any f,g € g; and p(f?) = (p(f))* for any f € g1.
(21)
We say that a bilinear form B on g is symmetric if

B(f,g9) = B(g, f) for any f,g € g; and,
additionally, B(f, f) = 0 for any f € g;.

We say that D preserves B if

B(D(f),9) + B(f, D(g)) = 0 for any f,g € g; and, (22)
additionally, B(D(f), f) =0 for any f € g7 and any g € g.

We denote the nis-superalgebra with a NIS By by (g, Bg). A nis-superalgebra
(g, Bg) is said to be decomposable if it can be decomposed into direct sums of
ideals, namely g = @®1;, such that all I; are orthogonal to each other.

3.3 The case where B, is even Here g:= 7 ® a® ™ as spaces, where
K :=Kcand #* :=KD.
Dg-extensions. The quadratic form q

3.3.1. Theorem. Let (a, By) be a nis-superalgebra, p(By) = 0, let D € derg(a)
preserve Bg. Let q : a1 — K be a quadratic form; let its polar form By satisfy

Bq(a,D(b)) = By(a,b) for any a,b € az. (23)

Then there exists a nis-superalgebra structure on g, defined as follows, cf.
Subsection 2] and [I2). The squaring is given by

5o() i= sa(a) + qla)e  for any a € g1 (= ay).
The bracket on g is defined for any a,b € a as follows:
[a,b]g :== [a,b]la + Ba(D(a),b)c, [D,alg:= D(a) and [c,g]g = 0. (24)

The NIS B on g is given by formulas [I2)) with one modification: B(D, D) can
be arbitrary.

What is the difference of this Theorem from its analog for p # 27

First, the extra condition in eq. 22): Bq(D(a),a) = 0. For p # 2, it follows
from eq. (22), whereas for p = 2 it should be required as a part of invariance
condition.

Second, the reasons for the quadratic form ¢ to appear. Indeed, for p # 2,
to determine a central extension, we only need a cocycle, whereas for p = 2, we
have to adjust the squaring to match this cocycle and this is precisely what the
form g is needed for.
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Everything else is the same as for p # 2, same as with the desu-
perisations of a, when only even derivations and forms remain, i.e., no extra
conditions.

We call the Lie superalgebra (g, B) constructed in Theorem B3] a Dg-
extension of (a, Bq) by means of D and gq.

Now, let the “special center” of g relative to By be

3s(8) == 3(8) N s4(97)", where sq(g7) := Span{az” | z € g1}. (25)

Observe that 35(g)1 = 3(9)1 and 35(8)5 = 3(9)5 N s(g7) " Moreover, 3(g) is not
necessarily an ideal.

3.3.2. Proposition. Let (g,By) be an indecomposable nis-superalgebra. Let
3s(9)g # {0}. Then (g, By) is obtained as an Dg-extension from a nis-superalgebra
(a, By).

What is the difference of the case where p = 2 from that where p # 27 The
“indecomposability” condition can be weakened to the existence of a nonzero
even element ¢ belonging to the intersection of the center of g N [g, g] N sq (o7)*.
Now we see that the only extra condition is related to squaring and is precisely
due to the fact that ¢ must be an ideal.

Dji-extensions. The element A € aj

3.3.3. Theorem. Let (a, B,) be a nis-superalgebra, p(By) = 0. Let D € dery(a)
preserve By; let A € ag satisfy the following conditions (see [ABBIBe]):

D? =ada; D(A)=0. (26)

Then there exists a nis-superalgebra structure on g, defined as follows. The squar-
g s given by

sg(rc+a+1tD) = sq(a) +tD(a) + t*A for any a € ag and r,t € K.

The bracket is given by eq. @4)). The NIS B on g is given by formulas ([I2).

We call the nis-superalgebra (g, B) constructed in Theorem a Di-
extension of (a, Bq) by means of D and A.

3.3.3a. Proposition. Let (g, B) be a nis-superalgebra. Define the cone

%(9,B) :={x € 91 | B(sg(x),54(y)) =0 for any y € g1}.
Let 3(g)1N% (g, B) # {0}. Then (g, B) is obtained from a nis-superalgebra (a, Bq)
as either a Dg-extension, or a Di-extension.

3.4 The case where B, is odd Here g := % @ a @ ™ as spaces, where
K :=Kcand #* :=KD.
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Dpg-extensions

3.4.1. Theorem. Let (a, B,) be a nis-superalgebra, p(By) = 1. Let D € derg(a)
preserve By. Then there exists a nis-superalgebra structure on g, defined as fol-
lows. The squaring is given by

sgla + pc) == sq(a) for any a € a7 and p € K.

The bracket is given by eq. 24). The NIS B on g is given by formulas ([I2)).

We call the nis-superalgebra (g, B) constructed in Theorem B:41] the Dg-
extension of (a, By) by means of D.

3.4.1a. Proposition. Let (g, B) be an indecomposable nis-superalgebra, p(B) =
1. If s4(3(9)1) N sg(g1)t # {0}, then (g, B) is obtained from a nis-superalgebra
(a, Bq) as either a Dg-extension, or a Di-extension.

Djsi-extensions. The quadratic form g, and the elements A € ag and
m e K

3.4.1b. Theorem. Let (a, B,) be a nis-superalgebra, p(By) = 1. Let A € ag
and D € deri(a) preserving B, satisfy the conditions (26]):

Let q be a quadratic form on ag such that By(a,b) = Bs(D(a),b).

Then there exists a nis-superalgebra structure on g, defined as follows. The
squaring is given by

sgla+pD) = sa(a) + (*m + q(a))c + p* A+ pD(a)
for any a € a7 and p € K, and some m € K.

The bracket is given by eq. 24). The NIS B on g is given by formulas ([I2)).

We call the nis-superalgebra (g, B) constructed in Theorem [B.41D a Di-
extension of (a, By) by means of D, ¢, A, and m.

3.4.1c. Proposition. Let (g, B) be an indecomposable nis-superalgebra, p(B) =
1. If 3(g)g # {0}, then (g, B) is obtained as a Di-extension from a nis-superalgebra.

3.5 Summary: to construct a double extension of a nis-(super)algebra
a, we need g, A, m

D Ba even| odd

(27)
even | ¢ -
odd | A |q,A,m

4 Isomorphisms, and equivalence classes of derivations
(after [BeB1])

For a nis-superalgebra a with NIS B, denote by (g, By) (resp. (g, By)) the double

extension of a by means of a derivation D (resp. D), i.e., g := X ©ad. A", where
H =Kcand #* =KD (resp. g:= X ®ad x>, & =Ké¢and J* =KD).
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If p = 2, we additionally require a quadratic form ¢ (resp. ¢) if the center ¢
is even, while in the case of Di-extensions, we need, moreover, an element A € ag,
and sometimes m € K (resp. A and ) described in the previous section.

An isomorphism of of nis-superalgebras m : g — @ is a nis-preserving iso-
morphism of Lie superalgebra structures:

m([f,9lg) = [7(f), (9],  Ba(w(f),7(9)) = Bg(f,g) for any f, g € g.
4.1 The case where B, is even
4.1.1. Theorem. Let p(D) = p(D) = 0. Let 75 be an automorphism of (a, By).
Let A € K* and let y € ag satisfy the following conditions:

4(a) = Agomy H(a) + Ba(y, sa0my () for any a € a;
To D7T0—)\D—|—ad for any a € ag;

Then there exists an isomorphism 7 : g — g given by the formulas

7(a)
m(c)
m(D)

(a) + Bq(y,a)c  for any a € a;

)

Tola@
AG;
A"HD + mo(y)) + vé, where v € K is arbitrary.

If [D] = [D] in Hi(a;a), then they define isomorphic double extensions of a.

4.1.2. Theorem. Let p(D) = p(D) = 1. Let m be an automorphism of (a, By).
Let A € K* and y € a7 satisfy the following condition:

7o ' Do = AD + ad, ona.
Then there exists an isomorphism 7 : g — g given by the formulas

m(a) =mg(a)+ Baly,a)é for any a € ag;

T =T Oon ag;

m(c) = NG

(D) = A\Y(D + mo(y)) + vé, where v is arbitrary;
A = Nmo(A) + sa(mo(y)) + Amo(D(y)).

If [D] = [D] in Hi(a;a), then they define isomorphic double extensions of a.
4.2 The case where B, is odd

4.2.1. Theorem. Let p(D) = p(D) = 1. Let o be an automorphism of (a, By).
Let A € K* and y € a7 satisfy the following conditions:

G(a) = Aqo 775}(@) + Ba(y, sa 0 my Ya)) for any a € ag;
7r0_1D7ro(a):)\D( ) +ady(a) for any a € ag;

A= N70(A) + Amo(D(y)) + sa(mo(y));

m = X2q(y) + ABa(y, sa(y) + M) + X3m
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Then there exists an isomorphism 7 : g — g given by the formulas

mw(a) = mo(a) + Bqa(y,a)é for any a € a;
m(e) = A& (28)
m(D) = A"H(D + mo(y))-

If [D] = [D] in Hi(a;a), then they define isomorphic double extensions of a.

4.2.2. Theorem. Let p(D) = p(D) = 0. Let mo be an automorphism of (a, By).
Let A € K* and y € ag satisfy the following conditions:

7o ' Dmo(a) = AD(a) + ady(a) for any a € a.

Then there exists an isomorphism m : g — g given by the formulas 28). If
[D] = [D] in H}(a; a), then they define isomorphic double extensions of a.

5 The exceptional cases: a = hg)(a|b) for a + b = 4 and
a=le®(2)2)

Recall that the Z-grading of a given vectorial Lie superalgebra is called standard
if the degree of each indeterminate X; is equal to 1. This grading is given by the
Euler operator > X;0x,. The roots are given with respect to the maximal torus,
spanned by ¢;p;, 7:&, and ¢;m; in the cases por(al0), po;(0la), and le(ala),
respectively. According to Subsection the degree and roots are considered
over R, assuming that the ith coordinate of the weight of &;, m;, and p; is equal
to 1, whereas the ith coordinate of the weight of 7;, and ¢; is equal to —1.
The standard Z-grading of a = f)g)(a|b) (resp. leM(ala)) is symmetric, i.e.,

a= @ a; witha_y ~ay (resp. a1 ~ II(a1)") as ag-modules, (29)
—1<i<1

only if @ +b = 4 (resp. a = 2). That is why some of the double extensions in
these cases have no analogs in the generic cases: they appear due to symmetry.

5.1 Outer derivations Let the superscript of the derivation D be its degree,
let the subscript be its weight or a monomial (z or b) or a label 6.

bg) (0]4) One outer derivation in each of degrees +2 and 5 derivations of degree
0, whose weights are (+2,0), (0,£2) and (0, 0), see [BeBl].

bg) (4]/0) One outer derivation in each of degrees £2 and 5 derivations of degree
0, whose weights are (£2,0), (0, £2) and (0, 0). This answer is the desuperization
of the case b%) (0]4); the cocycles are identical in shape to those of b%) (014).
%}7(2|2) One outer derivation in each of degrees +2 and 5 derivations of de-
gree 0, whose weights are (+2,0), (0,£2) and (0,0). This answer is a partial

desuperization of the case h%) (0]4); the cocycles are identical in shape to those
£% (04
of by;"(0]4).
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b (212), b® (113), b®(3]1), 5 (2]2), ) (2]2) One outer derivation in

each of degrees +2. The apparently missing Euler operator is in this case an

inner derivation. The same reason causes absence of certain derivations in cases
gl)(0|4), and [jgl)(4|0), and in this case as compared with the case h%) (014).

l)f,l) (0]4) One outer derivation in each of degrees +2 and 4 derivations of degree
0, whose weights are =2 and two derivations of weight O.

l)f,l)(4|0) The answer is the desuperization of the case hgl)(0|4); derivations of
the same shape.

(e (2|2) The shape of derivations is identical to those for h%) (0/4); but DZ(JO)
are odd.
5.2 The double extensions Note: in all exceptional cases p(By) = 0.

Case h. For the proof for the cocycle D(=2) in case a = h%) (0]4), see [BeBI;
the result for D? is isomorphic due to the symmetry ([29). The idea of the proof
is identical for the other derivations. The condition BT D(?) = D) B, is easily
seen. Besides, since D) acts by zero on ag, it follows that

Bo(D®)(f),f) =0 for any f € ag.

Tables (3I]) and (B0]) show existence of the quadratic form ¢ (resp. element A)
associated with each derivation D, and names of the respective double extension
DE. In the 6th column of BI) B = II, or III, or II1.

Derivation| ¢ |DE of bgl)(0|4) DE of bgl)(4|0)
D |yes|  po,(0]4) po, (4]0)
DY |yes| po,(0]4) po;(4/0) (30)
D | - - -
D2 yes|  po,(0[4) po;(4/0)

D | g |b5(014) b5 (410) | b7 (212) b5 (212) || A1V (2]2)
DO yes|po s (014) g0, (40) [P (22)] = [o] b2R2)
DY |yes| gl(2]2) | gi(40) | i(212) | - |-| -
D@ |yes|po; (014)[po,; (410) po 11 (212) oo (212)[[ 0] b(212)
Case le. Compare with the general case in Subsection

2}

5.2.1. Lemma. Let the super-rank of the operator A in the superspace V be
the super dimension of the superspace V/ Ker A.

1) Because the super-rank of Dlgo) is (2,2) and no element in the correspond-
ing po and gl has such rank, it follows that po is not isomorphic to the other two
double extensions.

2) Because rkD(()O) = 8 in po and no element in po; and in po; has such
rank, it follows that po; is not isomorphic to the other two double extensions.

3) Because rkad,, = rkad,, = 7 in b(2|2) and no element in b(2|2) has such

rank, b(2|2) % b(2[2).
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6 The general cases. Outer derivations
Let X be the product of all indeterminates. Derivations of a will be called equiv-
alent if they lie on one orbit of the group of automorphisms of det a.

6.1 out(h(l)(0|2n)) Notation for convenience (tags “(le odd)” are used in

Subsection B.13)):

1. Basis: B={n1,...,0;&1,.--,&n}-
2. The set of products of any k basis elements (Choose):

ChB(k) = {xlxk | xr; € B}, Chg(k) = {xlxk | xr; € {51,...,571}};
Chy(k) ={z1...xr |z € {m,...,nn}}. For example,
Chp(2) = {nin;,&&; | for all i # j <n}pU{n;& |i,j <n}

3. Index of elements: Ind(x) = The set of indices of z in terms of 7,¢&.
For example, Ind(n1&3) = {1, 3}, Ind(n285&7) = {2,5,7}.

4. The switch symbol: S(&) = n; and S(n;) = &.

5. Let O denote the set of all monomials of odd degree.

(a) Deg=0. There are 2n equivalent derivations: for any b € B, we have
Dgo) = Z Z (bx) ) (fe: always odd) (32)
0<i<2n—2 x€Ch(3)
(b) Deg=0. One particular derivation — the Euler operator
0)
D DD DR DD D (33)
1<i<n—1 0<j<2i+1 xze€Ch¢(2i) yeChy(j)
(c)Deg= 2n — 2.

pn-2) . Z S(x)). (Ie: odd with n) (34)
xEB

6.2 out(h(l) (2n]0)) The desuperization of the case out(bg) (0]2n)); the same
cocycles.

6.3 out(h(l) (2a|2b)) A partial desuperization of out( g) (0]2a + 2b)); the
same cocycles.

6.4 out(h(l)(0|2n)) Cocycles:
(a) Deg=0. There are 2n equivalent derivations: for any b € B, we have

DY =3 3 (ba) ® (S(b)a). (35)

0<i<2n—2 ze€Ch(i)

(b) Deg=0. One particular derivation (the apparent asymmetry of 6; and 6
is due to SuperLie’s aesthetic criteria)

> bz (012). (36)
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(¢) Deg=0. Another particular derivation — the Euler operator

DY =3z (@) (37)
z€0
(d) Deg = 2n — 2. See eq. ([B4).

6.5 out(f)gl) (2n|0)) The desuperization of the case out( (O|2n)); the same
cocycles.

6.6 out(h(l)(2a|2b)) Cocycles:
(a) Deg = 2a + 2b — 2. See eq. (34).

6.7 out(h(0|2n + 1)) Notation for convenience:

1. Basis: B = {7717' 77771797517 7571} or B = {7717' "77777,;517" 7511}
2. Let C(x) denote the set of all monomials each of which is a multiple of x;

let C(z) denote the set of all monomials each not a multiple of z.
3. The switch symbol: S(&;) = n; and S(n;) = &;, whereas S(0) = 6.
4. Let O denote the set of all monomials of odd degree.

Cocycles: 3
(a) Deg=0. There are 2n equivalent derivations: of weight 2w for any = € B
of weight w,

DO = 3 aye (). (38)
yeC(z) N C(S(=))
(b) Deg=0. One particular derivation — the Euler operator, see eq. ([B1).
(c) Deg = 2n — 1: See eq. (34).
6.8 out(h(l) (2a +1|2b+ 1)) Cocycles:
(a) Deg=0. A particular derivation Déo), see eq. (Ba)

a
(b) Deg=0. Another particular derivation — the Euler operator, see eq. (87])
(c) Deg = 2a + 2b. See eq. (34)).

6.9 out(h(l) (2a|2b)) Cocycles:
(a) Deg=0. There are 2b equivalent derivations, see eq. (B8]).
(b) Deg=0. A particular derivation Déo), see eq. (3]
(c) Deg=0. Another particular derivation — the Euler operator, see eq. (87
(d) Deg = 2a + 2b — 2. See eq. (34).

6.10 out(b(l) (2a|2b)) Same cocycles as for out( (2b|2a)), but with p,q
and &, n interchanged in all cocycles.

6.11 out(b(l) (2a|2b+ 1)) A partial desuperization of [3527(0@” +1).

6.12 out(b(l) (2a + 1|2b)) Same cocycles as for out( (2b|2a + 1)), but
with p,q and &, interchanged in all cocycles.

6.13  out(le™(n|n)) Same cocycles as for out(hg)(2n|0)) with g, 7 replacing
q, p; odd cocycles are marked in Subsection 6.1l Observe that p(B) = n (mod 2),
so there are no Di-extensions for n odd, and no Dg-extensions for n even, since
the center ¢ is always odd and p(c) = p(B) + p(D).
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7 The general cases. Double extensions

Note: in all cases of h series, p(Bq) is congruent to the parity of the number
of odd indeterminates; p(By) = a + 1 for le(ala). Let X be the product of all
indeterminates.

7.1 The double extensions of a = H*)(0|2n + 1), [)5—1[}:,(2a|2b + 1),
5—2—1(2(1 +1|2b) fora+b=mn > 2
The Dg-extension The derivation D((JO) does not preserve the NIS B. Indeed,
Bo(D(6), 25) = 1 while By(6, DY (X)) = 0.
Now, the derivations D:(EO) preserve the bilinear form B,, and the proof is similar
to that for bg)(0|4) in Subsection 0.2} all respective double extensions are iso-

morphic. The double extension by means of the derivation Dg(co) for any z € B,
see Subsection [6.7] is a Lie superalgebra denoted by po(0]5) in [BeBI] for n = 2:

Derivation|preserves Bq|sg(c)| Extension Extension Extension
DY Yes 0 |po(0]2n + 1)|po 717 (2a]2b + 1) [po ;717 (2a + 1]2b) | (39)
D" No - - - -

The Di-extension In a lexicographically ordered basis on h*)(0]5) the Gram
matrix of NIS is B = antidiag(1, ..., 1). The condition BT D"~ = D=1,
is easy to see. Besides, since D) lgs = 0, it follows that

Bo(DP"V(f), f) =0 for any f € ay.

Now, since 0 = (D"~1))2 = ady, it follows that A = 0 since a has no center. We
have, therefore, a parametric family of double extensions by means of D=1 ¢
A =0and m € K (see Theorem[B.4.1D)). It is proved in [BeBI], that po(0|5;m) for
m # 0 is not isomorphic to po(0]5;0) := po(0]5), whereas po(0]5; m) ~ po(0]5; m)
for any pair mm # 0. The same arguments are true for any n > 1. Table (@0Q)
summarizes these results for any m € K*:

D |q(a)|sq(D)| Extension Extension Extension
D@ Diyes| 0 | po(0]2n+1) | poy;(2a20+1) | poyp(2a+1]2b) | (40)
D@Vl yes | me |po(02n + 1;m)|po g7 (2a]20 + 1;m) [po 7 7 (2a + 1|2b;m)

7.2 The double extensions of a = bg)(0|2n) for n > 2 and its desu-
perizations

D | q |6(012n) |55 (2n]0) | 53 (2a12b) | 62 (2a + 1]2b + 1)
DV |yes|po; (012n) |0 17 (210) [P0 7 17 (20126) |90 17 7 (20 + 1126 + 1)
D" |no — — — —

0

D" lyes|po;(0[2n) |po 7 (2n]0) |po ;7 (2a|20)|po 77 (2a + 126 + 1)

(41)
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7.3 The double extensions of a = b;l)(0|2n) for n > 2 and its desu-
perizations Clearly, the results in cases Il and II] are obtained from one
another.

D | q [b7(02n) |5 (2n]0) | b7 (2a]2b) | b7} (2a]2b)
D |yes|po, (0]2n) |§0,,(2n]0)| 5o, (2a]2b) |po 1, (2a] 2b)
D |yes|po, (0[2n) [po,;(2n]0)|po,; (2a]2b) |0 7 (2a]2b) (42)
DY | - - - - -
DEn=2) yes|po;(012n) [ po;(2n|0) |po;;(2a|2b) |po;(2a]2b)

=

7.4 The double extensions of a = le™) (n|n)

D |Alle™ (2n|2n)||A|le™ (2n + 1]2n 4 1)
D™ 0| b(2n2n) ||- -
D" |- - - -
D=2 10| b(2n|2n) ||0| b(2n +1|2n + 1)

(43)

7.4.1. Lemma. 1) We have tk D?"=2) = 2n in po, and there is no such el-
ement in both po and po. The rank of D(()O) in po is 22771 £ 2n for n > 1,
and there is no such element in po, so po and po are non-isomorphic double
extensions and each of them is not isomorphic to po.

2) Because rtkad,, = rkad,, = 2**~1 — 1 in b(2n|2n) and no element in
b(2n[2n) has odd rank, b(2n|2n) % b(2n|2n).
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