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Abstract. A Lie (super)algebra with a non-degenerate invariant sym-
metric bilinear form B is called a nis-(super)algebra. The double exten-
sion g of a nis-(super)algebra a is the result of simultaneous adding to a a
central element and a derivation so that g is a nis-algebra. Loop algebras
with values in simple complex Lie algebras are most known among the
Lie (super)algebras suitable to be doubly extended. In characteristic 2
the notion of double extension acquires specific features.
Restricted Lie (super)algebras are among the most interesting modular
Lie superalgebras. In characteristic 2, using Grozman’s Mathematica-
based package SuperLie, we list double extensions of restricted Lie su-
peralgebras preserving the non-degenerate closed 2-forms with constant
coefficients. The results are proved for the number of indeterminates
ranging from 4 to 7 — sufficient to conjecture the pattern for larger
numbers. Considering multigradings allowed us to accelerate computa-
tions up to 100 times.

Keywords: Restricted Lie superalgebra, characteristic 2, double exten-
sion

1 Introduction

1.1 Setting of the problem For a given Lie (super)algebra a over the ground
field K, the notion of double extension g := K ⊕ a⊕K ∗, where K := Kc, and
K

∗ := KD, was recently distinguished, see [MR]. It simultaneously involves
1) a central extension of a (with center K := Kc),
2) a derivation D of a,
3) a non-degenerate invariant symmetric bilinear form (briefly: NIS) on a

extendable to g. Hereafter any Lie (super)algebra with a NIS is called a nis-
(super)algebra.

Most known examples of double extensions are affine Kac–Moody algebras
g over C or R important in physics and mathematics (Google returns 482K
entries); here a is a loop algebra with values in a simple finite-dimensional Lie
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algebra s. Less known examples: the Lie superalgebra gl(a|a) over C, a double
extension of psl(a|a), and gl(np) in characteristic p > 0, a double extension of
psl(np).

In what follows we show that for the double extension to be “interesting”, i.e.,
not just the direct sum of two ideals (a and K ⊕K ∗), the following conditions
should be satisfied:

a) the derivation D of a must be outer for any p; if p = 2, and D ∈ (out a)1̄,
then condition D2 = 0 is a must, see [BKLS];

b) the central extension has to be non-trivial, see Subsection 2.4.

The simple Lie (super)algebras with NIS are classified for various types of
Lie (super)algebras over the field K of characteristic p 6= 2 in review [BKLS].

The new and most interesting results of [BeB1] are general constructions and
examples of double extensions of Lie superalgebras for p = 2. Here we recall the
main definitions and general results of [BeB1] carefully pointing at the difference
between the cases where p 6= 2 and the cases where p = 2.

In particular, in [BeB1], the double extensions of simple NIS-Lie superalge-

bras h
(1)
Π (0|4) and h

(1)
Π (0|5), where g(1) is the derived of g, see eq. (18), were

classified. Clearly, h
(1)
Π (0|n) has the Poisson Lie superalgebra poΠ(0|n) as its

double extension, but there are more: several new double extensions were found;
one of them gave an interpretation of a result in [BGLL1].

P. Deligne advised one of co-authors of this note to consider restricted al-
gebras first of all, as pertaining to geometry, see [LL]. In [BBH], the notion of
double extension was extended to restricted Lie algebras. If p = 2, there are
several notions of restrictedness, see [BLLSq]; here we consider the “classical”
one. Vectorial Lie (super)algebras can only be restricted if the shearing vector
is equal to 1 := (1, . . . , 1).

Hereafter K is an algebraically closed field of characteristic 2 and
the shearing vector is equal to 1, so we do not indicate it. For details of
description of simple Lie superalgebras we study in what follows, see [BGLLS].

Our results. There are two types of super analogs of the Hamiltonian Lie
algebra: series h, and series le introduced in [Le]. If charK > 0, there are several
analogs of these series; here we consider the “standard” ones, i.e., with constant
coefficients, see [BKLS, Subsection 4.7.12]:

a) the restricted Lie (super)algebras h
(1)
B (a|b) on a even and b odd indeter-

minates X = (X1, . . . , Xa+b) with forms B = ΠΠ , ΠI, IΠ and II on the
superspace spanned by the Xi (in particular, B = Π and I on the space);

b) the restricted Lie superalgebras le(1)(a|a) on a even and a odd indetermi-
nates.

We sharpen the conjecture from [BeB1] on the shape of double extensions

h
(1)
Π (0|n) for n > 5 and prove it. We computed double extensions of h

(1)
B (a|b) for

4 ≤ a + b ≤ 6 and h
(1)
Π (0|7), and le(1)(a|a) for a = 2, 3: this suffices to see the

pattern for any a and b. The deforms of series h and le preserving the 2-forms
with non-constant coefficients are being considered elsewhere.
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1.2 Preliminaries: gradings A. Lebedev argued that in the modular case,
the space of roots, although a particular case of the space of weights, should
be considered over R, not over the ground field K as weights are considered
in any representation except for the adjoint one, see [BGL, Subsect. 4.3]. The
same applies to the notion of Z-graded Lie (super)algebras: all roots of der g, in
particular, Z-gradings, should be considered over R. (It is strange that this ob-
servation was not made ca 50 years earlier or any time later.) This interpretation
of the gradings and roots is implemented in SuperLie; it allowed us to accelerate
computations up to 100 times: e.g., the computation time for algebras with 6
indeterminates reduces from 8 hours to 5 minutes.

1.3 Preliminaries: Bilinear form and brackets A. Lebedev proved ([LeD])
that if p = 2 and dimV is odd, there is one equivalence class of the even
non-degenerate symmetric bilinear forms on the linear space V , whereas if dimV
is even, there are two classes:

type I) the Gram matrix has at least one non-zero element on the main
diagonal,

type Π) if all elements on the main diagonal of the Gram matrix are zero.

For the normal shapes of these Gram matrices we take

Π̃2n :=

(
12 0
0 Π2n−2

)
if B is of type I and dimV = 2n, (1)

Π2a :=

(
0 1a
1a 0

)
if B is of type Π and dimV = 2a, or (2)

Π2a+1 :=




0 0 1a
0 1 0
1a 0 0


 if dimV = 2a+ 1 and B of any type. (3)

We denote the Lie algebra preserving the formB by oB(V ) or oB(a) if dimV = a.

If V is a superspace, the even form B on it is the direct sum of the forms
on the even and odd parts of V , and hence the non-degenerate symmetric forms
can be of the types B = II, IΠ , ΠI, and ΠΠ — short for I⊕ I, etc. We denote
the ortho-orthogonal Lie superalgebra preserving B by ooB(V ) or ooB(a|b) if
sdimV = a|b.

A. Lebedev proved ([LeD]) that for any p, there is one equivalence class of
non-degenerate odd symmetric bilinear forms B on V . In this case, sdimV = a|a
and for the normal shape of B one can take Πa|a = Π2a. We denote the Lie
superalgebra preserving B by peB(V ) or peB(a).

• Define the Poisson bracket on the space of Grassmann algebra generated by
either 2n odd generators ξ1, . . . , ξn and η1, . . . , ηn (case Π), or n odd generators
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θ1, . . . , θn (case I), in accordance with (1)–(3):

{f, g}Π :=
∑(

∂f

∂ξi

∂g

∂ηi
+

∂f

∂ηi

∂g

∂ξi

)
; (4)

{f, g}I :=
∑(

∂f

∂θi

∂g

∂θi

)
; (5)

{f, g}I :=
∑

i≤n−2

(
∂f

∂ξi

∂g

∂ηi
+

∂f

∂ηi

∂g

∂ξi

)
+

{
∂f
∂θ

∂g
∂θ

for n odd
∑

i≤2

(
∂f
∂θi

∂g
∂θi

)
for n even.

(6)

• If, instead of the Grassmann algebra, we consider the algebra of truncated
polynomials generated by either 2n even generators q1, . . . , qn and p1, . . . , pn
(case Π), or n even generators z1, . . . , zn (case I), the Poisson bracket becomes

{f, g}Π :=
∑(

∂f

∂qi

∂g

∂pi
+

∂f

∂pi

∂g

∂qi

)
; (7)

{f, g}I :=
∑(

∂f

∂zi

∂g

∂zi

)
; (8)

{f, g}I :=
∑

i≤n−2

(
∂f

∂qi

∂g

∂pi
+

∂f

∂pi

∂g

∂qi

)
+

{
∂f
∂z

∂g
∂z

for n odd
∑

i≤2

(
∂f
∂zi

∂g
∂zi

)
for n even.

(9)

We call the above (super)spaces with the Poisson brackets the Poisson algebras.
Observe that the space of truncated polynomials with the bracket {·, ·}I is not
a Lie algebra, but a Leibniz1 algebra: {zi, zi}I = 1, not 0. The quotient modulo
center is, however, a Lie algebra. For all the above Poisson brackets and the
combinations thereof on a even and b odd indeterminates, the quotients modulo
center (generated by constants) is the Lie algebra of Hamiltonian vector fields
hB(a|b), where B = ΠΠ , ΠI, IΠ , or II.
• We also consider the Buttin superalgebra b(a|a); its space is the tensor

product of Grassmann algebra by the algebra of truncated polynomials gener-
ated by n even generators q1, . . . , qn and n odd generators π1, . . . , πn with the
Schouten bracket a.k.a. Buttin bracket a.k.a. anti-bracket :

{f, g}B.b :=
∑(

∂f

∂qi

∂g

∂πi

+
∂f

∂πi

∂g

∂qi

)
.

Set le(a|a) = b(a|a)/c and hB(a|b) = poB(a|b)/c, where c is the center (spanned
by constants).

On each of the above Poisson (Leibniz) algebras poB(a|b) and the Buttin
algebras b(a|a), define NIS by means of the Berezin integral = the coefficient of
the highest monomial: B(f, g) =

∫
fg vol, where vol is the volume element. This

NIS is of the same parity as the number of odd indeterminates and induces a

1 The (left) Leibniz algebra L satisfies [x, [y, z]] = [[x, y], z] + [y, [x, z]] for any
x, y, z ∈ L; if in addition L it is anti-commutative, it is a Lie algebra. Superiza-
tion is immediate, via the Sign Rule.
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NIS of the simple subquotients, h
(1)
B (a|b) and le(1)(a|a). Clearly, h

(1)
B (a|b) (resp.

le(1)(a|a)) have the Poisson or Leibniz algebras (resp., the Buttin algebra) as
their double extensions; but they also have other double extensions.

For Lie superalgebras with Cartan matrices, see [BGL]; for descriptions in
terms of Cartan-Tanaka-Shchepochkina prolongations, see [BGLLS1,BGLLS];
for the classification of simple Lie superalgebras, see [BGL,BLLSq].

2 Background: Double extensions for p 6= 2 (after
[BKLS,ABB,Be])

2.1 Lemma (On a central extension) (Lemma 3.6, page 73 in [BB]) Let
a be a Lie (super)algebra over a field K, let Ba be an a-invariant NIS on a, let
D ∈ der a be a derivation such that Ba is D-invariant, i.e.,

Ba(Da, b) + (−1)p(a)p(D)Ba(a,Db) = 0 for any a, b ∈ a. (10)

Then the bilinear form

ω(a, b) := Ba(Da, b) (11)

is a 2-cocycle of the Lie (super)algebra a; clearly, p(ω) = p(B) + p(D).

Thus, under assumptions of Lemma 2.1, we can construct a central extension
aω of a with the center spanned by an element c, given by cocycle ω so that
aω/Kc ≃ a; moreover, we can construct a semidirect sum g = aω ⋉KD.

On the Lie (super)algebra g, define a bilinear form B by setting for any x ∈ a

B|a = Ba, B(D, c) = 1, B(c, x) = B(D, x) = B(c, c) = B(D,D) = 0. (12)

2.2 Lemma [On NIS] (For Lie algebras: [K, Exercise 2.10]; for Lie superal-
gebras: [BB, Theorem 1, page 68]) The form B defined by (12) is a NIS.

Thus constructed Lie (super)algebra g with NIS B on it is called the double
extension or, for emphasis, D-extension, of a. If the derivation D is inner, then
g is a direct sum of its ideal a and a 2-dimensional commutative ideal; this —
decomposable — case is not interesting.

2.3 Lie (super)algebra g that can be a double extension of a Lie
(super)algebra a Let g be a Lie algebra over any field K or a Lie superalgebra
over a field K of characteristic p 6= 2; let B be a NIS on g, and c 6= 0 a central
element of g.

The invariance of the form B implies that B(c, [x, z]) = 0 for any x, z ∈ g,
i.e., the space c⊥ contains the commutant g(1) = [g, g] of g, and hence is an ideal.
Since the form B is non-degenerate, the codimension of this ideal is equal to 1.

If B(c, c) 6= 0, then the Lie (super)algebra g is just a direct sum g = Kc⊕ c⊥.

Theorem Let g be a Lie algebra over any field K or a Lie superalgebra over a
field K of characteristic p 6= 2; let B be a NIS on g, and z(g) the center of g. If
g(1) ∩ z(g) 6= 0, then g is a double extension of a Lie (super)algebra a.
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2.4 Central extension must be nontrivial for DE to be indecompos-
able Let g be a finite-dimensional Lie (super)algebra, and B a NIS on it. Let
D ∈ der g preserve B, and the 2-cocycle ω(a, b) := B(Da, b) be trivial, i.e., there
exists α ∈ g∗ such that ω(a, b) = α([a, b]) for all a, b ∈ g. Let us prove that in
this case D is an inner derivation, so the double extension is decomposable.

Since B is non-degenerate, there exists an x ∈ g such that α(y) = B(x, y) for
all y ∈ g. Then

B(Da, b) = α([a, b]) = B(x, [a, b]) = B([x, a], b) for all a, b ∈ g.

For this x, we have Da = [x, a] for all a ∈ g, q.e.d.

2.5 Remark on affine Kac–Moody (super)algebras Let a be a simple
finite-dimensional Lie (super)algebra with a NIS b. Let aℓ(1) := a ⊗ C[x−1, x],
where x = exp(iϕ) for the angle parameter ϕ on the circle, be the a-valued Lie
(super)algebra of loops expandable into Laurent polynomials. It is easy to see
that for any n ∈ Z, the bilinear form

Bn(f, g) := Res b(f, g)xndx, where
Res f(x)dx =coeff. of dx

x
in the Laurent series expansion of f(x)dx,

(13)

is a NIS on aℓ(1). The non-trivial central extension given by the cocycle with
values in Cc

ω(f, g) := Res b(f, dg) = B0(f,
d

dx
g) (14)

and D1 = x d
dx
, where Dn = xn d

dx
, make g := (Cc ⋉ aℓ(1)) ⋉ CD1 a double

extension of aℓ(1) called affine Kac–Moody Lie (super)algebra. If a has Cartan
matrix, then g also has Cartan matrix; the Dynkin graph of g is the extended
Dynkin graph of a.

The above description made us wonder: (1) In the case where der a = a for
simplicity, the space of outer derivations of aℓ(1) is vect(1) = der C[x−1, x], What
is so special in D1 to be selected for the role of outer derivation of aℓ(1)? (2) Why
instead of the cocycle (11) with D = D1, everybody uses eq. (14) with D = D0?

Let f = xs and g = xt be a-valued functions with values equal to u and v,
respectively. Then condition (10) for B0, see (13), turns into

(s+ t)Res b(u, v)xn+s+t−1dx = 0

true if either n+ s+ t 6= 0, or s+ t = 0. Therefore, Dn preserves NIS B−n, see
(13), on aℓ(1), and the cocycle (14) can be obtained as

ω(f, g) := Bn(f,D−ng) for any n ∈ Z. (15)

Since only D1 is of degree 0, and only D0 preserves B0, we see that only D1 and
B0 lead to a Cartan matrix of g. This answers the above questions.
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3 Background: Double extensions for p = 2 (after [BeB1])

3.1 Quadratic and bilinear forms when p = 2 A given map q : V → K,
where V is a K-vector space, is called a quadratic form if

q(λv) = λ2q(v) for any λ ∈ K and for any v ∈ V , and the map
(u, v) 7→ Bq(u, v) := q(u + v)− q(u)− q(v) is bilinear.

The form Bq is called the polar form of q. Recently, Lebedev classified non-
degenerate bilinear forms over a perfect field K (i.e., such that K2 = K), see
[LeD]. This is a non-trivial result not related with a well-known classification
of quadratic forms in any characteristic, because in characteristic 2, each of the
arrows

q ←→ Bq

is not necessarily onto, has a kernel, and two quadratic forms with different Arf
invariants may have identical polar forms.

3.2 Lie superalgebras for p = 2 For p 6= 2, superization of many notions
of Linear Algebra is performed, as is now well-known, with the help of the
Sign Rule. If p = 2, additional conditions appear. We recall basic definitions
retaining the minus sign from definitions for p 6= 2: for clarity.
• A Lie superalgebra in characteristic 2 is a superspace g = g0̄ ⊕ g1̄ over a

field K such that the even part g0̄ is a Lie algebra, the odd part g1̄ is a g0̄-module
made two-sided by anti-symmetry, and on the odd part g1̄ a squaring is defined
as a map

sg : g1̄ → g0̄ given by f 7→ f2 such that
(λf)2 = λ2f2 for any f ∈ g1̄ and λ ∈ K, and the map

[f, g] := (f + g)2 − f2 − g2 for any f, g ∈ g1̄
is a bilinear form on g1̄ with values in g0̄.

(16)

The bracket on g0̄, as well as the action of g0̄ on g1̄, is denoted also by the same
symbol [·, ·], or [·, ·]g for clarity. The Jacobi identities for three even elements,
and involving one or two odd elements, are the same as for p 6= 2; the following
new identity replaces the one with three odd elements: it involves the squaring:

[f2, g] = [f, [f, g]] for any f ∈ g1̄ and g ∈ g. (17)

• Desuperizing (retain only the bracket) we get a Z/2-graded Lie algebra g.
• For any Lie superalgebra g in characteristic 2, its derived algebras are

g(0) := g, g(i+1) = [g(i), g(i)] +K{f2 | f ∈ (g(i))1̄}. (18)

A linear map D : g→ g is called a derivation of the Lie superalgebra g if

D([f, g]) = [D(f), g] + [f,D(g)] for any f, g ∈ g (19)

and, additionally (generalization of (17), where D = adg),

D(f2) = [D(f), f ] for any f ∈ g1̄. (20)
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We denote the space of all derivations of g by der(g).
An even linear map ρ : g −→ gl(V ) is a representation of the Lie superalgebra

g in the superspace V , called g-module, if

ρ([f, g]) = [ρ(f), ρ(g)] for any f, g ∈ g; and ρ(f2) = (ρ(f))2 for any f ∈ g1̄.
(21)

We say that a bilinear form B on g is symmetric if

B(f, g) = B(g, f) for any f, g ∈ g; and,
additionally, B(f, f) = 0 for any f ∈ g1̄.

We say that D preserves B if

B(D(f), g) +B(f,D(g)) = 0 for any f, g ∈ g; and,
additionally, B(D(f), f) = 0 for any f ∈ g1̄ and any g ∈ g.

(22)

We denote the nis-superalgebra with a NIS Bg by (g, Bg). A nis-superalgebra
(g, Bg) is said to be decomposable if it can be decomposed into direct sums of
ideals, namely g = ⊕Ii, such that all Ii are orthogonal to each other.

3.3 The case where Ba is even Here g := K ⊕ a ⊕K ∗ as spaces, where
K := Kc and K ∗ := KD.

D0̄-extensions. The quadratic form q

3.3.1. Theorem. Let (a, Ba) be a nis-superalgebra, p(Ba) = 0̄, let D ∈ der0̄(a)
preserve Ba. Let q : a1̄ → K be a quadratic form; let its polar form Bq satisfy

Ba(a,D(b)) = Bq(a, b) for any a, b ∈ a1̄. (23)

Then there exists a nis-superalgebra structure on g, defined as follows, cf.
Subsection 2.1 and (12). The squaring is given by

sg(a) := sa(a) + q(a)c for any a ∈ g1̄ (= a1̄).

The bracket on g is defined for any a, b ∈ a as follows:

[a, b]g := [a, b]a +Ba(D(a), b)c, [D, a]g := D(a) and [c, g]g = 0. (24)

The NIS B on g is given by formulas (12) with one modification: B(D,D) can
be arbitrary.

What is the difference of this Theorem from its analog for p 6= 2?
First, the extra condition in eq. (22): Ba(D(a), a) = 0. For p 6= 2, it follows

from eq. (22), whereas for p = 2 it should be required as a part of invariance
condition.

Second, the reasons for the quadratic form q to appear. Indeed, for p 6= 2,
to determine a central extension, we only need a cocycle, whereas for p = 2, we
have to adjust the squaring to match this cocycle and this is precisely what the
form q is needed for.
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Everything else is the same as for p 6= 2, same as with the desu-
perisations of a, when only even derivations and forms remain, i.e., no extra
conditions.

We call the Lie superalgebra (g, B) constructed in Theorem 3.3.1 a D0̄-
extension of (a, Ba) by means of D and q.

Now, let the “special center” of g relative to Bg be

zs(g) := z(g) ∩ sg(g1̄)
⊥, where sg(g1̄) := Span{x2 | x ∈ g1̄}. (25)

Observe that zs(g)1̄ = z(g)1̄ and zs(g)0̄ = z(g)0̄ ∩ sg(g1̄)
⊥. Moreover, zs(g) is not

necessarily an ideal.

3.3.2. Proposition. Let (g, Bg) be an indecomposable nis-superalgebra. Let
zs(g)0̄ 6= {0}. Then (g, Bg) is obtained as an D0̄-extension from a nis-superalgebra
(a, Ba).

What is the difference of the case where p = 2 from that where p 6= 2? The
“indecomposability” condition can be weakened to the existence of a nonzero
even element c belonging to the intersection of the center of g ∩ [g, g]∩ sg(g1̄)

⊥.
Now we see that the only extra condition is related to squaring and is precisely
due to the fact that c⊥ must be an ideal.

D1̄-extensions. The element A ∈ a0̄

3.3.3. Theorem. Let (a, Ba) be a nis-superalgebra, p(Ba) = 0̄. Let D ∈ der1̄(a)
preserve Ba; let A ∈ a0̄ satisfy the following conditions (see [ABB,Be]):

D2 = adA; D(A) = 0. (26)

Then there exists a nis-superalgebra structure on g, defined as follows. The squar-
ing is given by

sg(rc + a+ tD) := sa(a) + tD(a) + t2A for any a ∈ a1̄ and r, t ∈ K.

The bracket is given by eq. (24). The NIS B on g is given by formulas (12).

We call the nis-superalgebra (g, B) constructed in Theorem 3.3.3 a D1̄-
extension of (a, Ba) by means of D and A.

3.3.3a. Proposition. Let (g, B) be a nis-superalgebra. Define the cone

C (g, B) := {x ∈ g1̄ | B(sg(x), sg(y)) = 0 for any y ∈ g1̄}.

Let z(g)1̄∩C (g, B) 6= {0}. Then (g, B) is obtained from a nis-superalgebra (a, Ba)
as either a D0̄-extension, or a D1̄-extension.

3.4 The case where Ba is odd Here g := K ⊕ a ⊕K ∗ as spaces, where
K := Kc and K ∗ := KD.
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D0̄-extensions

3.4.1. Theorem. Let (a, Ba) be a nis-superalgebra, p(Ba) = 1̄. Let D ∈ der0̄(a)
preserve Ba. Then there exists a nis-superalgebra structure on g, defined as fol-
lows. The squaring is given by

sg(a+ µc) := sa(a) for any a ∈ a1̄ and µ ∈ K.

The bracket is given by eq. (24). The NIS B on g is given by formulas (12).

We call the nis-superalgebra (g, B) constructed in Theorem 3.4.1 the D0̄-
extension of (a, Ba) by means of D.

3.4.1a. Proposition. Let (g, B) be an indecomposable nis-superalgebra, p(B) =
1̄. If sg(z(g)1̄) ∩ sg(g1̄)

⊥ 6= {0}, then (g, B) is obtained from a nis-superalgebra
(a, Ba) as either a D0̄-extension, or a D1̄-extension.

D1̄-extensions. The quadratic form q, and the elements A ∈ a0̄ and
m ∈ K

3.4.1b. Theorem. Let (a, Ba) be a nis-superalgebra, p(Ba) = 1̄. Let A ∈ a0̄
and D ∈ der1̄(a) preserving Ba satisfy the conditions (26):

Let q be a quadratic form on a1̄ such that Bq(a, b) = Ba(D(a), b).
Then there exists a nis-superalgebra structure on g, defined as follows. The

squaring is given by

sg(a+ µD) := sa(a) + (µ2m+ q(a))c+ µ2A+ µD(a)

for any a ∈ a1̄ and µ ∈ K, and some m ∈ K.

The bracket is given by eq. (24). The NIS B on g is given by formulas (12).

We call the nis-superalgebra (g, B) constructed in Theorem 3.4.1b a D1̄-
extension of (a, Ba) by means of D, q, A, and m.

3.4.1c. Proposition. Let (g, B) be an indecomposable nis-superalgebra, p(B) =
1̄. If z(g)0̄ 6= {0}, then (g, B) is obtained as a D1̄-extension from a nis-superalgebra.

3.5 Summary: to construct a double extension of a nis-(super)algebra
a, we need q,A,m

D
Ba even odd

even q -
odd A q,A,m

(27)

4 Isomorphisms, and equivalence classes of derivations
(after [BeB1])

For a nis-superalgebra a with NIS Ba, denote by (g, Bg) (resp. (g̃, B̃g)) the double

extension of a by means of a derivation D (resp. D̃), i.e., g := K ⊕a⊕K ∗, where
K = Kc and K ∗ = KD (resp. g̃ := K̃ ⊕ a⊕ K̃ ∗, K̃ = Kc̃ and K̃ ∗ = KD̃).
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If p = 2, we additionally require a quadratic form q (resp. q̃) if the center c
is even, while in the case ofD1̄-extensions, we need, moreover, an element A ∈ a0̄,
and sometimes m ∈ K (resp. Ã and m̃) described in the previous section.

An isomorphism of of nis-superalgebras π : g −→ g̃ is a nis-preserving iso-
morphism of Lie superalgebra structures:

π([f, g]g) = [π(f), π(g)]g̃, Bg̃(π(f), π(g)) = Bg(f, g) for any f, g ∈ g.

4.1 The case where Ba is even

4.1.1. Theorem. Let p(D) = p(D̃) = 0̄. Let π0̄ be an automorphism of (a, Ba).
Let λ ∈ K× and let y ∈ a0̄ satisfy the following conditions:

q̃(a) = λq ◦ π−1
0 (a) +Ba(y, sa ◦ π

−1
0 (a)) for any a ∈ a1̄;

π−1
0 D̃π0 = λD + ady for any a ∈ a0̄;

Bg(D,D) = λ−2(Ba(y, y) +Bg(D̃, D̃)).

Then there exists an isomorphism π : g −→ g̃ given by the formulas

π(a) = π0(a) +Ba(y, a)c̃ for any a ∈ a;
π(c) = λc̃;

π(D) = λ−1(D̃ + π0(y)) + νc̃, where ν ∈ K is arbitrary.

If [D] = [D̃] in H1
0̄(a; a), then they define isomorphic double extensions of a.

4.1.2. Theorem. Let p(D) = p(D̃) = 1̄. Let π0 be an automorphism of (a, Ba).
Let λ ∈ K× and y ∈ a1̄ satisfy the following condition:

π−1
0 D̃π0 = λD + ady on a.

Then there exists an isomorphism π : g −→ g̃ given by the formulas

π(a) = π0(a) + Ba(y, a)c̃ for any a ∈ a1̄;
π = π0 on a0̄;
π(c) = λc̃;

π(D) = λ−1(D̃ + π0(y)) + νc̃, where ν is arbitrary;

Ã = λ2π0(A) + sa(π0(y)) + λπ0(D(y)).

If [D] = [D̃] in H1
1̄(a; a), then they define isomorphic double extensions of a.

4.2 The case where Ba is odd

4.2.1. Theorem. Let p(D) = p(D̃) = 1̄. Let π0 be an automorphism of (a, Ba).
Let λ ∈ K× and y ∈ a1̄ satisfy the following conditions:

q̃(a) = λq ◦ π−1
0 (a) +Ba(y, sa ◦ π

−1
0 (a)) for any a ∈ a1̄;

π−1
0 D̃π0(a) = λD(a) + ady(a) for any a ∈ a0̄;

Ã = λ2π0(A) + λπ0(D(y)) + sa(π0(y));

m̃ = λ2q(y) + λBa(y, sa(y) + λA) + λ3m.
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Then there exists an isomorphism π : g −→ g̃ given by the formulas

π(a) = π0(a) +Ba(y, a)c̃ for any a ∈ a;
π(c) = λc̃;

π(D) = λ−1(D̃ + π0(y)).
(28)

If [D] = [D̃] in H1
1̄(a; a), then they define isomorphic double extensions of a.

4.2.2. Theorem. Let p(D) = p(D̃) = 0̄. Let π0 be an automorphism of (a, Ba).
Let λ ∈ K× and y ∈ a0̄ satisfy the following conditions:

π−1
0 D̃π0(a) = λD(a) + ady(a) for any a ∈ a.

Then there exists an isomorphism π : g −→ g̃ given by the formulas (28). If
[D] = [D̃] in H1

0̄(a; a), then they define isomorphic double extensions of a.

5 The exceptional cases: a = h
(1)
B

(a|b) for a + b = 4 and

a = le(1)(2|2)

Recall that the Z-grading of a given vectorial Lie superalgebra is called standard
if the degree of each indeterminate Xi is equal to 1. This grading is given by the
Euler operator

∑
Xi∂Xi

. The roots are given with respect to the maximal torus,
spanned by qipi, ηiξi, and qiπi in the cases poΠ(a|0), poΠ(0|a), and le(a|a),
respectively. According to Subsection 1.2 the degree and roots are considered
over R, assuming that the ith coordinate of the weight of ξi, πi, and pi is equal
to 1, whereas the ith coordinate of the weight of ηi, and qi is equal to −1.

The standard Z-grading of a = h
(1)
B (a|b) (resp. le(1)(a|a)) is symmetric, i.e.,

a = ⊕
−1≤i≤1

ai with a−1 ≃ a1 (resp. a−1 ≃ Π(a1)
∗) as a0-modules, (29)

only if a + b = 4 (resp. a = 2). That is why some of the double extensions in
these cases have no analogs in the generic cases: they appear due to symmetry.

5.1 Outer derivations Let the superscript of the derivation D be its degree,
let the subscript be its weight or a monomial (x or b) or a label θ.

h
(1)
Π

(0|4) One outer derivation in each of degrees±2 and 5 derivations of degree
0, whose weights are (±2, 0), (0,±2) and (0, 0), see [BeB1].

h
(1)
Π

(4|0) One outer derivation in each of degrees±2 and 5 derivations of degree
0, whose weights are (±2, 0), (0,±2) and (0, 0). This answer is the desuperization

of the case h
(1)
Π (0|4); the cocycles are identical in shape to those of h

(1)
Π (0|4).

h
(1)
ΠΠ

(2|2) One outer derivation in each of degrees ±2 and 5 derivations of de-
gree 0, whose weights are (±2, 0), (0,±2) and (0, 0). This answer is a partial

desuperization of the case h
(1)
Π (0|4); the cocycles are identical in shape to those

of h
(1)
Π (0|4).
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h
(1)
II

(2|2), h(1)(1|3), h(1)(3|1), h
(1)
IΠ

(2|2), h
(1)
ΠI

(2|2) One outer derivation in
each of degrees ±2. The apparently missing Euler operator is in this case an
inner derivation. The same reason causes absence of certain derivations in cases
h
(1)
I (0|4), and h

(1)
I (4|0), and in this case as compared with the case h

(1)
Π (0|4).

h
(1)
I

(0|4) One outer derivation in each of degrees±2 and 4 derivations of degree
0, whose weights are ±2 and two derivations of weight 0.

h
(1)
I

(4|0) The answer is the desuperization of the case h
(1)
I (0|4); derivations of

the same shape.

le(1)(2|2) The shape of derivations is identical to those for h
(1)
Π (0|4); but D

(0)
b

are odd.

5.2 The double extensions Note: in all exceptional cases p(Ba) = 0̄.

Case h. For the proof for the cocycle D(−2) in case a = h
(1)
Π (0|4), see [BeB1];

the result for D2 is isomorphic due to the symmetry (29). The idea of the proof
is identical for the other derivations. The condition BT

a
D(2) = D(2)Ba is easily

seen. Besides, since D(2) acts by zero on a0̄, it follows that

Ba(D
(2)(f), f) = 0 for any f ∈ a0̄.

Tables (31) and (30) show existence of the quadratic form q (resp. element A)
associated with each derivation D, and names of the respective double extension
DE. In the 6th column of (31) B = II, or IΠ , or ΠI.

Derivation q DE of h
(1)
I

(0|4) DE of h
(1)
I

(4|0)

D
(0)
0 yes p̂o

I
(0|4) p̂o

I
(4|0)

D
(0)
b

yes p̃o
I
(0|4) p̃o

I
(4|0)

D
(0)
θ

− − −

D(±2) yes po
I
(0|4) po

I
(4|0)

(30)

D q h
(1)
Π

(0|4) h
(1)
Π

(4|0) h
(1)
ΠΠ

(2|2) h
(1)
B

(2|2) A le(1)(2|2)

D
(0)
b

yes p̃o
Π
(0|4) p̃o

Π
(4|0) p̃o

ΠΠ
(2|2) − 0 b̃(2|2)

D
(0)
0 yes gl(2|2) gl(4|0) gl(2|2) − − −

D(2) yes po
Π
(0|4) po

Π
(4|0) po

ΠΠ
(2|2) po

B
(2|2) 0 b(2|2)

(31)

Case le. Compare with the general case in Subsection 6.13.

5.2.1. Lemma. Let the super-rank of the operator A in the superspace V be
the super dimension of the superspace V/KerA.

1) Because the super-rank of D
(0)
b is (2, 2) and no element in the correspond-

ing po and gl has such rank, it follows that p̃o is not isomorphic to the other two
double extensions.

2) Because rkD
(0)
0 = 8 in p̂o and no element in poI and in p̃oI has such

rank, it follows that p̂oI is not isomorphic to the other two double extensions.
3) Because rk adpi

= rk adπi
= 7 in b̃(2|2) and no element in b(2|2) has such

rank, b̃(2|2) 6≃ b(2|2).
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6 The general cases. Outer derivations

Let X̄ be the product of all indeterminates. Derivations of a will be called equiv-
alent if they lie on one orbit of the group of automorphisms of der a.

6.1 out(h
(1)
Π

(0|2n)) Notation for convenience (tags “(le odd)” are used in
Subsection 6.13):

1. Basis: B = {η1, . . . , ηn; ξ1, . . . , ξn}.
2. The set of products of any k basis elements (Choose):

ChB(k) = {x1 . . . xk | xi ∈ B}; Chξ(k) = {x1 . . . xk | xi ∈ {ξ1, . . . , ξn}};
Chη(k) = {x1 . . . xk | xi ∈ {η1, . . . , ηn}}. For example,

ChB(2) = {ηiηj , ξiξj | for all i 6= j ≤ n} ∪ {ηjξi | i, j ≤ n}.

3. Index of elements: Ind(x) = The set of indices of x in terms of η, ξ.
For example, Ind(η1ξ3) = {1, 3}, Ind(η2ξ5ξ7) = {2, 5, 7}.

4. The switch symbol: S(ξi) = ηi and S(ηi) = ξi.
5. Let O denote the set of all monomials of odd degree.

(a) Deg=0. There are 2n equivalent derivations: for any b ∈ B, we have

D
(0)
b :=

∑

0≤i≤2n−2

∑

x∈Ch(i)

(bx)⊗ (Ŝ(b)x). (le: always odd) (32)

(b) Deg=0. One particular derivation — the Euler operator

D
(0)
0 =

∑

1≤i≤n−1

∑

0≤j≤2i+1

∑

x∈Chξ(2i)

∑

y∈Chη(j)

(xy)⊗ (x̂y). (33)

(c)Deg= 2n− 2.

D(2n−2) :=
∑

x∈B

∂X̄

∂x
⊗ (Ŝ(x)). (le: odd with n) (34)

6.2 out(h
(1)
Π

(2n|0)) The desuperization of the case out(h
(1)
Π (0|2n)); the same

cocycles.

6.3 out(h
(1)
ΠΠ

(2a|2b)) A partial desuperization of out(h
(1)
Π (0|2a + 2b)); the

same cocycles.

6.4 out(h
(1)
I

(0|2n)) Cocycles:
(a) Deg=0. There are 2n equivalent derivations: for any b ∈ B, we have

D
(0)
b :=

∑

0≤i≤2n−2

∑

x∈Ch(i)

(bx)⊗ (Ŝ(b)x). (35)

(b) Deg=0. One particular derivation (the apparent asymmetry of θ1 and θ2
is due to SuperLie’s aesthetic criteria)

D
(0)
θ =

∑

x∈C̃(θ1)

θ1x⊗ (θ̂1x). (36)
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(c) Deg=0. Another particular derivation — the Euler operator

D
(0)
0 =

∑

x∈O

x⊗ (x̂). (37)

(d) Deg = 2n− 2. See eq. (34).

6.5 out(h
(1)
I

(2n|0)) The desuperization of the case out(h
(1)
I (0|2n)); the same

cocycles.

6.6 out(h
(1)
II

(2a|2b)) Cocycles:
(a) Deg = 2a+ 2b− 2. See eq. (34).

6.7 out(h(1)(0|2n + 1)) Notation for convenience:

1. Basis: B = {η1, . . . , ηn; θ; ξ1, . . . , ξn} or B̃ = {η1, . . . , ηn; ξ1, . . . , ξn}.
2. Let C(x) denote the set of all monomials each of which is a multiple of x;

let C̃(x) denote the set of all monomials each not a multiple of x.
3. The switch symbol: S(ξi) = ηi and S(ηi) = ξi, whereas S(θ) = θ.
4. Let O denote the set of all monomials of odd degree.

Cocycles:
(a) Deg=0. There are 2n equivalent derivations: of weight 2w for any x ∈ B̃

of weight w,

D(0)
x :=

∑

y∈C̃(x)
⋂

C̃(S(x))

xy ⊗ (Ŝ(x)y). (38)

(b) Deg=0. One particular derivation — the Euler operator, see eq. (37).
(c) Deg = 2n− 1: See eq. (34).

6.8 out(h
(1)
ΠΠ

(2a + 1|2b + 1)) Cocycles:

(a) Deg=0. A particular derivation D
(0)
θ , see eq. (36)

(b) Deg=0. Another particular derivation — the Euler operator, see eq. (37)
(c) Deg = 2a+ 2b. See eq. (34).

6.9 out(h
(1)
ΠI

(2a|2b)) Cocycles:
(a) Deg=0. There are 2b equivalent derivations, see eq. (38).

(b) Deg=0. A particular derivation D
(0)
θ , see eq. (36)

(c) Deg=0. Another particular derivation — the Euler operator, see eq. (37)
(d) Deg = 2a+ 2b− 2. See eq. (34).

6.10 out(h
(1)
IΠ

(2a|2b)) Same cocycles as for out(h
(1)
ΠI(2b|2a)), but with p, q

and ξ, η interchanged in all cocycles.

6.11 out(h
(1)
ΠΠ

(2a|2b+ 1)) A partial desuperization of h
(1)
ΠΠ(0|2n+ 1).

6.12 out(h
(1)
ΠΠ

(2a + 1|2b)) Same cocycles as for out(h
(1)
ΠΠ(2b|2a + 1)), but

with p, q and ξ, η interchanged in all cocycles.

6.13 out(le(1)(n|n)) Same cocycles as for out(h
(1)
Π (2n|0)) with q, π replacing

q, p; odd cocycles are marked in Subsection 6.1. Observe that p(B) ≡ n (mod 2),
so there are no D1̄-extensions for n odd, and no D0̄-extensions for n even, since
the center c is always odd and p(c) = p(B) + p(D).
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7 The general cases. Double extensions

Note: in all cases of h series, p(Ba) is congruent to the parity of the number
of odd indeterminates; p(Ba) ≡ a + 1̄ for le(a|a). Let X̄ be the product of all
indeterminates.

7.1 The double extensions of a = h(1)(0|2n + 1), h
(1)
ΠΠ

(2a|2b + 1),

h
(1)
ΠΠ

(2a+ 1|2b) for a + b = n > 2

The D0̄-extension The derivation D
(0)
0 does not preserve the NIS B. Indeed,

Ba(D
(0)
0 (θ),

∂X̄

∂θ
) = 1 while Ba(θ,D

(0)
0 (X̄)) = 0.

Now, the derivations D
(0)
x preserve the bilinear form Ba, and the proof is similar

to that for h
(1)
Π (0|4) in Subsection 5.2; all respective double extensions are iso-

morphic. The double extension by means of the derivation D
(0)
x for any x ∈ B̃,

see Subsection 6.7, is a Lie superalgebra denoted by p̃o(0|5) in [BeB1] for n = 2:

Derivation preserves Ba sg(c) Extension Extension Extension

D
(0)
x Yes 0 p̃o(0|2n+ 1) p̃o

ΠΠ
(2a|2b + 1) p̃o

ΠΠ
(2a+ 1|2b)

D
(0)
0 No – – – –

(39)

The D1̄-extension In a lexicographically ordered basis on h(1)(0|5) the Gram
matrix of NIS is B = antidiag(1, ..., 1). The condition BT

a
D(2n−1) = D(2n−1)Ba

is easy to see. Besides, since D(3)|g0̄
= 0, it follows that

Ba(D
(2n−1)(f), f) = 0 for any f ∈ a0̄.

Now, since 0 = (D(2n−1))2 = adA, it follows that A = 0 since a has no center. We
have, therefore, a parametric family of double extensions by means of D(2n−1), q,
A = 0 andm ∈ K (see Theorem 3.4.1b). It is proved in [BeB1], that po(0|5;m) for
m 6= 0 is not isomorphic to po(0|5; 0) := po(0|5), whereas po(0|5;m) ≃ po(0|5; m̃)
for any pair mm̃ 6= 0. The same arguments are true for any n > 1. Table (40)
summarizes these results for any m ∈ K×:

D q(a) sg(D) Extension Extension Extension

D(2n−1) yes 0 po(0|2n+ 1) po
ΠΠ

(2a|2b+ 1) po
ΠΠ

(2a+ 1|2b)

D(2n−1) yes mc po(0|2n+ 1;m) po
ΠΠ

(2a|2b+ 1;m) po
ΠΠ

(2a+ 1|2b;m)

(40)

7.2 The double extensions of a = h
(1)
Π

(0|2n) for n > 2 and its desu-
perizations

D q h
(1)
Π

(0|2n) h
(1)
Π

(2n|0) h
(1)
ΠΠ

(2a|2b) h
(1)
ΠΠ

(2a+ 1|2b + 1)

D
(0)
b

yes p̃o
Π
(0|2n) p̃o

Π
(2n|0) p̃o

ΠΠ
(2a|2b) p̃o

ΠΠ
(2a+ 1|2b + 1)

D
(0)
0 no − − − −

D(2n−2) yes po
Π
(0|2n) po

Π
(2n|0) po

ΠΠ
(2a|2b) po

ΠΠ
(2a+ 1|2b + 1)

(41)
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7.3 The double extensions of a = h
(1)
I

(0|2n) for n > 2 and its desu-
perizations Clearly, the results in cases IΠ and ΠI are obtained from one
another.

D q h
(1)
I

(0|2n) h
(1)
I

(2n|0) h
(1)
II

(2a|2b) h
(1)
ΠI

(2a|2b)

D
(0)
0 yes p̂o

I
(0|2n) p̂o

II
(2n|0) p̂o

II
(2a|2b) p̂o

ΠI
(2a|2b)

D
(0)
b

yes p̃o
I
(0|2n) p̃o

II
(2n|0) p̃o

II
(2a|2b) p̃o

ΠI
(2a|2b)

D
(0)
θ

− − − − −

D(2n−2) yes po
I
(0|2n) po

I
(2n|0) po

II
(2a|2b) po

ΠI
(2a|2b)

(42)

7.4 The double extensions of a = le(1)(n|n)

D A le(1)(2n|2n) A le(1)(2n+ 1|2n+ 1)

D
(0)
b

0 b̃(2n|2n) − −

D
(0)
0 − − − −

D(4n−2) 0 b(2n|2n) 0 b(2n+ 1|2n + 1)

(43)

7.4.1. Lemma. 1) We have rkD(2n−2) = 2n in po, and there is no such el-

ement in both p̃o and p̂o. The rank of D
(0)
0 in p̂o is 22n−1 6= 2n for n > 1,

and there is no such element in p̃o, so p̃o and p̂o are non-isomorphic double
extensions and each of them is not isomorphic to po.

2) Because rk adpi
= rk adπi

= 24n−1 − 1 in b̃(2n|2n) and no element in

b(2n|2n) has odd rank, b̃(2n|2n) 6≃ b(2n|2n).
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