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AN EXPLICIT ABELIAN SURFACE WITH MAXIMAL GALOIS ACTION

QUINN GREICIUS AND AARON LANDESMAN

Abstract. We construct an explicit example of a genus 2 curve C over a number field K such that the

adelic Galois representation arising from the action of Gal(K/K) on the Jacobian of C has image GSp
4
(Ẑ).

1. Introduction

Let K be a number field and A a principally polarized abelian variety of dimension g over K. For n a
positive integer, the action of GK := Gal(K/K) on the n-torsion A[n] preserves the symplectic form given
by the Weil pairing and yields the mod-n Galois representation

ρA,n : GK → GSp2g(Z/nZ).

The inverse limit of the ρA,n over Z/mZ → Z/nZ for n | m forms the adelic Galois representation

ρA : GK → GSp2g(Ẑ).

For ℓ a prime, the ℓ-adic Galois representation

ρA,ℓ∞ : GK → GSp2g(Zℓ)

is the composition of ρA with the map GSp2g(Ẑ) → GSp2g(Zℓ).
There has been much recent interest in understanding the image of Galois representations. One of the

earliest results in this direction is Serre’s Open Image Theorem [Ser72], which states that for an elliptic

curve E/K without complex multiplication, ρE(GK) is an open subgroup of GSp2(Ẑ). Serre’s subsequent
generalization of this result in [Ser00, Theorem 3] implies that for A as above, with odd dimension g (or

dimension g = 2 or 6) and End(A) ∼= Z, ρA(GK) is open in GSp2g(Ẑ). Note that ρA(GK) is open in GSp2g(Ẑ)
if and only if ρA,ℓ∞(GK) is open in GSp2g(Zℓ) for all ℓ and equal to GSp2g(Zℓ) for all but finitely many ℓ.
In the dimension 1 case, however, despite the fact that the Galois representation has open image, it turns

out that if K = Q, ρE can never surject onto GSp2(Ẑ) [Ser72, Proposition 22]. Nevertheless, it is possible

that ρE(GK) = GSp2(Ẑ) in the case K 6= Q, and in [Gre10], A. Greicius constructs an example of such an
E. Furthermore, in [Zyw15], Zywina constructs an example of a non-hyperelliptic curve of genus 3 over Q

whose Jacobian has adelic Galois image equal to GSp6(Ẑ). Hence, while we do have examples of curves C

in genus g = 1 and 3, with ρJ(C)(GK) = GSp2g(Ẑ), to the authors’ knowledge, no such example is known
in the case g = 2. Indeed, there turn out to be significant obstacles in genus 2 faced neither in genus 1 nor
genus 3. The purpose of this note is to provide an example of such a genus 2 curve, given in Theorem 1.1.

The techniques used in the genus 1 and 3 cases appear not to apply in the genus 2 case: the genus 1
techniques of [Gre10] do not apply because they use considerations specific to subgroups of GSp2(Fp), while
the genus 3 techniques of [Zyw15] use results specific to Q, such as Serre’s conjecture. However, while there
do exist curves over Q of every genus g ≥ 3 whose Jacobian has Galois representation with image equal to

GSp2g(Ẑ) by [LSTX16a, Theorem 1.1], there are no such curves over Q of genus 1 or 2 by [Zyw15, Proposition
2.5]. Therefore, in order to provide the desired example, we will need techniques applying over number fields

K 6= Q. It is known that there exist curves of genus 2 with Galois representation image equal to GSp2g(Ẑ)
over every number field K 6= Q so that K ∩ Qcyc = Q where Qcyc is the maximal cyclotomic extension of
Q, as follows from [LSTX16b, Theorem 1.1]. However, the proof there is non-constructive, and so does not
lead to any concrete examples.

There are several examples of curves of genus 2 whose associated Galois representations have large image:
in [Die02, Theorem 5.4], Dieulefait gives an example of a genus-2 curve over Q whose Jacobian has mod-ℓ
image equal to GSp4(Z/ℓZ) for ℓ ≥ 5, and in [LSTX17, Theorem 1.3], the authors give an example of a

genus 2 curve over Q so that the associated Galois representation has image of index 2 in GSp4(Ẑ).
1
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As mentioned above, by [Zyw15, Proposition 2.5] there are no genus 2 curves over Q whose associated

Galois representation has image equal to GSp4(Ẑ). We briefly recall the group-theoretic reason for this:

Since ρJ(C)(GQcyc) = ρA(GQ) ∩ Sp4(Ẑ), ρJ(C)(GQab) = [ρJ(C)(GQ), ρJ(C)(GQ)], and Qcyc = Qab, we obtain

ρA(GQ) ∩ Sp4(Ẑ) = [ρJ(C)(GQ), ρJ(C)(GQ)].

If there were a curve C over Q with ρJ(C)(GQ) = GSp4(Ẑ), the above would imply that the commutator of

GSp4(Ẑ) contains all of Sp4(Ẑ). However, this is false, as can even be checked mod 2 because GSp4(Z/2Z) ≃
Sp4(Z/2Z) ≃ S6, which has commutator of index 2.

The group theoretic obstruction to adelic surjectivity of Galois representations of genus 2 curves from
[Zyw15, Proposition 2.5] described above disappears over number fields K with Kcyc of even index in Kab.
Despite this, prior to this paper, we could not find any examples in the literature of genus 2 curves over

nontrivial extensions K/Q with adelic image equal to all of GSp4(Ẑ). The critical new ingredient that
enables our explicit construction of a curve C whose associated Galois representation is surjective comes
from [AD17], where Anni and Dokchitser give strong control over the image of the mod ℓ representations in
terms of the reduction of C at various primes of OK . Using these techniques, we obtain the following result:

Theorem 1.1. Let K = Q(α), where α3 + α + 1 = 0 and let C be the genus 2 hyperelliptic curve which is
the regular projective completion of the affine curve y2 = f(x), where f(x) ∈ OK [x] is the polynomial given
by

f(x) := x6 − 1255129022x5 + 213499328x4 − 739544064x3 − 1479402560x2

+ 938024640x− 486022320+ 85534400α+ 54644800α2.

Then ρJ(C)(GK) = GSp4(Ẑ).

The remainder of the paper is devoted to proving Theorem 1.1. We now outline its proof. In § 2, we reduce
the problem of computing ρJ(C)(GK) to showing ρJ(C),ℓ(GK) ⊇ Sp4(Z/ℓZ). In § 3 we apply the results of
[AD17] to give a criterion to show ρJ(C),ℓ(GK) ⊇ Sp4(Z/ℓZ) for all primes ℓ not in the finite set {2, 3, 5, 17}.
Finally, in § 4, we verify the conditions of the criterion from § 3 and then check that ρJ(C),ℓ(GK) ⊇ Sp4(Z/ℓZ)
at each of the remaining primes ℓ ∈ {2, 3, 5, 17}.

Acknowledgements. We would like to thank Aaron Greicius and David Zureick-Brown for originally sug-
gesting the problem and for providing comments on the manuscript. We also thank Brian Conrad and
Jackson Morrow for helpful comments. We thank Samuele Anni, Vladimir Dokchitser, Zev Rosengarten,
Jesse Silliman, Ashvin Swaminathan, James Tao, and Yujie Xu for beneficial conversations. Special thanks
is due to the anonymous referee for their exceptionally attentive suggestions. This material is based upon
work supported by the National Science Foundation Graduate Research Fellowship Program under Grant
No. DGE-1656518.

2. Reducing the problem of adelic surjectivity

In this section, for C the curve from Theorem 1.1, we reduce the problem of showing that ρJ(C)(GK) =

GSp4(Ẑ) to verifying ρJ(C),ℓ(GK) ⊇ Sp4(Z/ℓZ) for all primes ℓ. This is accomplished in Lemma 2.3. The

key result in attaining this reduction is Lemma 2.1, an analogue of [Gre10, Theorem 3.1] for GSp4(Ẑ) in

place of GSp2(Ẑ).

Before stating Lemma 2.1, we introduce some notation. From the identification GSp4(Ẑ) =
∏

ℓGSp4(Zℓ),

denote by πℓ : GSp4(Ẑ) → GSp4(Zℓ) the projection onto the ℓ-adic factor. Let mult : GSp4(Ẑ) → Ẑ×

denote the mult map from the definition of GSp. Then we define Sp4(Ẑ) := ker(mult). Also, recalling the

identification GSp4(Z/2Z) ≃ S6, let sgn: GSp4(Ẑ) → {±1} denote the composition of the reduction mod-2

Φ2 : GSp4(Ẑ) → GSp4(Z/2Z) with the usual sign map GSp4(Z/2Z) ≃ S6 → {±1}.

Lemma 2.1. Let H ⊆ GSp4(Ẑ) be a closed subgroup such that:

(1) πℓ(H) ⊇ Sp4(Zℓ) for all ℓ.

(2) The map (sgn,mult) : GSp4(Ẑ) → {±1} × Ẑ× is surjective when restricted to H.



AN EXPLICIT ABELIAN SURFACE WITH MAXIMAL GALOIS ACTION 3

Then H = GSp4(Ẑ).

Proof. Let G := [GSp4(Ẑ),GSp4(Ẑ)] be the derived subgroup of GSp4(Ẑ). By [O’M78, 3.3.6] (see also
[LSTX17, Lemma 3.4]), we have

G = Φ−1
2 (A6) ∩ Sp4(Ẑ).

Because the kernel of (sgn,mult) is precisely G, we conclude (sgn,mult) : GSp4(Ẑ) → {±1} × Ẑ× is the

abelianization map. Suppose H 6= GSp4(Ẑ). Then by [Gre10, Lemma 2.2] we may assume that H is a
maximal closed subgroup. Since the mult map is surjective, condition (1) implies that πℓ(H) = GSp4(Zℓ).
By [LSTX16b, Lemma 2.3] the factors GSp4(Zℓ) have no finite simple nonabelian quotients in common.

Hence, [Gre10, Proposition 2.5] implies that the image of H in the abelianization {±1} × Ẑ× is a proper

subgroup. This contradicts (2), and so we must in fact have H = GSp4(Ẑ). �

In order to verify (2) above, we record the following useful criterion, whose proof is completely analogous
to that given in [Gre10, Theorem 3.1].

Lemma 2.2. Suppose D is a hyperelliptic curve which is the regular projective completion of the affine curve

y2 = h(x) defined over a number field L, which is degree 3 over Q. Then, (sgn,mult)◦ρJ(D) : GL → {±1}×Ẑ×

is surjective if L ∩Qcyc = Q and disch is not of the form k2q for k ∈ L, q ∈ Q.

Proof. First, we show mult ◦ρJ(D) is surjective when L ∩ Qcyc = Q. Recall that the symplectic form on
J(D)[ℓ] is the Weil pairing, so the composition mult◦ρJ(D) is identified with the cyclotomic character. Then
since L∩Qcyc = Q, the composition mult ◦ ρJ(D) is surjective because the cyclotomic character is surjective.

We next wish to show the joint map (sgn,mult) is surjective. Given that mult is surjective, to show

(sgn,mult) is surjective, we claim it suffices to verify
√
disc(h) /∈ Lcyc, for Lcyc the compositum LQcyc.

Indeed, because the two-torsion of J(D) is generated by differences of Weierstrass points of D, for σ ∈ GL,

sgn(σ) = 1 if and only if σ acts as an even permutation on the 6 Weierstrass points of D. As
√
disc(h)

is a multiple of the differences of the Weierstrass points, sgn(σ) = 1 if and only if
√
disc(h) is fixed by

σ. So, in order to show (sgn,mult) ◦ ρJ(D) : GL → {±1} × Ẑ× is jointly surjective, it suffices to show the

kernel of (sgn,mult)◦ρJ(D) is strictly contained in ker(mult ◦ρJ(D)) = Gal(L/Lcyc). Since ker(sgn ◦ρJ(D)) =

Gal(L/L(
√
disch)), we only need verify

√
disch /∈ Lcyc.

To conclude the proof, we only need to show that if disc(h) is not of the form k2q for k ∈ L and q ∈ Q,

then
√
disc(h) /∈ Lcyc. Indeed, any quadratic extension of L contained in Lcyc is necessarily of the form

L(
√
q) for q ∈ Q. Therefore, if L(

√
disc(h)) ⊂ Lcyc we obtain

√
disc(h) ∈ L(

√
q) for some q ∈ Q. This

implies
√
disc(h) = a+ b

√
q for a, b ∈ L. Since disc(h) ∈ L, and L has degree 3 over Q, if

√
q ∈ L, we must

have
√
q ∈ Q. This yields either a = 0 or b = 0, and so disc(h) = k2q for k ∈ L, q ∈ Q. �

We now use Lemma 2.1 and Lemma 2.2 to recover the behavior of the adelic representation from the
mod-ℓ representations:

Lemma 2.3. Let C be the curve defined in Theorem 1.1, and suppose the associated mod-ℓ representations

satisfy ρJ(C),ℓ(GK) ⊇ Sp4(Z/ℓZ) for all primes ℓ. Then ρJ(C)(GK) = GSp4(Ẑ).

Proof. By [Wei96, Theorem B] (see also [Vas03, Theorem 1.3] and [LSTX16a, Theorem 1]) no proper sub-
group of Sp4(Zℓ) can surject onto Sp4(Z/ℓZ) under reduction mod ℓ, so the assumption that ρJ(C),ℓ(GK) ⊇
Sp4(Z/ℓZ) implies that πℓ(ρJ(C),ℓ∞(GK)) ⊇ Sp4(Zℓ).

Hence, by Lemma 2.1, in order to complete the proof, we only need verify that the (sgn,mult) map
is surjective. By Lemma 2.2, it suffices to check K ∩ Qcyc = Q and

√
disc f is not of the form k2q for

k ∈ K, q ∈ Q.
First, we check K ∩ Qcyc = Q. Suppose for the sake of contradiction that K ∩ Qcyc 6= Q. Because

[K : Q] = 3 is prime, K ∩ Qcyc 6= Q implies K ∩Qcyc = K. This would imply K/Q is an abelian extension
and hence Galois, contradicting that K is not Galois over Q.

To conclude the proof, we only need to check disc(f) is not of the form k2q for k ∈ K, q ∈ Q. Indeed, in K,
(3) factors as (3) = p3q3 with p3 6= q3 and p3 | (disc(f)), p23 ∤ (disc(f)), and q3 ∤ disc(f). So, if disc(f) = k2q
for some k ∈ K and q ∈ Q, comparing the exponents of primes dividing (3), we get p3 = (pa3q

b
3)

2(p3q3)
c for

some integers a, b, c. Comparing powers of q3 yields −2b = c, so c is even. However, by comparing powers of
p3, this would imply 2a+ c is even and also equal to 1, a contradiction. �
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It therefore remains to show that the image of the representations ρJ(C),ℓ contain Sp4(Z/ℓZ) for all ℓ.

3. Controlling the mod-ℓ representations

A sufficient condition for surjectivity at odd primes is given in Theorem 3.3. To state it, we first define
the relevant terminology.

Definition 3.1. Let V be a symplectic vector space over a field k, and let G be a subgroup of GSp(V ). We
say that {V1, . . . , Vk} is a non-trivial G-stable decomposition of V into symplectic subspaces if the Vi are

proper symplectic subspaces Vi ⊂ V with V =
⊕k

i=1 Vi, the symplectic pairing is non-degenerate on Vi, and
there is a homomorphism φ : G → Sk such that σ(Vi) = Vφ(σ)(i) for σ ∈ G. If no such decomposition exists,
V is said to be primitive.

Definition 3.2. An element σ ∈ GSp(V ) is called a transvection if σ is unipotent (has all eigenvalues equal
to 1) and σ − I has rank 1.

Theorem 3.3 ([Hal08, Theorem 1.1], [Zyw15, Proposition 2.2]). Let ℓ be an odd prime. If the mod-ℓ
representation ρJ(C),ℓ(GK) ⊆ GSp4(Z/ℓZ) of GK on the Z/ℓZ vector space J(C)[ℓ] is irreducible, primitive,
and contains a transvection, then ρJ(C),ℓ(GK) ⊇ Sp4(Z/ℓZ).

The results of [AD17] give explicit congruence conditions on f(x) so that the criteria of the above theorem
are satisfied at all but a finite set of primes ℓ. For its statement and proof we require two further definitions:

Definition 3.4 ([AD17, Definition 1.2, Definition 1.3]). For a prime ideal p of OK with residue characteristic
p and corresponding valuation vp, let F denote the completion of K at vp, viewed as an extension of Qp,
and let OF denote the ring of integers. A polynomial f(x) = xn + an−1x

n−1 + . . .+ a0 ∈ OF [x] is said to be
t-Eisenstein at p if vp(ai) ≥ t for 1 ≤ i ≤ n− 1 and vp(a0) = t.

We say that a monic, squarefree polynomial f(x) ∈ OF [x] has type t−{q1, . . . , qk} at p for rational primes
q1, . . . , qk if it can be factored as

f(x) = h(x)

k∏

i=1

gi(x− αi)

for some αi ∈ OF and h(x), gi(x) ∈ OF [x] such that αi 6≡ αj mod p for all i 6= j, gi(x) is a t-Eisenstein
polynomial of degree qi, h(x) is separable mod p, and h(αi) 6≡ 0 mod p for all i. We say some f ∈ OK [x] is
t-Eisenstein (respectively of type t− {q1, . . . , qk}) if the image of f in OF [x] is t-Eisenstein (respectively of
type t− {q1, . . . , qk}).

Note that the following definitions concern vector spaces over Fℓ, whereas the other representation-
theoretic considerations in this section, such as Theorem 3.3, deal with Fℓ-vector spaces.

Definition 3.5 ([AD17, Definition 4.6]). For p ⊂ OK a prime, let Ip ⊂ GK denote the inertia group at p.

We will say that f(x) ∈ OK [x] is ℓ-admissible at p if for every GK -stable decomposition J [ℓ]⊗Fℓ =
⊕k

i=1 Vi

into symplectic Fℓ-subspaces, Ip acts trivially on {V1, . . . , Vk}. We will say that f(x) ∈ OK [x] is admissible
at p if it is ℓ-admissible at p for every odd prime number ℓ not divisible by p.

The following theorem is immediate upon combining the results of [AD17]. We spell out the details for
completeness.

Theorem 3.6. Let K be a number field with no nontrivial unramified extensions (possibly excepting the
infinite places), f(x) ∈ OK [x] a monic irreducible polynomial of degree 2g + 2, and ℓ > g a rational prime,
such that the following conditions are satisfied:

(1) There exist rational primes q1, q2, q3 such that q1 ≤ q2 < q3 < 2g + 2 and q1 + q2 = 2g + 2.
(2) There exist primes pt1 and pt2 of distinct, odd residue characteristics such that f(x) has type 1−{2}

at pt1 and pt2 .
(3) There exists a prime p2 of odd residue characteristic p2 such that the order of the residue field Fp2

at p2 is a primitive root mod q1 and q2 and f(x) has type 1− {q1, q2} at p2.
(4) There exists a prime p3 of odd residue characteristic p3 such that the order of the residue field Fp3

at p3 is a primitive root mod q3 and f(x) has type 2− {q3} at p3.
(5) The curve C defined by y2 = f(x) has good reduction at all primes above 2.
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(6) The curve C has semistable reduction at all primes p ∤ 2p2p3.
(7) For all primes p | ℓ we have ℓ > 2ep + 1, where ep is the ramification degree of p.
(8) We have ℓ 6∈ {q1, q2, q3, p2, p3}.

Then we have ρJ(C),ℓ(GK) ⊇ Sp2g(Z/ℓZ).

Proof. Let ℓ > g be a rational prime satisfying conditions (7) and (8). It suffices by Theorem 3.3 to show
that ρJ(C),ℓ(GK) is irreducible, primitive, and contains a transvection. By condition (2), [AD17, Lemma
2.9] implies that ρJ(C),ℓ(GK) contains a transvection. Note that the residue characteristic of at least one
of the pti will be distinct from ℓ, as required in [AD17, Lemma 2.9]. By conditions (1), (3), (4), and
(8), [AD17, Lemma 3.2] implies that ρJ(C),ℓ is irreducible. Then since ρJ(C),ℓ is irreducible and K has no
nontrivial extensions unramified at all finite places, [AD17, Proposition 4.4] reduces the problem of showing
that ρJ(C),ℓ is primitive to showing that f(x) satisfies the two conditions of [AD17, Proposition 4.7]: that
f(x) is admissible at all p ∤ ℓ and that f(x) is ℓ-admissible at all p | ℓ.

We first check that f(x) is admissible at all p, which is the first condition of [AD17, Proposition 4.7].
Conditions (5) and (6), together with [AD17, Lemma 7.5(ii)], imply that J(C) is semistable at all p 6= p2, p3,
so that f(x) is admissible at all p 6= p2, p3 by [AD17, Lemma 4.9]. Then note that the primitive root
assumption of condition (3) implies that q1, q2 6= p2, so that f(x) is admissible at p2 and p3 by [AD17,
Lemmas 4.10 and 4.11], respectively. So, we have verified the first condition of [AD17, Proposition 4.7].

To complete the proof, we verify the second condition of [AD17, Proposition 4.7], i.e., f(x) is ℓ-admissible
at p for all p | ℓ. By [AD17, Proposition 4.12], it suffices to check that disc(f) 6∈ p2 (guaranteeing semistability
at p) and ℓ > max(g, 2ep + 1), where ep is the ramification degree of p. The first statement follows from
conditions (6) and (8), and the second statement follows from condition (7). �

4. Verifying the example

Using Theorem 3.6, we can now compute the mod-ℓ image of the Galois representation associated to our
hyperelliptic curve C. We first note that K has no nontrivial unramified extensions, again considering only
the finite places, which essentially follows from Minkowski’s bound on the discriminant of an extension of Q.

Lemma 4.1 ([Con]). Let K = Q(α), where α is a root of x3 + x+ 1. Then K has no nontrivial extensions
unramified at all finite places.

Next, we apply Theorem 3.6 to verify surjectivity of our Galois representation at all but a finite set of
primes.

Lemma 4.2. The mod-ℓ Galois representations ρJ(C),ℓ associated to the curve C in the statement of
Theorem 1.1 satisfy ρJ(C),ℓ(GK) ⊇ Sp4(Z/ℓZ) for all ℓ 6∈ {2, 3, 5, 17}.
Proof. We apply Theorem 3.6 to the f(x) ∈ OK [x] in Theorem 1.1, taking q1 = q2 = 3, q3 = 5, pt1 = (7),
pt2 = (3, α + 2)2, p2 = (5), and p3 = (17, α + 6), where we check that #F(5) = 125 ≡ 2 mod 3 and
#F(17,α+6) = 17 ≡ 2 mod 5 are primitive roots. These choices of the qi and pi, along with the assumptions
of the lemma, are immediately seen to satisfy conditions (1) and (8).

We next verify condition (7). Note that for all primes p we have 2ep + 1 ≤ 2[K : Q] + 1 = 7, so that the
condition is trivially satisfied for all ℓ > 7. Then since ℓ 6= 2, 3, 5 by assumption, it only remains to check
the case ℓ = 7, and since 7 is unramified (and even inert) in K, we have 7 > 3 = 2e(7) + 1, so the inequality
is satisfied.

By construction, f(x) satisfies the following congruence conditions

f(x) ≡ (x2 + 7)(x4 + 1) mod (7)2(4.1)

f(x) ≡ (x2 + 3)(x4 − 2x3 + 2x2 + 1) mod (3, α+ 2)2(4.2)

f(x) ≡ (x3 + 5)((x+ 1)3 + 5) mod (5)2(4.3)

f(x) ≡ (x5 + 172)(x + 1) mod (17, α+ 6)3(4.4)

f(x) ≡ x6 + 2x5 + 24 mod 26.(4.5)

So, conditions (2)-(4) of Theorem 3.6 are satisfied, and condition (5) follows from the final congruence
condition by [AD17, Lemma 7.7].
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To conclude, we verify condition (6). By [AD17, Lemma 7.5(i)] in order to show C is semistable at p it
suffices to check f(x) has no roots of multiplicity greater than 2 over an algebraic closure of the residue field
at p. Therefore, it suffices to verify p ∤ GCD(disc(f), disc(f ′)). A magma calculation shows that the only p

for which p ∤ GCD(disc(f), disc(f ′)) are p = (2), (5), (17, α + 6), so condition (6) holds. Thus Theorem 3.6
shows ρJ(C),ℓ(GK) ⊇ Sp4(Z/ℓZ) for all ℓ 6∈ {2, 3, 5, 17}. �

It remains only to check that ρJ(C),ℓ(GK) ⊇ Sp4(Z/ℓZ) at the remaining primes 2, 3, 5, and 17.

Lemma 4.3. For f(x) ∈ OK [x] as in the statement of Theorem 1.1, we have ρJ(C),2(GK) = Sp4(Z/2Z).

Proof. For ℓ = 2 we have GSp4(F2) = Sp4(F2) = S6, and we can identify the 2-torsion points of J(C) with
differences of Weierstrass points. Since the Weierstrass points correspond to roots of f , the GK action on
J(C)[2] is determined by the Galois group of f . A magma calculation shows the Galois group of f is S6.
Since S6 ≃ Sp4(Z/2Z), ρJ(C),2(GK) = Sp4(Z/2Z). �

Lemma 4.4. For f(x) ∈ OK [x] as in the statement of Theorem 1.1, we have ρJ(C),ℓ(GK) ⊇ Sp4(Z/ℓZ) for
all ℓ ∈ {3, 5, 17}.
Proof. For this verification, we use Theorem 3.3. Since f(x) has type 1−{2} at two distinct odd primes, [AD17,
Lemma 2.9] implies that ρJ(C),ℓ(GK) contains a transvection for all ℓ. To show irreducibility and primitivity
of J(C)[ℓ] for ℓ ∈ {3, 5, 17} we use Frobenius elements at primes of good reduction to show the non-existence
of GK-stable decompositions (as vector spaces over Fℓ). First, note that if the characteristic polynomial
Pp = det(TI − ρJ(C),ℓ∞(Frobp)) ∈ Z[T ] is irreducible mod ℓ then J(C)[ℓ] must be irreducible as a GK-
module. Further, if Pp is irreducible and tr(Frobp) 6≡ 0 mod ℓ we claim J(C)[ℓ] must be primitive. Indeed,

if there were some decomposition J(C)[ℓ] =
⊕k

i=1 Vi with k > 1 and all Vi proper subspaces so that the Vi

are permuted by the action of GK , then tr(Frobp) 6≡ 0 mod ℓ implies some Vj must be fixed by Frobenius.
This contradicts irreducibility of Pp.

For each ℓ ∈ {3, 5, 7}, it therefore suffices to find a prime p with Pp irreducible and tr(Frobp) 6≡ 0 mod ℓ.
Calculating the characteristic polynomials of various primes in magma, we find that for ℓ = 3, 5 we can take
p = (37, α+ 12) and for ℓ = 17 we can take p = (29, α+ 3), where the characteristic polynomials are given
by:

P(37,α+12) = T 4 + 16T 3 + 136T 2 + 592T + 1369

P(29,α+3) = T 4 − 5T 3 + 48T 2 − 145T + 841.

Thus ρJ(C),ℓ(GK) ⊇ Sp4(Fℓ) for all ℓ, as desired. �

Our main theorem now follows immediately:

Proof of Theorem 1.1. Combining Lemma 4.2, Lemma 4.3, and Lemma 4.4 we obtain ρJ(C),ℓ(GK) ⊇ Sp4(Fℓ)

for all primes ℓ. By Lemma 2.3, we then have ρJ(C)(GK) = GSp4(Ẑ), completing the proof. �
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