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Abstract. We present eigenvalue data and pictures of eigenfunctions of the

classic and quadratic snowflake fractal and of quadratic filled julia sets. Fur-
thermore, we approximate the area and box-counting dimension of selected

Julia sets to compare the eigenvalue counting function with the Weyl term.

1. Introduction.

We study eigenvalues and eigenfunctions of the Laplacian on Snowflake Domains
and certain selected filled Julia sets. The Snowflake domains are examples of curves
that are continuous everywhere but differentiable nowhere. They have finite area
bounded by an infinitely long line. We will start by looking at the classic Snowflake
and the quadratic snowflake with different parameters.

Then we analyze the spectrum of filled-in Julia sets from the main bulb and
compare their counting functions with the Weyl term. For the area we use a simple
approximation; for the dimension we use the box-counting dimension. We will
describe three ways of approximating the spectrum of the Basilica and the Rabbit,
as well as the junctions points from the main bulb to the Basilica bulb and the
Rabbit bulb: by iteration, by ”walking to these points” (only junctions) and by
analyzing the quasicircles that they consist of (only basilica/rabbit).

The Laplacian on the surface is just the usual two dimensional Laplacian ∆ =
∂2

∂x2 + ∂2

∂y2 . By the spectrum we mean a study of both the eigenvalues λ and

eigenfunctions u satisfying

(1.1) −∆u = λu

with either Dirichlet or Neumann boundary conditions. It is known that the eigen-
values form an increasing sequence 0 = λ0 < λ1 ≤ λ2 ≤ . . . tending to infinity, and
satisfying the Weyl asymptotic law

N(t) = #{λj ≤ t} ∼
A

4π
t

where A is the area of the surface. We will study the difference

D1(t) = N(t)− A

4π
t
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and

D2(t) =
D1(t)

tβ

where β is the box-counting dimension divided by two. We use the Finite Element
Method (FEM) and linear splines for our computations. The website http://pi.

math.cornell.edu/~sw972 [9] contains the programs we used and more data on
eigenvalues and eigenfunctions.

(a) Zoom into a mesh of the Classic

Snowflake

(b) Zoom into a mesh of the Basilica

Figure 1. Examples of meshes

The organization of the paper is as follows. In section 2 we describe the geometry
of the snowflake domains. In section 3 we discuss the eigenvalues for the snowflake
domains, and in section 4 the eigenfunctions. The reader should consult [1], [2],
[3], [4], [5], [6], [7] for earlier work on these questions. In section 5 we describe the
geometry of the filled Julia sets. In section 6 and 7 we discuss the eigenvalues and
eigenfunctions. For earlier references see [8], [10]. In section 8 we give a discussion of
the significance of our results, suggestions for future research and some interesting
conjectures.

http://pi.math.cornell.edu/~sw972
http://pi.math.cornell.edu/~sw972
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2. Geometry of Snowflakes.

We will look at the classic Koch snowflake and three chosen quadratic snowflakes.
The symmetries of the classic Snowflake is the group D6, the quadratic snowflakes
have the D8 symmetry group. The dihedral-6 group of symmetries of the hexagon
is generated by 6 reflections.

2.1. Classic Snowflake. We choose the side length of the level 1 triangle to be 1.
We construct the Clasic Snowflake domain by gluing together three Koch curves,
each generated by the IFS

f1(x) =

(
1
3 0
0 1

3

)
x

f2(x) =

(
1
6 −

√
3
6√

3
6

1
6

)
x+

(
1
3
0

)

f3(x) =

(
1
6

√
3
6

−
√
3
6

1
6

)
x+

( 1
2√
3
6

)
f4(x) =

(
1
3 0
0 1

3

)
x+

(
2
3
0

)
and shown in Fig. 2.

(a) Level 1 (b) Level 2 (c) Level 3 (d) Level 4

Figure 2. The Classic Snowflake

Lemma 2.1. The limit of the area of the classic snowflake with side length 1 is

(2.1) A =
2
√

3

5

Proof. We start with a single triangle with side length 1 at level 0, so A0 =
√
3
4 .

The number of triangles added in level m is 3 · 4m−1. The area of each triangle
added in level m is one ninth of the area of each triangle added in the level m− 1,
so the area of a single triangle added in level m is A0

9m . The total area added when

going from level m to m+ 1 is then 3
4 ·
(
4
9

)m · A0. The total area of the snowflake
at level m is then

Am = A0

(
1 +

3

4

m∑
k=1

(
4

9

)m)
= A0

(
1 +

1

3

m−1∑
k=1

(
4

9

)m)
which is

(2.2) Am = A0

(
1 +

3

5

(
1−

(
4

9

)m))
=
A0

5

(
8− 3

(
4

9

)m)
.

Taking the limit gives (2.1). �



4 ROBERT S. STRICHARTZ AND SAMUEL C. WIESE

Lemma 2.2. The box-counting dimension of the classic snowflake is log 4
log 3 .

Proof. We just consider the Koch curve, so one third of the boundary of the
snowflake with side length 1. If we choose boxes with side length 1

3 , we need 3

boxes to cover the curve. If we choose boxes with side length 1
9 , then we need

4 · 3 = 12, since we have to cover 4 identical copies shrank to 1
3 , and so on (Figure

3). Thus the number of boxes with side length rn = ( 1
3 )n necessary to cover is

equal to N (rn) = 3 · 4n−1. From this we can compute the box-counting dimension
exactly:

db = lim
n→∞

logN(rn)

log 1
rn

= lim
n→∞

logN
((

1
3

)n)
log 1

( 1
3 )

n

= lim
n→∞

log
(
3 · 4n−1

)
log 3n

= lim
n→∞

(n− 1) log 4 + log 3

n · log 3

= lim
n→∞

n log 4− log 4 + log 3

n · log 3

= lim
n→∞

(
n log 4

n log 3
+
log3− log 4

n log 3

)
=

log 4

log 3

�

(a) Covering with boxes of length 1
3

(b) Covering with boxes of length 1
9

Figure 3. Covering the classic snowflake with boxes

For these iterated function system we were able to give the exact dimension. This
will not be possible for the Julia sets, where we will compute an approximation by
counting boxes of different sizes from a sequence rn that tends geometrically to
zero. The idea is that the relationship between the number of boxes necessary to
cover the curve and the size of the boxes should be maintained over a broad range
of values. We fit a line into a log-log plot of the number of boxes to the size of
each box and take the slope. We check the method on the Classic Snowflake on
Level 6 and the Quadratic Snowflake (b = 0.2, Level 8) and computed dimensions
d ≈ 1.231 and d ≈ 1.280 respectively, shown in Fig. 4).
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Keep in mind that for Julia sets, the computation of the box counting dimension
is more problematic and that the limit does not necessarly converge. For a more
elaborate approach see [8], but for our purposes a simple counting method suffices.

(a) For the Classic Snowflake on Level 6: d ≈
1.231

(b) For the Quadratic Snowflake (b = 0.2) on

Level 6: d ≈ 1.280

Figure 4. Log-Log plot for the box-counting dimension

2.2. Quadratic Snowflake. We choose the side length of the level 1 square to be
1. We construct the domain by gluing together three curves, each generated by the
IFS

f1(x) =

(
a 0
0 a

)
x

f2(x) =

(
0 −b
b 0

)
x+

(
a
0

)
f3(x) =

(
b 0
0 b

)
x+

(
a
b

)
f4(x) =

(
0 b
−b 0

)
x+

(
a+ b
b

)
f5(x) =

(
a 0
0 a

)
x+

(
a+ b

0

)
and shown in Fig. 5.

(a) Level 1 (b) Level 2 (c) Level 3 (d) Level 4

Figure 5. The Quadratic Snowflake (b = 0.2)
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Lemma 2.3. The limit of the area of the quadratic snowflake is

(2.3) A = (2a+ b)2 +
4b2

1− 2a2 − 3b2
.

This gives A ≈ 1.07080 for b = 0.1, A ≈ 1.28571 for b = 0.2, and A ≈ 1.20711 for
the lattice case where b = 3− 2

√
2 (then a2 = b).

Proof. We start at a square with side length 2a+ b. By inspection we see that the
area added when going from level m to m+ 1 is

m∑
j=1

j−1∑
k=0

(
j − 1

k

)
2k3(j−1)−k

(
akbj−k

)2
so the area at level m is

Am = (2a+ b)2 + 4
m∑
j=1

j−1∑
k=0

(
j − 1

k

)
2k3(j−1)−k

(
akbj−k

)2
= (2a+ b)2 + 4b2

m∑
j=1

j−1∑
k=0

(
j − 1

k

)(
2a2
)k (

3b2
)(j−1)−k

= (2a+ b)2 + 4b2
m−1∑
j=0

(
2a2 + 3b2

)j
.

Taking the limit gives (2.3). �

Lemma 2.4. The box-counting dimension d of the quadratic snowflake satisfies

(2.4) 2

(
1− b

2

)d
+ 3bd = 1.

This gives d ≈ 1.15965 for b = 0.1, d ≈ 1.2811 for b = 0.2, and d ≈ 1.2465 for the
lattice case where b = 3− 2

√
2.

Proof. The box-counting dimension db of the quadratic snowflake satisfies:

(2.5) 2ad + 3bd = 1

since if we just look at the upper fourth of the curve, there are two copies each
shrunk by a next to the middle square with area b2. This gives (2.4). �

3. Snowflake spectrum.

In Figures 6 – 13 we show the graphs of the Dirichlet and Neumann counting
function N(t),

(3.1) D1(t) = N(t)− A

4π
,

and

(3.2) D2(t) =
D1(t)

tβ

where β is the box-counting dimension divided by two, for the classic snowflake and
three different quadratic snowflakes with a = 0.45, a = 0.4 and a =

√
2− 1 (lattice

case).
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(a) N(t) (blue) and A
4π
t (orange) (b) D1(t)

(c) D2(t) (d) D2(t) (zoom)

Figure 6. Classic snowflake (Level 6) with Dirichlet BC

(a) N(t) (blue) and A
4π
t (orange) (b) D1(t)

(c) D2(t) (d) D2(t) (zoom)

Figure 7. Classic snowflake (Level 6) with Neumann BC
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(a) N(t) (blue) and A
4π
t (orange) (b) D1(t)

(c) D2(t) (d) D2(t) (zoom)

Figure 8. Quadratic snowflake (Level 4, a = 0.45) with Dirichlet BC

(a) N(t) (blue) and A
4π
t (orange) (b) D1(t)

(c) D2(t) (d) D2(t) (zoom)

Figure 9. Quadratic snowflake (Level 4, a = 0.45) with Neumann BC
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(a) N(t) (blue) and A
4π
t (orange) (b) D1(t)

(c) D2(t) (d) D2(t) (zoom)

Figure 10. Quadratic snowflake (Level 4, a = 0.4) with Dirichlet BC

(a) N(t) (blue) and A
4π
t (orange) (b) D1(t)

(c) D2(t) (d) D2(t) (zoom)

Figure 11. Quadratic snowflake (Level 4, a = 0.4) with Neumann BC



10 ROBERT S. STRICHARTZ AND SAMUEL C. WIESE

(a) N(t) (blue) and A
4π
t (orange) (b) D1(t)

(c) D2(t) (d) D2(t) (zoom)

Figure 12. Quad. snowflake (Level 4, a =
√

2− 1) with Dirichlet BC

(a) N(t) (blue) and A
4π
t (orange) (b) D1(t)

(c) D2(t) (d) D2(t) (zoom)

Figure 13. Quad. snowflake (Level 4, a =
√

2− 1) with Neumann BC
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4. Snowflake eigenfunctions.

Fig. 14 shows three chosen eigenfunctions on the classic snowflake with Dirichlet
boundary conditions. In (a) and (b) are eigenfunctions from an eigenspace with mul-
tiplicity 2; (a) is symmetric under both reflections; (b) skew-symmetric under both
reflections. In (c) is an eigenfunction from the following one-dimensional eigenspace
with D6 symmetry. In fact, Neuberger et al. showed in [6] that all Dirichlet eigen-
functions on the classical snowflake from an one-dimensional eigenspace have D6
symmetry and all Dirichlet eigenfunctions from a two-dimensional eigenspace are
symmetric under both reflections. There are two types of each.

(a) For λ4 = 165.96 (b) For λ5 = 165.96 (c) For λ6 = 191.01

Figure 14. Eigenfunctions on the C. Snowflake (Lv. 6) with DBC

Fig. 15 shows three chosen eigenfunctions on the classic snowflake with Neumann
boundary conditions. In (a) and (b) are eigenfunctions from an eigenspace with
multiplicity 2; (a) is symmetric under both reflections; (b) skew-symmetric under
both reflections. In (c) is an eigenfunction from the following one-dimensional
eigenspace that is skew-symmetric under 60 rotation and symmetric under 120
rotation. Neuberger et al. showed in [6] that all Neumann eigenfunctions on the
classical snowflake from an one-dimensional eigenspace have D6 symmetry and all
Dirichlet eigenfunctions from a two-dimensional eigenspace are have the symmetric
properties as in the picture.

(a) For λ4 = 23.32 (b) For λ5 = 23.32 (c) For λ6 = 27.79

Figure 15. Eigenfunction on the C. Snowflake (Lv. 6) with NBC
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We computed the energy-distribution of each eigenfunction by assigning the same
weight to each cell - the sum of the squared normal derivative at each edge. It is
clear that for both Dirichlet and Neumann conditions, the energy function of an
eigenfunction from an one-dimensional eigenspace have D6 symmetry (Figure 16)
and all from a two-dimensional eigenspace are symmetric under both reflections
(Figure 17).

Figure 16. Energy Function on the C. Snowflake (Lv. 6) with
DBC for λ6 = 192.41

(a) For λ4 = 23.83 (b) For λ5 = 23.83

Figure 17. Energy Functions on the C. Snowflake (Lv. 6) with NBC
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We observe an interesting phenomenom for the Neumann eigenfunctions: it
seems like most energy functions can be constructed (at least near the boundary)
by choosing a linear combination of the two energy functions of the eigenfunctions
from the same eigenspace that came from the previous. In the shown example, a
linear combination of eigenfunction 4 and 5 looks like a 6-eigenfunction with Neu-
mann boundary conditions (Figure 18), and a linear combination of eigenfunctions
23 and 24 looks like a 25-eigenfunction (Figure 19). By linear combination we mean
taking a linear combination of the energies at each individual cell.

(a) For λ6 = 28.47 (b) Sum of Energy Functions for λ4 and λ5

Figure 18. Energy Functions on the C. Snowflake (Lv. 6) with NBC

(a) For λ25 = 244.18 (b) Sum of Energy Functions for λ23 and λ24

Figure 19. Energy Functions on the C. Snowflake (Lv. 6) with NBC
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Figure 20 shows three chosen eigenfunctions on a quadratic snowflake with
Dirichlet boundary conditions. In (a) and (b) are eigenfunctions from an eigenspace
with multiplicity 2; (a) is symmetric under horizontal reflection and skew-symmetric
under vertical reflection; (b) skew-symmetric under horizontal reflection and sym-
metric under vertical reflection. In (c) is an eigenfunction from the following one-
dimensional eigenspace that has D4 symmetry.

(a) For λ14 = 244.27 (b) For λ15 = 244.27 (c) For λ16 = 251.80

Figure 20. Eigenfunctions on the Quadratic Snowflake (b=0.2,
Lv. 4) with Dirichlet BC

Figure 21 shows three chosen eigenfunctions on a quadratic snowflake with Neu-
mann boundary conditions. In (a) and (b) are eigenfunctions from an eigenspace
with multiplicity 2; these are symmetric under one diagonal reflection and skew-
symmetric under the other. In (c) is an eigenfunction from the following one-
dimensional eigenspace that is skew-symmetric under both diagonal reflections and
skew-symmetric under horizontal and vertical reflection.

(a) For λ10 = 79.33 (b) For λ11 = 79.33 (c) For λ12 = 93.02

Figure 21. Eigenfunctions on the Quadratic Snowflake (b=0.2,
Lv. 4) with Neumann BC
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5. Julia Set geometry.

We will do a similar analysis on filled Julia sets of quadratic polynomials and
compute eigenfunctions with Dirichlet and Neumann boundary conditions.

Definition 5.1. Let pc(z) = z2 + c. The Julia set Jc and the filled Julia set Kc

are defined as

Kp = {z ∈ C : the sequence z, pc(z), p
2(z), . . . is bounded}

Jp = ∂Kp

Definition 5.2. The Mandelbrot set M is defined as

M = {c ∈ C : 0 ∈ Kc} = {c ∈ C : Kc is connected}.

We compute the area of the Julia sets in the main bulb by just counting the
pixels. Figure 22 shows the computed area for a slice at Im(c) = 0 and for the
whole region. It has been shown in [10] that the area is continuous in each bulb,
but not at the junction points. We also show where each point c denotes the area
of the corresponding Julia set. The Mandelbrot set is clearly visible.

(a) Area for the slice at Im(c) = 0 (b) Area for the whole region

Figure 22. Area of the quadratic Julia sets for z2 + c
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We also explore the box-counting dimension of each Julia set using 8 different
pictures sizes, starting from 640x480 up to 5120x3840, and counting the number of
boxes necessary to cover the curve at fixed steps.

Figures 23 and 24 show the possible approximation of the box-counting dimen-
sion of the quadratic Julia sets for z2 + c and varying c. It seems like the larger the
used images are, the smoother the curve becomes. The largest images correspond
to the thicker red curve.

Figure 23. Dimension for the slice at Im(c) = 0

Figure 24. Dimension for the slice at Re(c) = −0.12
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Figure 25 shows two chosen log-log plots used to explore two examples of Ju-
lia sets with real c. The red dots denote the pairs (box size, number of boxed
necessary), while the blue line is a linear fit in the log-log plot.

(a) For z2 + 0.2, d = 1.035, error: 0.00088 (b) For z2 − 0.5, d = 1.071, error: 0.0029

Figure 25. Log-Log plot for the box-counting dimension

In some cases it seems like the limit does not converge, i.e. when we can’t find a
good linear fit. Figure 26 shows the error when finding the linear fit. It seems like
the larger the used images are, the smoother the error curve becomes. The largest
images correspond to the thicker red curve.

Figure 26. Error when computing the box-counting dimension
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6. Filled Julia set spectrum.

We compute the spectrum for the Basilica, the Rabbit and the junctions points
from the main bulb to the Basilica bulb and the Rabbit bulb. One way of doing
this is by computing the spectrum of these Julia sets for different iterations (and
then extrapolating). Figure 27 show meshes of the basilica Julia set after 10 and
20 iterations.

(a) Mesh of the Basilica after 10 iterations (b) Mesh of the Basilica after 20 iterations

Figure 27. Examples of meshes

In the Dirichlet case, we will compare the spectrum found using this method
with the sorted union of the eigenvalues of the quasicircles (after 170 iterations).
For the basilica, we use quasicircle 1, 2 (twice), 3 (twice) and 4 (twice) and for the
rabbit quasicircle 1, 2 (twice) and 3 (twice) to find the lower part of the spectrum,
since smaller quasicirles don’t contribute to the lower part of the spectrum (Figure
28).

(a) On the Basilica (b) On the Rabbit

Figure 28. Selected quasicircles
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Figures 29 – 36 shows three chosen eigenfunctions with Dirichlet or Neumann
boundary conditions each. We will write ”H” or ”V” if a quasicircle or an eigen-
function is symmetric under horizontal or vertical reflection and ”SH” or ”SV” if
an eigenfunction is skew-symmetric under horizontal or vertical reflection.

(a) For λ6 = 304.88 (H, V) (b) For λ7 = 363.17 (H, SV) (c) For λ8 = 392.97 (SH, V)

Figure 29. Eigenfunctions on the 1st quasicircle of the Basilica
(H, V) with Dirichlet BC

(a) For λ6 = 104.25 (H, V) (b) For λ7 = 149.02 (H, SV) (c) For λ8 = 168.01 (SH, V)

Figure 30. Eigenfunctions on the 1st quasicircle of the Basilica
(H, V) with Neumann BC

(a) For λ6 = 1189.22 (H) (b) For λ7 = 1331.34 (H) (c) For λ8 = 1495.42 (SH)

Figure 31. Eigenfunctions on the 2nd quasicircle of the Basilica
(H) with Dirichlet BC
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(a) For λ6 = 511.08 (H) (b) For λ7 = 571.49 (H) (c) For λ8 = 655.85 (SH)

Figure 32. Eigenfunctions on the 2nd quasicircle of the Basilica
(H) with Neumann BC

(a) For λ6 = 559.22 (H, V) (b) For λ7 = 564.00 (H,
SV)

(c) For λ8 = 679.60 (SH,
V)

Figure 33. Eigenfunctions on the 1st quasicircle of the Rabbit
(H, V) with Dirichlet BC

(a) For λ6 = 205.07 (H,
SV)

(b) For λ7 = 238.94 (H, V) (c) For λ8 = 280.59 (SH,
V)

Figure 34. Eigenfunctions on the 1st quasicircle of the Rabbit
(H, V) with Neumann BC
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(a) For λ6 = 1542.19 (b) For λ7 = 1674.14 (c) For λ8 = 1939.44

Figure 35. Eigenfunctions on the 3rd quasicircle of the Rabbit
with Dirichlet BC

(a) For λ6 = 555.02 (b) For λ7 = 732.63 (c) For λ8 = 825.79

Figure 36. Eigenfunctions on the 3rd quasicircle of the Rabbit
with Neumann BC

Tables 1 and 2 show the beginning of the Dirichlet spectrum computed using the
quasicircles and after 20 iterations for the Basilica and the Rabbit. The quasicircle
that the eigenvalue belongs to (from Fig. 28) is shown in brackets.

Union of QCs After 10 it.
56.01 (1) 55.93
131.96 (1) 132.68
151.74 (1) 152.99
213.40 (2) 214.33
213.40 (2) 214.35
265.00 (1) 235.90
304.88 (1) 269.83
363.17 (1) 312.11
392.97 (1) 371.67
467.87 (1) 403.65
487.42 (2) 487.55
487.42 (2) 499.71
507.85 (1) 501.36
514.55 (1) 529.97
556.89 (1) 531.92
592.41 (2) 581.48
92.41 (2) 617.26

Table 1. Basilica

Union of QCs After 10 it.
98.59 (1) 94.61
218.01 (1) 208.98
279.41 (1) 270.26
283.77 (3) 270.54
283.77 (3) 273.48
370.02 (1) 352.79
472.78 (1) 469.07
559.22 (1) 528.39
564.00 (1) 551.48
600.25 (2) 556.50
600.25 (2) 558.21
607.97 (3) 574.74
607.97 (3) 575.97
679.60 (1) 678.63
790.59 (1) 728.05
820.88 (3) 820.29
820.88 (3) 825.30

Table 2. Rabbit
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Figures 37 and 38 show the beginning of the spectrum using different iterations
and using the spectra of the few largest quasicircles for the basilica and the rabbit
with Dirichlet boundary conditions. The approximation works really well, espe-
cially at the beginning of the spectrum. It shows that after only 20 iterations the
Dirichlet spectrum is already approximated well. The spectrum computed using
quasicircles is sloping downwards, because we are missing eigenvalues from other
smaller quasicircles that are not taken into account.

Figure 37. Spectrum of the Basilica Julia set with Dirichlet BC

Figure 38. Spectrum of the Rabbit Julia set with Dirichlet BC



LAPLACIANS ON SNOWFLAKE DOMAINS AND FILLED JULIA SETS 23

In the Neumann case, we can’t use the quasicircle spectra, but we can still show
the spectrum after different iterations (Fig. 39, 40).

Figure 39. Spectrum of the Basilica Julia set with Neumann BC

Figure 40. Spectrum of the Rabbit Julia set with Neumann BC
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We are also interested in the behaviour of the spectrum of a family of Julia sets to
z2 + c, Im(c) = 0. Figure 41 shows the first 100 eigenvalues, and it seems like there
won’t overlap. Note that in the chosen interval for c, the area of the corresponding
Julia set increases, as seen in Figure 22 (a), and so does the box-counting dimension,
if our conjecture is correct.

Figure 41. Spectrum of 21 Julia sets to z2 + c,
c ∈ {−0.74,−0.73, ...,−0.54}, Dirichlet BC

However, if we widen the iterval of the c-values, the spectra will intersect, as
seen in Figure 42.

Figure 42. Spectrum of 15 Julia sets to z2 + c,
c ∈ {−0.5,−0.45, ..., 0.2}, Dirichlet BC
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In Figures 43 and 44 we show similar graphs of the counting function N(t) and
the differences D1(t), D2(t) for a selected Julia set with A = 3.0305, d = 1.0351.

(a) N(t) (blue) and A
4π
t (orange) (b) D1(t)

(c) D2(t) (d) D2(t)

Figure 43. For the Julia set to z2 + 0.2 and Dirichlet BC

(a) N(t) (blue) and A
4π
t (orange) (b) D1(t)

(c) D2(t) (d) D2(t)

Figure 44. For the Julia set to z2 + 0.2 and Neumann BC
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7. Filled Julia set eigenfunctions.

We show chosen eigenfunctions on four different Julia sets from the main bulb
with Dirichlet and Neumann boundary conditions. Note that if c is real, then the
corresponding quadratic Julia set has the symmetry of an ellipse, for examples in
Figures 45 and 47. The eigenfunctions are symmetric with regards to at least one
reflection and symmetric or skew-symmetric with respect to the other.

For non-real c, the Julia set has rotational symmetry and so do the eigenfunctions
with Dirichlet or Neumann boundary conditions, for example in Figures 46 and 48.

(a) For EV λ11 = 152.65 with Dirich-
let BC

(b) For EV λ18 = 133.30 with Neu-
mann BC

Figure 45. Eigenfunctions on the filled JS to z2 + 0.2

(a) For EV λ10 = 199.32 with Dirichlet
BC

(b) For EV λ10 = 61.69 with Neumann
BC

Figure 46. Eigenfunctions on the filled JS to z2 + 0.2− 0.45i
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(a) For EV λ9 = 139.33 with Dirichlet
BC

(b) For EV λ13 = 91.60 with Neumann
BC

Figure 47. Eigenfunctions on the filled JS to z2 − 0.5

(a) For EV λ5 = 142.09 with Dirichlet
BC

(b) For EV λ7 = 46.32 with Neumann
BC

Figure 48. Eigenfunctions on the filled JS to z2 − 0.5− 0.45i
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8. Discussion.

We have gathered a lot of experimental evidence converning the eigenvalues and
eigenfunctions for snowflake domains and filled Julia sets. The next challenge is to
describe properties of the spectral data and to extend the results to more general
open sets with fractal boundary. Here are two interesting conjectures that arise
from our data.

Conjecture 8.1. The maximal area of the filled Julia set associated with a pa-
rameter in the Mandelbrot set is π, attained by the unit disk. See Fig. 22.

Conjecture 8.2. The box-counting dimension does not exist for a typical con-
nected Julia set. See Fig. 23 and Fig. 24. Of course the unit circle is an exception,
as may also be the case for certain named examples, such as the Basilica and Rabbit.
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