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AN ALGORITHM FOR DETERMINING TORSION GROWTH OF ELLIPTIC CURVES

ENRIQUE GONZÁLEZ–JIMÉNEZ AND FILIP NAJMAN

Abstract. We present a fast algorithm that takes as input an elliptic curve defined over Q and an integer d and
returns all the number fields K of degree d′ dividing d such that E(K)tors contains E(F )tors as a proper subgroup,
for all F K. We ran this algorithm on all elliptic curves of conductor less than 400.000 (a total of 2.483.649
curves) and all d ≤ 23 and collected various interesting data. In particular, we find a degree 6 sporadic point on
X1(4, 12), which is so far the lowest known degree a sporadic point on X1(m,n), for m ≥ 2.

1. Introduction

Let E be an elliptic curve defined over Q and let K a number field. We say that there is torsion growth over
K if E(Q)tors � E(K)tors. One can easily work out that there is torsion growth (of the 2-primary torsion) in at
least one number field of degree 2, 3, or 4. On the other hand, there is no torsion growth in number fields of
degree only divisible by primes > 7 (cf. [12, Theorem 7.2(i)]).

The purpose of this paper is to develop a fast algorithm, usable in practice, which for a given elliptic curve E
defined over Q and a positive integer d finds all the pairs (K,H) where K is a number field of degree dividing d
and E(K)tors � H � E(Q)tors. Of course, the set of such number fields can be infinite if there exists a number
field F of degree d′, where d′ divides d and d′ < d such that E(F )tors � E(Q)tors; then every number field K ⊇ F
of degree d will have the desired property. To circumvent this problem, we will say that E has primitive torsion
growth over a number field K if E(F )tors � E(K)tors, for all subfields F � K. For a prime � we say that E has
primitive �-power torsion growth if E(F )[�∞] � E(K)[�∞], for all subfields F � K.

It is an easy corollary of Merel’s theorem on the boundedness of the torsion of elliptic curves that for a given
integer d the list of number fields where the torsion growth will be finite.

The existence of such an algorithm is obvious: for every integer d, by Merel’s theorem, there exists an effective
bound Bd such that #E(K)tors ≤ Bd. So to determine the number fields F where torsion growth occurs one
does the following:

• For all prime powers �n ≤ Bd do:
• factor the �n-th division polynomial ψ�n and check whether there are any irreducible factors of degree d′

dividing d.
• If no, move on to the next prime power. If yes, for all irreducible factors f of degree d′ | d do:
- Construct the number field F whose minimal polynomial is f - this will be the field of definition of the
x-coordinate of a �n-torsion point P of E.

- Check whether P is defined over F , if yes add F to the set that will be the output. If P is not defined
over F , then check whether 2d′ divides d, if yes, then add Q(P ) (which will be obtained from F by
adjoining the y-coordinate of P to F ) to the output set.

However, if implemented as stated above, this algorithm would not be very useful in practice. The main
obstacle would be factoring division polynomials, as ψn is a polynomial of degree n2−1 for n odd, and the values2
n that need to be checked will grow exponentially in d.

Our algorithm will use information that can be obtained from the images of mod n Galois representations
attached to E to avoid factoring division polynomials wherever possible. To make the algorithm usable in
practice we will add a number of if-then conditions that will rule out most of the integers n that need to be
checked using results from [12] and results that we develop for this purpose in Section 2.2.
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One of the main motivations of this paper is to run the algorithm on all elliptic curves of conductor less than
400.000 (see [4, 22]) and for each curve within determine all the number fields of degree ≤ 23 over which there is
primitive torsion growth. In Section 4 we present the most interesting data coming out of these computations.
In particular we find two elliptic curves defined over Q with torsion Z/4Z×Z/12Z over a degree 6 number field
and prove that these are the only two such curves. By [5], there are only finitely many elliptic curves over sextic
fields (without supposing that they are defined over Q) with this torsion group, so these curves give us examples
of sporadic points of degree 6 on X1(4, 12). This is the lowest known degree of a sporadic point on a modular
curve X1(m,n), for m|n and m ≥ 2.

Notation. Specific elliptic curves mentioned in this paper will be referred to by their LMFDB label and a link to
the corresponding LMFDB page [22] will be included for the ease of the reader. Conjugacy classes of subgroups
of GL2(Z/�Z) will be referred to by the labels introduced by Sutherland in [29, §6.4]. We write G = H (or
G ≤ H) for the fact that G is isomorphic to H (or to a subgroup of H resp.) without further detail on the
precise isomorphism.

2. Auxiliary results

In this section, we prove a series of results that will make it possible to replace costly factorizations of division
polynomials by simple if-then checks. This will be useful in the computations described in Section 4.

Let E be an elliptic curve defined over a number field K, n a positive integer and K a fixed algebraic closure of
K. The absolute Galois group GK := Gal(K/K) acts on E[n], inducing a mod n Galois representation attached
to E

: GK −→ Aut(E[n]).ρE,n

Fixing a basis {P,Q} of E[n], we identify Aut(E[n]) with GL2(Z/nZ). Therefore we can view ρE,n(GK) as a
subgroup of GL2(Z/nZ), determined uniquely up to conjugacy in GL2(Z/nZ), and denoted by GE(n) from now
on.

For elliptic curves over Q, we conjecturally (see [29, Conjecture 1.1] and [32, Conjecture 1.12.]) know all the
mod � Galois representations attached to non-CM elliptic curves over Q.

Conjecture 2.1. Let E/Q�be a non-CM elliptic curve, � ≥ 17 a prime and (�, jE) not in the set{
(17,−17 · 3733/217), (17,−172 · 1013/2), (37,−7 · 113), (37,−7 · 1373 · 20833 ,

then GE(�) = GL2(F�).

For a prime �, ρE,� : GK → GL2(Z�) will denote the �-adic representation attached to E (again we assume
that we have fixed a basis for the Tate module T�(E)). We say that the �-adic representation of E is defined
modulo �n if for all m ≥ n we have GE(�

m+1) ≥ I + �nM2(Z/�
m+1Z).

Proposition 2.2. Let E be an elliptic curve defined over a number field K such that its �-adic representation
is defined modulo �n. Then for any point P ∈ E(K) of order �n+1, we have [K(P ) : K(�P )] = �2.

Proof. We need to prove that I + �M2(Z/�
n+1Z) acts transitively on the solutions of �X = P (where the action

of I + �nM2(Z/�
n+1Z) on the Z/�nZ-module of the solutions of �X = P is defined in the obvious way). The

GK-module E[�n+1] is isomorphic to (Z/�n+1Z)2, and we choose an isomorphism sending P to (�, 0) and study
the action of I + �M2(Z/�

n+1Z) on the �2 solutions of the equation �X = (�, 0). One easily sees that already( ) ( )
1 �n �n+1 0the subgroup of I + �nM2(Z/�

n+1Z) generated by and acts transitively on the solutions of the0 1 0 1
equation �X = (�, 0). �

For easier reference we state and prove the following obvious lemma.

Lemma 2.3. Let E be an elliptic curve defined over a number field K and � ≥ 5 a prime such that the index of
its �-Sylow subgroup of the image of its �-adic Galois representation in the �-Sylow subgroup of GL2(Z�) is equal
to �n. Then the �-adic Galois representation of E/K is defined modulo �m for some m ≤ n+ 1.

Proof. The lemma follows from the fact [28, Lemma 3, IV-24] that for � ≥ 5 if GE(�
m+1) ≥ I+�M2(Z/�

m+1Z) for
any m ≥ 1, then it follows that GE(�

k+1) ≥ I+ �kM2(Z/�
k+1Z) for all k ≥ m. Hence if the �-adic representation

is not defined modulo �n, then GE(�
k+1) ∩ (I + �kM2(Z/�

k+1Z)) has index at least � in I + �kM2(Z/�
k+1Z) for

every 1 ≤ k ≤ m and so the index of the �-Sylow subgroup of the image of the �-adic Galois representaiton of E
in the �-Sylow subgroup of GL2(Z�) would be at least equal to �n. �

http:/www.lmfdb.org/EllipticCurve/Q/
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Lemma 2.4. Let � ≥ 3 be a prime and E/Q�an elliptic curve. Then if GE(�) = GL2(F�) and P ∈ E(Q) is a
point of order �2, then [Q(P ) : Q] = �2(�2 − 1).

Proof. If � ≥ 5, then it follows from [28, Lemma 3, IV-24] that if GE(�) = GL2(F�), then ρE,� is surjective.
It follows that the �-adic representation is defined modulo �, so the lemma follows from Proposition 2.2. For
� = 3, if GE(9) = GL2(Z/9Z), then the conclusion is the same as before, while if GE(9) 	= GL2(Z/9Z) then it
follows from [6] that GE(9) = G, where G is a (unique up to conjugacy) subgroup G of GL2(Z/9Z) generated
by ( 4 5 ) and ( 4 5 ). One easily checks that this group acts transitively on the 72 points of order 9 in E(Q), so4 4 8 6
the [Q(P ) : Q] = 72 for all points of order 9 (using the same argumentation as in [12, Section 5]).

�
Lemma 2.5. Let E be an elliptic curve defined over a number field K such that P ∈ E(K) of order �k, k ≥ 2
and for some prime satisfying �k−1 > 2, �k−1P ∈ E(K). Then K(x(P )) = K(P ).

Proof. Obviously [K(P ) : K(x(P ))] = 1 or 2. Suppose [K(P ) : K(x(P ))] = 2 and let 1 	= σ ∈ Gal(K(P )/K(x(P ))).
Then we have σ(x(P )) = x(P ), so σ(y(P )) = y(−P ) and hence σ(P ) = −P , as σ 	= 1. But we have

−�k−1P = �k−1(σ(P )) = σ(�k−1P ) = �k−1P,

where the last equation follows from the fact that �k−1P ∈ E(K). This is obviously a contradiction. �

The most time-consuming part of our algorithm is determining the existence of points of order �k for k ≥ 2,
and the fields over which such points live if they exist.

We now prove results that will prove the non-existence of points of certain orders over number fields of�k

relatively small degree d.

2.1. Points of order 3n.

Lemma 2.6. There are no points of order 81 on an elliptic curve E/Q�over any number field of degree ≤ 53.

Proof. The result follows by the results of Rouse and Zureick-Brown (shared in personal communication) in which
they classify the possible 3-adic images of non-CM elliptic curves. Their classification was not yet complete at
the moment of writing of the paper, but from the results that they have it follows that the smallest degree of a
number field over which a non-CM elliptic curve E/Q has a point of order 81 is 81.

For CM elliptic curves defined over Q an explicit calculation using division polynomials shows that there are
no points of degree 81 over any number field of degree ≤ 53. �

2.2. Points of order 125.

Proposition 2.7. Let E/Q be an elliptic curve and K a number field of degree < 50. Then E(K) does not have
a point of order 125.

Proof. Let P be a point of order 125. First consider the case when E has a 5-isogeny over Q. Let d be the power
of 5 in [AutZ5 T5(E) : im ρE,5] (note that this index is finite as elliptic curves with CM do not have 5-isogenies
over Q). By [16, Theorem 2], d is at most 5, and we conclude by Lemma 2.3 that the �-adic representation of E
is defined modulo 25. From here it follows by Proposition 2.2 that [Q(P ) : Q(5P )] = 25. Since there exist no
points of order 25 on elliptic curves over quadratic fields, we have [Q(P ) : Q] > 50.

Suppose now that there is no isogeny of degree 5 over Q. Applying [23, Theorem 2.1] (with L = Q, p = 5,
a = 1 and n = 3), we obtain that [Q(P ) : Q] ≥ 50. �

2.3. Points of order 49.

Lemma 2.8. There are no points of order 49 on an elliptic curve E/Q�over any number field of degree d < 42.

Proof. Let us split the proof in two cases depending if E has a 7-isogeny or not. Suppose that E has a 7-isogeny,
then by the results of [17] the 7-adic representation is either as large as possible or the curve has jE = −153

or 2553. If the representation is as large as possible, then by Proposition 2.2 we have [Q(P ) : Q(7P )] = 49,
eliminating this case. If jE = −153 or 2553, we explicitly check that [Q(P ) : Q] ≥ 147.

Finally, suppose that E does not have a 7-isogeny and let P be a point of order 49 of E. By [23, Theorem
2.1], we get that [Q(P ) : Q(7P )] is divisible by 7, so the only cases which we need to consider for which
[Q(P ) : Q] = [Q(P ) : Q(7P )][Q(7P ) : Q] ≤ 42. This is only possible when GE(7) is a Borel subgroup, which is a
contradiction, since then E would have a 7-isogeny over Q. �

http://matematicas.uam.es/~enrique.gonzalez.jimenez/research/tables/algorithm/Lemma_2_6CM.txt
http://matematicas.uam.es/~enrique.gonzalez.jimenez/research/tables/algorithm/Lemma_2_8_order49.txt
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2.4. Points of order �2 for � > 7.

Lemma 2.9. There are no points of order �2 for � ≥ 11 on an elliptic curve E/Q over any number field of degree
d < 55.

Proof. Let P be a point of order �2. For � = 11, we note that it follows from [12, Table 1] that if E does not
have CM and has no 11-isogenies over Q, that [Q(11P ) : Q] is divisibly by 55.

On the other hand, if E has a 11-isogeny over Q, and it does not have CM, it follows from the results of
[16] and Lemma 2.3 that the 11-adic image is defined modulo 11, from which it follows by Proposition 2.2 that
[Q(P ) : Q(11P )] is divisible by 121.

= −21533If E/Q has CM and an 11-isogeny or an 19-isogeny then j(E) = −215 or j , respectively. An explicit
computation shows that such a curve does not have any points of order 121 over any number field of degree ≤ 55.

For � ≥ 13, if E has a �-isogeny over Q and does not have CM, by the results of [16], it follows that the �-adic
image is defined mod �, from which it follows that, that [Q(P ) : Q(�P )] is divisible by �2.

If E has an �-isogeny over Q for � > 19, then the result follows directly from [23, Theorem 1.8.].
On the other hand, if there are no �-isogenies over Q, then [Q(�P ) : Q] ≥ 72 for � = 13 and ≥ (�2 − 1)/3 for

� > 13. �

2.5. Points of order 37. The following lemma allows us to deal with points of order 37 over number fields of
degree 12, which is the smallest degree over which an elliptic curve defined over Q can have a point of order 37.

Lemma 2.10. Let E/Q be an elliptic curve. Then E has a point of order 37 over a degree 12 number field K if√
and only if jE = −7 · 113. Moreover, K has to be K = Q(α, d · f(α)) where f(x) = x3− 1155x+16450, d ∈ Q�

is such that E is Q-isomorphic to the elliptic curve dy2 = f(x) and α is a root of the irreducible polynomial

g(x) = x6 − 210x5 − 8085x4 + 125300x3 + 4251975x2 − 16133250x− 408849875.

In particular, E(K)tors = Z/37Z.

Proof. From [12] it follows that E has a point of order 37 over a degree 12 field if and only if GE(37) = 37.B.8.1,
2which happens if and only if jE = −7 · 113. We note that the elliptic curve E′ : y = f(x) has jE′ = −7 · 113 and

therefore there exists a number field L of degree 12 such that E′ has a point of order 37 over L (see [25, Section
6]). We have that g(x) is an irreducible factor of the 37-division polynomial of E′. In particular α = x(P ) where√
P is a point of order 37 in E′ and L = Q(P ) = Q(α, f(α)). Now if E/Q is an elliptic curve with jE = −7 ·113,
it will be a quadratic twist of E′; thus E will have a model E : dy2 = f(x) for some d ∈ Q. In particular,√
R = (α, d · f(α)) is a point of order 37 on E. Then we obtain K = Q(R) and get the desired result.

Let us prove E(K)tors = Z/37Z. The set of non-surjective primes only depends on the j-invariant of E.
Therefore it is enough to compute this set for a single elliptic curve with that jE = −7 · 113. We have that the
elliptic curve E′ of minimal conductor with jE′ = −7 · 113 has LMFDB label 1225.b2; we see in the LMFDB
(or alternatively explicitly compute) that 37 is the only non-surjective prime for this elliptic curve. So if E(K)
had a point P of order � 	= 37, Q(P ) would have to be a subfield of K and �2 − 1 would have to divide 12. We
see that the only possibility is that � = 2. But the field Q(P ) generated by a point of order 2 will not be Galois
over Q (since the mod 2 representation is surjective) and hence cannot be a subfield of the cyclic field K. �

2.6. Points of order 17. We obtain similar results as in Lemma 2.10, but for order 17 and for number fields of
degree 8, which is the smallest degree over which an elliptic curve defined over Q can have a point of order 17.

Lemma 2.11. Let E/Q be an elliptic curve. Then E has a point of order 17 over a degree 8 number field K if and√
only if jE = −17 · 3733/217. Moreover, K has to be K = Q(α, d · f(α)) where f(x) = x3− 95115x− 12657350,
d ∈ Q�is such that E is Q-isomorphic to the elliptic curve dy2 = f(x) and α is a root the irreducible polynomial

g(x) = x4 + 340x3 + 510x2 − 5560700x− 237673175.

In particular E(K)tors = Z/17Z.

Proof. By the same arguments as in Lemma 2.10, we get that an elliptic curve E/Q�such that E gains a point
= −1 · 2−17of order 17 over a number field K of degree 8 has jE · 17 · 3733 and 17 is the only surjective prime

for all such curves. There cannot be any points of order 3 over K, as K is cyclic and Q(P ) will not be Galois
over Q for any P ∈ E[3]. Note that in this case the quadratic twist with minimal conductor of E′ has LMFDB
label 14450.o2 �

http://matematicas.uam.es/~enrique.gonzalez.jimenez/research/tables/algorithm/Lemma_2_9CM.txt
http://matematicas.uam.es/~enrique.gonzalez.jimenez/research/tables/algorithm/Lemma_2.10_11.txt
http://www.lmfdb.org/EllipticCurve/Q/1225h1
http://www.lmfdb.org/EllipticCurve/Q/14450n1
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2.7. Some special degrees. From the results proved in this section, we immediately obtain the following result.

Lemma 2.12. Let d = 22 or 26 and E/Q an elliptic curve. Then there is no primitive torsion growth over any
number field of degree d.

Proof. This follows immediately from Lemma 2.9 and [12, Table 1 and 2]. �

3. The algorithm

In this section we describe our algorithm. We always strive to make the algorithm useful in practice, and not
to obtain an algorithm with small worst-case complexity. The reason for this is that in most cases, standard
conjectures tell us that certain things will not happen, so we do not worry too much about the run-times of events
that are conjecturally impossible. To give an explicit example, it is widely believed (see Conjecture 2.1) that
GE(�) = GL2(F�) for all � > 37 and all non-CM elliptic curves over Q. Hence, we focus on trying to quickly prove
that indeed GE(�) = GL2(F�), and not worry too much on the run-time of what happens if GE(�) 	= GL2(F�)
for � > 37, which, as already noted, conjecturally never happens.

We will use the following notation/definition in the algorithm.

Definition 1. For an elliptic curve E/Q and a positive integer d, we define R(d,E) to be the set of primes such
that there exists a number field K of degree d′|d such that there is primitive �-power torsion growth over K.

Recall that in [12] the set RQ(d) is defined to be the set of all primes � such that there exists a point of order
� on some elliptic curve E/Q over some number field of degree d. Note that RQ(d) is unconditionally known for
all d < 3.343.296 (and in the larger cases we know a set containing RQ(d)), so for all values of d in which one
hopes to be able to run the algorithm.

The algorithm consists of 3 sub-algorithms.

Algorithm 1: R(E, d)
Input: An elliptic curve E/Q and integer d.
Output: The set R(E, d)

(1) Set R(E, d) := ∅.
(2) If the largest prime divisor of d is larger than 7, exit this algorithm and return R(E, d) = ∅.
(3) Compute RQ(d) using [12, Corollary 6.1].
(4) For � ∈ RQ(d) compute GE(�).
(5) For � ∈ RQ(d) compute the degrees n of number fields over which there is �-torsion, depending on GE(�)

using [12, Table 1 & 2] for non-CM curves and [12, Theorem 3.6 and 5.6 ]. If any such n divides d, add
� to R(E, d).

(6) Return R(E, d).

Remark 3.1. Algorithm 1 is used to determine the (finite) set of primes � such that there will be primitive �-power
torsion growth over number fields of degree d′ dividing d.

Remark 3.2. Step (2) follows from [12, Theorem 7.1. (i)]. In step (4), we compute GE(�) using the algorithm
sketched in [32, 1.8.].

Algorithm 2: �-primary torsion growth

In this algorithm we will store a point or points generating the torsion group of E(K). These are necessary
for computing the �-power torsion, but will not be returned in the output of the algorithm (although they could
be), as they will not be necessary. We will also store an auxiliary sequence F of pairs (Fi, (Pi, Qi)), where
K = Q(E[�i]) and Pi and Qi generate the �i-torsion of E and such that [Fi : Q] divides d. In Algorithm 2, Fi

will always denote Q(E[�i]).

Input: An elliptic curve E/Q, d ∈ Z+, a prime �
Output: A set A of all pairs (K,T ) such that E has primitive �-power torsion growth over K, and T :=

E(K)[�∞] and such that [K : Q] divides d.
(1) A := ∅ and F := ∅.
(2) If E(Q)[�] 	= {0}: A := A ∪ (Q, E(Q)[�], S), where S is a set of generators of E(Q)[�], and if #GE(�)

divides d, then factor ψl and let F1 = Q(E[�]) be the field defined by an irreducible factor of degree > 1
and then A := A ∪ (F1, (Z/�Z)

2, S) and F := (F1, S), where S is a set of generators of E[�].
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(3) If E(Q)[�] = {0}: Explicitly determine the triples (Ki := Q(Pi),Z/�Z, {Pi}) for all Pi ∈ E[�] by factoring
the �-division polynomial ψ�, keeping only one number field up to isomorphism. For all Ki constructed,
check whether #GE(�) = [Ki : Q] for any i; if yes, change (Ki,Z/�Z, {Pi}) to (Ki, (Z/�Z)

2, S) and
F := F ∪ (F1, S), where S generates E[�].

(4) Set k := 2. Repeat: if (� < 11 or d ≥ 55) and (� =	 3 or k ≤ 3 or d ≥ 53) and (� =	 5 or k = 2 or d ≥ 50)
and (� 	= 7 or d ≥ 42)
(i) Factor the primitive �k-division polynomial ψ�k/ψ�k−1 , and check whether there are any irreducible

factors of degree dividing d modulo small primes of good reduction. If not, then there exit the loop.
(ii) Now for each element (Ki, T, S) that we have in our set, for each cyclic subgroup of T of order �k−1

(if it exists): select a generator Q. Factor over Ki the polynomial

(1) φ�(x)− x(Q)ψ�(x)
2 = g1(x) · . . . · gu(x),

where φ� and ψ� are as defined in [31, Chapter 3.2. p.81].
Let Pi be a point of order �k such that x(Pi) is a root of gi; if [Q(Pi) : Q] divides d, add the field,
the appropriate subgroup and its generators into A.

(iii) For each element (Ki,Z/�
mZ × Z/�nZ, S), where m ≥ n, in A check whether KiFj is of degree

dividing d for j = m, . . . , k; if yes add (KiFj ,Z/�
mZ× Z/�jZ, S′) to the list.

(iv) Check whether Fk is of degree dividing d by checking whether in A there exists an entry (Ki,Z/�
kZ×

�k−1Z/�k−1Z, S); if yes, check whether the element P ∈ S of order is divisible by � over Ki. If
yes, change the previous entry into (Ki,Z/�

kZ × Z/�kZ, S′), where S′ = {Q,R} is obtained from
S = {P,Q}, where Q is of order �k and �R = P and add (Fk := Ki, S

′) to F .
(v) k:=k+1;
until the first occurrence that there are no points of order �k in A.

(5) Return A.

Remark 3.3. Note that in (2), we have Q(E[�]) = F1 by [29, Lemma 5.17].
The conditions at the beginning of (4) come from Lemmas 2.6, 2.7, 2.8 and 2.9, and make the algorithm much

faster for "small" (< 50) degrees, i.e. in all the ones where it is feasible to use the algorithm in practice.
In (4) (ii), we use [29, Corollary 5.18] where possible. By [31, Theorem 3.6] we have that

φ�(x)
x(Q) = ,

ψ�(x)2

for any P = (x, y) such that Q = �P . Using this step is crucial (instead of factoring �k-division polynomials)
as one uses the polynomial (1) of degree (over number fields) instead of factoring (over Q) the primitive�2

�k-division polynomial, which is of degree �2k−2(�2 − 1)/2.
In (4) (iii), if KiFj is not of degree dividing d, then neither is KiFj+1, so we can stop for the smallest j such

KiFj is not of degree dividing d.
In (5), the generators of the torsion groups can be deleted from A, as they will not be used again later.

Algorithm 3: Combining different �-primary torsion growths

Input: A positive integer d and a set A of all pairs (K,T ) such that E has primitive �-power torsion growth
over K for some prime �, and T := E(K)[�∞] and such that [K : Q] divides d.

Output: A set B of all pairs (K,T ) such that E has primitive torsion growth over K, and T := E(K)tors
and such that [K : Q] divides d.

(1) To each pair (K,T ) previously obtained we adjoin the set containing the pair (�,K�) containing a prime
�� such that T is a �-group and K := K . So we get triples (K,T, {(�,K)}). For a triple (K,T, S), we⋃

will denote by S′ := a∈S a[1] the set of all first coordinates of S.
(2) Set k:=2; Repeat: new:=false; For each pair of triples (Ki, Ti, Si) and (Kj , Tj , Sj) satisfying |S′∪S′| = ki

do:
(i) Check whether for all (k − 1)-subsets Bm of Si ∪ Sj there exists a triple (Kr, Tr, Sr), r 	= i, j such

that Bm = Sr, if no, discard this pair of triples and move onto the next one.
(ii) If the previous test has been passed, check whether the degree of KiKj divides d. If yes put

new:=true, construct the triple (KiKj , T, Si ∪ Sj) where∏
T = T [�∞].

�∈(Si∪Sj)′
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(3) Return the obtained results, forgetting the third element of the triples, i.e returning just the values
(K,T ).

Remark 3.4. In step (1) the elements in Si and Sj are the same only if both coordinates are the same.

Finally the whole algorithm:

Algorithm TorsionGrowth

Input: An elliptic curve E/Q and a positive integer d.
Output: A sequence of all pairs (K,T ) of a number field K of degree d′ such that d′|d and that E has

primitive torsion growth over K, together with the group T := E(K)tors.

(1) R(E, d) := Algorithm1(E,d)
(2) A := ∅

For � ∈ R(E, d):
A := A ∪ Algorithm2(E,�,d)

(3) B := Algorithm3(A,d)
(4) Return B

4. Computational results

Let d a positive integer and Φ(d) be the set of groups, up to isomorphism, that occur as torsion groups of
some elliptic curve defined over a number field of degree d. Note that the set Φ(d) is finite thanks to Merel’s
uniform boundedness theorem. These sets have so far been determined for only∗ d ≤ 2 [24, 20, 21]. For degree
d = 1, 2, each group in Φ(d) occurs for infinitely many Q-isomorphism classes of elliptic curves, but for d = 3
this is not the case (see [25, Theorem 1] and [18, Theorem 3.4]). Therefore we define Φ∞(d) ⊆ Φ(d) to be the set
of groups that arise for infinitely many Q-isomorphism classes of elliptic curves. While Φ(d) is not completely
known even for d = 3, Φ∞(d) is known for d ≤ 6 [18, 19, 5].

Let d be a positive integer and ΦQ(d) ⊆ Φ(d) be the set of groups, up to isomorphism, that occur as the
torsion group E(K)tors of an elliptic curve E defined over Q�base changed to a number field K of degree d.
Notice that ΦQ(d) does not have to be contained in Φ∞(d), as the group Z/21Z�shows† for d = 3, and Φ∞(d)
does not have to be contained in ΦQ(d) as the group Z/15Z shows for d = 2 (see [25, Theorem 1] and [21]).

Similarly, for a fixed G ∈ Φ(1), let ΦQ(d,G) be the subset of ΦQ(d) consisting of all possible torsion groups
E(K)tors of an elliptic curve E defined over Q�such that E(Q)tors = G base changed to K, a number field of
degree d. The sets ΦQ(d) and ΦQ(d,G), for any G ∈ Φ(1), have been completely determined for d = 2, 3, 4, 5, 7
in a series of papers [25, 14, 15, 11, 2, 12, 7]. Moreover, in [12] it has been established ΦQ(d) = Φ(1) for any
positive integer d whose prime divisors are greater than 7.

Our algorithm takes as input an elliptic curve E defined over Q�and a positive integer d and outputs all
the pairs (K,H) (up to isomorphism) where K is a number field of degree dividing d, E has primitive torsion
growth over K, and E(K)tors � H. We denote by HQ(d,E) the multiset formed by E(Q)tors together with
the groups H in the above computation. Note that we are allowing the possibility of two (or more) of the
torsion subgroups H being isomorphic if the corresponding number fields K are not isomorphic. We call the
set HQ(d,E) the set of torsion configurations of degree d of the elliptic curve E/Q. We let HQ(d) denote the
set of HQ(d,E) as E runs over all elliptic curves defined over Q�such that HQ(d,E) 	= {E(Q)tors}, that is E
has torsion growth over a number field of degree d. For S ∈ HQ(d) define NQ(S) to be the minimum conductor
NQ(E) such that HQ(d,E) = S and we denote by NQ(d) the maximum‡ of NQ(S) for all S ∈ HQ(d). Note
that if we denote the maximum of the cardinality of the sets S when S ∈ HQ(d) by hQ(d), then hQ(d) gives
the maximum number of field extension of degrees dividing d where there is primitive torsion growth. The sets
HQ(d) have been completely determined for d = 2, 3, 5, 7 and for any d not divisible by a prime smaller than
11 (see [15, 11, 7, 12]). From these results, one can read out the value of hQ(d) for d = 2, 3, 5, 7 (see [26] for a
different approach to obtain hQ(2)). For d = 4, 6, exhaustive computations to obtain bounds on the above sets
and values have been carried out (see [10, 8]).

As d grows, all these problems become much more difficult, so it makes sense to obtain lower bounds on some
of these sets, where possible. We will obtain such a lower bound for d ≤ 23, by finding all the possible torsion

∗M. Derickx. A. Etropolski, M. van Hoeij, J. Morrow and D. Zureick-Brown have announced results for d = 3.
†The second author showed in [25] that the elliptic curve with LMFDB label 162.c3 has torsion subgroup Z/21Z�defined over

the cubic field Q(ζ9)
+ = Q(ζ9 + ζ9

−1) where ζ9 is a primitive 9-th root of unity.
‡Note that the smallest integer B such that for every torsion group T possible over Q�there exists an elliptic curve E with

E(Q)tors = T and NQ(E) ≤ B is B = 210.

http://www.lmfdb.org/EllipticCurve/Q/162b1
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groups of the 2.483.649 elliptic curves of conductor less than 400.000 over number fields of degree up to 23. We
chose to stop at 23 (although it could probably be feasible to do computations for a few more degrees), as this
is the largest degree of number fields that have been included in the LMFDB at the moment of writing of this
paper. The algorithm has been implemented in Magma [1] and can be found in the online supplement [13].

Table 1 gives a short overview of our computations. For the sake of simplicity we denote in Table 1 by (n)
and (n,m) the groups Z/nZ and Z/nZ× Z/mZ, respectively. The values in the table are:

• 1st column: degree d.
• 2nd column: all the possible torsion subgroups H such that there exists an elliptic curve E/Q�and a

number field K of degree d such that there is primitive torsion growth over K and such that E(K)tors = H.
Or in the other words, the subgroups in ΦQ(d) that do not appear in ΦQ(d

′) for any proper divisor d′|d.
• 3rd column: a lower bound of hQ(d) (or the exact value, where it is known), the maximum number of

field extension of degrees dividing d where there is primitive torsion growth.
• 4th column: a lower bound of NQ(d), the minimum value such that there exist elliptic curves over Q�of

conductor less than NQ(d) with every possible torsion configuration over number fields of degree d.
• 5th column: a lower bound of #HQ(d), the number of torsion configurations over number fields of degree
d.

d ΦQ(d) \ ∪d′|d,d′<dΦQ(d
′) ⊇ hQ(d) NQ(d) #HQ(d)

1 {(1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (12), (2, 2), (2, 4), (2, 6), (2, 8)} − − −
2 {(15), (16), (2, 10), (2, 12), (3, 3), (3, 6), (4, 4)} 4 3150 52

3 {(13), (14), (18), (21), (2, 14)} 3 3969 26

4 {(13), (20), (24), (2, 16), (4, 8), (5, 5), (6, 6)} ≥ 9 ≥ 14400 ≥ 130

5 {(11), (25)} 1 121 4

6 {(30), (2, 18), (3, 9), (3, 12), (4, 12), (6, 6)} ≥ 9 ≥ 10816 ≥ 137

7 − 1 26 1

8 {(17), (21), (30), (32), (2, 20), (2, 24), (3, 12), (4, 12)} ≥ 17 ≥ 277440 ≥ 275

9 {(19), (26), (27), (28), (36), (42), (2, 18)} ≥ 6 ≥ 3969 ≥ 34

10 −{ } ≥ 4 ≥ 3150 ≥ 58

12
(26), (28), (36), (37), (42),

(2, 28), (2, 30), (2, 42), (3, 15), (3, 21), (5, 10), (6, 12)
≥ 19 ≥ 18176 ≥ 268

14 − ≥ 4 ≥ 3150 ≥ 52

15 {(22), (50)} ≥ 3 ≥ 3969 ≥ 30

16 {(40), (48), (2, 30), (2, 32), (3, 15), (4, 16), (4, 20), (5, 15), (6, 12), (8, 8)} ≥ 25 ≥ 277440 ≥ 480

18 {(45), (2, 26), (2, 36), (2, 42), (3, 18), (3, 21), (4, 28), (6, 18), (7, 7), (9, 9)} ≥ 17 ≥ 254016 ≥ 192

20 {(22), (33), (2, 22), (5, 10), (5, 15)} ≥ 9 ≥ 14400 ≥ 149

21 {(43)} ≥ 3 ≥ 3969 ≥ 29

Table 1. Bounds on ΦQ(d) for d ≤ 23.

In the online supplement [13] we give more data about our computations. For each degree d ≤ 23 we include
the following:

• For any G ∈ ΦQ(1) we include a table with a lower bound for the set ΦQ(d,G).
• For each torsion configuration S ∈ HQ(d) obtained, we provide the Cremona label [4] of the elliptic curve
E/Q with minimal conductor such that S = HQ(E, d).

Remark 4.1. At the moment of writing this paper, each elliptic curve defined over Q�with conductor less than
400.000 and for any degree d ≤ 7, the data obtained with our algorithm appears in LMFDB. We have in plan to
include all the data for d ≤ 23.

4.1. Primitive torsion growth. An interesting question is to restrict our attention to the case of primitive
torsion growth of exactly a fixed degree instead of the whole growth over number fields of degree dividing a fixed

http://matematicas.uam.es/~enrique.gonzalez.jimenez/research/tables/algorithm/algorithm.html
http://matematicas.uam.es/~enrique.gonzalez.jimenez/research/tables/algorithm/algorithm.html
http://www.lmfdb.org/EllipticCurve/Q/
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degree. For a positive integer d, we denote by ΨQ(d) ⊆ ΦQ(d) the set of groups, up to isomorphism, that appear
as primitive torsion growth of an elliptic curve defined over Q over a number field of degree d. In the same vein,
we define ΨQ(d,G), GQ(d,E), GQ(d), gQ(d), MQ(d) analogously as we did ΦQ(d,G), HQ(d,E), HQ(d), hQ(d),
NQ(d), respectively.

In Table 2 we include a lower bound for the set ΨQ(d) for d ≤ 23. In particular, in each line the first column
is the degree d, the second column includes the cyclic groups Z/nZ, denoted by (n), that we have obtained, and
the rest of the columns Z/mZ× Z/mnZ, denoted by (m,mn), for 2 ≤ m ≤ 9.

In Table 3 we show lower bounds for the values gQ(d), MQ(d) and #GQ(d) for d ≤ 23 non-prime.
Again, in the online supplement [13] we give more data which gives lower bounds on the sets ΨQ(d,G) and

the Cremona labels of the elliptic curves E/Q�with minimal conductor for each torsion configuration in GQ(d)
that we have obtained.

d (n) (2, 2n) (3, 3n) (4, 4n) (5, 5n) (6, 6n) (7, 7n) (8, 8n) (9, 9n)

2 3-10,12,15,16 1-6 1,2 1 - - - - -

3
2-4,6,7,9,10,
12-14,18,21

1,3,7 - - - - - - -

4
3-6,8,10,12,

13,15,16,20,24
2-6,8 1,2 1,2 1 1 - - -

5 5,10,11,25 - - - - - - - -

6
3,4,6,7,9,10,

12-15,18,21,30
1,3,5-7,9 1-4 1,3 - 1 - - -

7 7 - - - - - - - -

8
3,5,6,8,10,12,15,16,
17,20,21,24,30,32

2-6,8,10,12 1,2,4 1-3 1 1 - - -

9
6,7,9,12,14,18,

19,21,26-28,36,42
3,7,9 - - - - - - -

10 5,10,11,15,25 5 - - - - - - -

12
4,6,7-10,12-15,18,20,

21,24,26,28,30,36,37,42
2,3,5,6,7,
9,14,15,21

1-5,7 1,3 2 1,2 - - -

14 7 - - - - - - - -

15 10,22,50 - - - - - - - -

16
5,8,10,12,15,16,17

20,21,24,30,32,40,48
3-6,8,10,
12,15,16

1,2,4,5 1-5 1,3 1,2 - 1 -

18
6,7,9,12,14,18,19,21,
26-28,30,36,42,45

3,7,9,13,18,21 2-4,6,7 3,7 - 1,3 1 - 1

20 5,10,11,15,20,22,25,33 5,11 - - 1-3 - - - -

21 7,14,21,43 7 - - - - - - -
Table 2. Bounds on ΨQ(d) for d ≤ 23.

d 4 6 8 9 10 12 14 15 16 18 20 21

gQ(d) ≥ 5 5 9 3 1 6 1 1 10 6 3 1

MQ(d) ≥ 18176 5184 223494 3969 150 18176 208 121 277440 254016 18176 1922

#GQ(d) ≥ 104 88 200 20 7 134 1 3 336 101 26 6
Table 3. Data for ΨQ(d)

http://matematicas.uam.es/~enrique.gonzalez.jimenez/research/tables/algorithm/algorithm.html
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4.2. Timing. We ran our algorithm for all elliptic curves defined over Q of conductor less than 400.000 and for
degree d ≤ 23 on the Number Theory Warwick Grid, in particular at two computers (atkin and lehner) with
64 CPUs at 2.50 GHz and 128GB of memory RAM each. In Table 4 we show for each degree d the total time of
the whole computation, the maximum time taken for a single elliptic curve, and other statistics. Note that this
project used roughly 2.7 cpu-years of computing time.

d 2 3 4 5 6 7 8 9 10 12 14 15 16 18 20 21

Mode (s) 0.06 0.06 0.06 0.06 0.09 0.06 0.08 0.06 0.06 0.23 0.06 0.06 0.08 0.09 0.06 0.06

Median (s) 0.07 0.06 0.07 0.06 0.13 0.06 0.10 0.06 0.07 4.7 0.07 0.06 0.10 0.13 0.07 0.06

Mean (s) 0.08 0.06 0.15 0.06 0.17 0.06 1.1 0.13 0.1 6.5 0.08 0.07 24 1.4 0.35 0.06

Maximum (s) 1.3 3.7 9.0 3.5 9.1 16 98 16 27 110 16 16 1200 440 470 17

Total (h) 54.4 43.5 106.4 42.2 119.6 41.6 774.7 87 66.8 4492.8 55.45 44.85 16339 988.1 241.3 43.8

Table 4. Timings for the computations

5. On sporadic torsion

Another motivation for our computations are sporadic points on the modular curves X1(m,n).

Definition 2. Let m,n positive integers such that m|n. We say that a degree d non-cuspidal point on the
modular curve X1(m,n) is sporadic if there exists only finitely many degree d points on X1(m,n).

Obviously there exists a non-cuspidal sporadic point on X1(m,n) if and only if Z/mZ×Z/nZ ∈ Φ(d)\Φ∞(d).
There exist no sporadic points on modular curves X1(m,n) of degree d ≤ 2, and hence the aforementioned

elliptic curve with Z/21Z�torsion over a cubic field provides the lowest possible degree of a sporadic point on
X1(n). There are many examples of sporadic points on X1(n) of degree ≥ 5, see [30] for a long list.

It is somewhat surprising that there is no (to our knowledge) known example of a sporadic point on X1(m,n)
for m ≥ 2. Hence it is interesting to ask what is the lowest possible degree of a sporadic point on X1(m,n) for
m ≥ 2. During our computation, we find a degree 6 sporadic non-cuspidal point on X1(4, 12) about which we
will say more in Section 5.1.

5.1. A degree 6 sporadic point on X1(4, 12). As mentioned in the previous section, during our computations
of torsion growth for elliptic curves of conductor less than 400.000, we found two elliptic curve with Z/4Z×Z/12Z�
torsion over a sextic field. By [5, Theorem 1.1], there are only finitely many such curves over sextic fields, so
these curves induce sporadic points on X1(4, 12).

We prove a stronger result below.

Theorem 5.1. Let E be an elliptic curve defined over Q�and K/Q�such that [K : Q] = 6. If E(K)tors =
Z/4Z× Z/12Z�then the LMFDB label of E is 162.d2 or 1296.l2. In particular, j(E) = 109503/64.

Proof. Suppose E/Q is an elliptic curve satisfying the assumptions of the theorem. First notice that E does not
have CM by [3, 4.6].

Denote by G := E(Q)tors and H := E(K)tors. Let G2 (resp. H2) denote the 2-primary part of G (resp. H).
We have the classification of the possible growth of the 2-primary part of the torsion over sextic fields (cf. [8,
Proposition 6 (b), Table 2]):

G2 H2

{0} Z/2Z , Z/4Z , Z/2Z× Z/2Z , Z/4Z× Z/4Z�

Z/2Z� Z/4Z , Z/8Z , Z/16Z , Z/2Z× Z/2Z�

Z/4Z� Z/8Z , Z/2Z× Z/4Z , Z/2Z× Z/8Z , Z/4Z× Z/4Z�

Z/8Z� Z/16Z , Z/2Z× Z/8Z�

Z/2Z× Z/2Z� Z/2Z× Z/4Z , Z/2Z× Z/8Z�

Z/2Z× Z/4Z� Z/2Z× Z/4Z , Z/4Z× Z/4Z�

Z/2Z× Z/8Z� −−
It now follows that:

• G 	= Z/2Z,Z/6Z,Z/2Z× Z/2Z,Z/2Z× Z/6Z since then H2 cannot be Z/4Z× Z/4Z.

http://www.lmfdb.org/EllipticCurve/Q/162/d/2
http://www.lmfdb.org/EllipticCurve/Q/1296/l/2
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• G 	= Z/2Z × Z/4Z�since if Z/2Z × Z/4Z�⊂ G then Z/2Z × Z/12Z�	⊂ H; see the Remark below [10,
Theorem 7].

• G =	 Z/12Z since otherwise G2 = Z/4Z and H2 = Z/4Z×Z/4Z. The first author together with Lozano-
Robledo, based on the classification of all the possible 2-adic images of Galois representations attached
to elliptic curves without CM defined over Q given by Rouse and Zureick-Brown [27], have computed the
degree of the field of definition of the Z/2iZ× Z/2i+jZ torsion for i+ j ≤ 6 (cf. [9, 2primary_Ss.txt]).
Using the above data it would follow that the number field K would have to have a quadratic subfield and
that E would have full 4-torsion over it. Then E would have Z/4Z× Z/12Z torsion over this quadratic
field, which is impossible [21, 20].

• G =	 Z/4Z. Using the same argument as above, we see that E has full 4-torsion over a quadratic field.
Since Z/4Z× Z/12Z 	∈ ΦQ(d) for d = 2, 3, 4, we have that the image of the mod 3 representation is such
that there does not exist a point P ∈ E(Q)[3] such that [Q(P ) : Q] = 1 or 2. On the other hand, by
assumption, there exists a point R ∈ E(Q)[3] such that [Q(R) : Q] divides 6. Checking for example [12,
Table 1], we see that there is no mod 3 Galois representation satisfying both these conditions.

We know that both the cases G = {0} and G = Z/3Z can happen. For those cases we have that G2 = {0} and
H2 = Z/4Z × Z/4Z. We check using [9] and [27] that this happens over a sextic number field if and only the
2-adic image correspond to the modular curve X20b (using the notation of [27]), implying that there exists a
t ∈ Q such that E is isomorphic to Et, where:( ) ( )3 ( )4 ( ) ( )

2 2 − 3Et : y = x3 − 27 t t2 − 8t− 11 x+ 54 t2 − 8t− 11 t2 − 6t− 9 t2 + 2t+ 3 .

In particular, ( )3 ( )
4 t2 − 3 t2 − 8t− 11

j(Et) = − .
(t+ 1)4

Now we need a point of order 3 defined over a subfield of a sextic number field. Checking [12, Table 1] we obtain
that this could happen when GE(3) is 3Cs.1.1, 3B.1.1, 3Cs, 3B.1.2 or 3B. Then, thanks to the classification
of mod 3 Galois representation of [32, Theorem 1.2] we have that j(E) = J1(s) or j(E) = J3(s) for some s ∈ Q,
where:

27(s+ 1)3(s+ 3)3(s2 + 3)3 27(s+ 1)(s+ 9)3
J1(s) = and J3(s) = .

3t3(t2 + 3t+ 3)3 s

• j(Et) = J1(s). Since J1(s) is a cube we have to solve the following Diophantine equation over Q:( )
3(t+ 1)z = −4 t2 − 8t− 11 .

2This equation defines a curve C of genus 2, which is birational to C ′ : y = x6−10x3+27. The Jacobian
of C ′ has rank 0 over Q, so it is easy to determine that the points on C ′(Q) = {±∞}, from which it
follows that C(Q) = {±∞}. So there do not exist t, s ∈ Q satisfying j(Et) = J1(s).

• j(Et) = J3(s). In this case the equation defines a genus 1 curve, which is birational to the elliptic curve
48.a3 which has Mordell-Weil group over Q�isomorphic to Z/2Z × Z/4Z. An easy computation shows
that the possible t are 7,−5,−1/2 and −5/4. The following table shows for each t the corresponding
elliptic curve (by plugging in t into the equation of Et) and the torsion over Q:

t label G

7 1296.l2 (1)

−5 1296.l1 (1)

−1/2 162.d1 (1)

−5/4 162.d2 (3)

Note that for the elliptic curve 162.d2 we have already obtained that the torsion over some sextic the
torsion is Z/4Z×Z/12Z. For the remaining curves we check that only 1296.l2 has torsion Z/4Z×Z/12Z�
over a sextic field.

�
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the data related to 3-adic Galois representations of elliptic curves over Q. We also thank John Cremona for
providing access to computer facilities on the Number Theory Warwick Grid at University of Warwick, where
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http://matematicas.uam.es/~enrique.gonzalez.jimenez/research/tables/algorithm/sporadic4x12.txt
http://matematicas.uam.es/~enrique.gonzalez.jimenez/research/tables/algorithm/sporadic4x12.txt
http://matematicas.uam.es/~enrique.gonzalez.jimenez/research/tables/algorithm/sporadic4x12.txt
http://www.lmfdb.org/EllipticCurve/Q/48/a/3
http://matematicas.uam.es/~enrique.gonzalez.jimenez/research/tables/algorithm/sporadic4x12.txt
http://www.lmfdb.org/EllipticCurve/Q/1296/l/2
http://www.lmfdb.org/EllipticCurve/Q/1296/l/1
http://www.lmfdb.org/EllipticCurve/Q/162/d/1
http://www.lmfdb.org/EllipticCurve/Q/162/d/2
http://www.lmfdb.org/EllipticCurve/Q/162/d/2
http://www.lmfdb.org/EllipticCurve/Q/1296/l/2
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