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Abstract. The quintic threefold X is the most studied Calabi-Yau 3-fold in the mathe-

matics literature. In this paper, using C̆ech-to-derived spectral sequences, we investigate

the mod 2 and integral cohomology groups of a real Lagrangian L̆R, obtained as the fixed

locus of an anti-symplectic involution in the mirror to X. We show that L̆R is the disjoint

union of a 3-sphere and a rational homology sphere. Analysing the mod 2 cohomology

further, we deduce a correspondence between the mod 2 Betti numbers of L̆R and cer-

tain counts of integral points on the base of a singular torus fibration on X. By work

of Batyrev, this identifies the mod 2 Betti numbers of L̆R with certain Hodge numbers

of X. Furthermore, we show that the integral cohomology groups Hj(L̆R,Z) of L̆R are

2-primary for j 6= 0, 3; we conjecture that this holds in much greater generality.
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1. Introduction

Mirror symmetry proposes the existence of mirror pairs of Calabi–Yau threefolds (X, X̆),

which fulfil the Hodge theoretic relationship

(1.1) Hq(X,Ωp
X) ∼= Hq(X̆,Ωn−p

X̆
).

The mirror correspondence of Batyrev–Borisov [12] constructs mirror pairs (X, X̆) as anti-

canonical hypersurfaces in four-dimensional toric varieties defined by dual lattice polytopes.
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In this paper, we investigate a relationship between (mod 2) Betti numbers of certain real

Lagrangians L̆R ⊂ X̆ and integral points in the lattice polytope P that defines X. In

view of Batyrev’s result [11] relating the Hodge numbers of X to integral points in P , this

suggests an intriguing correspondence between the mod 2 topology of real Lagrangians in

Calabi–Yau threefolds and Hodge numbers of the mirror Calabi–Yau.

In our setting, the choice of an integral affine structure with simple singularities on

the boundary B := ∂P of the lattice polytope P specifies dual singular Lagrangian torus

fibrations f : X → B and f̆ : X̆ → B. These fibrations were constructed by Gross [30,

31] and Castaño-Bernard–Matessi [21]; they give topological versions of the structures

predicted by the Strominger–Yau–Zaslow Conjecture [47]. Note that in a Batyrev-Borisov

mirror pair (X, X̆), the mirror X̆ is only well-defined up to birational modifications, but

that the choice of the integral affine structure on B leads to the construction of a specific

torus fibration f : X → B, and then, by compactification of the dual torus fibration, of a

specific topological model X̆ of the mirror. The real Lagrangian L̆R ⊂ X̆ that we consider

is the fixed locus of an anti-symplectic involution of X̆ given on smooth fibres of f̆ by

x 7→ −x. This anti-symplectic involution was introduced in [22] and studied in [20] .

We now restrict attention to the case in which X is the quintic threefold hypersurface in

P4. We will consider a specific integral affine manifold with simple singularities on B, the

corresponding Lagrangian torus fibration f : X → B and the corresponding topological

model X̆ of the mirror, coming with the Lagrangian torus fibration f̆ : X̆ → B. In earlier

work [3], we showed that the real Lagrangian L̆R ⊂ X̆ is the disjoint union of a 3-sphere

and a multi-section π̆ : L̆R → B of f̆ , and computed the mod 2 Betti numbers:

(1.2) h0(L̆R,Z2) = h3(L̆R,Z2) = 1, h1(L̆R,Z2) = h2(L̆R,Z2) = 101.

In §7 below we use a C̆ech-to-derived spectral sequence which relates the mod 2 cohomology

groups of L̆R to the set of integral points in the reflexive polytope P that defines X.

Theorem 1.1 (See Theorem 7.3 below). The C̆ech-to-derived spectral sequence, relative

to the open cover U defined in Construction 5.1, for the sheaf π̆?Z2 has the E2 page

Z60
2

Z100
2 Z40

2

Z2 Z2 Z2 Z2

and degenerates at the E2 page.

Analysing the E2 page of the spectral sequence in Theorem 1.1 more closely, we show in

Theorem 7.4 that for each p ∈ {1, 2} there is a canonical choice of basis for E2−p,p
2 , which

is in bijection with the set of integral points contained in relative interiors of p-dimensional

faces of P . Using Batyrev’s formula (7.2), which expresses Hodge numbers in terms of such
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integral points, we deduce that

(1.3) h2,1(X) = dimE0,2
2 + dimE1,1

2 + 1 = h1(L̆R,Z2).

We expect this correspondence to extend to all anti-canonical hypersurfaces in smooth

toric Fano fourfolds: see Conjecture 7.5.

In §6 we study also the integral cohomology of L̆R, using a C̆ech-to-derived spectral

sequence for the sheaf π̆?Z.

Theorem 1.2 (See Theorem 6.1 below). The C̆ech-to-derived spectral sequence, relative

to the open cover U defined in Construction 5.1, for the sheaf π̆?Z has the E2 page

Z60
2

0 Z36
2 ⊕ Z6

4 ⊕ Z4
8 ⊕ Z2

32

Z 0 Z2 Z

and degenerates at the E2 page.

This implies that

H0(L̆R,Z) ∼= H3(L̆R,Z) ∼= Z, H1(L̆R,Z) ∼= 0, H2(L̆R,Z) ∼= T,

where T is a 2-primary finite abelian group (that is, the order of each element of T is a

power of 2) such that every element has order less than or equal to 27. In particular, L̆R

is a rational homology sphere.

In §8 we give an alternative, more topological, approach to some of these calculations,

which applies in much greater generality. Consider once again the case where X and X̆

form a Batyrev–Borisov mirror pair. As in the quintic case, the real Lagrangian L̆R ⊂ X̆ is

the disjoint union of a 3-sphere and a non-trivial component L̆R. We construct a Heegaard

splitting of L̆R and explain (in Algorithm 8.2) how to use this splitting to compute π1(L̆R).

In particular, since this determines H1(L̆R,Z), this verifies parts of the C̆ech-to-derived

calculations.

We view Theorem 1.2 as experimental evidence for the following conjecture on the struc-

ture of the integral cohomology groups of the real Lagrangians L̆R in a more general setting.

Conjecture 1.3. Let X be Calabi-Yau 3-fold obtained as a (crepant resolution of a) com-

plete intersection in a toric Fano variety. Let f : X → B be a Lagrangian torus fibration

constructed as in [21,30,31] and let LR be the real Lagrangian in X obtained as fixed point

locus of the anti–symplectic involution constructed in [22] and given on smooth fibers of f

by x 7→ −x. Then, the cohomology groups Hj(LR,Z) are 2-primary for 0 < j < 3.

We verify Conjecture 1.3 for the Schoen’s Calabi–Yau in [2]. Finally, we note that The-

orem 1.2 has applications to mirror symmetry. Homological Mirror Symmetry predicts the

existence of a rank seven sheaf F on the quintic threefold X, associated to the Lagrangian
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L̆R. Moreover, assuming that L̆R bounds no holomorphic discs, Theorem 1.2 implies that

F is a spherical object in the derived category of X which is orthogonal to the structure

sheaf, that is, Exti(OX , F ) = Exti(F,OX) = 0 for all i ∈ Z. Investigating sheaves mirror

to the real Lagrangians we study will be the focus of future work.

Related work. The mod 2 cohomology of real Lagrangians has been extensively studied

in the literature from several points of view, including equivariant cohomology [15], real al-

gebraic geometry [14,25] and tropical geometry [37,39]. Furthermore, the relation between

Hodge numbers and the Z2 cohomology groups of real Lagrangians can also be studied us-

ing tropical homology which is introduced in [38], and whose real analog is studied in [42].

We also note that Lagrangian submanifolds in the mirror quintic have been constructed

using tropical geometry in [43].

In the present paper, we investigate following [21, 22, 30, 31] a real Lagrangian defined

as fixed point locus of an anti-symplectic involution acting on a Lagrangian torus fibration

constructed from an integral affine manifold with simple singularities. An a priori different

construction due to Gross and Siebert [33,34], starting with an integral affine manifold with

simple singularities and additional “gluing data”, produces toric degenerations of algebraic

Calabi-Yau varieties. When these “gluing data” is real [1, Cor 7.2], we obtain families

of algebraic Calabi-Yau varieties endowed with a real algebraic structure, i.e. the data of

an anti-holomorphic involution. The topology of the real loci of these families has been

studied in [1] using Kato-Nakayama spaces of the special fiber endowed with log structure.

A comparison of the topological torus fibrations of [22,30,31] with the topological torus

fibrations on the Kato-Nakayama spaces of toric degenerations has been announced in [44].

A natural question to ask is if it is also possible to compare the anti-symplectic involution

of [22], which is our object of study in the case of the mirror quintic, with the real structure

on Kato-Nakayama spaces studied in [1]. Kato–Nakayama spaces admit a natural map to

the unit circle S1, and we expect that the real Lagrangian obtained as fixed locus of the

anti-symplectic involution should be homeomorphic to the real locus of the fibre of the

Kato-Nakayama space over 1 ∈ S1 defined using trivial gluing data (see [1, Remark 4.3]).

Nonetheless, so far this question, namely whether the fixed point locus of anti-symplectic

involutions of [20] would agree with the real locus in the phase of the Kato–Nakayama

space, remains open. We note that the techniques recently introduced in [44,45] should be

useful for answering it.

Acknowledgements. We thank Mark Gross and Tom Coates for many useful and in-

spiring conversations. We also thank the anonymous referees for their valuable comments

which helped to improve the manuscript. This project has received funding from the Eu-

ropean Research Council (ERC) under the European Union’s Horizon 2020 research and
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innovation programme (grant agreement No. 682603). H.A. was supported by Fonda-

tion Mathématique Jacques Hadamard. TP was partially supported by a Fellowship by

Examination at Magdalen College, Oxford.

2. SYZ mirror symmetry from a topological perspective

Mirror symmetry is a phenomenon which relates the geometry of pairs of Calabi–Yau

varieties, and was first discovered in the string theory literature by Greene–Plesser [27]

and Candelas–Lynker–Schimmrigk [18], confirming earlier suggestions of Dixon [24] and

Lerche–Vafa–Warner [40]. This phenomenon has famously been used to compute enumer-

ative invariants of Calabi–Yau varieties, see the seminal work of Candelas–de la Ossa–

Greene–Parkes [19]. In the last twenty-five years several techniques relating complex and

symplectic geometries of Calabi-Yau’s have been developed, suggesting deep connections

between the geometries of the underlying mirror manifolds. One of the central proposals

in this context has been formulated by Strominger–Yau–Zaslow [47], the SYZ Conjecture.

This suggests that, roughly speaking, mirror Calabi-Yau’s arise as dual special Lagrangian

torus fibrations. Partial verifications of the SYZ conjecture have been established in various

contexts [23,32,36].

A topological version of the SYZ conjecture, focusing on torus fibrations without a

reference to the special Lagrangian condition, has been investigated by Zharkov [48] and

Gross [30]. For Gross, a topological torus fibration on a Calabi–Yau X is a continuous

proper map f : X → B with connected fibres between topological manifolds whose general

fibres are tori. The base B here is an integral affine manifold with singularities.

Definition 2.1. Given an n-dimensional manifold, an integral affine structure is given

by an open cover {Ui} for it, along with coordinate charts ψi : Ui → MR, with transition

functions in

Aff(M) = M oGLn(Z),

where M denotes a free abelian group of rank n, and MR := M ⊗Z R is the associated real

vector space. We call a topological manifold an integral affine manifold with singularities

if there exists a union of submanifolds ∆ ⊂ B, of codimension at least 2, such that

B0 := B \∆

is an integral affine manifold. We refer to ∆ as the discriminant locus of the affine structure.

We recall that the smooth locus B0 of an integral affine manifold is the base of a pair of

torus fibrations, obtained as the quotients of TB0 and T ?B0 by the lattice of integral tan-

gent vectors Λ and covectors Λ̆ respectively. To investigate topological properties of mirror

pairs, such as Hodge theoretic dualities, Gross [29, 30] restricts to Calabi–Yau manifolds
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admitting topological torus fibrations over integral affine manifolds with simple singulari-

ties. These fibrations can be obtained canonically as compactifications of the non-singular

torus fibrations over B0 described above once certain assumptions on the affine monodromy

around the discriminant locus are imposed. We recall that the affine monodromy is defined

as follows.

Definition 2.2. Fix a point b ∈ B0. Let γ : S1 → B0 be a loop based at b and let U1, . . . , Um

be a finite cover of the image of γ by charts of the integral affine structure on B0. Denote by

A−ti,i+1 the inverse transpose of the linear part of the change of coordinate function defined

on Ui ∩ Ui+1. The affine monodromy representation ψ : π1(B0, b)→ GLn(Z) is defined as

ψ =

{
A−t1,m · · ·A−t2,1 if m ≥ 2

Id otherwise

Note that the definition of affine monodromy is independent of the representative γ ∈
π1(B0, b), and thus it is a well-defined homomorphism, see [7,8]. The affine monodromy is,

by definition, the inverse transpose of the linear part of the standard monodromy represen-

tation around a loop γ in B0, which we denote Tγ, see [33, Definition 1.4]. The following

theorem, which establishes the existence of topological Calabi–Yau compactifications over

integral affine manifolds with simple singularities, is one of the main results of [30, §2].

Theorem 2.3. Let B be a 3-manifold and let B0 ⊆ B be a dense open set such that

∆ := B \B0 is a trivalent graph, with a partition on its set of vertices of into positive and

negative vertices. Suppose that there is a T 3-bundle

(2.1) f0 : X0 → B0

such that its local monodromy is generated by the following matrices:

1) Around any edge of ∆, the monodromy is given by

T =

1 0 0

1 1 0

0 0 1

 .(2.2)

2) Around any negative vertex of ∆ the monodromy is given by

T1 =

1 1 0

0 1 0

0 0 1

 , T2 =

1 0 −1

0 1 0

0 0 1

 , T3 =

1 −1 1

0 1 0

0 0 1

 .(2.3)

3) Around any positive vertex of ∆ the monodromy is given by

(T t1)−1, (T t2)−1, (T t3)−1.

Then, there is a compactification of f0, to a topological torus fibration f : X → B such that

the singular fibers are as follows.
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1) For any point p in the interior of an edge of the discriminant locus, f−1(p) is

homeomorphic to the product of a nodal elliptic curve with S1.

2) For any negative vertex v− ⊂ ∆, f−1(v−) admits a map to a two-dimensional torus

with S1 fibres away from a figure eight, over which the fibres are single points, as

described in [4, Chapter 6.4], and χ(f−1(v−)) = −1.

3) For any positive vertex v+ ⊂ ∆, f−1(v+) is homeomorphic to a three dimen-

sional analogue of a nodal elliptic curve as described in [30, Example 2.6(5)] and

χ(f−1(v+)) = 1.

Among the topological Calabi–Yau compactifications f : X → B obtained by Theorem

2.3 is one of the most extensively studied examples in the literature: the quintic threefold.

This example is described in detail in [30, Theorem 0.2]. Such topological compactifications

exist for a wide range of Calabi–Yau threefolds, for instance for Calabi–Yau complete

intersections in toric varieties, as described in [31,35].

It is shown in [21] that these topological compactifications can be carried out in the sym-

plectic category. More precisely, it is shown in [21] that there exists a smooth symplectic

structure on X such that the a small perturbation of the topological fibration f : X → B

which appears in Theorem 2.3 becomes piecewise-smooth Lagrangian. The small pertur-

bation replaces the discriminant locus ∆ by a small thickening around its negative vertices.

These Lagrangian torus fibrations admit a Lagrangian section and it is shown in [22] that

there exists a unique anti-symplectic involution of X, preserving the Lagrangian fibration

and fixing the Lagrangian section. The fixed point locus of this anti-symplectic involution

is a real Lagrangian in X. The main topic of the present paper is the study of the topology

of this real Lagrangian for X a specific topological model of the mirror quintic. From the

topological point of view, the small deformation of f leading to a small thickening of the

discriminant locus is irrelevant, and so we will allow ourselves the abuse of language to call

f a Lagrangian fibration and to study the topology of f rather of a small perturbation of

f .

3. The mirror to the quintic threefold X

In this section we describe topological Calabi–Yau compactifications

f : X −→ B and f̆ : X̆ −→ B

on the quintic threefold X and its mirror X̆, where B is an integral affine manifold with

simple singularities homeomorphic to S3. Denoting by B0 ⊂ B the smooth locus of the

integral affine structure, the spaces X and X̆ are compactifications respectively of T ∗B0/Λ̆

and TB0/Λ, where Λ is the local system of integral tangent vectors on B0. For further

details we refer to [28, §19.3], and [20, Example 6].
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Figure 3.1. The discriminant locus on a triangular face.

Let ∆P4 be the moment polytope of the toric variety P4, given by the 4-simplex obtained

as the convex hull of the set

V := {(−1,−1,− 1,−1), (4,−1,−1,−1), (−1, 4,−1,−1),(3.1)

(−1,−1, 4,−1), (−1,−1,−1, 4)}.

We set Pi denote the ith member of V for each i ∈ {1, . . . , 5}. Moreover, we set B := ∂∆P4 ,

the boundary of ∆P4 , which is homeomorphic to the 3-sphere. Thus B is the union of five

tetrahedra, glued pairwise to each other along a common triangular face, as illustrated in

Figure 4.1, together with some positive and negative vertices of the discriminant locus.

Note that B contains ten triangular faces, ten edges, and five vertices.

Let σijk denote the triangular face of ∆P4 spanned by the vertices Pi, Pj, Pk ∈ V . Fix

a regular triangulation of σijk, displayed in black in Figure 3.1, such that the vertices

of this triangulation are the integral points of σijk. Let ∆ijk be the union of the one

dimensional cells in the first barycentric subdivision of this triangulation which do not

contain an integral point of σijk. We illustrate ∆ijk in Figure 3.1 in red. Finally we set the

discriminant locus

∆ :=
⋃
i,j,k

∆ijk

The affine structure on B0 := B \∆, for the fibration on the quintic threefold

f : X −→ B

is described in [28, p. 157]. Note that there are two sorts of vertices of ∆: the vertices

that are in the interior of a triangular face, which are negative vertices ; and the vertices

that are in the interiors of edges, which are positive vertices, following the convention used

in [20, p. 241]. The local monodromy of the affine structure around each type of vertex is

described as in Theorem 2.3, and in more detail in [3, Appendix A, Example A.1].
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Figure 4.1. Positive and negative vertices of ∆, displayed on one of the

five tetrahedra forming the base B = ∂∆P4 of the fibration on the quintic

threefold. The edges emanating from the four vertices are parts of the edges

of the other four tetrahedra.

4. The real Lagrangian L̆R in X̆

In this section we describe a real Lagrangian L̆R ⊂ X̆ in the mirror to the quintic

threefold,

f̆ : X̆ −→ B

as described in §3. For details we refer to [20, Section 2] and [3]. We investigate the

topology of L̆R further, and show that each of its connected components is orientable in

Proposition 4.2.

The space L̆R ⊂ X̆ is the fixed point set of an anti-symplectic involution which acts

on each fibre of f̆0 : X̆0 → B0 by taking x 7→ −x. Note that this involution extends over

fibres f̆−1(p) for p ∈ ∆, see [22] for a more detailed discussion. The fixed point set of this

involution intersects each smooth fiber of f in 8 points. Identifying this smooth fibre with

a quotient of the unit cube with opposite faces identified, this fixed point set coincides with

the set of half integral points in the unit cube.

Note that, in an affine neighbourhood of a vertex v, the strata of ∂∆P4 containing v form

a fan isomorphic to the toric fan of P3. We identify this neighbourhood of v with a domain

in R3 (with its standard integral affine structure) and let {ei : i ∈ {1, 2, 3}} denote the

standard basis. We orient R3 so that (e1, e2, e3) is a positively oriented basis. We identify
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the ray generators of the edges of ∂∆P4 which meet this neighbourhood with the vectors

{e1, e2, e3,−e1 − e2 − e3}.

Writing di := ei for i ∈ {1, 2, 3} and d4 := −e1 − e2 − e3, let τi denote the edge of ∆P4

which contains v and has tangent direction di at v for all i ∈ {1, . . . , 4}. Moreover, let σij
denote the face of ∆P4 containing the edges τi and τj, for all pairs i, j ∈ {1, . . . , 4} such

that i 6= j.

We now define loops γij,k, for i, j ∈ {1, . . . , 4}, and k ∈ {i, j}. These loops are based at

v and trace around a segment of the discriminant locus ∆, as shown in Figure 4.2, which

is contained in σij and intersects edge τk. We denote by nij the primitive integral normal

vector to σij, such that the tuple (di, dj, nij) forms an ordered positive basis for R3. We

orient the loops γij,k by requiring that the tangent vector of γij,k at the unique point (other

than v) at which the image of γij,k intersects σij pairs positively with nij.

As described above, the eight real points on each fiber b ∈ B0 which are invariant under

the involution are precisely the 2-torsion points of the torus Hom(Λb, U(1)), recalling that

Λ denotes the sheaf of integral tangent vectors in TB0. Identifying Hom(Λb, U(1)) with

R3/Z3, these eight points are identified with the following eight vectors:

u0 = (0, 0, 0), u1 =
1

2
(0, 0, 1), u2 =

1

2
(1, 0, 1), u3 =

1

2
(1, 0, 0),

u4 =
1

2
(1, 1, 0), u5 =

1

2
(0, 1, 0), u6 =

1

2
(0, 1, 1), u7 =

1

2
(1, 1, 1).

The monodromy action T ′ij,k around each loop γij,k is analysed in detail for the fibration on

the quintic threefold f : X → B in [3, Appendix A]. Recall that the mirror to the quintic

admits a fibration f̆ : X̆ → B, where the affine monodromy around the discriminant locus

on B is given by taking the inverse transpose of the affine monodromy on the base of the

fibration for f : X → B. Considering the action of Tij,k = (T ′ij,k)
−t on L̆R ⊂ X̆ which

permutes the torsion points ui, for i = {1, . . . , 7}, we obtain the following set of double

transpositions, similar to those described in [3, Appendix A]:

T12,1 : (12)(67), T12,2 : (16)(27) T13,1 : (45)(67), T13,3 : (47)(56)(4.1)

T14,1 : (12)(45), T14,4 : (14)(25) T23,2 : (34)(27), T23,3 : (23)(47)

T24,2 : (16)(34), T24,4 : (14)(36) T34,3 : (23)(56), T34,4 : (25)(36).

The 2-torsion points exchanged under these permutations are illustrated in Figure 4.3, in

which the torsion point ui corresponds to the vertex with label i. Figure 4.3 displays, from

left to right:

(1) An example of the orbits of the Z2 action induced by monodromy around a single

edge of ∆.
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Figure 4.2. Examples of loops γij,k.

(2) An example of the orbits of the Z3
2 action induced by monodromy around three

different edges of ∆ adjacent to a negative vertex.

(3) An example of the orbits of the Z3
2 action induced by monodromy around three

different edges of ∆ adjacent to a positive vertex.

Recall that the monodromy around negative vertices can be deduced from the monodromy

around positive vertices by the relations in Theorem 2.3. Observe that u0 remains invariant

under the action of all of the monodromy matrices Tij,k. That is, u0 defines a section of

f̆ : X → B and hence there is a connected component of the real Lagrangian L̆R ⊂ X̆

homeomorphic to S3.

Lemma 4.1 (cf. [20, Corollary 1]). The real locus L̆R in the mirror to the quintic threefold

consists of two connected components:

L̆R = L̆R
∐
S3,

where L̆R is a 7-to-1 cover of B branched along the discriminant locus ∆ ⊂ B.

In the remaining part of this article we let

f̆R : L̆R → B and π̆ : L̆R → B
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Figure 4.3. The action of monodromy around a single branch, and the

branches adjacent to a negative and positive vertex of ∆ respectively

denote the restriction of f : X̆ → B to the real Lagrangian L̆R, and to the connected

component L̆R ⊂ L̆R, respectively.

Proposition 4.2. The real Lagrangian L̆R ⊂ X̆ is the disjoint union of two orientable

3-manifolds.

Proof. Since one component of L̆R is homeomorphic to S3, it suffices to show that L̆R is

orientable. Consider a thickening of ∆ ⊂ B = ∂∆P4 obtained as follows.

(1) For each vertex v of ∆ fix a closed neighbourhood Wv of v, homeomorphic to a

3-ball.

(2) For each edge e of ∆, with vertices v1 and v2, we fix a small cylinder We (homeomor-

phic to a 3-ball) containing the intersection of e with the complement of Wv1 ∪Wv2 .

We assume that We∩Wvi is a disc intersecting ∆ in a single point for each i ∈ {1, 2}.
Define W1 to be the the 3-manifold (with boundary) given by the union of

⋃
vWv and⋃

eWe, where the unions are taken over the set of vertices and edges of ∆ respectively.

Note that, by construction, W1 is a boundary connect sum of a disjoint set of 3-balls (we

refer to [26, Remark 1.3.3] for the definition of the boundary connect sum). Hence, by

definition, it is a handlebody. Since W1 as explained in the proof of Proposition 4.2 is

obtained as a thickening of the discriminant locus ∆, which is unknotted, the closure of

the complement of W1 in B = S3, which we will denote by W2, is also a handle body.

Choosing an orientation of B = S3 defines an orientation of W1 and W2. Moreover, by the

analysis made in [3, Appendix A] we deduce that π̆−1(W1) is a handlebody as well. Since
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W2 has non-empty intersection with the discriminant locus in B, π̆−1(W2) is a disjoint

union of homeomorphic copies of W2, and hence is also a (disconnected) handlebody. In

particular we note that

π̆−1(W1) ∩ π̆−1(W2)

is an orientable surface. Applying the Mayer–Vietoris sequence to the decomposition L̆R ⊂
π̆−1(W1) ∪ π̆−1(W2), we observe that

H3(L̆R) ∼= H2(π̆−1(W1) ∩ π̆−1(W2)) ∼= Z,

and hence L̆R is an orientable manifold. �

It is a well-known fact in topology that every manifold admits a handle decomposition

and that in the three-dimensional case this is nothing but a Heegaard splitting, see [26,

Chapter 4.3]. By definition, a Heegaard splitting is a decomposition of a 3-manifold into a

pair of handlebodies glued along their boundaries. In particular, writing L̆R = π̆−1(W1) ∪
π̆−1(W2) determines a Heegaard splitting of L̆R. This provides a general approach to

determining topological invariants of L̆R, which we exploit in §8 to verify computations

made in the proof of Theorem 6.1.

Remark 4.3. Note that Proposition 4.2 applies in a much more general setting, to any

integral affine structure on S3 with simple singularities such that the complement of a

thickening of ∆ is a handlebody. In particular, this holds for every integral affine structure

constructed in [31,35] associated to a toric Calabi–Yau hypersurface.

5. A C̆ech cover for L̆R

We describe an open cover

U = {Uσd
j
}j∈Jd

of B, where Jd indexes d-dimensional faces of ∆P4 and σdj denotes the jth d-dimensional

face of ∆P4 . We will discuss the intersections of open sets in U , and use this data in

the following sections to compute the C̆ech cohomology groups of the real Lagrangian L̆R

described in §5. Though we focus our attention to the mirror for the quintic threefold,

the analysis in this section can be carried out in more general contexts, for instance when

studying fibrations of Calabi–Yau hypersurfaces in smooth toric varieties, as well as more

general Calabi–Yau hypersurfaces, as in Haase–Zharkov [35].

Construction 5.1. Let f̆ : X̆ → B be the torus fibration on the mirror to the quintic,

as in §3. Recall that the polyhedral complex B = ∂∆P4 consists of five 3-dimensional

cells, given by five tetrahedra, which intersects each of the other four along a common

two-dimensional face, ten 2-cells given by the two-faces of the tetrahedra, ten 1-cells given

by edges, and 5-vertices. We construct the open cover U as follows.
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1) First construct an open cover Ũ = {Ũσd
j
}j∈Jd from ∂∆P4 , indexed by d-dimensional

faces σdj of ∂∆P4 for j ∈ Jd, by fixing a neighbourhood Ũσd
j

of σdj homeomorphic to

a 3-ball which retracts to σdj for each d ∈ {0, 1, 2, 3} and j ∈ Jd.
2) Replace each Ũσ1

j
∈ Ũ by

Ũσ0
j1
∪ Ũσ1

j
∪ Ũσ0

j2

where by σ0
j2

and σ0
j1

we denote the vertices adjacent to σ1
j .

3) Remove each open set Ũσ0 from Ũ .

We denote the resulting open cover, obtained from Ũ by the above steps, as U . Shrinking

the open sets Ũσd
j

as necessary, we assume that

Uσ2
i
∩ Uσ2

j
= ∅ and Uσ3

i
∩ Uσ3

j
= ∅

for any i 6= j. Moreover, we assume that

Uσ2
i
∩ Uσ1

j
6= ∅

if and only if σ1
j is an edge of σ2

i .

In the remaining part of this section we will study the topology of the open sets π̆−1(U) ⊂
L̆R for elements U ∈ U .

Lemma 5.2. Let σ3 be one of the 3-cells of ∆P4. Then π̆−1(Uσ3) is homeomorphic to the

disjoint union of seven three-dimensional balls, and so in particular

H0(π̆−1(Uσ3),Z) = Z7

and Hj(π̆−1(Uσ3),Z) = 0 for j ≥ 1.

Proof. The map π̆ is a 7-to-1 branched cover over B = ∂∆P4 , branched along the dis-

criminant locus, which is contained in the 2-cells of ∂∆P4 . As the discriminant locus does

not intersect Uσ3 , the restriction of π̆ over Uσ3 is a trivial 7-to-1 cover and so π̆−1(Uσ3) is

homeomorphic to the disjoint union of seven three-dimensional balls. �

Lemma 5.3. Let σ2 ⊂ ∂∆P4 be one of the 2-cells of ∆P4. These contain 6 closed hexagonal

regions H1, . . . , H6, see Figure 5.1. For all i ∈ {1, . . . , 6}, the space π̆−1(Hi) is the disjoint

union of three discs and a connected CW complex Yi. Moreover, we have that

H0(Yi,Z) = Z4 , H1(Yi,Z) ∼= Z3 ⊕ Z2 and H2(Yi,Z) = {0}

for i ∈ {1, . . . , 6}.

Proof. From the description of the monodromy action on fibres of π̆ given in §4, we observe

that three points (labelled 1, 2, and 3 in Figure 4.3) are monodromy invariant around loops

around any branch of ∆ which is contained in σ. That is, π̆−1(Hi) consists of 4 connected
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Figure 5.1. The hexagonal regions Hi contained in a two-dimensional face

of ∂∆P4 labelled by i, for i ∈ {1, . . . , 6}.

components, three of which define sections of π̆ over Hi and are hence homeomorphic

to discs. We let Yi denote the remaining connected component. Moreover, we let V1

be a neighbourhood of π̆−1(∂Hi) ∩ Yi which retracts onto π̆−1(∂Hi) ∩ Yi, and set V2 :=

π̆−1(Int(Hi))∩Yi. The space V1 is homotopy equivalent to the union of six circles as shown

in Figure 5.2, and we note that V1 is homotopy equivalent to the wedge union of seven

circles. Moreover, V2 is homeomorphic to the disjoint union of four discs (recalling that,

away from ∆, Yi is a 4-to-1 cover of Hi) and V1 ∩ V2 is the disjoint union of four annuli,

each contained in a unique connected component of V2.

Since the map H0(V1 ∩ V2,Z) → H0(V1,Z) ⊕H0(V2,Z) is injective, part of the Mayer–

Vietoris sequence associated to the decomposition Yi = V1 ∪ V2 takes the following form.

(5.1) H1(V1 ∩ V2,Z)→ H1(V1,Z)⊕H1(V2,Z)→ H1(Yi,Z)→ 0.

Applying our descriptions of the spaces V1, V2, and V1∩V2, the sequence (5.1) has the form

Z4 A−→ Z7 → H1(Yi,Z)→ 0.

We fix a basis of H1(V1∩V2,Z) ∼= Z4 by orienting the four sheets of the covering V1∩V2 →
π̆(V1∩V2) clockwise. We also fix a basis of H1(V1,Z) ∼= Z7 by requiring that the first basis

element corresponds to the cycle defined by the arcs in Figure 5.2 with label 1, oriented

clockwise. The remaining six elements are chosen to be the homology classes of the six
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circles shown in Figure 5.2, with the indicated orientation, which map to edges of the

hexagon Hi. Note that these conventions require that the plane containing the hexagon

(and hence σ2) is itself oriented. We achieve this by recalling that the vertices of ∆P4

are labelled by elements of {1, . . . , 5}, and requiring that the vertices of σ2 appear in

anti-clockwise order in the plane. Fixing these bases we have that

A =



1 1 1 1

0 1 1 0

0 1 0 1

0 0 1 1

0 1 1 0

0 1 0 1

0 0 1 1


.

Noting that the first standard basis vector is in the image of A, we can discard it and

present H1(Yi,Z) as a quotient of Z6. This quotient is generated by the standard basis

elements v1, . . . , v6 of Z6, subject to the relations vi+vi+1 +vi+3 +vi+4 = 0 for i ∈ {1, 2, 3},
where the addition of indices is interpreted cyclically (in particular, the third relation is

v3 + v4 + v6 + v1). This quotient is isomorphic to Z3⊕Z2, and the elements vi, i ∈ {1, 2, 3}
generate the torsion-free group, while v1 + v4 generates the torsion subgroup. Finally, we

note that, since A is injective, and H2(V1,Z) = H2(V2,Z) = {0}, the group H2(Yi,Z) is

trivial. �

Lemma 5.4. Let σ2 be a two-dimensional face of ∂∆P4, then

H0(π̆−1(Uσ2),Z) ∼= Z4 , H1(π̆−1(Uσ2),Z) ∼= Z12 , H2(π̆−1(Uσ2),Z) ∼= Z6
2 ,

and

H0(π̆−1(Uσ2),Z2) ∼= Z4
2 , H1(π̆−1(Uσ2),Z2) ∼= Z18

2 , H2(π̆−1(Uσ2),Z2) ∼= Z6
2 .

Proof. We first note that π̆−1(Uσ2) retracts onto π̆−1(σ2). We observe that the space

π̆−1(σ2) contains four connected components, three of which are homeomorphic to discs

(sections of the restriction of π̆ to σ2). The remaining component retracts onto the wedge

union of
⋃6
i=1 Yi and three circles. These three circles are contained in the pre-images of

the segments labelled γi1 for i ∈ {1, 2, 3} in Figure 5.1. Thus, setting

Ȳk :=
k⋃
i=1

Yi,

and Y := Ȳ6, we conclude that

H1(π̆−1(Uσ2),Z) ∼= H1(Y,Z)⊕ Z3 , H2(π̆−1(Uσ2),Z) ∼= H2(Y,Z)
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Figure 5.2. The restriction of π̆ to the pre-image of a hexagonal region Hi.

and

H1(π̆−1(Uσ2),Z2) ∼= H1(Y,Z2)⊕ Z3
2 , H2(π̆−1(Uσ2),Z2) ∼= H2(Y,Z2) .

Fixing a value of k ∈ {1, . . . , 5}, and using that H2(Yk+1,Z) = 0 by Lemma 5.3, part

of the Mayer–Vietoris sequence associated to the decomposition Ȳk+1 = Yk+1 ∪ Ȳk has the

form

0→ H2(Ȳk,Z)→ H2(Ȳk+1,Z)→ Zlk M−→ H1(Yk+1,Z)⊕H1(Ȳk,Z)→ H1(Ȳk+1,Z)→ 0,

where lk ∈ {1, 2, 3} denotes the number of circles in the intersection Yk+1 ∩ Ȳk.
By Lemma 5.3, we have H1(Yk,Z) ∼= Z3 ⊕ Z2 for all k ∈ {1, . . . , 6}. The component

Zlk → H1(Yk+1,Z) of the map M is injective, and hence M is itself injective. It follows

that H2(Ȳk,Z) ' H2(Ȳk+1,Z). Using the base case H2(Y1,Z) = 0 given by Lemma 5.3, we

deduce by induction that H2(Ȳk+1,Z) = 0 for every k ∈ {1, . . . , 5}, and in particular

H2(Y,Z) = 0 .

Moreover, the image of M is a saturated subgroup of the torsion free part of H1(Yk+1,Z)⊕
H1(Ȳk,Z). Thus, assuming inductively that H1(Ȳk,Z) ∼= Zak ⊕ Zk2 for some ak ∈ Z>0, we

have that

H1(Ȳk+1,Z) ∼= Zak+3−lk ⊕ Zk+1
2 .

This, together with the base case that H1(Ȳ1,Z) = H1(Y1,Z) ∼= Z3 ⊕ Z2 verifies that

H1(Ȳk,Z) ∼= Zak ⊕ Zk2
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for all k ∈ {1, . . . , 6}. Moreover, computing ak using the formula ak+1 = ak + 3 − lk, we

deduce that

H1(Y,Z) = H1(Ȳ6,Z) ∼= Z9 ⊕ Z6
2 .

As H2(Y,Z) = 0, we have using the universal coefficient theorem that

H1(Y,Z) = Hom(H1(Y,Z),Z) = Z9 , H2(Y,Z) = Ext1(H1(Y,Z),Z) = Z6
2 ,

and

H1(Y,Z2) = Hom(H1(Y,Z),Z2) = Z15
2 , H2(Y,Z2) = Ext1(H1(Y,Z),Z2) = Z6

2 .

�

Lemma 5.5. For each edge σ1 ⊂ ∂∆P4, there is a homeomorphism between π̆−1(Uσ1) and

the disjoint union of 3 copies of an open 3-manifold which retracts onto the wedge union

of 4 circles, and a 3-dimensional ball. In particular, we have

H0(π̆−1(Uσ1),Z) = Z4 , H1(π̆−1(Uσ1),Z) = Z12 , H2(π̆−1(Uσ1),Z) = 0 ,

H0(π̆−1(Uσ1),Z) = Z4 , H1(π̆−1(Uσ1),Z) = Z12 , H2(π̆−1(Uσ1),Z) = 0 ,

and

H0(π̆−1(Uσ1),Z2) = Z4
2 , H1(π̆−1(Uσ1),Z2) = Z12

2 , H2(π̆−1(Uσ1),Z2) = 0 ,

Proof. We recall that each vertex of ∆ which is contained in σ1 is a positive vertex. Fixing

a base point x ∈ σ1\∆, monodromy actions on π̆−1(x) along loops passing around branches

of ∆ containing this vertex are shown in the central image of Figure 4.3. Hence one element

of π̆−1(x) (labelled 3 in Figure 4.3) is contained in a section of π̆−1(Uσ1) over Uσ1 . Moreover,

the pairs of points labelled {1, 2}, {4, 5}, and {6, 7} lie in distinct connected components

of π̆−1(Uσ1). Letting x vary along σ1, elements in these three pairs come together over the

five points in the intersection ∆ ∩ σ1, and hence each of these components retracts onto

the wedge union of 4 circles. �

Lemma 5.6. Given a two-dimensional face σ2 of ∆P4, and an edge σ1 of σ2, we have that

π̆−1(Uσ1 ∩ Uσ2)

contains five connected components. Three of these five components are homeomorphic to

a 3-ball, while the other two retract onto the wedge union of 4 circles. In particular, we

have

H1(π̆−1(Uσ1 ∩ Uσ2),Z) = Z8 , H2(π̆−1(Uσ1 ∩ Uσ2),Z) = 0 ,

H1(π̆−1(Uσ1 ∩ Uσ2),Z) = Z8 , H2(π̆−1(Uσ1 ∩ Uσ2),Z) = 0 ,

and

H1(π̆−1(Uσ1 ∩ Uσ2),Z2) = Z8
2 , H2(π̆−1(Uσ1 ∩ Uσ2),Z2) = 0 ,
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Proof. This result follows from the same analysis used to prove Lemma 5.5. Note that

Uσ1 ∩ Uσ2 contains no vertices of ∆, and monodromy actions along loops around a single

segment of ∆ are illustrated in the left-hand image of Figure 4.3. �

6. The integral cohomology of L̆R

The main result of this section concerns the computation of a C̆ech-to-derived spectral

sequence for the sheaf π̆?Z. We recall that the C̆ech-to-derived spectral sequence for a

sheaf F on B with open cover U has the form

Ep,q
2 = H̆p(U ,Hq(·,F)) =⇒ Hp+q(B,F) ,

whereHq(·,F) is the presheaf U 7→ Hq(U,F) onB, and for every presheaf G onB, H̆p(U ,G)

denotes the p’th C̆ech cohomology group of G with respect to the cover U . Analysing this

sequence for F = π̆?Z, where π̆ is the branched covering π̆ : L̆R → B, we obtain the

following result.

Theorem 6.1. Let U be the open cover of B defined in Construction 5.1. The C̆ech-to-

derived spectral sequence

Ep,q
2 = H̆p(U ,Hq(B, π̆?Z)) =⇒ Hp+q(B, π̆?Z) ,

for the sheaf π̆?Z, has the E2 page

Z60
2

0 Z36
2 ⊕ Z6

4 ⊕ Z4
8 ⊕ Z2

32

Z 0 Z2 Z.

Moreover, this spectral sequence degenerates at the E2 page.

Proof. We need to compute seven C̆ech cohomology groups, as displayed in the statement

of Theorem 6.1. To describe these cohomology groups we first define the presheaf

Hj
Z : U 7→ Hj(π̆−1(U),Z)

for open sets U ⊂ B, j ∈ Z≥0. The non-zero C̆ech cohomology groups we need to compute

are:

H̆0(U ,H2
Z)

H̆0(U ,H1
Z) H̆1(U ,H1

Z)

H̆0(U ,H0
Z) H̆1(U ,H0

Z) H̆2(U ,H0
Z) H̆3(U ,H0

Z).

These C̆ech cohomology groups are obtained from associated C̆ech complexes (which form

the E1 page of this spectral sequence). We let

C̆i(U ,Hj
Z)



20 HÜLYA ARGÜZ AND THOMAS PRINCE

denote the group of C̆ech i-cochains for the presheaf Hj
Z associated to the open cover U .

Recall from Construction 5.1 that the open cover U consists of

(1) 10 open sets Uσ1 , indexed by the 1-dimensional faces σ1 of B = ∂∆P4 .

(2) 10 open sets Uσ2 , indexed by the 2-dimensional faces σ2 of B = ∂∆P4 .

(3) 5 open sets Uσ3 , indexed by the 3-dimensional faces σ3 of B = ∂∆P4 .

By Lemma 5.5, we have, for every σ1,

(6.1) H i(π̆−1(Uσ1),Z) =


Z4 i = 0

Z12 i = 1

0 i = 2 .

By Lemma 5.4, we have, for every σ2,

(6.2) H i(π̆−1(Uσ2),Z) =


Z4 i = 0

Z12 i = 1

Z6
2 i = 2.

By Lemma 5.2, we have, for every σ3,

(6.3) H i(π̆−1(Uσ3),Z) =

Z7 i = 0

0 i ≥ 1 .

Since the 10 open sets Uσ2 are the only elements of U whose pre-image under π̆ has

non-zero second cohomology, we have

H̆0(U ,H2
Z) ∼= C̆0(U ,H2

Z) ∼= Z10×6
2 = Z60 .

The cohomology groups H̆ i(U ,H1
Z) for i ∈ {1, 2} are determined by the two-term C̆ech

complex

C̆0(U ,H1
Z)

δ−→ C̆1(U ,H1
Z).

The group C̆0(U ,H1
Z) is the sum of first cohomology groups of the preimages by π̆ of the

10 open sets Uσ1 and of the 10 open sets Uσ2 . Using (6.1) and (6.2), we obtain

C̆0(U ,H1
Z) ∼= Z12×10+12×10 = Z240.

The group C̆1(U ,H1
Z) is the sum of the cohomology groups

H1(π̆−1(Uσ1
j
∩ Uσ2

k
),Z)

where σ1
j is an edge of σ2

k. By Lemma 5.6 these groups are all isomorphic to Z8. Since

there are 30 such intersections, we have that

C̆1(U ,H1
Z) ∼= Z30×8 = Z240,
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and hence the map δ is determined by a 240× 240 integer matrix [δ]. Magma [16] source

code for this construction is included in the supplementary material [41]. The computation

of H̆ i(U ,H1
Z) for i ∈ {0, 1} follows from the Smith normal form of [δ].

Finally, we consider the bottom row of the spectral sequence appearing in Theorem 6.1.

We compute the ranks of the groups in the corresponding C̆ech complex by counting

connected components lying over each open set. We obtain the sequence

0 −→ Z115 δ0−→ Z710 δ1−→ Z1190 δ2−→ Z595 −→ 0,

which we verify has Euler characteristic zero. With more details, there are 5 (resp. 10

and 10) open subsets of the form Uσ3 (resp. Uσ2 and Uσ3) over which lie 7 (resp. 4 and 4)

connected components, and 5× 7 + 10× 4 + 10× 4 = 115. There are 60 (resp. 60, 30 and

20) triple intersections of types Uσ3 ∩ Uσ2 ∩ Uσ1 (resp. Uσ3 ∩ Uσ1 ∩ Uσ1 , Uσ2 ∩ Uσ1 ∩ Uσ1
and Uσ1 ∩ Uσ1 ∩ Uσ1 ) over which lie 7 (resp. 7, 7 and 7) connected components, and

60 × 7 + 60 × 7 + 30 × 7 + 20 × 7 = 1190. There are 20 (resp. 30, 30 and 30) double

intersections of types Uσ3 ∩ Uσ2 (resp. Uσ3 ∩ Uσ1 , Uσ2 ∩ Uσ1 and Uσ1 ∩ Uσ1) over which lie 7

(resp. 7, 5 and 7) connected components, and 20×7+30×7+30×5+30×7 = 710. There

are 60 (resp. 20 and 5) quadruple intersections of the form Uσ3 ∩ Uσ2 ∩ Uσ1 ∩ Uσ1 (resp.

Uσ3 ∩Uσ1 ∩Uσ1 ∩Uσ1 and Uσ1 ∩Uσ1 ∩Uσ1 ∩Uσ1) over which lie 7 (resp. 7 and 7) connected

components, and 60× 7 + 20× 7 + 5× 7 = 595. The maps δ1 and δ2 are computed using

Magma and source code for this computation is included in the supplementary material.

In fact, since the cochain groups are torsion free, the Smith normal form of the C̆ech

differentials immediately determines the analogous result using the coefficient ring Z2.

We note that degeneration of the spectral sequence at the E2 page follows immediately

from the fact that the only homomorphism from a torsion group to a free group is the zero

map. �

While Theorem 6.1 does not determine the integral cohomology of L̆R up to isomorphism

we can deduce the following properties.

Corollary 6.2. We can describe the cohomology groups of L̆R as follows.

(1) H0(L̆R,Z) ∼= H3(L̆R,Z) ∼= Z.

(2) H1(L̆R,Z) ∼= 0.

(3) H2(L̆R,Z) ∼= T , where T is a 2-primary finite abelian group such that every element

has order ≤ 27.

Proof. Since L̆R is connected and oriented we have that H0(L̆R,Z) ∼= H3(L̆R,Z) ∼= Z. The

remaining items follow immediately from the description of the E2 page of the spectral

sequence which appears in Theorem 6.1. In particular, the groups E0,2
2 and E1,1

2 are graded

pieces of a filtration on Hp+q(L̆R,Z). Hence H2(L̆R,Z) has a filtration with graded pieces
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equal to Z60
2 , Z36

2 ⊕Z6
4⊕Z4

8⊕Z2
32, and Z2 respectively. We note that the maximal order of

an element in such an extension is 128. �

We note that, since H2(L̆R,Z2) ∼= Z101
2 , the filtration of H2(L̆R,Z) described in the proof

of Corollary 6.2 does not split.

7. The mod two cohomology of L̆R and Hodge numbers of X̆

7.1. Hodge numbers à la Batyrev. It is shown in [11] that one can construct a family

of Calabi–Yau toric hypersurfaces from a given reflexive lattice polytope. Moreover, it is

shown that the Hodge numbers of these hypersurfaces can be computed by enumerating

integral points on the associated polytope.

Example 7.1. A toric degeneration of the quintic threefold is given by

(7.1) X = (x0x1x2x3x4 + tf5) ⊂ P4 × A1
t

where f5 is a degree 5 homogeneous polynomial. A mirror X̆ to the quintic threefold can be

obtained via a crepant resolution of a quotient of the general fiber of the family (7.1), see,

for example, [6] for further details. Moreover, there is a toric degeneration of the mirror

such that the corresponding intersection complex is given by B = ∂∆P4 , together with the

polyhedral decomposition of ∂∆P4 described in §3. We refer to [3, Appendices A,B] for a

survey of this example.

Hence, restricting our attention to the mirror X̆ to the quintic threefold, where B = ∂∆P4

as discussed in §3, and using [11, Theorem 4.3.1], we deduce that the Hodge number

h1,1(X̆) = h2,1(X)

can be computed in terms of the integral points on ∆P4 from the equation

(7.2) h2,1(X) = l(∆P4)− n− 1−
∑

codim(θ)=1

l?(θ),

where n = 4 since X ⊂ P4, and the other terms are defined as follows: l(∆P4) is the number

of integral points in ∆P4 , the term l?(θ) denotes the number of integral points in the interior

of a face θ, and the sum is over all codim 1 faces θ of ∆P4 , see [11, Definition 3.3.6]. It is

shown in [5, § 4.1.1] that l(∆P4) = 126. Note that there are l?(θ) = 4 integral points in the

interior of each of the 5 tetrahedra. Hence, we obtain

h2,1(X) = 126− 4− 1− 4 · 5 = 101,

as expected. In §7.2 we give a correspondence between integral points on ∂∆P4 and cycles

generating cohomology groups of the real Lagrangian L̆R ⊂ X̆, described in §4.
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7.2. The mod 2 cohomology of L̆R. In [3], we computed the mod 2 cohomology groups

of Calabi–Yau threefolds which admit topological torus fibrations over integral affine man-

ifolds with simple singularities, as discussed in §2. In particular, we obtained the following

result, see [3, Example 4.10].

Proposition 7.2. Let X̆ be the mirror to the quintic threefold, and L̆R be the real La-

grangian obtained as in §4. Then, L̆R is the disjoint union of the 3-sphere with a 7-to-1

branched cover L̆R over it [3, Lemma 3.2], and the ranks of mod 2 cohomology groups of

L̆R are

h0(L̆R,Z2) = h3(L̆R,Z2) = 2.

h1(L̆R,Z2) = h2(L̆R,Z2) = 101.

In this section we further investigate the mod 2 cohomology of L̆R, using a C̆ech-to-

derived spectral sequence. In particular, we show how to identify a basis of graded pieces

of a filtration in H1(L̆R,Z2) ∼= Z101
2 with sets of integral points in ∆P4 . This allows us to

relate the mod 2 cohomology groups of L̆R, to Hodge numbers of X̆ using [11], as outlined

in §7.1.

Theorem 7.3. Let U be the open cover of B defined in Construction 5.1. The C̆ech-to-

derived spectral sequence

Ep,q
2 = H̆p(U ,Hq(B, π̆?Z2)) =⇒ Hp+q(B, π̆?Z2) ,

for the sheaf π̆?Z2, has the E2 page

(7.3) Z60
2

Z100
2 Z40

2

Z2 Z2 Z2 Z2.

Moreover, this spectral sequence degenerates at the E2 page.

Proof. We need to compute seven C̆ech cohomology groups, the non-zero entries in each

of the E2 pages displayed in the statement of Theorem 7.3. To describe these cohomology

groups we first define the pre-sheaf

Hj
Z2

: U 7→ Hj(π̆−1(U),Z2)

for open sets U ⊂ B, j ∈ Z≥0. The non-zero C̆ech cohomology groups we need to compute

are:

H̆0(U ,H2
Z2

)

H̆0(U ,H1
Z2

) H̆1(U ,H1
Z2

)

H̆0(U ,H0
Z2

) H̆1(U ,H0
Z2

) H̆2(U ,H0
Z2

) H̆3(U ,H0
Z2

).
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Recall from Construction 5.1 that the open cover U consists of

(1) 10 open sets Uσ1 , indexed by the 1-dimensional faces σ1 of B = ∂∆P4 .

(2) 10 open sets Uσ2 , indexed by the 2-dimensional faces σ2 of B = ∂∆P4 .

(3) 5 open sets Uσ3 , indexed by the 3-dimensional faces σ3 of B = ∂∆P4 .

By Lemma 5.5, we have, for every σ1,

(7.4) H i(π̆−1(Uσ1),Z2) =


Z4

2 i = 0

Z12
2 i = 1

0 i = 2 .

By Lemma 5.4, we have, for every σ2,

(7.5) H i(π̆−1(Uσ2),Z2) =


Z4

2 i = 0

Z18
2 i = 1

Z6
2 i = 2.

By Lemma 5.2, we have, for every σ3,

(7.6) H i(π̆−1(Uσ3),Z2) =

Z7
2 i = 0

0 i ≥ 1 .

The only contribution to H̆0(U ,H2
Z2

) comes from the 10 open sets Uσ2 via (7.5) and so

H̆0(U ,H2
Z2

) ∼= C̆0(U ,H2
Z2

) ∼= Z10×6
2 = Z60

2 .

We now compute the C̆ech differential

δ : C̆0(U ,H1
Z2

)→ C̆1(U ,H1
Z2

).

The dimensions dim H̆ i(U ,H1
Z2

) are equal to dim ker(δ) and dim coker(δ) for i ∈ {0, 1}
respectively. The group C̆0(U ,H1

Z2
) is the sum of the cohomology groups H1(Uσ,Z2) for

σ one of the 10 1-dimensional faces σ1 or one of the 10 2-dimensional faces σ2, and so by

(7.4)-(7.5), we have

C̆0(U ,H1
Z2

) ∼= Z10×12+10×18
2 = Z300

2 .

The group C̆1(U ,H1
Z2

) is the sum of the cohomology groups

H1(π̆−1(Uσ1
j
∩ Uσ2

k
),Z2)

where σ1
j is an edge of σ2

k. By Lemma 5.6 these groups are all isomorphic to Z8
2. Since

there are 30 such intersections, we have that

C̆1(U ,H1
Z2

) ∼= Z30×8
2
∼= Z240

2 .
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To obtain the last two rows of the spectral sequence, note that the corresponding C̆ech

complex is computed using the analogous computation over the integers, as described in

the proof of Theorem 6.1. Since H̆3(U ,H0
Z2

) ∼= Z2 and H3(L̆R,Z2) ∼= Z2, the differentials

H̆1(U ,H1
Z2

)→ H̆3(U ,H0
Z2

), and

H̆0(U ,H2
Z2

)→ H̆3(U ,H0
Z2

)

on the E2 and E3 pages respectively vanish. Since, h1(L̆R,Z2) = h2(L̆R,Z2) = 101 by [3,

Corollary 1.2], we have that dim coker(δ) = 40 and hence dim ker(δ) = 100. We show in

Theorem 7.4 that bases of these vector spaces can be identified with integral points in faces

of ∆P4 .

The degeneration of the spectral sequence at the E2 page follows from [3, Corollary 1.2].

Indeed, by [3, Example 4.10] it follows that h1(L̆R,Z2) = 101; this ensures that all mor-

phisms on the E2 and E3 pages vanish. �

We now consider the relationship with the mod 2 cohomology groups of real Lagrangians

and Hodge numbers in more detail.

Theorem 7.4. Let π̆ : L̆R → B be the fibration on the connected component of the real

Lagrangian L̆R in the mirror to the quintic as in Lemma 4.1. The terms of the E2 page of

the C̆ech-to-derived spectral sequence

H̆ i(U ,Hj
Z2

)⇒ H i+j(B; π̆?Z2) ∼= H i+j(L̆R,Z2)

are Z2 vector spaces with dimensions dimE2−p,p
2 , equal the total number of integral points

in the relative interiors of p-dimensional faces of B ∼= ∂∆4
P for each p ∈ {1, 2}. Moreover,

there is a canonical generating set of E2−p,p
2 indexed by these integral points of ∂∆P4.

Proof. It is easy to check that there are 6 points in the relative interior of each of the 10

two-dimensional faces of ∆P4 , and 4 points in the relative interior of each of the 10 edges

of ∆P4 . We then verify that E0,2
2
∼= Z60

2 , and E1,1
2
∼= Z40

2 .

Indeed, in the proof of Lemma 5.4 we observed that, restricting to a two-dimensional face

σ2, the torsion group of H1(π̆−1(Uσ2),Z) is isomorphic to Z6
2. By the universal coefficient

theorem, this is isomorphic to the summand H2(π̆−1(Uσ2),Z2) of

C̆0(U ,H2
Z2

) ∼= H̆0(U ,H2
Z2

).

This torsion group is generated by elements associated with the hexagonal components

Hi for i ∈ {1, . . . , 6}, see Figure 5.1. Note that these hexagonal regions are in canonical

bijection with the set of integral points which lie in the relative interior of σ2. Moreover, by

the universal coefficient theorem, this Z6
2 torsion group is isomorphic to H2(π̆−1(Uσ2),Z2).

The vector space E1,1
2 is the 40 dimensional cokernel of the map

δ : C̆0(U ,H1
Z2

)→ C̆1(U ,H1
Z2

).
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We recall from the proof of Theorem 7.3 that the vector spaces C̆i(U ,H1
Z2

) have dimensions

300 and 240 for i = 0 and i = 1 respectively. The dual space to C̆1(U ,H1
Z2

) is generated

by the first homology groups of π̆−1(Uσ1 ∩Uσ2), where σi is a i-dimensional face of ∆P4 for

each i ∈ {1, 2}. We recall that each space π̆−1(Uσ1 ∩ Uσ2) retracts onto the disjoint union

of 3 points and 2 copies of the wedge union of 4 circles.

Each integral point p in the relative interior of σ1 corresponds to a segment between

a pair of adjacent (positive) vertices of ∆. In particular, each segment between adjacent

(positive) vertices in σ1 determines a pair of homology classes in H1(π̆−1(Uσ1 ∩ Uσ2),Z2).

We let χ1
p,σ2 and χ2

p,σ2 denote this pair of homology classes.

We claim that a basis of the kernel of δ?, the linear dual of δ, is given by

χp :=
∑

{σ2: p∈σ2}

(χ1
p,σ2 + χ2

p,σ2),

as p varies over the 40 integral points in the relative interior of the edges of ∂∆P4 . Note

that the sum defining χp contains exactly three terms for all p.

We first note that, since the classes χ1
p,σ2 and χ2

p,σ2 form a basis of C̆1(U ,H1
Z2

)? the set

of classes χp is linearly independent. To verify that χp ∈ ker δ? we first check that χp is in

the kernel of the natural map

ι1 :
⊕

{σ2: σ1⊂σ2}

H1(π̆−1(Uσ1 ∩ Uσ2),Z2)→ H1(π̆−1(Uσ1),Z2)

We recall from Lemma 5.6 that H1(π̆−1(Uσ1),Z2) is generated by the classes of 12 circles,

three of which lie over the segment in σ1 containing p. Let χ1
p, χ

2
p, and χ3

p denote these

homology classes. We note that, for any i ∈ {1, 2}, ι1(χip,σ2) is equal to a class χjp for some

j ∈ {1, 2, 3}. Moreover, we have that

ι1(χp) =
∑

{σ2: p∈σ2}

(ι1(χ1
p,σ2) + ι1(χ2

p,σ2)).

This is a sum of six cycles in which each of the three classes in {χip : i ∈ {1, 2, 3}} appears

twice. Hence this sum vanishes modulo 2.

Finally, we verify that (χ1
p,σ2 + χ2

p,σ2) is in the kernel of the natural map

ι2 : H1(π̆−1(Uσ1 ∩ Uσ2),Z2)→ H1(π̆−1(Uσ2),Z2)

for any p and σ2 such that p ∈ σ2. However this follows immediately from the fact that the

images of the classes of χ1
p,σ2 and χ2

p,σ2 in H1(π̆−1(Uσ2),Z2) are equal and hence their sum

vanishes modulo 2. These computations verify that χp is in the kernel of δ?, and hence

the set of points in the relative interior of edges in ∆P4 can be canonically identified with

a basis of.

H̆1(U ,H1
Z2

) ∼= Z40
2

�
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We expect this relationship between mod 2 cohomology groups of real Lagrangians and

Hodge numbers to hold in greater generality, as stated in the following conjecture.

Conjecture 7.5. Let X be a Calabi–Yau hypersurface in a smooth toric Fano fourfold,

and let f̆ : X̆ → B be a topological torus fibration on the mirror X̆ to X, as discussed in

§2. Then, there is a fiber preserving anti-symplectic involution on X̆, whose fixed point

locus has two connected components, one homeomorphic to B and the other arising as a

multi-section π̆ : LR → B, such that there is a C̆ech-to-derived spectral sequence for π̆∗Z,

analogous to that appearing in Theorem 7.3, whose E2 page has the following form

Zlf2

Zle+lf
2 Zle2
Z2 Za2 Za2 Z2

where lf and le denote the number of integral points in the relative interiors of two-

dimensional faces and edges respectively. Analogously with Theorem 7.3, there are canonical

bijections between integral points and generating sets of E2−p,p
2 for p ∈ {1, 2}. Moreover,

this spectral sequence degenerates at the E2 page.

If Conjecture 7.5 holds, the identification of integral points of faces of B with generating

sets of entries in the E2 page of the C̆ech-to-derived spectral sequence for π̆?Z2 guarantees,

by results of Batyrev–Borisov [12,13], a relationship between the dimension of a := dimE2,0
2

and the rank of the connecting homomorphism

(7.7) β : H1(B,R2f?Z2)→ H2(B,R1f?Z2)

defined in [20] and described in considerable detail in [3]. Applying [3, Theorem 1.1], if the

corresponding polytope has lv vertices, we have that

(7.8) a = dimE2,0
2 = dim ker(β) + lv − 4.

We note that the rank of β, and hence h1(L̆R,Z2), can be computed easily for hyper-

surfaces in smooth toric Fano fourfolds using [3, Theorem 1.1] and toric geometry. In

particular [3, Theorem 1.1] allows us to compute the value of h1(L̆R,Z2) from the square

map

Sq : H1(B,R1f̆?Z2) −→ H2(B,R2f̆?Z2)

D 7−→ D2

in the cohomology ring of X. We collect the computation of h1(L̆R,Z2) for anti-canonical

hypersurfaces in each of the 124 smooth toric Fano fourfolds, as classified in [9], in the

following result.
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Proposition 7.6. Let X be an anti-canonical hypersurface in a smooth toric Fano fourfold.

Then,

(7.9) h1(L̆R,Z2)− h1,1(X̆) = dim ker Sq,

where Sq is the map H2(X,Z2) → H4(X,Z2) given by Sq: D 7→ D2. The values of

h1(L̆R,Z2) for each of the 124 anti-canonical Calabi–Yau hypersurfaces are as in in Table 1.

Proof. Fix a smooth Fano fourfold Y and an anti-canonical hypersurfaceX in Y . According

to [10] (see Corollary 1.9 and 3.9), the cohomology of X̆ with Z-coefficients is torsion-

free, and so it follows from the analysis in [20, pg 245] that h1(B,R1f?Z2) = h1,1(X̆).

The Equation 7.9 is an immediate corollary of [3, Theorem 1.1]. Fix a basis e1, . . . , ek
of H2(Y,Z2) and note that H2(Y,Z2) → H2(X,Z2) is an isomorphism by the Lefschetz

hyperplane theorem. Hence the rank Sq is equal to the rank of the k × k matrix with

entries Si,j where

Si,j = e2
i ^ ej ^ KY ,

where KY denotes the canonical class of Y in H2(Y,Z2). This matrix can be easily com-

puted using SageMath [46]. Source code for this computation is included in the supple-

mentary material [41]. The column id records the index of each smooth four-dimensional

toric Fano variety in the graded rings database [17].

�

Note that for all real Lagrangians L̆R ⊂ X̆ which appear in Table 1, we have that

h1,1(X̆) ≤ h1(L̆R,Z2) ≤ h1,1(X̆) + h1,2(X̆).

These inequalities also follow from [20, Thm 1] if there is no 2-torsion in the homology of

X with Z coefficients. Moreover, if rank β = 0, then h1(L̆R,Z2) = h1,1(X̆) + h1,2(X̆), while

if d = 0 we have that h1(L̆R,Z2) = h1,1(X̆).

8. Heegaard splittings

In the proof of Proposition 4.2 we introduced a Heegaard splitting to show that L̆R is an

orientable 3-manifold. We describe an algorithm to compute π1(L̆R) using this Heegaard

splitting and adapt this algorithm in §8.1 to verify calculations made in the proof of

Theorem 6.1.

Fix an integral affine manifold B, of real dimension 3, with simple singularities and

denote by π̆ : L̆R → B denote the 7-to-1 cover, constructed analogously as in §4. We let

W1 ⊂ B be the thickening of the discriminant locus ∆ of B described in the proof of

Proposition 4.2. In particular, we form a cover of ∆ ⊂ B by fixing closed subsets Wv and
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id h1,1(X) h0(−KY ) rankβ d id h1,1(X) h0(−KY ) rankβ d id h1,1(X) h0(−KY ) rankβ d

1 3 123 2 1 42 4 70 4 0 83 4 81 2 2

2 2 159 2 0 43 3 96 2 1 84 5 65 3 2

3 4 114 2 2 44 4 75 4 0 85 4 75 2 2

4 5 78 2 3 45 3 90 2 1 86 3 85 1 2

5 4 99 2 2 46 3 85 3 0 87 4 77 3 1

6 4 96 3 1 47 2 105 2 0 88 4 82 3 1

7 3 120 2 1 48 5 92 0 5 89 4 84 0 4

8 3 117 2 1 49 6 67 0 6 90 5 69 0 5

9 4 81 2 2 50 5 83 0 5 91 4 81 2 2

10 4 102 0 4 51 4 99 0 4 92 4 81 4 0

11 4 87 2 2 52 4 96 0 4 93 4 74 3 1

12 3 114 0 3 53 5 71 0 5 94 3 95 2 1

13 4 78 4 0 54 5 85 3 2 95 4 93 4 0

14 4 84 0 4 55 6 65 4 2 96 5 72 4 1

15 4 90 3 1 56 5 85 4 1 97 5 72 0 5

16 4 72 3 1 57 6 65 4 2 98 6 63 0 6

17 3 93 3 0 58 5 79 2 3 99 5 70 2 3

18 3 108 3 0 59 5 73 3 2 100 4 87 2 2

19 3 102 0 3 60 4 93 2 2 101 4 80 2 2

20 3 84 2 1 61 5 78 0 5 102 4 78 2 2

21 2 120 2 0 62 6 63 0 6 103 4 78 0 4

22 4 104 2 2 63 6 61 4 2 104 3 90 2 1

23 5 76 4 1 64 6 59 0 6 105 3 101 2 1

24 4 92 4 0 65 5 71 3 2 106 3 102 2 1

25 4 86 4 0 66 5 71 5 0 107 4 81 0 4

26 3 114 2 1 67 5 75 0 5 108 4 75 0 4

27 4 87 3 1 68 5 77 3 2 109 3 96 2 1

28 5 69 5 0 69 5 67 0 5 110 3 90 0 3

29 5 67 2 3 70 4 86 3 1 111 3 99 2 1

30 4 70 4 0 71 4 82 0 4 112 3 90 2 1

31 5 55 3 2 72 4 87 0 4 113 3 84 2 1

32 4 69 3 1 73 4 75 0 4 114 3 84 3 0

33 5 66 3 2 74 3 100 0 3 115 2 105 1 1

34 4 78 3 1 75 6 64 2 4 116 2 129 0 2

35 4 78 3 1 76 7 56 2 5 117 3 93 0 3

36 4 81 2 2 77 8 49 2 6 118 2 105 2 0

37 3 87 2 1 78 6 63 2 4 119 4 81 0 4

38 4 81 1 3 79 5 72 2 3 120 3 90 0 3

39 5 66 5 0 80 5 70 2 3 121 2 111 2 0

40 6 51 2 4 81 4 76 2 2 122 2 105 0 2

41 3 90 3 0 82 4 90 2 2 123 2 100 2 0

124 1 126 1 0

Table 1. Rank of the map (7.7) for anti-canonical hypersurfaces X ⊂ Y in

smooth toric Fano fourfolds Y , and d := h1(L̆R,Z2)− h1,1(X).



30 HÜLYA ARGÜZ AND THOMAS PRINCE

We of B for each vertex v and edge e of ∆ which satisfy the conditions given in the proof

of Proposition 4.2 and let

W1 =
⋃
v

Wv ∪
⋃
e

We.

Following a similar topological analysis to that made in [3, Appendix A], the preimages

of π̆−1(Wv) and π̆−1(We) are disjoint unions of 3-balls for all vertices v and edges e of ∆.

We define W2 to be the closure of the complement of W1 in B and assume throughout this

section that W2, and hence π̆−1(W2), is a handlebody, see Remark 4.3.

To describe the fundamental group (or first homology group) of L̆R we make use of

the following elementary observation on the fundamental groups of 3-manifolds with a

Heegaard splitting.

Lemma 8.1. Given a 3-manifold X with a genus g Heegaard splitting into (compact)

handlebodies H1 and H2, π1(X) is generated by the free group π1(H1), with relations de-

termined by a collection of meridian discs {D1, . . . , Dk} of H2 such that the complement

of
⋃k
i=1 Di in H2 is a disjoint union of 3-balls.

Proof. Writing the interior of H2 as the union of k disks D1, . . . Dk and (k − g + 1) three-

dimensional balls A1, . . . , Ak−g+1, we have that

X = H1 ∪
k−g+1⋃
i=1

Ai ∪
k⋃
i=1

Di.

Recalling that the fundamental group of a CW complex is determined by its 2-skeleton,

removing the 3-balls Ai does not affect the fundamental group, and π1(X) is isomorphic

to

π1

(
H1 ∪

k⋃
i=1

Di

)
.

Applying the Seifert–van Kampen theorem k times, π1(X) is isomorphic to the quotient

π1(H1) by the classes of the loops ∂Di ⊂ H1 for i ∈ {1, . . . , k}. �

Applying Lemma 8.1, we describe the fundamental group of L̆R by constructing a gener-

ating set of π1(π̆−1(W2)) and a collection of meridian discs in π̆−1(W1) whose complement

is a disjoint union of 3-balls. Recalling that we have assumed the space W2 is a handlebody,

we fix a cover V of W2 by 3-balls which meet along a pairwise disjoint collection of discs.

Algorithm 8.2. We first construct a generating set of π1(π̆−1(W2)). Observe that the

space W2 retracts onto an embedded graph Γ in B \∆ such that:

(1) Γ contains a vertex v for each 3-ball in V , contained in its interior.

(2) Γ contains an edge e ⊂ V1 ∪ V2 for every pair of elements V1 and V2 of V which

intersect in a disc. This edge connects the vertices v1 and v2 corresponding to V1

and V2 respectively and passes through a single point in V1 ∩ V2.
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Note that, as π̆ is unbranched over W2, π̆−1(Γ) is a 7-to-1 covering of Γ. We recall

that any connected graph is homotopy equivalent to the wedge union of circles, obtained

by contracting a spanning tree to a point. Hence, fixing a spanning tree T in π̆−1(Γ), a

generating set of π1(π̆−1(Γ)) is determined by choosing orientations of the edges of π̆−1(Γ)\
T , regarded as loops in the quotient space π̆−1(Γ)/T .

Next we construct a disjoint collection of meridian disks in π̆−1(W1). Recall that, re-

garding We as a solid cylinder thickening e, π̆−1(We) is the disjoint union of five disjoint

solid cylinders for any edge e of ∆. The preimage of a disk De in We which separates We

into two components is a set of five disks

π̆−1(De) = {Di
e : i ∈ {1, . . . , 5}}

which separate each of the five cylinders π̆−1(We) into two components. The complement

of the union of all disks Di
e retracts onto

⋃
v π̆
−1(Wv), which is a disjoint collection of

3-balls. Hence the collection of all disks Di
e satisfies the conditions of Lemma 8.1, and thus

determines a set of relations for a presentation of π1(L̆R). These relations are obtained

explicitly by constructing homotopies in B \∆ from the circles ∂De to cycles in Γ.

8.1. Application to the mirror quintic. We use the Heegaard splitting described above

to verify part of the calculations made in the proofs of Theorem 6.1 and Theorem 7.3. In

particular, we compute the cohomology groups of the complex C•

(8.1) 0 −→ Z115 δ0−→ Z710 δ1−→ Z1190 δ2−→ Z595 −→ 0

which appears in the proof of Theorem 6.1.

Proposition 8.3. The C̆ech complex C• has cohomology groups

H i(C•) ∼=


Z i ∈ {0, 3},
0 i = 1,

Z2 i = 2.

Before proving Proposition 8.3, we show that C• computes the cohomology groups of a

topological space L̃R. To define L̃R we first fix a trivalent graph ∆̃ in ∂∆P4 , by shrinking

the discriminant locus as illustrated in Figure 8.1. More concretely, ∆̃ is the union of the

cells of the first barycentric subdivison of ∂∆P4 which are contained in a two-dimensional

face of ∆P4 and which do not contain a vertex of ∆P4 . Part of ∆̃ is illustrated in Figure 8.2,

in which one vertex of ∆P4 is taken to be at infinity. We define L̃R by fixing a 7-to-1 cover

π̃ : L̃R → ∂∆P4

branched over ∆̃. In particular, we recall that ∂∆P4 admits an integral affine structure

with (non-simple) singularities along ∆̃, see for example [31, Proposition 2.12]. Hence we

can define a 7-to-1 cover π̃0 over the complement of ∆̃, following the construction given
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Figure 8.1. The discriminant locus ∆ (on the left), and its shrinking to ∆̃

(on the right) on a triangular face.

in §4. While this integral affine structure is not simple, the monodromy of π̃0 around

segments of ∆̃ is identical to that described in §4. That is, we can extend the covering π̃0

to a branched covering π̃ over ∂∆P4 using the local models around positive and negative

vertices described in §4.

Lemma 8.4. The cohomology groups H i(C•) are isomorphic to the cohomology groups

H i(L̃R,Z) for all i ∈ {0, 1, 2, 3}.

Proof. Consider the open cover U used to define the C̆ech-to-derived spectral sequence

used in Theorem 6.1. By construction, and comparing preimages of elements of the open

cover U (and their intersections) under π̆ and π̃, we observe that

(8.2) C̆i(U , π̃?Z) ∼= C̆i(U , π̆?Z) = Ci

for all i ∈ {0, 1, 2, 3}, and so the cohomology groups H i(C•) are isomorphic to the C̆ech

cohomology groups H̆ i(U , π̃?Z). Moreover, the open cover U is acylic for the sheaf π̃?Z.

Hence the C̆ech cohomology groups H̆ i(U , π̃?Z) are isomorphic to the sheaf cohomology

groups H i(B, π̃?Z). Finally, the sheaf cohomology groups H i(B, π̃?Z) are isomorphic to

the cohomology groups H i(L̃R,Z) by the Leray spectral sequence for π̃ and using that the

fibres of π̃ are discrete.

�

Proof of Proposition 8.3. We first fix handlebodies W1 and W2 as in Algorithm 8.2. We fix

disks Di, for i ∈ {1, . . . , 12} in ∂∆P4 , three of which are illustrated in Figure 8.2. Recall

that ∂∆P4 is formed by 5 tetrahedra, has ten 2-faces, ten 1-faces, and five vertices, among

which one is at infinity, ∞. In particular, to a 2-face spanned by {i, j, k} ∈ {1, 2, 3, 4},
as in Figure 8.2, there are six other adjacent 2-faces; three of them lie tetrahedra with

vertices {1, 2, 3, 4} the other three on the tetrahedra with vertices {i.j.k,∞}. The disc

D1 in Figure 8.2, is a disc containing the vertex labelled by 1, and enclosing the region

that is bounded by part of the discriminant locus lying on the 2-faces spanned by {1, 2, 3},
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Figure 8.2. Three of the discs Di enclosing regions labelled by i for i ∈
{1, 2, 3}, with boundaries on the discriminant locus, and 6 of the discs De

depicted in green.

{1, 2,∞} and {1, 3,∞}. We choose the other discs Di analogously. Note that the comple-

ment of W1 ∪
⋃12
i=1Di is a pair of 3-balls V := {V1, V2}. Hence, in this case, the graph Γ

(as defined in Algorithm 8.2) has two vertices and twelve edges between these two vertices,

while π̃−1(Γ) contains 14 vertices and 84 edges. We fix a generating set of

H1(π̃−1(W2)) ∼= H1(π̃−1(Γ))

by noting that a spanning tree T in π̃−1(Γ) contains 13 edges and identifying each of the

71 edges of π̃−1(Γ) \ T with a generator of H1(π̃−1(Γ))), as described in Algorithm 8.2.

In particular, we fix an isomorphism H1(π̃−1(Γ)) ∼= Z71. Applying Lemma 8.1, the space

H1(L̃R) is the quotient of Z71 by a subgroup determined by a system of meridian disks of

π̃−1(W1).

As described in Algorithm 8.2, each edge of ∆̃ determines a collection of five disjoint

meridian disks in π̃−1(W1). We consider 24 meridian discs De, associated to 24 (of the total

30) edges e of ∆̃, six of which are illustrated in Figure 8.2. The preimage of the union of

these 24 disks is a disjoint union of 120 disks Di
e, where i ∈ {1, . . . , 5}. It is straightforward

to verify that the complement of these discs in π̃−1(W1) is a disjoint collection of 3-balls.

Expressing an orientation of each cycle ∂Di
e ⊂ π̃−1(W2) in terms of the generating set

of H1(π̃−1(W2)) ∼= Z71 described above, we can express H1(L̃R) as the quotient of Z71

by a subgroup generated by 120 elements. Following the computation of this matrix,

source code for which is included in the supplementary material, this quotient group is

Z2, and hence H1(L̃R,Z) ∼= Z2. Since L̃R is connected and orientable, H i(L̃R) ∼= Z for

i ∈ {0, 3}. Moreover, by the universal coefficient theorem and Poincaré duality, we have

that H1(L̃R) ∼= 0 and H2(L̃R) ∼= Z2. �
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