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1. Introduction

This is the third in a series of papers devoted to the structure of unitary groups over
cyclotomic rings. The first of these papers [IJK+19a] concerned the Euler-Poincaré charac-
teristic of these groups. This invariant was sufficient, following Serre, to prove a conjecture
of Sarnak [Sar15, p. 15IV] on when these groups are generated by the Hadamard gate and
the T-gate—two specific elements of finite order [IJK+19a, Theorem 1.2]. The second paper
[IJK+19b] analyzed the corank of these groups, a more difficult invariant than the Euler-
Poincaré characteristic, but only in the families n = 2s and n = 3 · 2s where simplifications
occur. In this paper we consider the case of general n, subject to the standing assumption
that n = 2sd, d odd, s ≥ 2, n ≥ 8, and Hypothesis 3 below: 〈2,−1〉 = (Z/dZ)×. Here we
continue the method of [IJK+19b], analyzing an action of these groups on Bruhat-Tits trees ∆
together with the resulting finite quotient graphs, with the emphasis on computing examples.

Set ζn = e2πi/n. The cyclotomic field Kn := Q(ζn) has integers On := Z[ζn] and totally
real subfield Fn := K+

n = Q(ζn + ζn) with integers On := Z[ζn]+ = Z[ζn + ζn]. We set
Rn := On[1/2] and Rn := R+

n = On[1/2]. By our assumption on n, the cyclic group of
roots of unity in Kn is generated by ζn and contains i. Also Fn 6= Q and the On-ideal (2)
is the square of an ideal of On, which we will denote by q = qn. Let H be the Hamilton
quaternions over Q (the rational quaternion algebra ramified precisely at 2 and ∞), and put
Hn = H ⊗Q Fn. We fix a Q-basis 1, i, j, k of H satisfying i2 = j2 = k2 = −1, ij = −ji,
ik = −ki, jk = −kj. The standard maximalRn-order of Hn is

M̃n :=Rn〈1, i, j, (1 + i+ j + k)/2〉.

Define the Hadamard matrix H and the matrix Tn by

H :=
1

2

[
1 + i 1 + i
1 + i −1− i

]
and Tn :=

[
1 0
0 ζn

]
; (1)

we have H,Tn ∈ U2(Rn). The Clifford-cyclotomic group [FGKM15, Section 2.2] (resp., special
Clifford-cyclotomic group) is

Gn = 〈H,Tn〉 (resp., SGn = Gn ∩ SU2(Rn)). (2)

Put

Uζ
2(Rn) = {γ ∈ U2(Rn) | det γ ∈ 〈ζn〉}; (3)

we then have Gn ⊆ Uζ
2(Rn) ⊆ U2(Rn). In general, Uζ

2(Rn) ( U2(Rn).
Various subgroups and quotient groups of U2(Rn) and SU2(Rn) occur throughout this

paper. It is convenient to use the following notation:

Notation 1.

H ≤ G H is a subgroup of G
H �G H is a normal subgroup of G
H � G H ≤ G and [G : H] =∞
H<�G H �G and [G : H] =∞
H . G H ≤ G and [G : H] <∞
H �∼G H �G and [G : H] <∞
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For H ≤ U2(Rn) denote by PH the image of H in PU2(Rn). For H ≤ H×n , put H1 = {h ∈
H | NHn/Fn(h) = 1}; we have H1 � H. For a group G, denote by Gf � G the (normal)
subgroup generated by the elements of G of finite order. We have the subgroup structure

Gn ≤ U2(Rn)f�Uζ
2(Rn) � U2(Rn), PUζ

2(Rn)�∼ PU2(Rn), and (4)

SGn ≤ SU2(Rn)f � SU2(Rn).

If Uζ
2(Rn) 6= U2(Rn), then Uζ

2(Rn)<� U2(Rn). The structure of PGn is known from [RS99,
Theorem 1]; see [IJK+19a, Theorem 4.1].

Theorem 2 (Radin and Sadun). Let S4 be the symmetric group on 4 letters and Dm be the
dihedral group of order 2m. Then PGn ' S4 ∗D4 Dn.

For certain n there is a natural action of U2(Rn) and SU2(Rn) on a Bruhat-Tits tree ∆
with finite stabilizers and finite quotient graph. The condition on n for these finite quotient
graphs to exist is:

Hypothesis 3. 〈2,−1〉 = (Z/dZ)× .

Hypothesis 3 implies the following:

(a) There is one prime p = pn of F = Fn above 2 and H = Hn is unramified at p.
(b) There are explicit embeddings

ϕn : PSU2(Rn)
'
� Γn ⊆ PH×n,1 and ϕn : PU2(Rn)

'
� Γn ⊆ PH×n

with ϕn|PSU2(Rn) = ϕn and Γn = PM̃×
n,1 = M̃n,1/〈±1〉, see Section 4.2.

(c) Let ∆ = ∆p be the Bruhat-Tits tree for SL2(Fp). Then PGL2(Fp) acts on ∆. The
identifications ϕn and ϕn above give an action of PSU2(Rn) and PU2(Rn) on ∆. There
are finite quotient graphs grn = Γn\∆ and grn = Γn\∆. Moreover the stabilizers Γn,v and
Γn,v of a vertex v ∈ Ver(∆) in Γn and Γn, respectively, are finite. Likewise the stabilizers
Γn,e and Γn,e are finite for an edge e ∈ Ed(∆). More generally there are quotient graphs-
of-groups Grn = (Γn, grn) and quotient h-graphs-of-groups Grn = (Γn, grn). Knowing Grn
and Grn gives amalgam presentations of PSU2(Rn) ∼= π1(Grn) and PU2(Rn) ∼= π1(Grn)
as in [Ser03] and Section 2 of this paper.

If Hypothesis 3 is not satisfied, then instead of quotient graphs one gets quotient regular
cubical complexes of dimension d ≥ 2 as in [JL00]. We do not treat these higher-dimensional
quotients here. The first n for which Hypothesis 3 fails is n = 68.

The initial part of this paper, Sections 2–4.2, establishes the theoretical foundations for
computing examples. Much of this material extends the results in [IJK+19b] for the specific
families n = 2s and n = 3 · 2s to general n. The highlights of the paper are in the second
part, Sections 5–8, where we compute Grn and Grn in MAGMA [BCP97] with corresponding
amalgam presentations for SU2(Rn) and PU2(Rn) for 8 ≤ n ≤ 48, 4|n, n 6= 44. We give the
quotient h-graph of groups Gr 60 and the corresponding amalgam presentation for PU2(R60).

A surprising feature of the examples is that we are able to identify PGn as the fundamental
group of a sub h-graph-of-groups of Grn. Subgroups of amalgamated products are not in
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general sub amalgamated-products. But we get an amalgamated product presentation of
π1(Grn) ∼= PU2(Rn) with PGn ∼= S4 ∗D4 Dn as a sub amalgamated-product.

Here is part of the n = 28 example (see Section 5.2 for the definitions of the groups):

Example 4. (Section 7.2) Let Am (resp., Sm) denote the alternating group (resp., symmetric
group) on m letters, Cm the cyclic group of order m, Dm the dihedral group of order 2m,
and Q2m the quaternion group of order 2m. Denote the binary tetrahedral and octahedral
groups by E24 and E48, respectively.

(a) PU2(R28) ∼= D28 ∗C28 D28 ∗D4 S4 ∗ C∗22 = D28 ∗C28 PG28 ∗ C∗22 .
(b) PG28 � [PU2(R28)]f = PU2(R28).

(c) PUζ
2(R28) ∼= S4 ∗D4 D28 ∗C28 D28 ∗D4 S4 ∗ Z∗2 and

G28 � U2(R28)f<� Uζ
2(R28)<� U2(R28).

(d) SU2(R28) ∼= E48 ∗Q8 Q56 ∗C28 Q56 ∗Q8 E48 ∗ Z∗4 and

SG28 � SU2(R28)f<� SU2(R28).

Theorem 1.2 of [IJK+19a] already showed that G28 � U2(R28) and SG28 � SU2(R28).
However, the explicit presentations and the further subgroup results above are new.

2. H-graphs and h-graphs of groups

The standard reference for graphs constructed as quotients of trees by group actions
is Serre’s book [Ser03]. The generalization to h-graphs by Kurihara [Kur79] is treated in
[IJK+19b, Section 1], which we use freely along with [Ser03]. Following [Ser03], a graph has
oriented edges e along with their opposites ē, which are distinct. In an h-graph, the definition
is relaxed to allow half-edges, edges e with e = ē, as in [Kur79]. Edges e with e 6= e are
regular edges. Write Edr(gr) and Edh(gr) for the collection of regular and half-edges of gr
respectively and Ed(gr) := Edr(gr)q Edh(gr) for the set of all edges. Half-edges e originate
and terminate at the same vertex o(e) = t(e). Every graph is also an h-graph.

Suppose gr is a finite connected h-graph with vertices Ver(gr) and v = v(gr) = # Ver(gr).
Set er(gr) = 1

2
# Edr(gr), eh = 1

2
# Edh(gr), and e = e(gr) := er(gr) + eh(gr). The fundamen-

tal group π1(gr) has abelianization isomorphic to H1(gr ,Z). The genus g(gr) of gr is the
first Betti number rank H1(gr ,Z). By Euler’s formula g(gr) = 1 + er − v.

Definition 5. A graph of groups [Ser03, Section 5] is a pair Gr = (Γ, gr) with gr a graph
and Γ an assignment v 7→ Γv, e 7→ Γe of a group to each v ∈ Ver(gr), e ∈ Ed(gr) with
Γē = Γe together with an injection Γe ↪→ Γt(e) (denoted g 7→ ge). For an edge e ∈ Ed(gr) we
have injections Γe ↪→ Γt(e) and Γe = Γē ↪→ Γt(ē) = Γo(e) into the vertex groups of the origin
and target vertices. The first sends g ∈ Γe to ge ∈ Γt(e) and the latter to gē ∈ Γo(e).

A graph of groups Gr = (Γ, gr) has a fundamental group π1(Γ, gr) = π1(Gr) with a
surjection

π1(Gr)� π1(gr) (5)

whose kernel is the normal closure of 〈Γv : v ∈ Ver(gr)〉.
If gr is connected and acyclic then π1(Gr) = π1(Γ, gr) is the amalgamation of the vertex

groups over the edge groups. If gr is connected but not acyclic, choose a spanning tree T by
deleting a collection of edges E ⊂ Ed(gr). Let (Γ, T ) be the associated subgraph of groups.
The fundamental group of Gr based at T , π1(Gr ;T ), is defined to be the group generated by
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π1(Γ, T ) together with generators {xe : e ∈ E} subject only to the relations that gexe = xeg
ē

for g ∈ Γe.
We denote the free product of the groups A and B by A ∗B with A∗1 := A and A∗n+1 :=

A ∗ A∗n for n ≥ 1. So Z∗n is the free group on n generators. Since #E = g(gr) we have that

π1(Gr , T ) ' π1(Γ, T ) ∗ Z∗g(gr)/R . (6)

with R the relations on the xe described above. It is a theorem [Ser03, Proposition I.20] that
the isomorphism class of π1(Gr ;T ) does not depend on the choice of spanning tree T ; we
therefore denote it by π1(Gr). There is a construction for π1(Gr) that does not require fixing
a spanning tree, but for our purposes (explicit representations of π1(Gr) as amalgamated
products) choosing a spanning tree is more convenient. Adjoining the generators xe one at a
time constructs π1(Gr) as a g(gr)-fold iterated HNN extension of the amalgam π1(Gr , T ).

A group Γ acting on a graph gr determines a graph of groups Gr := (Γ, gr) by assigning
the stabilizer group Γe or Γv in Γ of an edge e or a vertex v. If Γ acts without inversions on
gr there is an induced quotient graph of groups Γ\\Gr with underlying graph Γ \ gr defined

as follows. Let gr
π−→ Γ\gr be the quotient map. For v ∈ Ver(Γ\gr) choose ṽ ∈ Ver(gr) lying

above v and set Γv := Γṽ. Similarly, for e ∈ Ed(Γ\gr) choose ẽ ∈ Ed(gr) with π(ẽ) = e

set Γe := Γẽ. Also choose an element g ∈ Γ with t(g · ẽ) = t̃(e) and define the injection
Γe → Γt(e) as the composition

Γe = Γẽ
g·−→ Γg·ẽ → Γt(g·ẽ) = Γ

t̃(e)
= Γt(e) .

The choices of ẽ, ṽ, and g are arbitrary, subject to the above constraints, but once chosen are
fixed. Notice that the maps Γe → Γt(e) are only well-defined up to conjugation by elements
of Γt(e).

Remark 6. Note that if Gr ′ ⊂ Gr is a subgraph with all groups given by pullback, then there
exists a natural injection π1(Gr ′)→ π1(Gr).

The following is a key result in Bass-Serre theory:

Theorem 7 ( [Ser03]). Let Γ be a group which acts without inversions on a tree ∆ and let
Gr := Γ\\(Γ,∆) be the associated quotient graph of groups. Then Γ ' π1(Gr).

If Γ acts on a graph gr with inversions, let grΓ be the graph obtained from gr by subdividing
exactly those edges that are inverted by Γ. By a quotient h-graph of groups for Γ acting on
gr we mean Γ\\(Γ, grΓ). When drawing h-graphs of groups we label each vertex and edge
with its stabilizer group. We also draw all pairs {e, ē} as a single undirected edge. In order
to make clear the h-graph structure coming from Γ \ gr we elide the extra vertices coming
from the barycentric subdivision of inverted edges in an h-graph of groups. We only label the
stabilizer subgroup of the corresponding half-edge if it differs from that of the elided vertex.
An example is:

Γv0

Γe0,1
Γv1 Γv

,

where v is a vertex lying under a vertex associated to the barycenter of an inverted edge in
the tree.
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Now suppose that Γ acts with inversions on a tree ∆. By Theorem 7, we know that
Γ ' π1(Γ\\(Γ,∆Γ)). If Γ0 ⊂ Γ acts on ∆ without inversions, then we have a cover

Γ0 \∆→ Γ \∆

of an h-graph by a graph. We also have the cover of graphs

Γ0 \∆Γ → Γ \∆Γ

with the induced group injection

π1(Γ0\\(Γ0,∆Γ))→ π1(Γ\\(Γ,∆Γ)) .

By the following theorem we also have an injection

π1(Γ0\\(Γ0,∆))→ π1(Γ\\(Γ,∆Γ))

of the fundamental group of the quotient graph of groups for Γ0 acting without inversions on
∆ onto the fundamental group of the quotient h-graph of groups for Γ acting with inversions
on ∆.

Theorem 8. Let Γ act on a graph gr without inversions and let gr ′ be obtained from gr by
subdividing all the edges in some set of edge orbits of Γ. Then

π1(Γ\\(Γ, gr)) ' π1(Γ\\(Γ, gr ′)) .

Proof. It suffices to consider a single edge in Γ\\(Γ, gr)

G0
G

G1 .

If subdivided in gr ′ this gives

G0 G
G G

G1 ,

in Γ\\(Γ, gr ′). The fundamental group of the graph with the subdivided edge differs from that
without only in that G0 ∗G G1 is replaced by G0 ∗G G ∗G G1, which produces a canonically
isomorphic group. �

To compute amalgamated products for our examples we will need the following two
theorems.

Theorem 9. Suppose gr has a spanning tree T such that Γe is trivial for all e ∈ Ed(gr) \
Ed(T ). Then π1(Γ, gr) ' π1(Γ, T ) ∗ Z∗ g, where g = g(gr) = # (Ed(gr) \ Ed(T )).

Proof. The additional generators {xe : e ∈ Ed(gr) \ Ed(T )} are subject only to the trivial
relations xe = xe. �

Theorem 10. Let Gr = (Γ, gr) be a graph of groups that consists of a single loop such that the
stabilizer group of every edge and vertex is the same group G and the induced automorphism
of G from the maps around the loop is inner. Then π1(Gr) ' G⊕ Z.

Proof. Remove one edge e to form a spanning tree T . Now π1(Gr) is generated by π1(Γ, T ) =
G and an additional generator xe subject to the constraint g(xeh) = xehgh

−1h = (xeh)g for
some h and all g ∈ G = π1(Γ, T ). �

7



It is clear that π1(Γ, T ) lies in the kernel of (5). In the case that the Γv for v ∈ Ver(gr) are
finite, then the kernel of (5) is the subgroup π1(Γ, gr)f generated by all elements of π1(Γ, gr)
of finite order. In particular, if Γ assigns the trivial group to each edge and vertex in gr , then
(5) is an isomorphism.

We will use the following to show that PGn � (PU2n)f in some cases.

Proposition 11. Let (Γ, gr) be a connected graph of groups all of whose edge groups are
finite, and let S a subtree of gr. Let T be a spanning tree of gr containing S with π1(Γ, T )
infinite. Then either π1(Γ, T ) = π1(Γ, S) or else π1(Γ, S) � π1(Γ, T ). In the second case
π1(Γ, S)� π1(Γ, gr)f .

Proof. If π1(Γ, S) is finite the result is trivial, so we will assume that it is infinite. Suppose
that the natural map π1(Γ, S) → π1(Γ, T ) is not surjective. Let T ′ be the tree obtained
from collapsing S down to a single vertex s: then Ver(T ′) = (Ver(T ) \ Ver(S)) ∪ {s}. Edges
between a vertex v ∈ Ver(T ) \Ver(S) and w ∈ Ver(S) now connect v to s. We make T ′ into
a graph of groups (Γ′, T ′) by defining Γ′s = π1(Γ, S) and Γ′v = Γv for v ∈ Ver(T ) \ VerS; the
edge groups are the same as they were in (Γ, T ). We claim that π1(Γ′, T ′) = π1(Γ, T ). Indeed,
π1(Γ, T ) is the amalgam of stabilizers of vertices of T over stabilizers of edges. As T is a tree,
it does not matter in which order one amalgamates. Now π(Γ′, T ′) is obtained from (Γ, T ) by
first amalgamating over S to give (Γ′, T ′) and then doing the remaining amalgamations in
T . Since Γs = π1(Γ, S) 6= π1(Γ, T ), there must be a vertex v ∈ Ver(T ′) \ {s} with a path p
between v and s such that all the intermediate vertices and edges along it have the same
group Γp, but Γv ) Γp. We also have Γs = π1(Γ, S) infinite, hence bigger than the finite
group Γp. Thus, Γv ∗Γp Γs is a nontrivial amalgamation. Therefore, by the normal form for
amalgams [LS01, Theorem IV.2.6], we have

π1(Γ, S) = Γs � Γv ∗Γp Γs < π1(Γ′, T ′) = π1(Γ, T ) < π1(Γ, T )f .

�

3. Unitary groups over cyclotomic rings

Our notation will be consistent with that of [IJK+19b]. We assume n = 2sd with d
odd and s ≥ 2, n ≥ 8; put ζn = e2πi/n. Let Kn = Q(ζn). The ring of integers in Kn is
On := Z[ζn] and its class group is Cl(On) = Pic (On) with class number hn = # Cl(On).
Put Rn = Z[ζn, 1/2]. If H ≤ K×n , put H1 := {x ∈ H | xx = 1}. Let Fn = Q(ζn)+ with
integers On := O+

n = Z[ζn + ζn], class group Cl(On) with class number h(On) = h+
n , and

narrow class group C̃l(On) with narrow class number h̃(On) = h̃+
n . Then hn = h+

nh
−
n . Set

Rn = R+
n = On[1/2]. For a subgroup G ≤ F×n , let G+ be the subgroup of G consisting of

totally positive elements: we have G/G+
∼= (Z/2Z)cG , where 0 ≤ cG ≤ [Fn : Q].

3.1. Cyclotomic Fields. Let pi, 1 ≤ i ≤ r+(n), be the r+(n) prime ideals in On above the
prime ideal (2) of Z. If there is a unique prime above (2) in On, we denote it by p = p(n).
Let P1, . . . ,Pr(n) be the prime ideals of Kn above (2). If pi splits in Kn, then 2r+(n) = r(n);
if pi is inert or ramified in Kn, then r+(n) = r(n). If there is a unique prime above (2) in On,
we denote it by P = P(n).

Remark 12. We have r+(n) = r(n) if and only if −1 ∈ 〈2〉 ⊆ (Z/dZ)×.
8



We must determine various groups of units. It is well known that Z[ζn]× ∼= µn × Zφ(n)/2−1

and that Z[ζn]×1 = µn. Further, R×n is generated by Z[ζn]× and one additional generator for
each prime dividing 2 in Kn; it is thus isomorphic to µn × Zφ(n)/2−1+r(n). Similarly,R×n is
isomorphic to Z/2 × Zφ(n)/2−1+r+(n) andR×n,+ ∼= Zφ(n)/2−1+r+(n). Recall that r(n) is either
r+(n) or 2r+(n).

Now consider R×n,1 := (R×n )1. Let N = NormKn/Fn . There is an exact sequence

1→ R×n,1 → R×n
N−→R×n,+ → G→ 1,

where G is a finite group since N(R×n ) ⊇ (R×n )2. Thus

R×n,1
∼=

{
µn r+(n) = r(n),

µn × Zr+(n) 2r+(n) = r(n);
(7)

a slightly weaker form of this statement is given in [FGKM15, Theorem 5.3]. It follows
immediately that

R×n,1/(R
×
n,1)2 ∼=

{
µn/µ

2
n r+(n) = r(n),

µn/µ
2
n × (Z/2Z)r+(n) 2r+(n) = r(n).

(8)

Hence from (8) we get

R×n,1/(R
×
n,1)2 ∼= (Z/2Z)1+r(n)−r+(n). (9)

We are interested in the groups U2(Rn) and SU2(Rn). The group SU2(Z[ζn]) is finite:
specifically it is the dihedral group of order 2n. But SU2(Rn) (and a fortiori U2(Rn)) is
infinite. In fact, by strong approximation at the place 2 [Kne66, Main Theorem], U2(Rn) is a
dense subgroup of U2(C).

We have natural inclusions

SU2(Rn) ↪→ Uζ
2(Rn) ↪→ U2(Rn).

For any complex unitary matrix A, the condition A−1 = A
t

implies that α = det(A) satisfies
αα = 1. Hence if A ∈ U2(Rn), then α = det(A) ∈ R×n,1. Also, if α ∈ R×n,1, then [ 1 0

0 α ] ∈ U2(Rn).
It follows that there is an exact sequence

1 −→ SU2(Rn) −→ U2(Rn)
det−→ R×n,1 −→ 1. (10)

Proposition 13. ([FGKM15, Theorem 5.3]) We have Uζ
2(Rn) = U2(Rn) if and only if

−1 ∈ 〈2〉 ⊆ (Z/dZ)×.

Proof. Combine the exact sequence (10) above with Remark 12 and (7). �

3.2. PU2(Rn), PUζ
2(Rn), and PSU2(Rn). We begin our study of unitary groups over

cyclotomic rings by explaining the relationship between PU2(Rn), PUζ
2(Rn), and PSU2(Rn).
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There is a commutative diagram with exact rows and columns (to save space we do not
indicate the trivial groups on the sides):

µ2 −−−→ R×n,1
( )2−−−→ (R×n,1)2y y y

SU2(Rn) −−−→ U2(Rn)
det−−−→ R×n,1y y y

PSU2(Rn) −−−→ PU2(Rn)
det−−−→ R×n,1/(R

×
n,1)2.

(11)

The structure of R×n,1/(R
×
n,1)2 is given in (8). In particular we have

Proposition 14. (a) PU2(Rn)/PSU2(Rn) ∼= (Z/2Z)1+r(n)−r+(n).

(b) PU2(Rn)/PUζ
2(Rn) ∼= (Z/2Z)r(n)−r+(n).

(c) PUζ
2(Rn)/PSU2(Rn) ∼= Z/2Z.

Proof. By diagram (11) PU2(Rn)/PSU2(Rn) ∼= R×n,1/(R
×
n,1)2, hence (a) follows from (9).

Similarly, PUζ
2(Rn)/PSU2(Rn) ∼= µn/µ

2
n
∼= Z/2Z since by diagram (11) the determinant

map is surjective. The claim (c) follows.
Assertion (b) now follows trivially. �

If r(n)+ = r(n), i.e., if primes above 2 in Fn do not split in Kn, then the commutative
diagram (11) becomes

µ2 −−−→ µn
( )2−−−→ µ2

ny y y
SU2(Rn) −−−→ U2(Rn)

det−−−→ µny y y
PSU2(Rn) −−−→ PU2(Rn)

det−−−→ µn/µ
2
n.

(12)

Proposition 15 below is elementary.

Proposition 15. The following are equivalent:

(a) There is a unique prime p of Fn above 2, i.e., r+(n) = 1.
(b) We have 〈2, −1〉 = (Z/dZ)×.

Proposition 16. The following are equivalent:

(a) r(n) = r+(n).
(b) −1 ∈ 〈2〉 ⊆ (Z/dZ)×.
(c) PU2(Rn)/PSU2(Rn) ∼= Z/2Z.

(d) PU2(Rn) = PUζ
2(Rn).

Proof. The equivalence of (a) and (b) is elementary. The equivalence of (a) and (c) follows
from diagram (11) and (8). The equivalence of (c) and (d) follows from Proposition 14(c).

�
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3.3. The Clifford-cyclotomic groups Gn and SGn. The Clifford group C can be defined
as C = U2(R4) [FGKM15, Section 2.1]. With Tn as in (1), define the Clifford-cyclotomic
group [FGKM15, Section 2.2](resp., special Clifford-cyclotomic group) for 4|n by

Gn = 〈C, Tn〉 (resp., SGn = Gn ∩ SU2(Rn)); (13)

we have Gn ⊆ Uζ
2(Rn). This definition agrees with (2) by [IJK+19a, Prop. 2.1]. For additional

results on Gn and SGn see [IJK+19a].

Proposition 17. Suppose that PGn � [PU2(Rn)]f . Then Gn � U2(Rn)f , SGn � SU2(Rn)f ,
PSGn � [PSU2(Rn)]f .

Proof. The subgroup of scalar matrices of Gn and the image of the determinant homomorphism
Gn → C are always finite; likewise for U2(Rn)f . �

4. The Hamilton quaternions and unitary groups

4.1. The Hamilton quaternions. Let H be the Hamilton quaternions over Q with a fixed
Q-basis 1, i, j, k satisfying i2 = j2 = k2 = −1, ij = −ji, ik = −ki, jk = −kj. Put
Hn = H⊗Q Fn.

Proposition 18. Let n = 2sd with d odd, s ≥ 2, and n ≥ 8. Then the quaternion algebra
Hn is unramified at the primes above 2 in Fn. Equivalently, Hn is unramified at all finite
primes of Fn.

Proof. The quaternion algebra Hn is unramified at pi for 1 ≤ i ≤ r+ if and only if the order
of the decomposition group

D(pi) ⊆ Gal(Fn/Q) ' (Z/nZ)×/〈±1〉
is even. If s > 2, then Fn contains Q(ζ2s)

+, in which e(p) is even. For s = 2, the extension
Q(ζn) has ramification index 2 above 2, with the inertia field being Q(ζd) 6⊇ Fn since n ≥ 8.
Thus Fn likewise has ramification index 2 above 2, so the decomposition group has even order
as well. �

The following assertion is elementary.

Proposition 19. Let n = 2sd with d odd, s ≥ 2, and n ≥ 8. The following are equivalent:

(a) There is a unique prime p of F = Fn above 2 and the quaternion algebra Hn is unramified
at that prime p.

(b) Hypothesis 3: 〈2,−1〉 = (Z/dZ)×.

Proposition 20. Let n = 2sd with d odd, s ≥ 2, and n ≥ 8. The following are equivalent:

(a) There is a unique prime p of Fn above 2, the quaternion algebra Hn is unramified at p,
and p does not split in Kn.

(b) 〈2〉 = (Z/dZ)×.

Proof. Combine Proposition 19 with Proposition 16. �

Obviously n = 2s satisfies the conditions in Proposition 20 for s ≥ 3. However, n = 8m also
satisfies these conditions for m ∈ {3, 5, 6}, although not for m = 7. We will examine many of
these graphs for n a small multiple of 4 explicitly in this paper.

11



Proposition 21. Assume n = 2sd with d odd, s ≥ 2, and n ≥ 8 with 〈2,−1〉 = (Z/dZ)×.
The following are equivalent:

(a) H1(Gal(Kn/Fn), R×n ) = 0.
(b) If p splits as p = ℘℘ in Kn and r is the least positive integer such that (℘/℘)r = (β) is

principal with NKn/Fn(β) = 1, then (1 + β)δ ∈ R×n for some δ ∈ Fn.

Proof. Note that (a) is equivalent to the statement that every α ∈ R×n,1 is given by γ/γ for

some γ ∈ R×n . By (7), R×n,1
∼= µn if p does not split in Kn and R×n,1

∼= µn×Z if it does, where
µn is generated by ζn and β is a generator of the Z since it has norm 1 and is the “smallest”
generator that does so.

Assume (b). By [IJK+19b, Lemma 3.9] 1 + ζn ∈ R×n . Thus ζn = γ/γ for γ = 1 + ζn ∈ R×n
and β = γ/γ for γ = (1 + β)δ ∈ R×n . Hence, since R×n is generated by ζn and γ, we have
H1(Gal(Kn/Fn), R×n ) = 0 and (a) is true.

Conversely, assume (a). Then we have β = γ/γ for some γ ∈ R×n . Let δ = γ/(1 + β). Then

δ =
γ

1 + β
=

γβ

1 + β
=

γ

1 + β
= δ.

Therefore, δ ∈ Fn and (b) follows. �

The standard maximalRn-order of Hn is

M̃n :=Rn〈1, i, j, (1 + i+ j + k)/2〉 .
Now for each n we choose an On-maximal order

Mn ⊇ {1, i, j, (1 + i+ j + k)/2}.
The ideal (2) in On is the square of an ideal q = qn. Fix a set of generators A = A(n) for q.
For example, if 8|n we take A = {

√
2}; if not but 12|n, then take A = {1 +

√
3}. Define the

maximal On-order Mn ⊆ M̃n by

Mn = On〈1, (1 + i)α/2, (1 + j)α/2, (1 + i+ j + k)/2〉 , (14)

where α runs over A. Observe thatMn does not depend on the choice of generators A = A(n)
of q = qn.

Remark 22. In general, On〈1, i, j, (1 + i+ j + k)/2〉 is not a maximal order of Hn. Indeed,
this order has discriminant (2); if Hn is unramified at the primes above 2 (for example, if
n = 2s), then the discriminant of a maximal order of Hn is the unit ideal. On the other hand,

the order M̃n is a maximalRn-order, because 2 is a unit inRn.

Remark 23. In general the Rn-type number of Hn is not 1—there can be nonisomorphic
Rn-maximal orders of Hn.

We now make definitions as in Kurihara [Kur79](who in turn follows Ihara [Iha66]):

Definition 24. Assume n satisfies Hypothesis 3 with p the unique prime of F := Fn above
2. Note that Hn ⊗F Fp = Mat2×2(Fp). Set

M̃×
n,1 = {m ∈ M̃×

n | NormHn/Fn(m) = 1}

M̃×
n,+ = {m ∈ M̃×

n | valp(NormHn/Fn(m)) is even}.
12



Define:

Γ0 = Γ0,n = Γ0,n(M̃n) = PM̃×
n = M̃n/R

×
n

Γ+ = Γ+,n = Γ+,n(M̃n) = PM̃×
n,+ = M̃×

n,+/R
×
n

Γ1 = Γ1,n = Γ1,n(M̃n) = PM̃×
n,1 = M̃×

n,1/± 1.

Then Γ1 ⊆ Γ+ ⊆ Γ0 are discrete, cocompact subgroups of PGL2(Fp).

Recall that if H ≤ F×n , then H+ is the subgroup of totally positive elements of H. Assume
that n satisfies Hypothesis 3 with p the unique prime of F := Fn above 2. Put

R×n,+, p-ev = {x ∈R×n,+ | valp(x) is even}.
The reduced norm map N = NormHn/Fn : H×n → F×n induces maps

N0 : Γ0 →
R×n,+
(R×n )2

, N+ : Γ+ →
R×n,+, p-ev

(R×n )2
, N1 : Γ1 → 1. (15)

Let C2 be the cyclic group of order 2, which we identify both with ±1 and with F2. For
1 ≤ i ≤ d = [F : Q], let si be the map F× → C2 taking x to the sign of its image in the i-th
real embedding of F . We then define the p-signature map sigp :R×n → C2

d+1 by

sigp(x) = (s1(x), . . . , sd(x), valp(x) mod 2). (16)

Proposition 25. (a) The maps N0,N+,N1 in (15) are surjective.
(b) There are isomorphisms

Γ0/Γ+
∼=

R×n,+
R×n,+, p-ev

and Γ+/Γ1
∼=
R×n,+, p-ev

(R×n )2
.

(c) #Γ0/Γ+ ≤ 2, with equality if and only if the class [p] of p in C̃l(F ) of F is of odd order.
(d) We have Γ+/Γ1

∼= Coker(sigp)
∼= Fr

2 with 0 ≤ r ≤ d = [F : Q].

Proof. First we show that N0 is surjective: pick any x ∈R×n,+. Then by [IJK+19b, Lemma

3.19] there exists a γ ∈ M̃ of norm x. Observe that γ is a unit since its norm is. Thus γ
gives an element of Γ0 and N0 is surjective. A similar argument holds for N+ and N1.

To derive (b) from (a), note that all the definitions of the Γ’s are equivalent to the pullbacks
under the reduced norm map of the groups in (15). Thus their quotients are the same as the
quotients of the images of their norms.

With that done, (c) follows from the second isomorphism in (b). It is clear that #Γ0/Γ+ ≤ 2,

and the class [p] of p in C̃l(F ) is of odd order if and only if there is a totally positive element
of F generating the ideal pk for some odd k. If there is no such element, thenR×n,+ =R×n,+, p-ev

and the index is 1, whereas if there is such an element it generates the quotient and the index
must be 2.

For (d), note that
R×n

(R×n )2
∼= Fd+1

2 .

The assertion then follows from (b) and the exact sequence

1 −→Rn,+, p-ev

(R×n )2
−→ R×n

(R×n )2

sigp−→ Fd+1
2 −→ Coker(sigp) −→ 1

13



upon observing that dimF2 Coker(sigp) ≤ d since sigp(−1) is nontrivial. �

Theorem 26. (a) The groups Γ0, Γ+, Γ1 are discrete cocompact subgroups of PGL2(Fp). Let
∆ = ∆p. Then Γ+, Γ1 act on ∆ without inversions and the quotients gr+ = Γ+\∆, gr 1 =
Γ1\∆ are finite bipartite graphs. The group Γ0 acts on ∆ possibly with inversions; the
quotient gr 0 = Γ0\∆ is a finite Kurihara graph.

(b) The natural covering π : gr+ → gr 0 is étale of degree 1 or 2. The degree is 2 if and only

if the class [p] in C̃l(F ) is of odd order.

Proof. The assertion (a) follows from (c) and (d) of Proposition 25. A general discussion is
in [Kur79, Section 4].

Part (b) follows from Proposition 25(c). �

4.2. Connecting unitary groups to the Hamilton quaternions. Let H×n,1 be the sub-
group of H×n of elements of norm 1. The following observation is standard and easy to
check:

Proposition 27. For all n, the map SU2(Kn)→ H×n,1 defined by(
r + s

√
−1 t+ u

√
−1

−t+ u
√
−1 r − s

√
−1

)
7→ r − ui− tj − sk

is an isomorphism.

The map in Proposition 27 restricts to an isomorphism

Ψn : SU2(Rn)
'−→ M̃×

n,1,

with an induced isomorphism

Ψn : PSU2(Rn) = SU2(Rn)/〈±1〉 '−→ PM̃×
n,1 := M̃×

n,1/〈±1〉. (17)

We now ask whether there is an isomorphism for PU2 compatible with the isomorphism (17)
for PSU2.

First we define a map ϕn : PU2(Kn) 7→ PH×n .

Definition 28. For A ∈ U2(Kn), denote by [A] its class in PU2(Kn). Similarly, for a ∈ H×n ,
denote by [a] its class in PH×n .

Suppose A ∈ U2(Kn) and α = det(A) where αα = 1. By Hilbert’s Theorem 90 there is
β ∈ K×n such that α = β/β. Let A′ = βA. We have detA′ = β2α = ββ ∈ Fn. Hence A′ is of
the form

A′ =

(
r + s

√
−1 t+ u

√
−1

−t+ u
√
−1 r − s

√
−1

)
and we then define, for [A] ∈ PU2(Rn),

ϕn([A]) = [r − ui− tj − sk] ∈ PH×n . (18)

Note that on PSU2(Rn) our map ϕn agrees with Ψn.

Remark 29. Under the equivalent conditions of Proposition 19, the map ϕn makes PU2(Rn)
a discrete subgroup of PGL2(Fp), since PSU2(Rn) has finite index in PU2(Rn).

14



Applying ϕn to H and Tn given in (1) using β = 1 +
√
−1, 1 + ζ−1

n , respectively, we obtain

ϕn([H]) = [h], ϕn([Tn]) = [tn],

where

h := −i− k, tn = 1 + e2πk/n := 1 +
ζn + ζ−1

n

2
− (ζn − ζ−1

n )
√
−1k

2
. (19)

Remark 30. Clearly, h ∈Mn when Mn is of the form (14).

Theorem 31. Recall that 4|n and n > 4. Let Tn be the On-order in Hn generated by tn and
j.

(a) If n is not a power of 2, then Tn is maximal and T ×
n /O×n ' Dn, the dihedral group of

order 2n.
(b) If n is a power of 2, then Tn is not maximal. Its discriminant is p2 and it is contained

in exactly two maximal orders, the order generated by tn and (1 + i)/(ζn + ζ−1
n ) and its

conjugate by tn. The intersection of these two orders contains Tn with quotient p, and
conjugation by tn exchanges them. In particular Tn is not an Eichler order. Further, we
have T ×

n /O×n ' Dn/2, the dihedral group of order n, unless n = 8, and likewise for M
a maximal order containing Tn we have M×/O×n ' Dn/2. Additionally, both M∩Mtn

and Tn have stabilizer Dn.

Proof. For this proof only, let z = ζn + ζ−1
n . Consider the On-submodule Sn generated by

1, tn, j, tnj. Our first claim is that Sn is an order of discriminant (z2 − 4). To show that it is
an order, we check that it is closed under multiplication. Indeed, tn, j are integral, so their
squares are still in the order, and once we show that jtn ∈ Sn the remaining products will
follow by associativity. In fact

jtn = (z + 2)j − tnj. (20)

To evaluate DiscSn, we compute the matrix of traces of products of the basis vectors,
obtaining 

2 z + 2 0 0
z + 2 z2 + 2z 0 0

0 0 −2 −z − 2
0 0 −z − 2 −2z − 4

 .
The top left 2× 2 block has determinant z2 − 4, the bottom right −(z2 − 4), so our claim
follows.

This proves that Sn = Tn is a maximal order in the case where n is not a power of 2,
since in that case z2 − 4 = (ζ2

n − 1)2/ζ2
n is a unit. When n is a power of 2, the determinant

generates the 4th power of the prime p of On above 2, so the discriminant is p2 and an order
that contains Sn with quotient (On/p)2 is maximal. We may enlarge the order by adjoining
any of 1 + j, (tn − 1)(1 + j), tn(1 + j) divided by z, or their conjugates by tn. It is easily
checked that all of these orders contain tn(1 + j)/z, and that tn(1 + j)/z generates an Eichler
order of discriminant p as described.

To prove that the unit group is as claimed, we notice that by construction tn is the image
of the matrix Tn, whose order in PGL2 is exactly n. It also holds that jtnj

−1 = t−1
n up to

scalars, so in the first case where tn is a unit we obtain the dihedral group Dn as a subgroup
of T ×

n /O×n . In the second case tn is not a unit; however, t2n/z is a unit, and this gives a unit
15



group of Dn/2 as claimed. To show that M×/O×n is no larger than this, we consider the list
of maximal subgroups of PGL2(C). The tetrahedral, octahedral, and icosahedral groups have
no dihedral subgroups larger than D5, so these are excluded except in the case n = 8, in
which we find S4; the only other possibility is that the unit group is Dkn for some k > 1.
In the first case, that is not possible, because the subring of Hn obtained by adjoining an
element of order kn to Fn would be a subfield of degree φ(kn)/[Fn : Q] > 2, a contradiction.
In the second case it also does not occur. The same argument shows that we would have to
have k = 2, and the only possible unit of order n would be a scalar multiple of tn. However,
no such multiple has unit norm, so we cannot obtain an automorphism of a maximal order
this way. On the other hand, conjugation by tn is of order 2, since t2n is a scalar. Thus the
Eichler orderM∩Mtn and its canonically defined suborder Tn are preserved by conjugation
by tn; this has order n and, together with the Dn/2, generates a group isomorphic to Dn. The
same argument as in case 1 shows that this is the stabilizer of M∩Mtn and Tn. �

Theorem 32. Assume Hypothesis 3 and use the notation of Definition 24. For the map ϕn
in (18)

ϕn(PU2(Rn)) ⊂ PM̃×
n = Γ0(Mn, p) := Γ0,n

if and only if the equivalent conditions of Proposition 21 are satisfied.

Proof. Using the notation above, notice that H1(Gal(Kn/Fn), R×n ) = 0 implies that β ∈ R×n .

Hence we end up with ϕn([A]) ∈ PM̃×
n .

Conversely, suppose ϕn(PU2(Rn)) ⊂ PM̃×
n . Pick any α ∈ R×n with αα = 1. Let A ∈ U2(Rn)

have det(A) = α. Then ϕn([A]) = [r−ui− tj− sk] ∈ PM̃×
n ; set w := r−ui− tj− sk ∈ M̃×

n .
Now let

A′ =

(
r + s

√
−1 t+ u

√
−1

−t+ u
√
−1 r − s

√
−1

)
∈ SU2(Rn).

By the construction of ϕn we have A′ = βA for some β ∈ F×n and by the above inclusion
we must have β ∈ R×n . Comparing determinants we get β2α = det(A′) = N(w). Taking
norms down toRn gives (ββ)2 = N(w)2. Hence ββ = N(w) since both quantities are totally
positive. Therefore, α = N(w)/β2 = β/β with β ∈ R×n . Since [Kn : Fn] = 2, this shows that
H1(Gal(Kn/Fn, R

×
n ) = 0, which implies the equivalent conditions of Proposition 21. �

We now ask when the map ϕn : PU2(Rn)→ PM̃×
n = Γ0(M̃n) is an isomorphism.

Theorem 33. Suppose the equivalent conditions of Proposition 21 are satisfied; retain the
notation of Theorem 32. For α ∈R×n,+, denote by [α] its class in R×n,+/(R

×
n )2.

(a) If p does not split in Kn, then ϕn is an isomorphism onto PM̃×
n = Γ0(M̃n) if and only

if the map below with a ? is an isomorphism:

Γ0,n/Γ1,n = 〈[(1 + ζn)(1 + ζn)]〉 '
R×n,+
(R×n )2

?' Z/2Z ' PU2(Rn)

PSU2(Rn)

'−→
R×n,1

(R×n,1)2
.

(b) If p splits in Kn, then ϕn is an isomorphism onto PM̃×
n = Γ0(M̃n) if and only if the

map below with a ? is an isomorphism:

Γ0,n/Γ1,n '
R×n,+
(R×n )2

?' Z/2Z× Z/2Z ' PU2(Rn)

PSU2(Rn)

'−→
R×n,1

(R×n,1)2
.
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In this case note that

〈[(1 + ζn)(1 + ζn)]〉 ' Z/2Z ⊆
R×n,+
(R×n )2

' Z/2Z× Z/2Z.

Proof. From the diagram (which omits 1’s on the right/left and top/bottom) with Norm map
N0,n : Γ0,n →R×n,+

PSU2(Rn)
'−−−−→ Γ1,n −−−−→ 1y y y

PU2(Rn)
φn−−−−→ Γ0,n

N0,n−−−−→ cokery y y
PU2(Rn)/PSU2(Rn) ' R×n,1/(R

×
n,1)2 −−−−→ Γ0,n/Γ1,n 'R×n,+/(R×n )2 N0,n−−−−→ coker ,

we see that ϕn is an isomorphism if and only if

R×n,1
(R×n,1)2

'−→
R×n,+
(R×n )2

(21)

is an isomorphism. The map in (21) is induced by [ζn] 7→ [(1 + ζn)(1 + ζn)]. �

Remark 34. Note in particular that by Weber’s theorem [Web99] the hypotheses of Theorem
33 are always satisfied when n is a power of 2.

We now look at the group PUζ
2(Rn) defined in the introduction.

Theorem 35. Assume that n is not twice a prime power and use the notation of Definition
24. Then

ϕn(PUζ
2(Rn)) ⊂ Γ+,n(M̃n) := Γ+,n.

Proof. Let A ∈ Uζ
2 and ζkn = det(A). Since n is not twice a prime power, NKn/Q(ζn + 1) = 1;

see [IJK+19b, Lemma 3.9]. So in Definition 28 we can take β = (ζn+1)−k since that ζkn = β/β.
Then with A′ = βA we have detA′ = β2ζkn = ββ ∈ O×Fn . Hence A′ is of the form

A′ =

[
r + s

√
−1 t+ u

√
−1

−t+ u
√
−1 r − s

√
−1

]
and

ϕn([A]) = [r − ui− tj − sk] ∈ Γ+(M̃n).

�

By Proposition 14(c), we always have [PUζ
2(Rn) : PSU2(Rn)] = 2, and thus ϕn|PUζ2(Rn)

is an isomorphism precisely when [Γ+,n : Γ1,n] = 2. The condition for this is described in

Proposition 25(d). Also notice that when n is a power of 2, we have PUζ
2(Rn) = PU2(Rn)

from Proposition 16.
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4.3. The tree for SL2(Fn,p) via maximal orders in Hn. Throughout this subsection
and the next we assume Hypothesis 3.

Fix n and let ∆ = ∆pn be the Bruhat-Tits tree for SL2(Fn,p) with Fn,p the completion of Fn
at the prime p = pn. Generalizing the discussion in [Kur79, Sect. 4], we may describe ∆ in the
following manner. LetMn be the maximal O-order (14) of H = Hn. The vertices Ver(∆) are
identified with the maximal O-orders M for which Mv :=M⊗O Ov =Mn,v :=Mn ⊗O Ov
for every place v 6= p of On. In this section we will identify the vertex v ∈ Ver(∆) with
its corresponding maximal order Mv. The edges originating from a vertex M ∈ Ver(∆)
correspond to left M-ideals of norm p. The edge corresponding to an ideal I terminates at
the right order of I. There are Norm(p) + 1 edges originating from each vertex.

Let e be an edge originating at a vertex M and terminating at M′, corresponding to
the ideal I. The opposite edge ē then corresponds to the left M′-ideal Ī = pI−1 where
I−1 = {α ∈ H : Iα ⊂M} and we have Norm(Ī) = p. Clearly M′,M are the left and right

orders of Ī and ¯̄I = I.
The undirected edge between M and M′ is identified with the Eichler order E =M∩M′

of level p. The connection between the pair of directed edges I, Ī and E is that E = I + Ī
while I, respectively Ī, is the unique maximal left M-, respectively M′-, ideal in E . To see
this, conjugate and choose a basis locally at p so that

Ep =

[
Op Op

pOp Op

]
,

where Op is the ring of integers in Fnp . (Recall that H is unramified at p, so H⊗Fn Fn,p ∼=
Mat2×2(Fn,p).) Switching labels if necessary we see that

Mp =

[
Op Op

Op Op

]
, M′

p =

[
Op p−1Op

pOp Op

]
,

are the two maximal orders containing Ep.
Simple calculations show that

Ip =

[
pOp Op

pOp Op

]
, Īp =

[
Op Op

pOp pOp

]
.

Note that Ep = Ip + Īp and thatMp, M′
p are the left and right orders of Ip, while the reverse

holds for Īp. Moreover, Norm(Ip) = Norm(Īp) = p and

I−1
p =

[
p−1Op p−1Op

Op Op

]
,

so that Īp = pI−1
p .

Each edge in the tree is given length 1. As usual, the distance dist(v,w) between two
vertices v, w is the length of the shortest path between them.

4.4. The Clifford-cyclotomic group in Γn ⊆ PH×. Let the vertex v ∈ ∆ be such that
Mv =M. In what follows we assume that the ideal (2) in Fn is the square of a principal
ideal: (2) = (α := αn)2. Let [h], [tn] be as in (19). For v1,v2 ∈ Ver(∆), let P (v1,v2) be the
path in ∆ between v1 and v2 of length dist(v1,v2).
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Proposition 36. Put [t] := [tn] and let w be the midpoint of the path P (v, [t]v). If dist(v, [t]v)
is even, then w ∈ Ver(∆). If dist(v, [t]v) is odd, then w is a vertex in the barycentric
subdivision of ∆. Then [t] fixes w.

Proof. If v = [t]v, then the statement holds trivially. If not, let w′ be a vertex fixed by [t].
Then dist(w′, v) = dist(w′, [t]v). Let Pv and P[t]v be the shortest paths from w′ to v, [t]v
respectively, and let x be the last vertex that is in both. Then the paths from x to v, [t]v
obtained from Pv, P[t]v by deleting the path from w′ to x are the shortest paths from x to
v, [t]v, and the reverse of the path from x to v followed by the path from x to [t]v is the
shortest path from v to [t]v. Since dist(x, v) = dist(x, v′), the claim follows. �

Proposition 37. Assume that n is not a power of 2. Let w′′ ∈ Ver(∆) be such that
Mw′′ = Tn as in Theorem 31 and let w be as in Proposition 36. Then w′′ = w.

Proof. By Proposition 36, [t] ∈ Γn fixes w. But NormHn/Fn(tn) is a unit by [IJK+19b, Lemma

3.9], so tn ∈M×
w. Hence e2πk/n = tn − 1 ∈Mw. We also know j is in both maximal orders

Mw′′ = Tn andMv =M. Therefore j is in each maximal order corresponding to vertices in
the path P (w′′,v). In particular, applying the same argument as in the proof of Proposition
36 with w′′ replacing w′, we get that w is on P (w′′,v). Therefore both j and e2πk/n are in
Mw and hence Mw =Mw′′ . �

Proposition 38. We have

(a) (tn/2h)2 = u · j for u ∈ O×n . Hence

Γn,w ∼= Dn ⊆ 〈[h], [t]〉 ∼= PGn.

(b) Conjugation by (1 + k)/
√

2 ∈ PM× ∼= S4 is a 4-cycle and conjugation by (−i− k)/
√

2 is
a transposition such that the product has order 3, and

Γn,v ∼= S4 ⊆ 〈[h], [t]〉 ∼= PGn.

Proof. Statement (a) is already contained in the proof of Theorem 31.
As for (b), the identification with S4 is a standard fact for the Hamilton quaternions over

Q. In particular, the conjugations by (±r ± s), where r 6= s and {r, s} ⊂ {i, j, k}, are of
order 2, since (±r ± s)2 = −2 is central. There are 6 of them, so these form a conjugacy
class, which must be that of the transpositions. On the other hand, the conjugations by
1± q, for q ∈ {i, j, k}, are of order 4, since (1± q)4 is a scalar but (1± q)2 is not. It is easily
checked that the product of one of each type is of order 2 if and only if {r, s, t} = {i, j, k}.
Since one element of order 4 and one of order 2 generate S4 if and only if their product
has order 3, it follows that conjugation by (1 + k)/

√
2 and (−i− k)/

√
2 generate S4. Since

tn/4 = (1 +k)/
√

2 up to scalars, conjugation by tn/4 is the same as conjugation by (1 +k)/
√

2,
while conjugation by h = −i− k is the same as conjugation by (−i− k)/

√
2, so the claim

that Γn,v ∼= S4 ⊆ 〈[h], [t]〉 follows as well. �

5. Introduction to the examples

Using Theorem 7 and the description of the Bruhat-Tits tree ∆ = ∆n in terms of maximal
orders in Hn in [Kur79, Section 4], we compute PSU2(Rn),PUζ

2(Rn), and PU2(Rn) as the
fundamental group of explicit graphs of groups for n = 8, 12, 16, 20, 24, 28, 32, 36, 40, 48 arising
from the actions of Γ1,Γ+, and Γ0 (respectively) on ∆. Our computations, which are done
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using Magma [BCP97], do not give enough information to present PSU2(R60) or PUζ
2(R60)

in this manner, although they do for PU2(R60). Our attempted computations for n = 52, 56
did not finish in the small amount of time we allotted and we deemed all n > 60 too costly
to try. These computations give a presentation of these groups as amalgamated products.

All computations are done using Magma’s quaternion algebra machinery in Hn by exploring
the neighborhood around the standard maximal order Mn (Section 4.1). This order has
M∗

n/ (O+
n )
∗ ' S4, thus rooting our graphs at a vertex common (in all the computed examples)

to PGn. This is important for n = 28 and 60. These are the two cases where there exist
some types of maximal orders that are not connected to Mn. In our graphs, the vertex
corresponding to Mn is outlined in black. It has stabilizer subgroup S4.

In all our examples Tn (see statement of Theorem 31) represents a vertex in the h-graph
of groups for PU2(Rn) with stabilizer subgroup isomorphic to Dn. There is also a path
(without backtracking) from the node represented by Mn to that represented by Tn whose
fundamental group G telescopes to G ' S4 ∗D4 Dn.

Let h be as in (30) and tn be as in the statement of Theorem 31. These generate PGn.
Since h ∈Mn and tn ∈ Tn, PGn embeds into G. This latter group is isomorphic to PGn(Rn)
by Theorem 2. Theorem [IJK+19a, Theorem 1.2(1)] tells us that these two groups must
be equal for n = 8, 12, 16, 24. We do not know if this holds for the remaining examples
n = 20, 28, 32, 36, 40, 48, 60. In any, case, using Proposition 11 we have the new result
PGn < G� [PUζ

2(Rn)]f for n = 20, 28, 32.
We can also compute the Euler-Poincaré characteristics from the associated graph of

groups.

Definition 39. Let Gr = (Γ, gr) be an h-graph of groups with finite vertex and edge isotropy
groups. Define the mass of a vertex v ∈ gr to be m(v) = 1/#Γv. The mass of an edge
e ∈ Ed(gr) is m(e) = 1/(2#Γe). The vertex mass of Gr is

VM(Gr) := VM(Γ, gr) :=
∑

v∈Ver(gr)

m(v) .

Its edge mass is

EM(Gr) := EM(Γ, gr) :=
∑

e∈Ed(gr)

m(e) .

Remark 40. Recall that, in our graphs, edges e have opposite edges e so the mass attached
to the geometric edge {e, e} with e 6= e is 1/#Γe = 1/#Γe. Our h-graphs of groups are
actually graphs of groups (being a quotient of the tree after subdividing inverted edges). In
the pictures we draw we elide the inserted vertices to make clear the associated h-graph.
These elided vertices still contribute to the vertex mass of the graph in the usual way.

By [IJK+19b, Theorem 2.20], the Euler-Poincaré characteristic of the fundamental group
Gr of a graph of groups is given by

χ(π1(Gr)) = VM(Gr)− EM(Gr). (22)

On the other hand, if we have a group presented as an amalgamated product, it is easy to
compute its Euler-Poincaré characteristic: If A, B are finite groups with C ≤ A and C ≤ B,
then

χ(A ∗C B) =
1

#A
+

1

#B
− 1

#C
(23)
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by [Ser71, Corollaire 1, p. 104].

5.1. Tables. Before treating examples in detail, we arrange in tabular form the results of
some Magma computations. We first summarize the notation used in the tables, using the
notation of Section 3. All of our examples will satisfy the equivalent conditions of Proposition
19 with one prime p of F = Fn lying above 2. In addition, all but n = 28, 60 satisfy the
equivalent conditions Proposition 20 having a unique prime above 2 in K = Kn. Let qn = 2f(p)

be the order of the residue field of p and let ∆n be the Bruhat-Tits tree associated to SL2(Fp).
It is a regular tree of degree qn + 1. We compute with ∆n using the maximal orders in Hn as
described in §4.3.

The table below gives the results on Fn we will need in analyzing our examples.

Table 1. Data on the fields Fn = Q(ζn)+

n ϕ(n) qn + 1 h̃(On) h̃(Op
n) # C̃l(Op

n)[2]

Prin(Op
n)

[p] ∈ C̃l(On)2?

8 4 3 1 1 1 yes
12 4 3 2 1 1 no
16 8 3 1 1 1 yes
20 8 5 2 1 1 no
24 8 3 2 1 1 no
28 12 9 2 2 1 yes
32 16 3 1 1 1 yes
36 12 9 2 1 1 no
40 16 5 2 1 1 no
48 16 3 2 1 1 no
60 16 17 2 2 1 yes

The table below gives the information about Hn we will need in analyzing our examples.

Table 2. Data on the quaternion algebras Hn = H⊗Q Fn

t(Hn) = h[p]-rel(Hn)

n = hrel(Hn) = h(Hn) #Γ+(Mn)
Γ1(Mn)

# Γ0(Mn)
Γ+(Mn)

8 1 1 2
12 2 2 1
16 2 1 2
20 3 2 1
24 3 2 1
28 5 2 2
32 58 1 2
36 6 2 1
40 25 2 1
48 39 2 1
60 9 2 2
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We now explain the equalities in the column headings of the table.

Proposition 41. For all n in the range of the table we have t(Hn) = h(Hn) = hrel(Hn) =
h[p]-rel(Hn).

Proof. Within the range of the table, the class group of Rn is always trivial. So hrel(Hn), the
number of orbits of the class group on Cl(Hn), is equal to # Cl(Hn) = h(Hn), and likewise
for h[p]-rel(Hn), the number of orbits of the subgroup generated by p.

By [Voi19, Exercise 17.3, Lemma 17.4.8], the set of right orders of the Ii contains a
representative of every isomorphism class of maximal orders, where I1, . . . , Ih(Hn) is a set of
representatives for the left ideal classes of a fixed maximal order. Thus t(Hn) ≤ h(Hn). In
the range of the table it can be computed that t(Hn) = h(Hn). �

The following table shows the identifications of PSU2(Rn), PUζ
2(Rn), and PU2(Rn) with

Γ1,n,Γ+,n, and Γ0,n.

Table 3. Arithmetic discrete subgroups

n PSU2(Rn) PUζ
2(Rn) PU2(Rn)

8 Γ1 = Γ+ Γ0 Γ0

12 Γ1 Γ+ = Γ0 Γ+ = Γ0

16 Γ1 = Γ+ Γ0 Γ0

20 Γ1 Γ+ = Γ0 Γ+ = Γ0

24 Γ1 Γ+ = Γ0 Γ+ = Γ0

28 Γ1 Γ+ Γ0

32 Γ1 = Γ+ Γ0 Γ0

36 Γ1 Γ+ = Γ0 Γ+ = Γ0

40 Γ1 Γ+ = Γ0 Γ+ = Γ0

48 Γ1 Γ+ = Γ0 Γ+ = Γ0

60 Γ1 Γ+ Γ0

Remark 42. The quotient graph of groups SU2(Rn)\\(SU2(Rn),∆n), and hence its fundamental
group SU2(Rn), can be constructed from

PSU2(Rn)\\(PSU2(Rn),∆n)

by inflating each edge and vertex group by a central ±1. Thus, amalgam presentations of
SU2(Rn) can be constructed from those we give for PSU2(Rn).

5.2. Notation and Basic Results for Groups. For a group Γ acting on a tree ∆ we write
Gr(Γ) := Γ\\(Γ,∆Γ), where, as in Section 2, ∆Γ is the graph obtained from ∆ by subdividing
exactly those edges which are inverted by Γ.

Definition 1. We use the following conventions to label the vertex and edge groups of a
graph of groups. For an integer n, we use Cn, or simply n, to denote the cyclic group and Dn

for the dihedral group of order 2n. For edge groups C1 we elide the label altogether. For an
even integer n, the quaternion group Q2n of order 2n is the subgroup of H(R) generated by
e2πi/n and j. It is easy to show that Q2n is the unique extension of Z/nZ by Z/2Z acting
by x→ x−1 that is not a semidirect product, and that Q2n/{±1} ∼= Dn/2. In addition, we
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denote the binary tetrahedral, octahedral, and icosahedral groups [Vig80, Théorème I.3.7] by
E24, E48, and E120 respectively. Note that |Qn| = n and |En| = n but |Dn| = 2n. Recall that
G or Gn denotes the subgroup of U2 generated by H and T ′n.

Below we give the key to our notation and conventions in the pictures of the quotient
graphs in Sections 6 and 7. For n < 32 we draw the graphs of the quotients of ∆ by PU2(Rn),

PUζ
2(Rn), and PSU2(Rn). For n ≥ 32 we only draw the graph of grn = Γn,0\∆ = PU2(Rn)\∆

due to space constraints.

Example Key 43. Vertices and edges of quotient graphs are labeled by their corresponding
stabilizer groups. A (nonelided) vertex of the quotient graph of PU2(Rn) or PUζ

2(Rn) is
indicated by a square if it is ramified in the cover from PSU2(Rn) and by a circle if it is
unramified there. The graphs Γ+\∆ and Γ1\∆ are bipartite; the bipartition on vertices is
shown using red and blue. The vertex of PU2(Rn)\∆ lying below v ∈ Ver(∆) withMv =M
as in Section 4.4 is marked with an M. Likewise the vertex or elided half-edge vertex of
PU2(Rn)\∆ lying below w ∈ Ver(∆) as in Proposition 36 is marked with a T. The sub
graph-of-groups P n in PU2(Rn)\∆ with π1(P n) ∼= PGn ∼= S4 ∗D4 Dn as in Remark 6 is shown
in the picture of PU2(Rn)\∆ with magenta edges.

6. The n = 8, 12, 16, 24 examples : PGn = PUζ
2(Rn) = PU2(Rn)

For n = 8, 12, 16, 24 it is known that PGn = PU2(Rn) (see [IJK+19a, Theorems 1.1, 1.2]
for references) and that PGn ∼= S4 ∗D4 Dn by [RS99] (see [IJK+19a, Theorem 5.1]). We
establish via quotient graphs in this section that PGn = PU2(Rn) and PGn ∼= S4 ∗D4 Dn

for n = 8, 12, 16, 24. We also compute the Euler-Poincaré characteristics χ(PU2(Rn)),

χ(PSU2(Rn)), and χ(PUζ
2(Rn)) from our Grn and Grn for n = 8, 12, 16, 24. In all cases the

answers agree with [IJK+19a, Theorem 6.6], giving a good check on our quotient graphs.

6.1. n = 8. We have PSU2(R8) = Γ8,1 = Γ8,+ and PUζ
2(R8) = PU2(R8) = Γ8,0. The quotient

graph of groups Gr8 for PSU2(R8) is

S4Gr8:
M

S4
D4

.

From Gr8 we compute the Euler-Poincaré characteristic

χ (PSU2(R8)) = 1/24 + 1/24− 1/8 = −1/24

and the amalgam PSU2(R8) = π1(Gr8) = S4 ∗D4 S4.

The quotient h-graph of groups Gr8 for PUζ
2(R8) = PU2(R8) is

S4Gr8:
M
D4 D8

T

.

From Gr8 we compute using (22)

χ(PUζ
2(R8)) = χ(PU2(R8)) = 1/24 + 1/16− 1/8 = −1/48

as well as the amalgam PU2(R8) = π1(Gr8) = S4 ∗D4 D8. We see that PG8 = PU2(R8) and
we hence recover PG8

∼= S4 ∗D4 D8.
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6.2. n = 12. We have PSU2(R12) = Γ12,1 and PUζ
2(R12) = PU2(R12) = Γ12,+ = Γ12,0. In

this case the double cover

Γ12,1\∆ −→ Γ12,+\∆ = Γ12,0\∆

is not étale. The quotient graph of groups Gr 12 for PSU2(R12) is

Gr 12: A4

M

D6
D2 ,

giving PSU2(R12) ∼= π1(Gr 12) ∼= A4 ∗D2 D6 and χ(PSU2(R12)) = −1/12.

The quotient h-graph of groups for PUζ
2(R12) = PU2(R12) is

Gr 12: S4 D12

M T
D4 ,

from which we derive PUζ
2(R12) = PU2(R12) ∼= π1(Gr 12) ∼= S4 ∗D4 D12,

χ(PUζ
2(R12)) = χ(PU2(R12)) = −1/24,

and PGn = PU2(R12) ∼= S4 ∗D4 D12.

6.3. n = 16. Here PSU2(R16) = Γ16,1 = Γ16,+ and PUζ
2(R16) = PU2(R16) = Γ16,0.

The graph of groups Gr 16 and the corresponding amalgam for PSU2(R16) ∼= π1(Gr 16) are

Gr 16: S4

M

D8 D8 S4
D4 D8 D4

PSU2(R16) ∼= S4 ∗D4 D8 ∗D4 S4.

We compute χ (PSU2(R16)) = −5/48 using (22).

The quotient h-graph of groups Gr 16 for PUζ
2(R16) = PU2(R16) is

Gr 16: S4

M

D8
D4 D8 D16

T

,

giving PUζ
2(R16) = PU2(R16) ∼= π1(Gr 16) ∼= S4 ∗D4 D16 and

χ(PUζ
2(R16)) = χ(PU2(R16)) = −5/96.

As before we have PU2(R16) = PG16 from Proposition 38.

6.4. n = 24. In this case PSU2(R24) = Γ24,1 while PUζ
2(R24) = PU2(R24) = Γ24,+ = Γ24,0.

Again the double cover PSU2(Rn)\∆ −→ PU2(Rn)\∆ is not étale.
The quotient graph of groups Gr 24 for PSU2(R24) is

S4

S4

M

Gr 24: D4 D12

D4

D4

D4
.
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From this we compute χ (PSU2(R24)) = −1/8 and PSU2(R24) is the amalgam

PSU2(R24) ∼= π1(Gr 24) ∼= ∗D4{S4, S4, D12}

of D12 and the two copies of S4 over their common subgroup D4.
Since Γ24,0 acts without inversions we get the following quotient graph of groups for

PUζ
2(R24) = PU2(R24) = Γ24,+ = Γ24,0 :

Gr 24: S4

M

D8 D24

T
D4 D8

.

Hence PUζ
2(R24) = PU2(R24) ∼= π1(Gr 24) ∼= S4 ∗D4 D24

∼= PG24 and

χ(PUζ
2(R24)) = χ(PU2(R24)) = −1/16.

7. The n = 20, 28, 32, 36, 40, 48, 60 examples: PGn 6= PUζ
2(Rn)

Now Gn 6= Uζ
2(Rn), PGn 6= PUζ

2(Rn), SU2(Rn) 6= SGn, and PSGn 6= PSU2(Rn) when
n /∈ {8, 12, 16, 24} (see [IJK+19a, Theorems 1.1, 1.2] for references). In fact, in our examples

PGn can be seen as a proper subtree of the quotient h-graph of groups for PUζ
2(Rn). Theorem 11

shows that PGn � [PUζ
2(Rn)]f for these n.

7.1. n = 20. We have the identifications PSU2(R20) = Γ20,1 and PUζ
2(R20) = PU2(R20) =

Γ20,+ = Γ20,0. The double cover grn = Γ20,1\∆ −→ grn = Γ20,0\∆ is not étale. The quotient
graph of groups Gr 20 for PSU2(R20) is

A5

A5

Gr 20: A4

M

D10

A4

A4

D2
.

So we obtain PSU2(R20) ∼= π1(Gr 20) ∼= A5 ∗A4 A5 ∗D2 D10 and χ (PSU2(R20)) = −1/4.

Since Γ20,0 acts without inversions we get the quotient graph of groups Gr 20 for PUζ
2(R20) =

PU2(R20) = Γ20,+ = Γ20,0 below:

Gr 20: A5 S4 D20

M T
A4 D4

.

Thus PUζ
2(R20) = PU2(R20) ∼= π1(Gr 20) ∼= A5 ∗A4 S4 ∗D4 D20 and

χ(PUζ
2(R20)) = χ(PU2(R20)) = −1/8.

Proposition 11 shows that PG20 � [PU2(R20)]f , so Corollary 17 applies. On the other hand,
it is clear that [PU2(R20)]f = PU2(R20).

7.2. n = 28. This is one of the two examples (the other is n = 60) for which the unique prime

above 2 in Fn splits in Kn. Hence PSU2(R28) = Γ28,1, PUζ
2(R28) = Γ28,+, and PU2(R28) = Γ28,0

are all distinct with PU2(R28)/PUζ
2(R28) ∼= Z/2Z and PUζ

2(R28)/PSU2(R28) = Z/2Z.
The class number of H28 is 5, but only three types of orders are connected to M. The

quotient h-graph of groups Gr 28 for PU2(R28) = Γ28,0 is given below:
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D₄28 D₂

2

2

D₂₈ D₂S₄

M

D₂₈

T

Thus
PU2(R28) ∼= Γ28,0

∼= π1(Gr 28) = D28 ∗C28 D28 ∗D4 S4 ∗ C∗22

and χ(PU2(R28)) = −13/12.

The quotient graph of groups for PUζ
2(R28) = Γ28,+, which is the bipartite double cover of

Gr 28, is:

D₂

D₄

28

D₄

D₂D₂₈ S₄ D₂

D₂S₄

M

D₂₈

Notice that, unlike all the graphs we have dealt with above, this graph is not a tree; in fact it
has genus 2.

By Theorem 9,

PUζ
2(R28) ∼= Γ28,+ = S4 ∗D4 D28 ∗C28 D28 ∗D4 S4 ∗ Z∗2

and χ(PUζ
2(R28)) = −13/6.

The quotient graph of groups Gr 28 for Γ28,1 is the double cover of the quotient graph of
groups for Γ28,+ ramified at the vertices of that graph marked with a square:
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D₂

D₂

D₂

14

D₂

D₂
D₂

D₂

D₂

D₁₄

A₄

D₂

D₂

A₄

M

D₁₄

This graph has genus 4. By Theorem 9

PSU2(R28) ∼= Γ28,0
∼= π1(Gr 28) = A4 ∗D2 D14 ∗C14 D14 ∗D2 A4 ∗ Z∗4 (24)

and χ(PSU2(R28)) = −13/3. We can summarize the n = 28 example with:

G28 � U2(R28)f � Uζ
2(R28)� U2(R28) (25)

PG28 � [PU2(R28)]f � PU2(R28) (26)

For any n we have PUζ
2(Rn) . PU2(Rn), so in particular this is true for n = 28. Note that

here [PU2(Rn)]f is not a subgroup of PUζ
2(Rn): the cyclic group of order 28 is contained in

[PU2(Rn)]f but not in PUζ
2(Rn).

7.3. n = 32. We have PSU2(R32) = Γ32,1 = Γ32,+ and PUζ
2(R32) = PU2(R32) = Γ32,0. The

quotient graph of groups Gr 32 for PUζ
2(R32) = PU2(R32) = Γ32,0 is shown below broken into

two subgraphs. These subgraphs are to be glued together by identifying vertices with a label
such as A or γ in Subgraph 1 with those with the same label in Subgraph 2. The vertices
are also marked (in the interior of the circle representing the vertex) with their stabilizers in

PUζ
2(R32) = PU2(R32). Recall that an integer n should be read as the cyclic group of order n.

27



2

2

2

2

2

2

2

2

1

1

1

β

1

1

B

1

C

1

1

1

1

1

1

1

1

1

1

γ

1 1

1

D

1

δ

1

1

1

1

1

1

1

α

1

1

A

1

1

1

Figure 1. Subgraph 1 for PUζ
2(R32) = PU2(R32) = Γ32,0.
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Figure 2. Subgraph 2 for PUζ
2(R32) = PU2(R32) = Γ32,0.

This case has the largest graph, since there are 58 maximal orders. On the other hand, 40
of the maximal orders have only ±1 as units. It also has some edges that join a maximal
order to an isomorphic one, which does not occur for n = 40, 48. The graph has genus 16.
By Theorem 9 we have.

PU2(R32) = PUζ
2(R32) ∼= π1(Gr 32) ∼= D32 ∗D4 S4 ∗ C∗43 ∗ C∗82 ∗ Z∗16
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and χ(PU2(R32)) = −1455/64. Again we see that PG32 � PU2(R32)f , but this time
PU2(R32)f � PU2(R32).

The quotient graph of groups Gr 32 for PSU2(R32) = Γ32,1 = Γ32,+ is the bipartite double
cover of this graph, the vertex labels being the same. The maximal orders with nontrivial
unit group again form a forest, and counting vertices and edges we see that the graph has
genus 40. Thus, by Theorem 9, the group is

PSU2(R32) = Γ32,1 = Γ32,+
∼= π1(Gr 32) ∼= S4 ∗D4 D16 ∗D4 S4 ∗ C∗83 ∗ Z∗40.

7.4. n = 36. In this case, PSU2(R36) = Γ36,1 while PUζ
2(R36) = PU2(R36) = Γ36,+ = Γ36,0.

The quotient graph of groups Gr 36 for PUζ
2(R36) = PU2(R36) = Γ36,+ = Γ36,0 is shown below.

Notice the doubled edge.

D₄2 D₂ D₃₆

T

S₄

M

D₂3D₃D₉

Figure 3. Graph of groups for PUζ
2(R36) = PU2(R36) = Γ36,+ = Γ36,0.

In this case the residue field of the prime p above 2 has order 8, so each maximal order
contains 9 Eichler orders of level p, rather than 3 or 5 as in the other examples. The graph
has genus 1. By Theorem 9 we have

PUζ
2(R36) = PU2(R36) = Γ36,0 = Γ36,+

∼=
π1(Gr 36) ∼= D9 ∗C2 D3 ∗ C3 ∗ S4 ∗D4 D36 ∗ Z

and χ(PU2(R36)) = −217/72.
As before, the presence of additional factors of finite order implies that PG36 � [PU2(R36)]f ,

while [PU2(R36)]f � PU2(R36) because of the Z in the list of factors .
The quotient graph of groups Gr 36 for PSU2(R36) = Γ36,1 is a double cover of Gr 36 ramified

at the four vertices indicated by squares in Figure 3. The vertex labels for the unramified
nodes are the same, and the ramified nodes have vertices labeled with subgroups of index 2.
The graph has genus 3. By Theorem 9 we see that

PSU2(R36) = Γ36,1
∼= π1(Gr 36) ∼= C9 ∗ C∗33 ∗ A4 ∗D2 D18 ∗ Z∗3.

7.5. n = 40. Here PSU2(R40) = Γ40,1, while PUζ
2(R40) = PU2(R40) = Γ40,+ = Γ40,0. The

quotient graph of groups Gr 40 for PUζ
2(R40) = PU2(R40) = Γ40,+ = Γ40,0 is shown below

broken into two subgraphs. The two subgraphs are to be glued by identifying vertices with
the same label, e.g., Vertex A in Subgraph 1 is identified with Vertex A in Subgraph 2.
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Figure 4. Subgraph 1 for PUζ
2(R40) = PU2(R40) = Γ40,+ = Γ40,0.
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1
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3
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1
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D₈

2

A

1

A₄

D₃

ED₃

D

Figure 5. Subgraph 2 for PUζ
2(R40) = PU2(R40) = Γ40,+ = Γ40,0.

In this case the residue field has order 4, so each maximal order contains five Eichler orders
rather than three. This means that the graph is more highly connected than in the other
cases with φ(n) = 16.
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The automorphism group of each edge is the same as the smaller automorphism group of
its nodes except for the edge between the nodes with automorphism groups D8 and S4 which
has automorphism group D4.

The graph again has genus 16. Theorem 9 gives

PU2(R40) = PUζ
2(R40) ∼= π1(Gr 40) ∼=

D40 ∗D4 S4 ∗A4 A5 ∗D3 ∗C3 D3 ∗ C5 ∗ Z∗16

and χ(PU2(R40)) = −287/16. Once again we have

PG40 � [PU2(R40)]f � PU2(R40).

The graph Gr 40 for PSU2(R40) = Γ40,1 is a double cover of Gr 40 ramified at the six vertices
in Figures 4, 5 indicated by squares. The vertex labels for the unramified nodes are the same,
and the ramified nodes have vertices labeled with subgroups of index 2. This case is different
in that the subgraph of nontrivial unit groups has a loop, specifically a square all whose
vertices have group C3 (the remaining components are all trees). Since PU2(R40)/PSU2(R40)
acts by reflection on this square, the monodromy is trivial.

The whole graph has genus 34. Theorems 10 and 9 show

PSU2(R40) ∼= Γ1
∼= π1(Gr 40)

∼= A5 ∗A4 S4 ∗D4 D20 ∗D4 S4 ∗A4 A5 ∗ C∗25 ∗ (C3 ⊕ Z) ∗ Z∗33.

7.6. n = 48. Again PSU2(R48) = Γ48,1 while PUζ
2(R48) = PU2(R48) = Γ48,+ = Γ48,0. The

quotient graph of groups Gr 48 for PUζ
2(R48) = PU2(R48) = Γ48,+ = Γ48,0 is shown in the

same format as for n = 40.
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Figure 6. Subgraph 1 for PUζ
2(R48) = PU2(R48) = Γ48,+ = Γ48,0.
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2(R48) = PU2(R48) = Γ48,+ = Γ48,0.
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There are 39 classes of maximal orders, but of these 14 have only ±1 as units. Modulo ±1,
there are also 14 orders with 2 units, three with 4, two each with 3 and 8, and one each with
16, 24, 32, 96. The automorphism group of each edge is the same as the smaller of the two
automorphism groups of its incident nodes.

The graph has genus 8, and Theorem 9 and the diagram indicate that

PUζ
2(R48) = PU2(R48) ∼= π1(Gr 48) ∼= D48 ∗D4 S4 ∗ C∗23 ∗ C∗42 ∗ Z∗8

and χ(PU2(R48)) = −365/32. For the same reason as in the cases n = 32, 36, 40, this
presentation shows that

PG48 � [PU2(R48)]f � PU2(R48). (27)

The graph of groups Gr 48 for PSU2(R48) = Γ48,1 is a double cover of Gr 48 ramified at the
ten vertices indicated by squares in Figures 6, 7. As before the vertex labels for the unramified
nodes are the same, and the ramified nodes have vertices labeled with subgroups of index 2.
Counting vertices and edges we see that the graph has genus 20. Thus by Theorem 9 the
group is

PSU2(R48) ∼= π1(Gr 48) ∼= S4 ∗D4 D48 ∗D4 S4 ∗ C∗43 ∗ Z∗20.

7.7. n = 60. As with n = 28, the unique prime above 2 in Fn splits in Kn. Hence
PSU2(R60) = Γ60,1, PUζ

2(R60) = Γ60,+, and PU2(R60) = Γ60,0 are all distinct with

PU2(R60)

PUζ
2(R60)

∼= Z/2Z and
PUζ

2(R60)

PSU2(R60)
∼= Z/2Z.

The class number of H60 is 9, but as in the n = 28 case not all types are connected to
M. In this case, 7 of the 9 types occur in this (genus 5) quotient h-graph of groups Gr 60 for
PU2(R60) = Γ60,0.
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Figure 8. Graph of groups Gr 60 for PU2(R60) = Γ60,0.
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Let Gru be the graph of groups that is a single loop in the upper right whose vertex and
edge groups are both D60. As it turns out the induced automorphism on D60 is inner, so
by Theorem 10, π1(Gru) = D60 ⊕ Z. Let Gr l be the graph of groups which remains after
deleting Gru and the D4 edge incident upon it. Clearly,

PU2(R60) = π1(Gru) ∗D4 π1(Gr l) .

Now, let T be the spanning tree for Gr l obtained by eliminating the four edges with trivial
stabilizer groups incident upon the vertex with vertex group C3. Two each of these edges are
incident upon each of the two vertices with vertex groups D2. Theorem 9 then tells us that

π1(Gr l) ∼= S4 ∗A4 A5 ∗C5 D5 ∗C2 D2 ∗D3 ∗C3 ∗D3 ∗ C∗42 ∗ Z∗4 ,

so that

PU2(R60) ∼= (D60 ⊕ Z) ∗D4 S4 ∗A4 A5 ∗C5 D5 ∗C2 D2 ∗D3 ∗C3 ∗D3 ∗ C∗42 ∗ Z∗4

and χ(PU2(R60)) = −15/2.

The graph for PUζ
2(R60) = Γ60,+ is the bipartite double cover of the graph Gr 60 for

PU2(R60) = Γ60,0. The graph Gr 60 for PSU2(R60) = Γ60,1 is the double cover of the graph for

PUζ
2(R60) = Γ60,+ ramified at the vertices lying above those in Gr 60 marked with a square in

Figure 8.

8. Summary

We summarize our results in the following table, which shows, for each group at each level,
whether it is generated by torsion.

n PSU2 PUζ
2 PU2 Γ1 Γ+ Γ0

8 yes yes yes yes yes yes
12 yes yes yes yes yes yes
16 yes yes yes yes yes yes
20 yes yes yes yes yes yes
24 yes yes yes yes yes yes
28 no no yes no no yes
32 no no no no no no
36 no no no no no no
40 no no no no no no
48 no no no no no no
60 no no no no no no
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