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HYPERBOLIC 24-CELL 4-MANIFOLDS WITH ONE CUSP

JOHN G. RATCLIFFE AND STEVEN T. TSCHANTZ

Abstract. In this paper, we describe all the hyperbolic 24-cell 4-manifolds
with exactly one cusp. There are four of these manifolds up to isometry.
These manifolds are the first examples of one-cusped hyperbolic 4-manifolds
of minimum volume.

1. Introduction

The 24-cell is a regular 4-dimensional polytope in either Euclidean, Spherical
or hyperbolic 4-space with exactly 24 sides each of which is a regular octahedron.
A hyperbolic 24-cell manifold is a hyperbolic 4-manifold that is obtained from an
ideal, regular, hyperbolic 24-cell by gluing each side to another side by an isometry.
Examples of hyperbolic 24-cell manifolds are given in our paper [8]. Hyperbolic 24-
cell manifolds have minimum volume among hyperbolic 4-manifolds. In this paper,
all hyperbolic manifolds are assumed to be complete. As a reference for hyperbolic
manifolds, see [7].

The main result of this paper is the following classification of all one-cusped
hyperbolic 24-cell manifolds:

Theorem 1. There are exactly four hyperbolic 24-cell manifolds, with a single cusp,

up to isometry. Each of these manifolds is non-orientable. The link of each cusp

is affinely equivalent to the second non-orientable closed flat 3-manifold N3
2 in the

Hantzsche-Wendt [3] classification of closed flat 3-manifolds.

The volume of a hyperbolic 4-manifoldM of finite volume is given by the formula

Vol(M) = 4

3
π2χ(M).

Our examples are the first known examples of one-cusped hyperbolic 4-manifolds
of Euler characteristic 1, and therefore of minimum volume.

The first examples of one-cusped hyperbolic 4-manifold were constructed by
Kolpakov and Martelli [4], and in particular, they found an example with χ = 4.
Examples of one-cusped hyperbolic 4-manifolds with χ = 2 were constructed by
Slavich and Kolpakov [10, 5, 6]. The existence of our examples answers Question
4.17 of [5] in the affirmative.

Our paper is organized as follows: In §2, the flat manifold N3
2 is described. In §3,

the classification of the one-cusped hyperbolic 24-cell manifolds is described. In §4,
we discuss how to obtain a presentation for the fundamental group of a hyperbolic
24-cell manifold. In §5, . . . , §8, we give a presentation for the fundamental group of
each of the one-cusped hyperbolic 24-cell manifolds. In §9, we determine the volume
of the maximum cusp of each of the one-cusped hyperbolic 24-cell manifolds. In
§10, we determine the order of the group of isometries of each of the one-cusped
hyperbolic 24-cell manifolds. In §11, we describe the orientable double covers of
each of the one-cusped hyperbolic 24-cell manifolds.
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Name H0 H1 H2 H3 H4

24c1.1 Z Z⊕ Z3 ⊕ Z13 Z 0 0
24c1.2 Z Z⊕ Z3 Z⊕ Z13 0 0
24c1.3 Z Z

3
2 ⊕ Z5 Z2 0 0

24c1.4 Z Z
2
2 ⊕ Z

3
3 Z3 0 0

Table 1. Homology groups of the one-cusped hyperbolic 24-cell manifolds

2. The Closed Flat 3-Manifold N3
2

The non-orientable closed flat 3-manifolds are classified up to affine equivalence
by their first homology group, with H1(N

3
2 ) = Z⊕Z. The flat 3-manifold N3

2 is the
Euclidean space-formE3/Γ where Γ is the crystallographic group with International
Tables Number 9. For the standard affine representation of Γ, see Table 1B of [1].
The flat 3-manifold N3

2 fibers in various ways (see Table 1 of [9]). In particular N3
2

is a torus bundle over the circle with monodromy the orientation-reversing isometry
of the flat torus E2/Z2 induced by the reflection of E2 defined by the matrix

(

0 1
1 0

)

.

3. Classification of the One-Cusped Hyperbolic 24-Cell Manifolds

To prove Theorem 1, we first found all the possible side-pairings of an ideal,
regular, hyperbolic 24-cell that yield a hyperbolic 4-manifold by an exhaustive
computer search over a search space of order (23!!)4812. Our search was successful
because the ridge and edge cycle conditions, defining when a side-pairing gives a
manifold, each depend on only a few of the side-pairing maps. A backtracking search
in the space of partial side-pairings that incrementally checks these conditions can
eliminate potential side-pairings early on. The next side to extend a partial side-
pairing is chosen strategically to maximize the conditions that can be checked thus
limiting the number of search tree branches that need to be examined. We further
took advantage of the symmetry of the regular 24-cell.

Up to symmetry of the regular 24-cell, we found 13,108 side-pairings that yield
a hyperbolic 4-manifold. Only four of these side-pairings yield a manifold with a
single cusp. We classified these one-cusped manifolds up to isometry by computing
their homology groups using a cellular homology chain complex. The one-cusped
hyperbolic 24-cell manifolds are classified by their first homology groups (see Table
1).

We now set up notation to describe the side-pairings for the four one-cusped
hyperbolic 24-cell manifolds. The hyperboloid model of hyperbolic 4-space is

H4 = {x ∈ R
5 : x2

1 + · · ·+ x2
4 − x2

5 = −1 and x5 > 0}.

We identify the group of isometries of H4 with the positive Lorentz group O+(4, 1).
We will work with a standard 24-cell Q in H4 that is centered at the central point

(0, 0, 0, 0, 1) of H4. The outward normal vectors to the sides of Q, with respect to
the Lorentzian inner product

x ◦ y = x1y1 + · · ·+ x4y4 − x5y5,

are taken in the following fixed order:



HYPERBOLIC 24-CELL 4-MANIFOLDS WITH ONE CUSP 3

s1 = (1, 1, 0, 0, 1) s13 = (1, 0, 0, 1, 1)
s2 = (−1, 1, 0, 0, 1) s14 = (−1, 0, 0, 1, 1)
s3 = (1,−1, 0, 0, 1) s15 = (1, 0, 0,−1, 1)
s4 = (−1,−1, 0, 0, 1) s16 = (−1, 0, 0,−1, 1)
s5 = (1, 0, 1, 0, 1) s17 = (0, 1, 0, 1, 1)
s6 = (−1, 0, 1, 0, 1) s18 = (0,−1, 0, 1, 1)
s7 = (1, 0,−1, 0, 1) s19 = (0, 1, 0,−1, 1)
s8 = (−1, 0,−1, 0, 1) s20 = (0,−1, 0,−1, 1)
s9 = (0, 1, 1, 0, 1) s21 = (0, 0, 1, 1, 1)
s10 = (0,−1, 1, 0, 1) s22 = (0, 0,−1, 1, 1)
s11 = (0, 1,−1, 0, 1) s23 = (0, 0, 1,−1, 1)
s12 = (0,−1,−1, 0, 1) s24 = (0, 0,−1,−1, 1)

The 24-cell is self-dual, and so Q has 24 ideal vertices, which are taken in the
following fixed order:

v1 = (− 1

2
,− 1

2
,− 1

2
,− 1

2
, 1) v13 = (1

2
, 1

2
,− 1

2
,− 1

2
, 1)

v2 = (− 1

2
,− 1

2
,− 1

2
, 1

2
, 1) v14 = (1

2
, 1

2
,− 1

2
, 1

2
, 1)

v3 = (− 1

2
,− 1

2
, 1

2
,− 1

2
, 1) v15 = (1

2
, 1

2
, 1

2
,− 1

2
, 1)

v4 = (− 1

2
,− 1

2
, 1

2
, 1

2
, 1) v16 = (1

2
, 1

2
, 1

2
, 1

2
, 1)

v5 = (− 1

2
, 1

2
,− 1

2
,− 1

2
, 1) v17 = (1, 0, 0, 0, 1)

v6 = (− 1

2
, 1

2
,− 1

2
, 1

2
, 1) v18 = (−1, 0, 0, 0, 1)

v7 = (− 1

2
, 1

2
, 1

2
,− 1

2
, 1) v19 = (0, 1, 0, 0, 1)

v8 = (− 1

2
, 1

2
, 1

2
, 1
2
, 1) v20 = (0,−1, 0, 0, 1)

v9 = (1
2
,− 1

2
,− 1

2
,− 1

2
, 1) v21 = (0, 0, 1, 0, 1)

v10 = (1
2
,− 1

2
,− 1

2
, 1

2
, 1) v22 = (0, 0,−1, 0, 1)

v11 = (1
2
,− 1

2
, 1

2
,− 1

2
, 1) v23 = (0, 0, 0, 1, 1)

v12 = (1
2
,− 1

2
, 1

2
, 1
2
, 1) v24 = (0, 0, 0,−1, 1)

We next list the sets of indices of the vertices of each of the 24 sides of Q.

S1 = {13, 14, 15, 16, 19} S13 = {10, 12, 14, 16, 17, 23}
S2 = {5, 6, 7, 8, 18, 19} S14 = {2, 4, 6, 8, 18, 23}
S3 = {9, 10, 11, 12, 17, 20} S15 = {9, 11, 13, 15, 17, 24}
S4 = {1, 2, 3, 4, 18, 20} S16 = {1, 3, 5, 7, 18, 24}
S5 = {11, 12, 15, 16, 17, 21} S17 = {6, 8, 14, 16, 19, 23}
S6 = {3, 4, 7, 8, 18, 21} S18 = {2, 4, 10, 12, 20, 23}
S7 = {9, 10, 13, 14, 17, 22} S19 = {5, 7, 13, 15, 19, 24}
S8 = {1, 2, 5, 6, 18, 22} S20 = {1, 3, 9, 11, 20, 24}
S9 = {7, 8, 15, 16, 19, 21} S21 = {4, 8, 12, 16, 21, 23}
S10 = {3, 4, 11, 12, 20, 21} S22 = {2, 6, 10, 14, 22, 23}
S11 = {5, 6, 13, 14, 19, 22} S23 = {3, 7, 11, 15, 21, 24}
S12 = {1, 2, 9, 10, 20, 22} S24 = {1, 5, 9, 13, 22, 24}



4 JOHN G. RATCLIFFE AND STEVEN T. TSCHANTZ

The side-pairing for 24c1.1 is given in terms of indices of vertices as follows:

S1 → S5 : 13 → 21, 14 → 11, 15 → 16, 16 → 17, 17 → 12, 19 → 15
S2 → S9 : 5 → 21, 6 → 15, 7 → 8, 8 → 19, 18 → 7, 19 → 16
S3 → S12 : 9 → 20, 10 → 9, 11 → 2, 12 → 22, 17 → 10, 20 → 1
S4 → S8 : 1 → 18, 2 → 1, 3 → 6, 4 → 22, 18 → 5, 20 → 2
S6 → S21 : 3 → 21, 4 → 8, 7 → 12, 8 → 23, 18 → 16, 21 → 4
S7 → S24 : 9 → 24, 10 → 5, 13 → 9, 14 → 22, 17 → 1, 22 → 13
S10 → S18 : 3 → 23, 4 → 2, 11 → 12, 12 → 20, 20 → 4, 21 → 10
S11 → S19 : 5 → 19, 6 → 5, 13 → 15, 14 → 24, 19 → 13, 22 → 7
S13 → S17 : 10 → 14, 12 → 19, 14 → 23, 16 → 8, 17 → 6, 23 → 16
S14 → S22 : 2 → 6, 4 → 23, 6 → 22, 8 → 10, 18 → 14, 23 → 2
S15 → S23 : 9 → 7, 11 → 21, 13 → 24, 15 → 11, 17 → 3, 24 → 15
S16 → S20 : 1 → 9, 3 → 24, 5 → 20, 7 → 3, 18 → 11, 24 → 1

Note that we list only the side-pairings Si → Sj with i < j, since Sj → Si is
obtained from Si → Sj by reversing arrows and reordering so that initial indices
are in increasing order.

The side-pairing for 24c1.2 is given in terms of indices of vertices as follows:

S1 → S6 : 13 → 18, 14 → 4, 15 → 7, 16 → 21, 17 → 8, 19 → 3
S2 → S10 : 5 → 20, 6 → 12, 7 → 3, 8 → 21, 18 → 11, 19 → 4
S3 → S11 : 9 → 22, 10 → 14, 11 → 5, 12 → 19, 17 → 6, 20 → 13
S4 → S7 : 1 → 22, 2 → 10, 3 → 13, 4 → 17, 18 → 9, 20 → 14
S5 → S24 : 11 → 9, 12 → 24, 15 → 22, 16 → 5, 17 → 13, 21 → 1
S8 → S21 : 1 → 12, 2 → 21, 5 → 23, 6 → 8, 18 → 4, 22 → 16
S9 → S20 : 7 → 9, 8 → 20, 15 → 24, 16 → 3, 19 → 1, 21 → 11
S12 → S17 : 1 → 14, 2 → 23, 9 → 19, 10 → 8, 20 → 16, 22 → 6
S13 → S23 : 10 → 21, 12 → 11, 14 → 7, 16 → 24, 17 → 15, 23 → 3
S14 → S19 : 2 → 24, 4 → 5, 6 → 15, 8 → 19, 18 → 7, 23 → 13
S15 → S18 : 9 → 20, 11 → 2, 13 → 12, 15 → 23, 17 → 10, 24 → 4
S16 → S22 : 1 → 23, 3 → 10, 5 → 6, 7 → 22, 18 → 2, 24 → 14

The side-pairing for 24c1.3 is given in terms of indices of vertices as follows:

S1 → S5 : 13 → 17, 14 → 16, 15 → 11, 16 → 21, 17 → 12, 19 → 15
S2 → S13 : 5 → 23, 6 → 12, 7 → 14, 8 → 17, 18 → 16, 19 → 10
S3 → S16 : 9 → 5, 10 → 24, 11 → 18, 12 → 3, 17 → 7, 20 → 1
S4 → S8 : 1 → 6, 2 → 22, 3 → 18, 4 → 1, 18 → 2, 20 → 5
S6 → S21 : 3 → 23, 4 → 16, 7 → 4, 8 → 21, 18 → 8, 21 → 12
S7 → S23 : 9 → 21 10 → 3, 13 → 15, 14 → 24, 17 → 11, 22 → 7
S9 → S18 : 7 → 12, 8 → 20, 15 → 23, 16 → 2, 19 → 4, 21 → 10
S10 → S20 : 3 → 20, 4 → 3, 11 → 9, 12 → 24, 20 → 11, 21 → 1
S11 → S24 : 5 → 13, 6 → 22, 13 → 24, 14 → 1, 19 → 9, 22 → 5
S12 → S19 : 1 → 5, 2 → 13, 9 → 7, 10 → 15, 20 → 24, 22 → 19
S14 → S15 : 2 → 9, 4 → 13, 6 → 11, 8 → 15, 18 → 24, 23 → 17
S17 → S22 : 6 → 10 8 → 22, 14 → 23, 16 → 6, 19 → 14, 23 → 2
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The side-pairing for 24c1.4 is given in terms of indices of vertices as follows:

S1 → S9 : 13 → 21, 14 → 15, 15 → 8, 16 → 19, 17 → 16, 19 → 7
S2 → S19 : 5 → 13, 6 → 15, 7 → 5, 8 → 7, 18 → 19, 19 → 24
S3 → S18 : 9 → 10, 10 → 12, 11 → 2, 12 → 4, 17 → 20, 20 → 23
S4 → S12 : 1 → 20, 2 → 9, 3 → 2, 4 → 22, 18 → 1, 20 → 10
S5 → S23 : 11 → 3, 12 → 7, 15 → 11, 16 → 15, 17 → 21, 21 → 24
S6 → S7 : 3 → 9, 4 → 17, 7 → 22, 8 → 14, 18 → 13, 21 → 10
S8 → S22 : 1 → 2, 2 → 6, 5 → 10, 6 → 14, 18 → 22, 22 → 23
S10 → S21 : 3 → 12, 4 → 23, 11 → 21, 12 → 8, 20 → 16, 21 → 4
S11 →, S24 : 5 → 9, 6 → 22, 13 → 24, 14 → 5, 19 → 1, 22 → 13
S13 → S16 : 10 → 3, 12 → 1, 14 → 7, 16 → 5, 17 → 24, 23 → 18
S14 → S15 : 2 → 13, 4 → 15, 6 → 9, 8 → 11, 18 → 24, 23 → 17
S17 → S20 : 6 → 20, 8 → 3, 14 → 9, 16 → 24, 19 → 11, 23 → 1

4. Presentations for the corresponding Discrete Groups

In this section, we discuss how to obtain a presentation for the fundamental
group of a hyperbolic 24-cell manifold from a side-pairing of the 24-cell Q together
with an ordering of the sides of Q.

A side-pairing map Si → Sj determines a side-pairing transformation gi in
O+(4, 1) which is the composition rjfi of the symmetry fi of Q that corresponds
to the side-pairing map Si → Sj followed by the reflection rj of H4 in the side Sj .

Note that gj = (gi)
−1, since (gi)

−1 = (f−1
i rjfi)f

−1
i = rifj , and so we will assume

that i < j.
By Poincaré’s fundamental polyhedron theorem, a side-pairing of Q together

with an ordering of the sides ofQ determines a set of 12 side-pairing transformations
that form a set of generators for a discrete subgroup Γ∗ of O

+(4, 1) whose orbit space
H4/Γ∗ is isometric to the hyperbolic 4-manifold M obtained by gluing together the
sides of Q by the side-pairing. The fundamental group of M is isomorphic to Γ∗.

The dihedral angles of the regular polytope Q are all π/2. Therefore Q de-
termines a regular tessellation Q of H4 with fundamental cell Q. The group of
symmetries of the tesselation is a (3, 4, 3, 4) Coxeter simplex reflection group Γ gen-
erated by the reflections of H4 represented by the following matrices in O+(4, 1):

1

2













1 1 1 1 0
1 1 −1 −1 0
1 −1 1 −1 0
1 −1 −1 1 0
0 0 0 0 2













,













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1













,













1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1













,













1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1













,













−1 −2 0 0 2
−2 −1 0 0 2
0 0 1 0 0
0 0 0 1 0

−2 −2 0 0 3













.

The last matrix represents the reflection of H4 in Side 1 of Q. The first four
matrices generate the group of symmetries of Q, which has order 1152. The group
Γ∗ is a torsion-free subgroup of Γ of index 1152.



6 JOHN G. RATCLIFFE AND STEVEN T. TSCHANTZ

By Poincaré’s fundamental polyhedron theorem, defining relators for the side-
pairing transformation generators of Γ∗ are in one-to-one correspondence with ridge
cycles determined by the side-pairing. A ridge is a co-dimension 2 face. The 24-cell
Q has 96 ridges, each an ideal triangle, that are partitioned into cycles of order 4,
since the dihedral angles of Q are all π/2. Therefore, there are exactly 24 ridge
cycles, and 24 corresponding defining relators of length 4 for the group Γ∗.

Let Γk be the torsion-free subgroup of Γ of index 1152 determined by the given
side-pairing for the manifold 24c1.k for k = 1, . . . , 4.

5. Presentation for the Group Γ1

The 12 side-pairing transformations g1, g2, g3, g4, g6, g7, g10, g11, g13, g14, g15, g16
that generate the group Γ1 are represented in O+(4, 1) as follows:

g1 = 1

2













−3 −3 1 1 4
−1 1 1 −1 0
−3 −3 −1 −1 4
1 −1 1 −1 0

−4 −4 0 0 6













, g2 = 1

2













1 1 −1 1 0
3 −3 1 1 4
3 −3 −1 −1 4
1 1 1 −1 0
4 −4 0 0 6













,

g3 = 1

2













1 1 −1 1 0
3 −3 1 1 −4
3 −3 −1 −1 −4
1 1 1 −1 0

−4 4 0 0 6













, g4 = 1

2













−3 −3 1 1 −4
−1 1 1 −1 0
−3 −3 −1 −1 −4
1 −1 1 −1 0
4 4 0 0 6













,

g6 = 1

2













−1 1 −1 −1 0
−1 −1 −1 1 0
3 −1 −3 −1 4
3 1 −3 1 4
4 0 −4 0 6













, g7 = 1

2













−1 1 −1 −1 0
−1 −1 −1 1 0
3 −1 −3 −1 −4
3 1 −3 1 −4

−4 0 4 0 6













,

g10 = 1

2













1 1 1 −1 0
−1 −3 3 −1 −4
1 −1 −1 −1 0

−1 3 −3 −1 4
0 4 −4 0 6













, g11 = 1

2













1 1 1 −1 0
−1 −3 3 −1 4
1 −1 −1 −1 0

−1 3 −3 −1 −4
0 −4 4 0 6













,

g13 = 1

2













−1 −1 −1 1 0
−3 −1 1 −3 4
−1 1 1 1 0
−3 1 −1 −3 4
−4 0 0 −4 6













, g14 = 1

2













−1 1 1 −1 0
−1 −1 −1 −1 0
−3 −1 1 3 −4
3 −1 1 −3 4
4 0 0 −4 6













,

g15 = 1

2













−1 1 1 −1 0
−1 −1 −1 −1 0
−3 −1 1 3 4
3 −1 1 −3 −4

−4 0 0 4 6













, g16 = 1

2













−1 −1 −1 1 0
−3 −1 1 −3 −4
−1 1 1 1 0
−3 1 −1 −3 −4
4 0 0 4 6













.
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Defining relators for the above set of 12 generators for Γ1 are as follows:

g3 g16 g
2
4, g3 g

−2
10 g−1

4 , g2 g4 g
−1
16 g−1

15 , g4 g16 g11 g14,
g7 g

−1
15 g−2

16 , g4 g
−1
14 g13 g

−1
7 , g23 g

−1
7 g−1

16 , g1 g
−1
7 g3 g10,

g4 g
−1
10 g−2

14 , g3 g
−1
15 g−1

6 g−1
10 , g1 g

−1
13 g−1

14 g3, g26 g
−1
10 g14,

g2 g11 g4 g
−1
6 , g1 g

−1
15 g16 g

−1
6 , g2 g

−1
16 g−1

10 g6, g1 g13 g10 g15,
g6 g

−1
14 g−2

13 , g1 g
2
11 g

−1
2 , g2 g

−1
14 g−1

7 g−1
11 , g3 g

−1
13 g−1

11 g7,
g21 g2 g13, g22 g

−1
6 g−1

13 , g27 g
−1
11 g15, g1 g

−1
11 g−2

15 .

6. Presentation for the Group Γ2

The 12 side-pairing transformations g1, g2, g3, g4, g5, g8, g9, g12, g13, g14, g15, g16
that generate the group Γ2 are represented in O+(4, 1) as follows:

g1 = 1

2













3 3 1 1 −4
1 −1 1 −1 0

−3 −3 1 1 4
1 −1 −1 1 0

−4 −4 0 0 6













, g2 = 1

2













−1 −1 −1 1 0
−3 3 1 1 −4
3 −3 1 1 4
1 1 −1 1 0
4 −4 0 0 6













,

g3 = 1

2













−1 −1 −1 1 0
−3 3 1 1 4
3 −3 1 1 −4
1 1 −1 1 0

−4 4 0 0 6













, g4 = 1

2













3 3 1 1 4
1 −1 1 −1 0

−3 −3 1 1 −4
1 −1 −1 1 0
4 4 0 0 6













,

g5 = 1

2













1 −1 −1 −1 0
1 1 −1 1 0
3 −1 3 1 −4
3 1 3 −1 −4

−4 0 −4 0 6













, g8 = 1

2













1 −1 −1 −1 0
1 1 −1 1 0
3 −1 3 1 4
3 1 3 −1 4
4 0 4 0 6













,

g9 = 1

2













−1 −1 1 −1 0
1 3 3 −1 −4
1 −1 1 1 0

−1 3 3 1 −4
0 −4 −4 0 6













, g12 = 1

2













−1 −1 1 −1 0
1 3 3 −1 4
1 −1 1 1 0

−1 3 3 1 4
0 4 4 0 6













,

g13 = 1

2













1 −1 1 −1 0
1 1 −1 −1 0

−3 −1 −1 −3 4
3 −1 −1 3 −4

−4 0 0 −4 6













, g14 = 1

2













1 1 −1 1 0
3 1 1 −3 4

−1 1 −1 −1 0
−3 1 1 3 −4
4 0 0 −4 6













,

g15 = 1

2













1 1 −1 1 0
3 1 1 −3 −4

−1 1 −1 −1 0
−3 1 1 3 4
−4 0 0 4 6













, g16 = 1

2













1 −1 1 −1 0
1 1 −1 −1 0

−3 −1 −1 −3 −4
3 −1 −1 3 4
4 0 0 4 6













.
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Defining relators for the above set of 12 generators for Γ2 are as follows:

g2 g12 g4 g
−1
8 , g4 g

−1
12 g−1

13 g−1
16 , g5 g8 g

−1
12 g16, g4 g

−1
16 g15 g

−1
5 ,

g3 g
−1
12 g−1

9 g−1
4 , g1 g

−1
9 g−1

16 g−1
13 , g8 g

−1
16 g−1

14 g−1
15 , g5 g

−1
9 g13 g8,

g1 g12 g9 g
−1
2 , g3 g

−1
13 g−1

5 g−1
12 , g2 g

−1
14 g−1

9 g5, g3 g4 g
−1
14 g−1

16 ,
g4 g15 g9 g13, g5 g

−1
13 g−1

15 g−1
14 , g1 g

−1
13 g14 g

−1
8 , g2 g

−1
16 g−1

8 g−1
9 ,

g3 g
−1
15 g−1

12 g8, g1 g14 g12 g16, g1 g3 g15 g4, g1 g4 g2 g14,
g1 g

−1
15 g−1

13 g2, g2 g
−1
8 g−1

14 g3, g2 g3 g
−1
5 g−1

15 , g1 g
−1
5 g3 g9.

7. Presentation for the Group Γ3

The 12 side-pairing transformations g1, g2, g3, g4, g6, g7, g9, g10, g11, g12, g14, g17
that generate the group Γ3 are represented in O+(4, 1) as follows:

g1 = 1

2













−3 −3 −1 −1 4
−1 1 −1 1 0
−3 −3 1 1 4
1 −1 −1 1 0

−4 −4 0 0 6













, g2 = 1

2













3 −3 1 1 4
−1 −1 1 −1 0
−1 −1 −1 1 0
3 −3 −1 −1 4
4 −4 0 0 6













,

g3 = 1

2













3 −3 −1 1 −4
1 1 −1 −1 0
1 1 1 1 0
3 −3 1 −1 −4

−4 4 0 0 6













, g4 = 1

2













−3 −3 −1 1 −4
1 −1 −1 −1 0

−3 −3 1 −1 −4
−1 1 −1 −1 0
4 4 0 0 6













,

g6 = 1

2













1 −1 1 1 0
−1 −1 −1 1 0
3 1 −3 1 4
3 −1 −3 −1 4
4 0 −4 0 6













, g7 = 1

2













1 1 1 −1 0
−1 1 −1 −1 0
−3 −1 3 −1 4
3 −1 −3 −1 −4

−4 0 4 0 6













,

g9 = 1

2













−1 −1 1 −1 0
1 3 3 −1 −4

−1 1 −1 −1 0
1 −3 −3 −1 4
0 −4 −4 0 6













, g10 = 1

2













1 −1 −1 −1 0
1 −3 3 1 −4

−1 −1 −1 1 0
−1 −3 3 −1 −4
0 4 −4 0 6













,

g11 = 1

2













−1 1 1 −1 0
−1 −1 −1 −1 0
1 3 −3 −1 −4

−1 3 −3 1 −4
0 −4 4 0 6













, g12 =













0 0 0 1 0
0 2 1 0 2
1 0 0 0 0
0 −1 −2 0 −2
0 2 2 0 3













,

g14 =













2 0 0 −1 2
0 0 1 0 0
0 1 0 0 0

−1 0 0 2 −2
2 0 0 −2 3













, g17 = 1

2













−1 1 −1 −1 0
1 1 1 −1 0
1 3 −1 3 −4
1 −3 −1 −3 4
0 −4 0 −4 6













.
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Defining relators for the above set of 12 generators for Γ3 are as follows:

g24 g
−1
6 g−1

17 , g4 g
−1
12 g211, g4 g

−1
14 g11 g12, g3 g

−1
10 g14 g4,

g2 g4 g10 g
−1
6 , g3 g9 g

−1
6 g−1

10 , g3 g
2
10 g

−1
4 , g4 g9 g

−1
17 g−1

11 ,
g3 g

−1
12 g7 g

−1
11 , g3 g

−1
7 g−1

10 g−1
12 , g2 g12 g11 g

−1
17 , g21 g

−1
11 g10,

g1 g
−1
9 g−1

14 g−1
7 , g2 g3 g14 g17, g6 g

−1
14 g12 g9, g1 g12 g17 g

−1
14 ,

g1 g
−2
17 g9, g1 g14 g6 g3, g6 g7 g

−1
12 g−1

9 , g2 g
−1
17 g−1

7 g3,
g2 g

−1
9 g−1

10 g7, g1 g2 g
−2
6 , g2 g

−1
11 g−1

7 g−1
9 , g1 g

−1
7 g14 g

−1
2 .

8. Presentation for the Group Γ4

The 12 side-pairing transformations g1, g2, g3, g4, g5, g6, g8, g10, g11, g13, g14, g17
that generate the group Γ4 are represented in O+(4, 1) as follows:

g1 = 1

2













1 −1 −1 1 0
−3 −3 1 1 4
−3 −3 −1 −1 4
1 −1 1 −1 0

−4 −4 0 0 6













, g2 =













0 0 −1 0 0
1 −2 0 0 2
0 0 0 1 0

−2 1 0 0 −2
2 −2 0 0 3













,

g3 =













0 0 −1 0 0
1 −2 0 0 −2
0 0 0 1 0

−2 1 0 0 2
−2 2 0 0 3













, g4 = 1

2













1 −1 −1 1 0
−3 −3 1 1 −4
−3 −3 −1 −1 −4
1 −1 1 −1 0
4 4 0 0 6













,

g5 =













0 1 0 0 0
0 0 0 1 0

−1 0 −2 0 2
2 0 1 0 −2

−2 0 −2 0 3













, g6 = 1

2













3 −1 −3 1 4
−1 1 −1 1 0
−3 −1 3 1 −4
1 1 1 1 0
4 0 −4 0 6













,

g8 =













0 1 0 0 0
0 0 0 1 0

−1 0 −2 0 −2
2 0 1 0 2
2 0 2 0 3













, g10 = 1

2













−1 −1 −1 −1 0
1 −1 −1 1 0
1 3 −3 −1 4

−1 3 −3 1 4
0 4 −4 0 6













,

g11 = 1

2













−1 −1 −1 −1 0
1 −1 −1 1 0
1 3 −3 −1 −4

−1 3 −3 1 −4
0 −4 4 0 6













, g13 =













2 0 0 1 −2
0 1 0 0 0
0 0 −1 0 0
1 0 0 2 −2

−2 0 0 −2 3













,

g14 =













2 0 0 −1 2
0 −1 0 0 0
0 0 1 0 0

−1 0 0 2 −2
2 0 0 −2 3













, g17 = 1

2













1 1 −1 −1 0
1 3 1 3 −4

−1 1 1 −1 0
−1 3 −1 3 −4
0 −4 0 −4 6













.
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Defining relators for the above set of 12 generators for Γ4 are as follows:

g4 g
−2
8 g−1

17 , g3 g
2
4 g13, g4 g

−1
6 g14 g8, g3 g14 g

−1
17 g−1

4 ,
g3 g

−1
13 g17 g10, g4 g

−1
10 g−1

13 g−1
8 , g3 g17 g

−1
11 g−1

8 , g1 g
−1
11 g13 g

−1
5 ,

g2 g
−1
11 g4 g

−1
14 , g2 g13 g

−1
17 g11, g3 g

−1
5 g−1

6 g4, g1 g14 g3 g
−1
10 ,

g8 g
−1
14 g211, g23 g6 g

−1
10 , g6 g13 g8 g

−1
11 , g5 g

−1
10 g−1

6 g−1
13 ,

g2 g
−1
17 g−1

10 g−1
5 , g5 g14 g

2
10, g1 g

−2
5 g17, g1 g6 g

−1
14 g5,

g1 g2 g
−1
8 g6, g22 g

−1
6 g−1

11 , g21 g
−1
13 g2, g1 g

−1
17 g14 g

−1
2 .

9. Volumes of Maximum Cusps

In this section, we determine the volume of the maximum cusp of each of the
one-cusped hyperbolic 24-cell manifolds.

Proposition 1. The volume of the maximum cusp of each of the one-cusped hy-

perbolic 24-cell manifolds is 8.

Proof. We pass to the conformal ball model of H4 and center the 24-cell Q at the
origin. Two horoballs based at adjacent vertices of Q that project to the maximum
cusp are tangent at the Euclidean midpoint of the edge of Q joining the vertices.
From this observation, it is easy to work out the volume of the maximum cusp. �

10. Orders of Isometry Groups

In this section, we determine the order of the isometry group of each of the
one-cusped hyperbolic 24-cell manifolds.

Proposition 2. The order of the group of isometries of the hyperbolic 4-manifold

24c1.k, for k = 1, . . . , 4, is 12, 12, 2, 8, respectively.

Proof. The number of side-pairings of the 24-cell Q for the manifold 24c1.k, for k =
1, . . . , 4, that are equivalent up to a symmetry ofQ is 12, 12, 2, 8 respectively. Hence,
the order of the group of isometries of the hyperbolic manifold 24c1.k, for k =
1, . . . , 4, that are induced by a symmetry of the 24-cell Q is 12, 12, 2, 8 respectively.
That these are the orders of the full groups of isometries of the manifolds will
follow once we prove that Q is the Epstein-Penner canonical tessellation [2] of H4

determined by the manifolds.
Let M = H4/Γ∗ be one of the hyperbolic manifolds 24c1.k, for k = 1, . . . , 4.

Let C be a cusp of M . Choose an ideal vertex u of Q. Then C is covered by a
horoball B based at u. Let v be the vector on the positive light cone L+ such that
the horosphere ∂B has the equation x ◦ v = −1. The vector v lies on the ray from
the origin in L+ corresponding to u.

Each ideal vertex of Q is equivalent to u by the composition of a finite sequence
of side-pairing transformations, since M has a single cusp. Suppose that u is
equivalent to the ideal vertex u′ be a side-pairing transformation g. Then g is the
composition rf where f is a symmetry of Q that maps u to u′ and r is a reflection
that fixes u′. Therefore, the orbit Γ∗v contains the vectors v = v1, . . . , v24, of the
same height on L+, on the rays in L+ corresponding to the ideal vertices of Q.
Therefore, the convex hull of the vectors v = v1, . . . , v24 is a horizontal Euclidean
regular 24-cell F . The remaining vectors in the orbit Γ∗v are higher up on L+ than
v, since a nonidentity element of Γ∗ moves Q higher up on H4. Therefore F is a
face of the convex hull of the orbit Γ∗v.
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Name H0 H1 H2 H3 H4

24cdc1.1 Z Z⊕ Z3 ⊕ Z13 Z
2 ⊕ Z3 ⊕ Z13 0 0

24cdc1.2 Z Z⊕ Z3 ⊕ Z13 Z
2 ⊕ Z3 ⊕ Z13 0 0

24cdc1.3 Z Z⊕ Z
2
2 ⊕ Z5 Z

2 ⊕ Z2 ⊕ Z5 0 0
24cdc1.4 Z Z⊕ Z

3
3 Z

2 ⊕ Z
3
3 0 0

Table 2. Homology groups of the orientable double covers

The face F radially projects from the origin onto Q. As Q is a fundamental
polytope for Γ∗, we deduce that F is a fundamental polytope for the action of Γ∗

on the boundary of the convex hull of Γ∗v. Therefore Q is the Epstein-Penner
canonical tessellation of H4 determined by M . Hence, every isometry of M lifts
to a symmetry of Q. Therefore, every isometry of M is induced by a symmetry of
Q. �

11. Orientable Double Covers

The orientable double cover of the flat 3-manifold N3
2 is the 3-torus. Therefore,

the orientable double cover of each of the one-cusped hyperbolic 24-cell manifolds
is a hyperbolic 4-manifold with one cusp of link type the 3-torus. The homology
groups of the orientable double covers of the one-cusped 24-cell manifolds are given
in Table 2.

Observe that manifolds 24cdc1.1 and 24cdc1.2 have the same homology groups.
This suggests that 24cdc1.1 and 24cdc1.2 are isometric manifolds. In fact, these
manifolds are isometric, since the side-pairings of two 24-cells that glue up the
manifolds are equivalent up to symmetries of each of the two 24-cells.
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