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TERNARY AND QUATERNARY CURVES OF SMALL FIXED GENUS

AND GONALITY WITH MANY RATIONAL POINTS

XANDER FABER AND JON GRANTHAM

Abstract. We extend the computations from our previous paper [5] to determine the
maximum number of rational points on a curve over F3 and F4 with fixed gonality and
small genus. We find, for example, that there is no curve of genus 5 and gonality 6 over
a finite field. We propose two conjectures based on our data. First, an optimal curve of
genus g has gonality at most

⌊

g+3

2

⌋

. Second, an optimal curve of gonality γ and large genus
over Fq has γ(q + 1) rational points.

1. Introduction

Let C be a smooth proper geometrically connected scheme of dimension 1 over a finite
field — a “curve”, for brevity. There are two well-known upper bounds for the number of
rational points on C. First, there is the bound of André Weil that arises in the study of the
zeta function:

#C(Fq) ≤ q + 1 + 2g
√
q,

where g is the genus of C. Define the quantity Nq(g) to be the maximum number of rational
points on a curve of genus g over Fq. Many techniques have been developed to bound Nq(g)
and to produce examples of curves with large numbers of rational points; see [26], [17], or
[23]. Van der Geer and van der Vlugt [25] compiled the first comprehensive table of maximal
values for small genus and field size, which eventually evolved into manypoints.org. Table 1
gives the first few values of Nq(g).

g N2(g) N3(g) N4(g)

0 3 4 5
1 5 7 9
2 6 8 10
3 7 10 14
4 8 12 15
5 9 13 17

Table 1. Maximum number of rational points on a curves of genus g over Fq

Second, if f : C → P1 is a morphism defined over Fq, then every rational point of C must
map to a rational point of P1. Consequently, we get the bound #C(Fq) ≤ (deg f)(q + 1).
This bound is optimized when we take f to have minimum degree over all such morphisms —
we call this degree the gonality of C and write γ for it. This gives rise to the “gonality-point
bound” for C:

#C(Fq) ≤ γ(q + 1). (1.1)
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We define the quantity Nq(g, γ) to be the supremum of the number of rational points on a
curve C of genus g and gonality γ. (Many pairs (g, γ) exist for which there is no such curve,
so we use the supremum.)

Remark 1.1. One might ask why we do not consider the maximum number of rational points
on a curve over Fq of fixed gonality, while letting the genus vary freely. We expect this
quantity to be γ(q + 1) for sufficently large genus; see Conjecture 1.4.

In our first paper [5], we laid out a plan for computing the maximum number of rational
points on a curve C over Fq with small genus and fixed gonality, and we executed this program
for curves over the binary field with genus at most 5. In the present paper, we extend those
computations to the fields F3 and F4. For many cases where curves of a given genus and
gonality exist, this was fairly straightforward: we either dug through the literature to find
examples of curves that met certain bounds we had already exhibited, or else we ran general
search code that we wrote for our first paper. But in the cases where we prove non-existence
results, the increased size of the relevant search spaces requires improved algorithms and
code development.

Table 2 summarizes the quantities Nq(g, γ) for q ≤ 4 and g ≤ 5. The entries in the column
for q = 2 were determined in [5], while the entries for q = 3, 4 are justified in the present
paper. Recall that Nq(g, γ) = −∞ if there is no curve of genus g and gonality γ. The
gonality of a curve over a finite field is at most one more than the genus [5, Prop. 2.1], so
we omit entries in the table beyond g + 1.

g γ N2(g, γ) N3(g, γ) N4(g, γ)

0 1 3 4 5
1 2 5 7 9
2 2 6 8 10
3 2 6 8 10

3 7 10 14
4 0 0 0

4 2 6 8 10
3 8 12 15
4 5 10 13
5 0 0 −∞

5 2 6 8 10
3 8 12 15
4 9 13 17
5 3 4 5
6 −∞ −∞ −∞

Table 2. Supremum of the number of rational points on a binary, ternary,
or quaternary curve with fixed genus and gonality.

The final row of Table 2 suggests a pattern, which we are able to complete:

Theorem 1.2. There is no curve of genus 5 and gonality 6 over a finite field.
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Proof. Suppose there were a curve C of genus 5 and gonality 6 over Fq. Table 2 shows that
q ≥ 5. Weil’s lower bound yields

#C(Fq3) ≥ q3 + 1− 10q3/2 = (q3/2 − 5)2 − 24 ≥ 14,

so that C(Fq3) 6= ∅. The presence of a cubic point implies that C has gonality at most 5 by
[5, Cor. 2.5]. �

Serre introduced a powerful technique for showing that curves over finite fields with certain
numerical properties cannot exist [22, II - The Case q = 2]. Lauter transformed this technique
into a proper algorithm in the self-contained article [13]; see also [12] and [23, §VII.2]. The
idea is to efficiently list all real Weil polynomials (essentially zeta functions) that could
belong to a curve with given genus and number of rational points (perhaps over extension
fields). Each of these is the real Weil polynomial of an isogeny class of abelian varieties, and
one attempts to show by arithmetic/geometric methods that there is no Jacobian variety in
this class. For example, upon applying Lauter’s algorithm to the case of curves of genus 5
and gonality 6 over F4, one finds a single real Weil polynomial:

(T − 4)2(T + 1)3.

None of the methods developed in [8, 9, 14] seem able to rule out the possibility of a Jacobian
in the associated isogeny class (which would yield an alternate proof of Theorem 1.2). We
will return to this line of thought in the forthcoming paper [6].

An optimal curve is a curve of genus g over Fq with Nq(g) rational points. One expects
the geometry of these to be rather special because their arithmetic sets them apart. For
example, Rigato showed that for small-genus curves over F2, there are very few isomorphism
classes of optimal curves [18]. We propose a conjecture on the gonality of optimal curves:

Conjecture 1.3 (Optimal Gonality). Let C be an optimal curve over Fq of genus g. Then

C has gonality at most
⌊

g+3
2

⌋

.

Note that
⌊

g+3
2

⌋

is the maximum geometric gonality of a curve C/Fq
of genus g — i.e.,

among morphisms C → P1 defined over the algebraic closure F̄q, there exists one of degree
at most

⌊

g+3
2

⌋

.
Our Optimal Gonality Conjecture holds for q = 2, 3, 4 and g ≤ 5 by Tables 1 and 2.

Rigato’s work shows that it holds for q = 2 and g = 6 as well; there are exactly two
isomorphism classes of optimal curves over F2 of genus 6, and both of them have gonality 4.
In the appendix to [5], additional examples of optimal curves of genus 7, 8, and 9 over F2

are given, and in each case the gonality is strictly smaller than
⌊

g+3
2

⌋

.
In [5], we posed a conjecture on the maximum number of rational points on a curve over

F2 of gonality γ as the genus tends to infinity. Based on our new data, we feel emboldened
to extend the statement to all finite fields:

Conjecture 1.4. Fix a prime power q and an integer γ ≥ 2. For g sufficiently large,

Nq(g, γ) = γ(q + 1).

In §2, we address the elliptic and hyperelliptic entries in Table 2. We also prove Conjec-
ture 1.4 when γ = 2; see Theorem 2.3. We quickly handle curves of genus 3 in §3.

In order to describe all curves of genus 4 or 5, we find ourselves in need of a list of all cubic
forms (genus 4) or quadratic forms (genus 5) modulo the action of a particular orthogonal
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group O(Q). Unfortunately, computing the orthogonal group O(Q) by a naive search as we
did in [5] turns out to be computationally untenable for the needs of the present paper. We
sketch a more efficient approach in §4. The idea is to view an element g ∈ O(Q) as a matrix
of indeterminates and then observe that equating coefficients in the relation Q(g(x)) = Q(x)
gives rise to a very structured system of quadratic equations in these indeterminates.

We treat curves of genus 4 in §5. The majority of our work goes toward proving that
there is no curve of genus 4 and gonality 5 over F4. That computation breaks into two parts:
the first is a large search implemented in C, while the second uses Sage to identify smooth
curves among the output of the first step. Finally, we address curves of genus 5 in §6. Here
the bulk of our effort goes toward determining the maximum number of points on a curve
with gonality 5, and toward the non-existence of curves with gonality 6. Viewed from a
distance, these computations were quite similar to those performed in [5] in order to address
curves over F2. However, since the search spaces are so much larger over F3 and F4, it was
necessary to improve our algorithms and our code. Despite these efforts, our computations
still required weeks of compute time on a multi-core machine. We outline these algorithmic
changes and present our findings in §6.3.

We close with a discussion about the software used and created for this project. For simple
verification of the genus or number of rational points of the smooth model of an algebraic
curve, we used Magma [1]. For ease of development and the ability to optimize via analysis
of the source code, we used Sage [24]. Our code is Python3 compatible, and hence will run
under Sage 9.1 as well. In order to launch many Sage jobs asynchronously, we wrote a flexible
Python3 script called sage launcher.py that may be of use to other researchers. Some of
our code for genus-4 computations was written in C and depends on the FLINT library [7].
All of our source code can be found at https://github.com/RationalPoint/gonality.

Throughout this article, the field F4 will be represented as F2[t]/(t
2 + t + 1).

2. Elliptic and Hyperelliptic Curves

Let us begin with curves of genus 1. A curve C/Fq
of genus 1 necessarily has a rational

point by the Weil bound: #C(Fq) ≥ q + 1 − 2
√
q = (

√
q − 1)2 > 0. In particular, C is an

elliptic curve; it is given by a Weierstrass equation y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with ai ∈ Fq; and C has gonality 2. We conclude that Nq(1, 2) = Nq(1) for all q. Now we
are in a position to quote a result of Serre:

Theorem 2.1 ([23, Thm. 6.3]). Set m = ⌊2√q⌋. Then Nq(1) = q + 1 + m except when

q = pa for a odd, e ≥ 5, m ≡ 0 (mod p), in which case Nq(1) = q +m.

Corollary 2.2. N3(1, 2) = 7 and N4(1, 2) = 9.

Our next task is to look at hyperelliptic curves of genus > 1; see [15, Prop. 7.4.24] for
the geometry of hyperelliptic equations. We begin by constructing two families of optimal
hyperelliptic curves parameterized by g and q: one for odd q and one for even q.

If q is odd and g > q2−2
2

, then we can consider the curve

C/Fq
: y2 = x2g+2−q2(xq − x)q + 1.

In order to see that y2 = P (x) is smooth, one checks that gcd(P, P ′) = 1. In our case,
P ′ vanishes only at Fq-rational points, while P does not vanish there. Therefore, C is a

4
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hyperelliptic curve of genus g and has 2(q + 1) Fq-rational points (including the two at
infinity). This is optimal: the gonality-point bound (1.1) shows that Nq(g, 2) ≤ 2(q + 1).

If instead q is even and g ≥ q − 1, we take

C/Fq
: y2 +

(

(xq + x)xg+1−q + 1
)

y = (xq + x)2.

The criterion for a hyperelliptic equation y2 + Q(x)y = P (x) in characteristic 2 to define a
smooth curve is expressed as gcd(Q, (Q′)2P + (P ′)2) = 1. One verifies that this holds for
our curve by considering the cases g odd and g even separately. Then C has genus g and
2(q + 1) rational points (including the two at infinity).

Combining these two constructions, we immediately obtain

Theorem 2.3. Fix a prime power q. Then Nq(g, 2) = 2(q + 1) for g ≫ 0.

Let us turn to the case q = 3 more specifically. The first construction yields a smooth
hyperelliptic curve of genus g with 8 rational points when g ≥ 4. The curve C/F3

: y2 =
x2g−1(x3−x)+1 is smooth of genus g whenever g 6≡ 1 (mod 6), and it has 8 rational points.
In particular, this applies when g = 2, 3, and we have proved

Theorem 2.4. N3(g, 2) = 8 for g ≥ 2.

Finally, we treat the case q = 4. The second construction above gives a smooth hyperel-
liptic curve with 10 rational points for each genus g ≥ 3.

For q = 4, the construction above shows that N4(g, 2) = 10 for g ≥ 3. To deal with genus
2, consider the curve y2 + (x3 + t + 1)y = x5 + x2. It is smooth with 10 rational points
(including the two at infinity). Thus,

Theorem 2.5. N4(g, 2) = 10 for g ≥ 2.

3. Curves of Genus 3

We have already dealt with hyperelliptic curves in the preceding section, so all that remains
is gonality 3 and gonality 4 [5, Prop. 2.1]. A non-hyperelliptic curve of genus 3 can be realized
as a smooth plane quartic via the canonical embedding. All of our examples will be of this
sort.

Theorem 3.1. N3(3, 3) = 10.

Proof. Serre [21] showed that N3(3) ≤ 10, so we immediately have N3(3, 3) ≤ 10. Serre also
exhibited the smooth plane quartic

C/F3
: y3z − yz3 = x4 − x2z2,

which has 10 rational points. A non-hyperelliptic curve of genus 3 with a rational point has
gonality 3 [5, Cor. 2.3], so N3(3, 3) ≥ 10. �

Theorem 3.2. N4(3, 3) = 14.

Proof. Ihara’s explicit bound shows that N4(3) ≤ 14 [11, §2], and Serre exhibited the smooth
plane quartic

C/F4
: (x+ y + z)4 + (xy + xz + yz)2 + xyz(x+ y + z) = 0,

which has 14 rational points. A non-hyperelliptic curve of genus 3 with a rational point has
gonality 3 [5, Cor. 2.3], so we conclude that N4(3, 3) = 14. �
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Theorem 3.3. N3(3, 4) = 0 and N4(3, 4) = 0.

Proof. A curve of genus g with a rational point has gonality at most g [5, Prop. 2.1]; hence,
Ng(3, 4) ≤ 0. Howe, Lauter, and Top [10] produced the following examples of pointless
smooth plane quartics:

C/F3
: x4 + xyz2 + y4 + y3z − yz3 + z4 = 0

C/F4
: (x2 + xz)2 + t(x2 + xz)(y2 + yz) + (y2 + yz)2 + t2z4 = 0.

A non-hyperelliptic curve of genus 3 with no rational point has gonality 4 [5, Cor. 2.3], and
the theorem follows. �

4. Interlude on the computation of orthogonal groups

Fix a finite field Fq, and let

Q(x) =
∑

1≤i≤j≤n

ci,jxixj

be a quadratic form in n variables, where x = (x1, . . . , xn) and ci,j ∈ Fq are not all zero. The
orthogonal group of Q is defined to be

O(Q) = {g ∈ GLn(Fq) : Q(g(x)) = Q(x)} .

We wish to write down all of the matrices in O(Q) in an efficient manner.
Let g = (gi,j) be an n × n matrix with undetermined coefficients, and let us impose the

equality Q(g(x)) = Q(x). Equating coefficients of the quadratic monomials in the xi’s on

both sides gives rise to a system of n2+n
2

quadratic equations in the gi,j’s:

(a) Equating the coefficients of the diagonal term x2
i gives the relation

Q(g1i, . . . , gni) = ci,i.

(b) Write 〈x, y〉 = Q(x+ y)−Q(x)−Q(y) for the associated bilinear form. The relation
arising from the coefficients of the term xixj is given by

〈g•i, g•j〉 = ci,j.

In particular, it depends only on grs with s ∈ {i, j}.
Any invertible matrix g = (gi,j) that satisfies properties (a) and (b) will be an element of
the orthogonal group O(Q), and every element of O(Q) is obtained in this way. It follows
that the output of Algorithm 1 is correct.

Example 4.1. Let Q(x1, x2, x3, x4) = x1x2 + x3x4 ∈ Fq[x1, x2, x3, x4]. If g = (gi,j) is a 4 × 4
matrix of indeterminates, then the equation Q(g(x1, x2, x3, x4)) = Q(x1, x2, x3, x4) gives rise
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to the following system of 10 quadratic equations:

x2
1 : g11g21 + g31g41 = 0

x1x2 : g12g21 + g11g22 + g32g41 + g31g42 = 1

x1x3 : g13g21 + g11g23 + g33g41 + g31g43 = 0

x1x4 : g14g21 + g11g24 + g34g41 + g31g44 = 0

x2
2 : g12g22 + g32g42 = 0

x2x3 : g13g22 + g12g23 + g33g42 + g32g43 = 0

x2x4 : g14g22 + g12g24 + g34g42 + g32g44 = 0

x2
3 : g13g23 + g33g43 = 0

x3x4 : g14g23 + g13g24 + g34g43 + g33g44 = 1

x2
4 : g14g24 + g34g44 = 0.

Algorithm 1 — Compute the elements of the orthogonal group for a quadratic form

Q =
∑

1≤i≤j≤n

ci,jxixj over Fq.

1: initialize an empty list L
2: for 1 ≤ i ≤ n do

3: compute the set Si of solutions to the equation Q(x) = ci,i
4: end for

5: for (g11, . . . , gn1) ∈ S1 do

6: for (g12, . . . , gn2) ∈ S2 do

7: if 〈g•1, g•2〉 6= c1,2 then continue
8: for (g13, . . . , gn3) ∈ S3 do

9: if 〈g•1, g•3〉 6= c1,3 then continue
10: if 〈g•2, g•3〉 6= c2,3 then continue

...
11: for (g1n, . . . , gnn) ∈ Sn do

12: if 〈g•i, g•n〉 6= ci,n for some i < n then continue
13: if g = (gi,j) is invertible then append g to the list L
14: end for

...
15: end for

16: end for

17: end for

18: return L

Algorithm 1 begins with the precomputation of the sets Si ⊂ F
n
q ; for example, one can

simply loop over the elements of Fn
q to find solutions. By the Weil conjectures, one expects

#Si ≈ qn−1, so the overall search space has size approximately qn(n−1). However, the checks
involving the associated bilinear form yield a substantial cutdown of the set of matrices to
test for invertibility.
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Example 4.2. Consider the quadratic form Q = x1x2+ x2
3 ∈ F2[x1, x2, x3, x4, x5]. Computing

O(Q) via a naive loop over all 5× 5 matrices with coefficients in F2 takes approximately 54
minutes in Sage on a 2.6GHz Intel Core i5 with 16GB RAM. If we instead apply Algorithm 1,
we first precompute the sets Si. Note that S1 = S2 = S4 = S5, and that #Si = 16 for all i.
It follows that our search space has size (24)5 instead of 225, and we only test around 214.6

matrices for invertibility. Our Sage implementation produced O(Q) in less than a second.

Here is another practical improvement for computing some orthogonal groups. Suppose
that Q is a quadratic form in Fq[x1, . . . , xn], but there is m < n such that xm+1, . . . , xn

do not appear in any monomial with nonzero coefficient. Write Fn
q = U ⊕ V , where U is

spanned by the first m standard basis vectors and V is spanned by the remaining n − m.
Then Lemma B.11 of the arXiv edition of [5] implies g ∈ O(Q) if and only if it has the form

g =

(

A 0
B C

)

,

where A ∈ O(Q|U), B : U → V is an arbitrary linear map, and C ∈ GL(V ). In particular,
this means that we can perform the search in Algorithm 1 on a quadratic form in m variables
and then build up the orthogonal group of Q.

Remark 4.3. How does one verify that Algorithm 1 has been implemented correctly? We
provide strong evidence via two methods. First, we have several implementations, including
a naive search over all matrices and the method from Appendix B.2 of the arXiv edition of
[5]. These can be applied to quadratic forms in very low dimension over small finite fields
(q ≤ 4) to vet the code. Second, we can verify that the cardinality of our output is correct
because L.E. Dickson computed the order of O(Q) well over a century ago. See Chapters VII
and VIII of [4].

5. Curves of Genus 4

Hyperelliptic curves of genus 4 were treated in Theorems 2.4 and 2.5. It remains to handle
curves of gonality 3, 4, and 5 [5, Prop. 2.1]. We easily produce upper and lower bounds for
curves over F3, so we do these first. Afterward, we treat curves over F4.

5.1. Ternary curves.

Theorem 5.1. N3(4, 3) = 12.

Proof. Using Oesterlé’s method, Serre showed that N3(4) = 12, which immediately implies
that N3(4, 3) ≤ 12. Using global class field theory, Niederreiter and Xing [16] found the
following example of an affine plane curve whose smooth model has genus 4 and 12 rational
points:

(y3 − y) =
x3 − x

(x2 + 1)2
.

The rational function x gives a map to P1 of degree 3, and this curve would violate the
gonality-point bound if it were hyperelliptic. Thus, N3(4, 3) ≥ 12. �
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By Lemma 5.1 of [5], a curve of genus 4 and gonality 4 or 5 can be realized in P3 =
F3[x, y, z, w] as the intersection of a cubic surface and the quadric surface

V (Q) : xy + z2 + w2 = 0,

and conversely, any smooth geometrically irreducible intersection of V (Q) with a cubic sur-
face has genus 4 and gonality at least 4.

Theorem 5.2. N3(4, 4) = 10.

Proof. The surface Q = xy + z2 + w2 = 0 has 10 rational points on it, so we must have
N3(4, 4) ≤ 10. The cubic surface with equation

x2y − xyz − y2z + xz2 + x2w + y2w + xw2 − zw2 + w3 = 0,

passes through all 10 of those rational points, and its intersection with V (Q) is smooth and
geometrically irreducible. Since this curve has a rational point, it must have gonality exactly
4 by [5, Cor. 2.4]. Therefore, N3(4, 4) ≥ 10. �

Theorem 5.3. N3(4, 5) = 0.

Proof. A curve of genus g with a rational point has gonality at most g by [5, Prop. 2.1].
It follows that N3(4, 5) ≤ 0. Consider the curve in P3 = Proj F3[x, y, z, w] cut out by the
following equations:

xy + z2 + w2 = 0

x3 + y3 + y2z + x2w + xyw − y2w − yzw + z2w = 0.

It is smooth and geometrically irreducible, hence of genus 4 and gonality at least 4. A direct
search shows that it has no F9-rational point, so it must have gonality 5 [5, Cor. 2.4]. �

Remark 5.4. Our practice has been to look in the literature for examples of the curves we
need before turning to computer searches. Castryck and Tuitman seem to have given the
first example of a curve with gonality 5 over F3 [2, p.15]. (The cited arXiv paper contains
examples that were excised before publication as [3].) We opted to use our own example in
the above proof because it has somewhat shorter defining polynomials.

5.2. Quaternary curves. A non-hyperelliptic curve of genus 4 over F4 can be realized in
P3 = F4[x, y, z, w] as the intersection of a cubic surface and one of the following quadric
surfaces:

Gonality 3: xy + z2 = 0;

Gonality 3: xy + zw = 0; or

Gonality 4 or 5: xy + z2 + tzw + w2 = 0.

See Lemma 5.1 of [5].

Theorem 5.5. N4(4, 3) = 15.

Proof. Serre showed that N4(4) = 15, so it will suffice to find a curve of gonality 3 with 15
rational points. Consider the curve in P3 cut out by the equations

xy + z2 = 0

x3 + xyz + ty2w + (t+ 1)yw2 + w3 = 0.
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It is smooth, hence of genus 4 and gonality 3 by the remarks at the beginning of this section.
One verifies by direct search that it has 15 rational points. �

Lemma 5.6. N4(4, 4) ≤ 13.

Proof. Let C be a curve of genus 4 and gonality 4 over F4, which we may realize as the
intersection of Q = xy + z2 + tzw + w2 = 0 and a cubic surface in P3. Serre showed that
N4(4) = 15, so in order to prove the lemma, we must rule out the possibility that a cubic
surface meets V (Q) smoothly and passes through 14 or 15 rational points of V (Q). Note
that V (Q) has 17 rational points.

The space of cubic surfaces has (projective) dimension 19. If F is a cubic form, the ideal
generated by F and Q is not affected by replacing F with F + LQ for any linear form L.
Consequently, by adding a suitable constant multiple of xQ, we may assume that F has no
x2y-term. Similarly, we may kill the xy2-, z3-, and w3-terms by adding suitable multiples of
yQ, zQ, and wQ, respectively. In this way, we reduce the dimension of the space of cubic
surfaces under consideration down to 15.

Let us now rule out the possibility of a curve of gonality 4 with 15 rational points. Insisting
that a cubic surface pass through a particular rational point is a linear condition on the
coefficients of the cubic’s defining polynomial. For each choice of 15 points on V (Q) — of
which there are

(

17
15

)

= 136 — we use linear algebra to find a basis for the space of cubic
surfaces that vanish at all of the points. From a naive dimension-count, we expect the
resulting space to have (projective) dimension 0, so there is a unique such cubic surface. In
fact, this turns out to be the case: we executed this procedure in Sage and determined that
none of the resulting 136 cubic surfaces meet the quadric surface V (Q) in a smooth curve.
The resulting computation took under a minute on a single 2.6Ghz Intel Core i5 CPU.

A similar computation applied to the
(

17
14

)

= 680 choices of 14 rational points on V (Q)
took approximately 4.5 minutes to verify that there is no curve of genus 4 and gonality 4
with 14 rational points. �

Theorem 5.7. N4(4, 4) = 13.

Proof. The upper bound we want is given by Lemma 5.6. For the lower bound, consider the
smooth curve in P3 = Proj F4[x, y, z, w] that is cut out by the equations

xy + z2 + tzw + w2 = 0

y2z + xz2 + x2w + y2w + yzw + z2w + xw2 + yw2 = 0.

Direct search shows that it has 13 rational points. Thus, N4(4, 4) ≥ 13. �

We spend the remainder of this section describing a computational proof of the following
non-existence result:

Theorem 5.8. N4(4, 5) = −∞.

Suppose that C is a curve of genus 4 over F4 with gonality 5. Then C can be realized in
P3 = Proj F4[x, y, z, w] as the intersection of the quadric surface

Q = xy + z2 + tzw + w2 = 0

and a cubic surface by [5, Lem.5.1]. Corollary 2.4 of [5] asserts that such a curve satisfies
C(F42) = ∅. Our proof has two main steps:
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Step 1. Loop over cubic surfaces and record those that do not pass through any quadratic
point on V (Q).

Step 2. Intersect each of the survivors from Step 1 with the quadric surface V (Q) and deter-
mine which, if any, are smooth and geometrically irreducible.

Naively, there are (420 − 1)/3 ≈ 1011.5 cubic surfaces to examine, so we wrote a C-program
to execute the search. The number of survivors was sufficiently small (65, 280) that we could
do the various bits of commutative algebra for Step 2 in Sage. Ultimately, we uncovered no
smooth canonical curve C of genus 4 with C(F42) = ∅, which proves the theorem.

Algorithm 2 gives a more detailed description of Step 1, which we now discuss and justify.
Write ~X = (X0, . . . , X19) for the tuple of cubic monomials in F4[x, y, z, w], relative to some

fixed ordering. For any coefficient vector ~c ∈ F20
4 r{0}, the dot product ~c · ~X is a cubic form,

and conversely any cubic form can be represented by such a dot product.

Definition 5.9. Define the set A ⊂ F20
4 of coefficient vectors ~c such that in the cubic form

~c · ~X , the following are true:

• The entry corresponding to x3 is 1;
• The entry corresponding to y3 is nonzero;
• The entry corresponding to x2y is 0;
• The entry corresponding to xy2 is 0;
• The entry corresponding to z3 is 0; and
• The entry corresponding to w3 is 0.

We claim that if C is a curve of gonality 5, then it may be written as the intersection of
the quadric surface V (Q) and a cubic surface V (F ), where F = ~c · ~X for some ~c ∈ A. Indeed,
the point P = (1 : 0 : 0 : 0) lies on the quadric surface V (Q). As C(F42) = ∅, this point does

not lie on C, and hence F = ~c · ~X does not vanish at P . That is, the x3-coefficient is nonzero.
Since we are only interested in the vanishing locus of F , we may rescale ~c if necessary so that
the x3-coefficient of F is 1. A similar argument applied to the point (0, 1, 0, 0) shows that we
may take the y3-coefficient to be nonzero. If the x2y-coefficient is a, then we replace F with
F − axQ to get another cubic with the same x3- and y3-coefficients, but with x2y-coefficient
equal to 0. The same trick applied to an appropriate multiple of yQ, zQ, and wQ kills the
coefficients on xy2, z3, and w3. Note that modifying F by a multiple of Q does not change
its vanishing locus. This completes the justification of the claim.

There are 17 rational points on V (Q) and 272 quadratic non-rational points. It follows
that the set of representatives computed in the first step of Algorithm 2 has cardinality
17 + 272

2
= 153. Storing the evaluated monomial vectors allows us to compute dot products

rather than cubic polynomial evaluations in the main loop. We have already discussed why
it suffices to consider only coefficient vectors in A when looking for cubic surfaces that may
contain a curve of gonality 5. The if-statement inside the main loop checks that V (F ) passes
through no quadratic point of V (Q); it suffices to check this for Galois-orbit representatives
since F is defined over F4. This completes the justification of Algorithm 2.

Our C-implementation of Algorithm 2 ran in 1.25 hours on a single 2.6Ghz Intel Core i5
with 16GB RAM, and it found 65, 280 cubic forms.

A few practical observations are in order:

11



Algorithm 2 — Compute a list of cubic forms F ∈ F4[x, y, z, w] such that the variety
V (F ) ∩ V (Q) has no point over F42 , and such that any curve of genus 4 and gonality 5 is
isomorphic to one of these intersections

1: compute representatives for the Gal(F42/F4)-orbits in the set V (Q)(F42) ⊂ P3

2: for P ∈ V (Q)(F42) do
3: store the vector ~vP = (X0(P ), . . . , X19(P )) of cubic monomials evaluated at P
4: end for

5: initialize an empty list L
6: for each coefficient vector ~c ∈ A as in Definition 5.9 do

7: if ~c · ~vP 6= 0 for every P ∈ V (Q)(F42) then append F = ~c · ~X to L
8: end for

9: return L

• Using dot products instead of polynomial evaluations provide a huge savings in arith-
metic operations; we learned this trick from [20].
• The if-block in the main loop can terminate as soon as some dot product is zero.
If we view a cubic polynomial as a random function with uniform random values in
F16, then one would expect to evaluate around 16 points before seeing a zero. When
we ran the code, 15.39 points were tested per cubic.
• For finite field arithmetic, we initially used the FLINT library. However, most of
the runtime in the dot product was being spent on memory allocation because finite
fields are implemented using polynomials and multi-precision integer arithmetic. To
get around this obstacle, we created addition/multiplication tables for F4-arithmetic
and then performed these operations via lookup into the tables.
• For rapid debugging, we wrote the code to be flexible enough to work over F2 or F3

as well. Our implementation over F2 found 104 cubics and ran in negligible time.
Over F3, it found 2, 248 cubics and required 19 seconds to complete.

Now we turn to Step 2 of the computation that proves Theorem 5.8, which was completed
with an implementation of Algorithm 3.

Let C be a curve of genus 4 and gonality 5 over F4. We know C = V (F )∩ V (Q) for some
cubic form F that was output by Step 1. We may assume without loss that F is the first such
form that was output, so that F is immediately added to the set M . If C ′ = V (F ′) ∩ V (Q)
is another such curve isomorphic to C, then there is an element g ∈ GL4(F4) that maps C
to C ′. Since the quadric surface containing C ′ is unique [5, Lem. 5.1], g must lie in O(Q).
Thus, we have an equality of homogeneous ideals: (F ◦ g,Q) = (F ′, Q). Consequently, there
is a linear form H and a ∈ F4 such that F ′ = a(F ◦ g)+HQ. The while-loop in Algorithm 3
identifies this relationship and removes F ′ from S. It follows that F , and not F ′, appears in
the list M .

To complete the justification of Algorithm 3, we must argue that each of its outputs yields a
smooth geometrically connected scheme of dimension 1. By construction, C := V (F )∩V (Q)
is smooth for F ∈ M . And C is 1-dimensional, for otherwise F = QH for some linear
form H , which contradicts the fact that F has nonzero x3-coefficient. To see that C is
geometrically connected, we pass to the algebraic closure F̄4, where C is a (3, 3)-divisor on
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Algorithm 3 — Compute a list of cubic forms F ∈ F4[x, y, z, w] such that any curve of
genus 4 and gonality 5 is isomorphic to V (F ) ∩ V (Q) for exactly one choice of F on the list

1: compute the orthogonal group O(Q)
2: initialize an empty list M
3: S ← the list of cubic forms output by Algorithm 2.
4: while S is nonempty do

5: pop the first element F from S
6: for each g ∈ O(Q) do
7: compute F (g(x, y, z, w)), scale the coefficient on x3 to be 1, and subtract an appro-

priate multiple of Q to kill the x2y- xy2-, z3-, and w3-coefficients
8: remove the resulting element from S
9: end for

10: if V (F ) ∩ V (Q) is smooth then append F to M
11: end while

12: return M

the surface V (Q) ∼= P1 × P1. If C = C ′ ∪C ′′, then C would have a singularity at each point
of intersection of C ′ and C ′′.

Our Sage code performs Algorithm 3 in under 2 minutes. It identified 18 ideals correspond-
ing to 1-dimensional varieties C with C(F42) = ∅, but each of these varieties is singular.
Therefore, there is no curve of genus 4 and gonality 5 over F4.

We close with a few implementation remarks:

• Sage defaults to a try/except construction to determine if a Gröbner basis or pri-
mary decomposition has already been computed for a given ideal. The try/except
construction is painfully slow if the “except” clause is executed often, so we wrote
special routines that avoid these issues.
• As with Step 1, we tested our code over F2 and F3 for rapid debugging and verifica-
tion of output. Over F2, we found a unique curve of genus 4 and gonality 5 up to
isomorphism. This agrees with the recent calculations of Xarles [27]. Over F3, we
found a unique isomorphism class of genus-4 curves with gonality 5.

6. Curves of Genus 5

We have already shown that N3(5, 2) = 8 and N4(5, 2) = 10 in §2. We rapidly dispose of
curves of gonality 3 and 4 with examples in the next couple of subsections, and we turn to
a description of our computation on curves of gonality at least 5 in §6.3.

6.1. Gonality 3. For the fields at hand, the gonality-point inequality will be a sufficient
upper bound for the number of points on a trigonal curve:

#C(Fq) ≤ 3(q + 1).

Theorem 6.1. N3(5, 3) = 12.

Proof. The gonality-point inequality gives a sharp upper bound. The plane curve with
defining polynomial

x3y2 − xy4 + x4z − x2y2z + y4z − x2yz2 + y3z2 − x2z3
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is singular only at (0 : 0 : 1), where it has a cusp. By [5, Lem. 6.1], we find that its
normalization C has genus 5 and is trigonal. The above plane curve passes through 12
rational points of the plane. Blowing up (0 : 0 : 1) yields a single rational point on C, so we
conclude that N3(5, 3) ≥ 12. �

Theorem 6.2. N4(5, 3) = 15.

Proof. The gonality-point bound shows that N4(5, 3) ≤ 15. The plane curve with defining
polynomial

(t+ 1)x3y2 + x2y3 + txy4 + tx4z + tx3yz + tx2y2z

+xy3z + ty4z + (t+ 1)x3z2 + (t+ 1)x2yz2 + y3z2 + x2z3

passes through 15 rational points, has a cusp at (0 : 0 : 1), and no other singularity.
Just as in the proof of Theorem 6.1, its normalization is a trigonal curve of genus 5 and
N4(5, 3) ≥ 15. �

6.2. Gonality 4. The upper bound Nq(5, 4) ≤ Nq(5) enables us to determine Nq(5, 4) for
q = 3, 4.

Theorem 6.3. N3(5, 4) = 13.

Proof. Ritzenthaler [19] located the following curve C ⊂ P4 = Proj F3[v, w, x, y, z] of genus 5
with 13 rational points, presented as the complete intersection of three quadric hypersurfaces:

vw + xy = 0

−vx+ xz − y2 + z2 = 0

v2 + vx+ w2 − z2 = 0.

(To get this form from Ritzenthaler’s paper, set x1 = v, x2 = x, x3 = z, x4 = −y, x5 = w.)
Lemma 6.6 of [5] shows that C has gonality 4. Thus, N3(5, 4) ≥ 13. Conversely, Lauter
showed that N3(5) ≤ 13 [12]. �

Theorem 6.4. N4(5, 4) = 17.

Proof. Howe and Lauter showed that N4(5) = 17 [8], so it suffices to exhibit a curve of
genus 5 and gonality 4 with 17 rational points. Fischer gave the following example on
manypoints.org in 2014. Let C be the (smooth proper) curve birational to the affine
scheme in A3 = F4[x, y, z] cut out by the equations

y2 + y + x3 = 0

z2 + z + yx2 + xy2 = 0.

Magma verifies that it has genus 5 and 17 rational points. If we write E for the elliptic curve
with affine equation y2 + y = x3, then we see immediately that C is a double-cover of E.
Consequently, C has gonality at most 4. If C has gonality γ ≤ 3, then the gonality-point
bound shows that #C(F4) ≤ 5γ ≤ 15. Thus C has gonality exactly 4, and N4(5, 4) = 17. �
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6.3. Gonality 5 and 6. The primary difficulty in immediately applying the code that we
used to treat curves over F2 in [5] is that the relevant search space of quadric surfaces has
increased dramatically in size: from 215 ≈ 104.5 to 315 ≈ 107.2 or 415 ≈ 109.0. Beyond some
coding tricks to speed things up and to deal with memory management, this required three
major changes to our approach:

• We moved away from thinking of a curve C as cut out by a triple (Q1, Q2, Q3)
of quadratic forms and toward thinking of C as defined by the homogeneous ideal
generated by this triple. In practice, this cut down the number of choices of Q2 to be
considered for each of the standard choices of Q1. Additional details are given below.
• We did not attempt to find all curves of gonality at least 5. Instead, we targeted
curves with a particular number of points and either stopped searching as soon as an
example was located or finished the search to certify that no curve with that many
points exists. The available bounds N3(5) = 13 and N4(5) = 17 limited the total
number of searches that were necessary.
• We distributed much of the computation across 48 CPUs — Xeon(R) E5-2699 v3
2.30GHz with 500GB shared memory — each running its own Sage process in order
to complete the searches in a reasonable amount of time. Despite this, some of the
searches over F4 still required multiple days of compute time.

We now briefly sketch the strategy used to search for curves of genus 5 and gonality at
least 5; the reader should consult [5, §6.4] for additional details. A non-hyperelliptic, non-
trigonal curve of genus 5 can be written as the intersection of three quadric surfaces in
P4 = Proj Fq[v, w, x, y, z], given by quadratic forms Q1, Q2, Q3. By [5, Lem. 6.6], we may
take Q1 to be of one of the following forms:

III. vw +N(x, y), where N is a norm form for Fq2/Fq, or
IV. vw + xy + z2.

We may use the action of the orthogonal group O(Q1) to restrict Q2 to a small set of forms.
More precisely, we construct a set A(Q1) of quadratic forms Q2 such that

(1) Each ideal 〈Q1, Q2〉 cuts out a surface in P4;
(2) Every quadratic form in the ideal 〈Q1, Q2〉 is of the same type as Q1 or of type IV;

and
(3) For any quadratic form Q such that the ideal 〈Q1, Q〉 satisfies (1) and (2), there is a

unique Q2 ∈ A(Q1) and an element g ∈ O(Q1) such that 〈Q1, Q ◦ g〉 = 〈QQ, Q2〉.
Finally, we let B(Q1) be the set of quadratic forms of the same type as Q1 or of type IV.

Before beginning any of the searches for genus 5 curves, we precompute O(Q1), B(Q1),
and A(Q1), in that order. Computing O(Q1) as in Section 4 is straightforward and fast. The
computation of B(Q1) is also straightforward: for each quadratic form Q we can determine
its type by computing the dimension of the singular locus of the quadric surface V (Q) and
the number of rational points on this surface. As there are a huge number of forms to look
at, and as this operation is easily parallelized, we distributed it across 24 CPUs — Xeon(R)
E5-2699 v3 2.30GHz with 500GB shared memory — each running its own Sage process.
Finally, computing A(Q1) requires one to keep track of which ideals have already appeared in
some O(Q1)-orbit; this was performed on a single CPU. Knowledge of the precomputed set
B(Q1) was used to determine the type of candidate elements of A(Q1). See Table 3 for the
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sizes of these sets and the wall time required to compute them. Note that when computing
B(vw+xy+z2), we can recycle most of the computation from B(vw+N(x, y)), so the latter
requires substantially less wall time to compute.

With these precomputations in hand, we now give a coarse description of our algorithm for
searching for curves of genus 5 and gonality 5 or 6; see Algorithm 4. Rather than searching
for all such curves, we instead attempt to find just one such curve if it exists. In order
to keep each individual process from running too long, we target curves with a particular
number of rational points. For curves of gonality 5, the total number of searches is limited
by Nq(5, 5) ≤ Nq(5). For curves of gonality 6, we look for pointless curves with no rational
point over Fq3 [5, Cor. 2.5].

Algorithm 4 — Find a genus 5 curve over Fq with (a) gonality 5 and n rational points, or
(b) gonality 6.

1: for Q1 ∈ {vw +N(x, y), vw + xy + z2} do

2: for (Q2, Q3) ∈ A(Q1)× B(Q1) do

3: if case (a) and #V (Q1, Q2, Q3)(Fq) 6= n then continue
4: if case (b) and #V (Q1, Q2, Q3)(Fq3) > 0 then continue
5: if every nonzero member of the linear span of {Q1, Q2, Q3} has the same type as Q1

or type IV, and the variety V (Q1, Q2, Q3) is irreducible and smooth of dimension 1
then return (Q1, Q2, Q3)

6: end for

7: end for

Tables 5 and 6 indicate whether we found a curve lying on V (Q1) with a particular number
of points or with gonality 6, as well as the total wall time involved for all searches. As a
sanity check on our code, and also to see how this new strategy compares to the one in [5],
we consider the case of curves over F2; these details are given in Table 4.

Looking at the tables, we immediately conclude the following:

Theorem 6.5.

N3(5, 5) = 4; N3(5, 6) = −∞; N4(5, 5) = 5; and N4(5, 6) = −∞.

Example 6.6. Our search uncovered the following example of a curve of genus 5 and gonality
5 over F3 with 4 rational points:

Q1 = vw + xy + z2

Q2 = x2 + wy + vz − xz

Q3 = vw − wx+ vy + xy + vz + xz + yz

Example 6.7. We located the following example of a curve of genus 5 and gonality 5 over F4

with 5 rational points:

Q1 = vw + xy + z2

Q2 = vz + wy + x2 + tz2

Q3 = v2 + vw + wz + txy + xz + y2 + z2
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q Q1 #O(Q1) wall time #B(Q1) wall time #A(Q1) wall time

2 vw + x2 + xy + y2 1920 0s 19,096 10s 11 11s
vw + xy + z2 720 0s 13,888 0s 5 4s

3 vw + x2 + y2 116, 640∗ 3s 5,606,172 13m 11s 33 51m
vw + xy + z2 51, 840∗ 19s 4,586,868 16s 16 24m

4 vw + x2 + txy + y2 2,088,960 2m 13s 305,230,464 17h 1m 83 43h 47m
vw + xy + z2 979,200 3m 263,983,104 12m 37 20h 19m

Table 3. Size and wall time for computation of the sets O(Q1), B(Q1), and
A(Q1). We include the data for the case q = 2 for comparison, both with
the cases q = 3, 4 as well as with the sizes in [5, §6.4]. The asterisk on the
orthogonal group sizes for the case q = 3 indicate that we computed and
counted PO(Q1) = O(Q1)/{±1}.

Q1 \ #C(F2) 0 1 2 3 ≥ 4 gonality 6 Wall Time

vw + x2 + y2 X X X ✗ ✗ ✗ 40s
vw + xy + z2 ✗ ✗ ✗ X ✗ ✗ 24s

Table 4. Data for curves of genus 5 and gonality at least 5 over F2. We
indicate whether a curve of gonality 5 on V (Q1) with a specified number of
rational points exists, whether a curve of gonality 6 on V (Q1) exists, and
the total wall time required on 48 CPUs for all of the searches. Note that
#C(F2) ≤ N2(5) = 9.

Q1 \ #C(F3) 0 1 2 3 4 ≥ 5 gonality 6 Wall Time

vw + x2 + y2 X X X X ✗ ✗ ✗ 59m
vw + xy + z2 ✗ ✗ ✗ ✗ X ✗ ✗ 21m

Table 5. Data for curves of genus 5 and gonality at least 5 over F3. We
indicate whether a curve of gonality 5 on V (Q1) with a specified number of
rational points exists, whether a curve of gonality 6 on V (Q1) exists, and
the total wall time required on 48 CPUs for all of the searches. Note that
#C(F3) ≤ N3(5) = 13.

Q1 \ #C(F4) 0 1 2 3 4 5 ≥ 6 gonality 6 Wall Time

vw + x2 + txy + y2 X X X X X ✗ ✗ ✗ 305h 52m
vw + xy + z2 ✗ ✗ ✗ ✗ ✗ X ✗ ✗ 43h 26m

Table 6. Data for curves of genus 5 and gonality at least 5 over F4. We
indicate whether a curve of gonality 5 on V (Q1) with a specified number of
rational points exists, whether a curve of gonality 6 on V (Q1) exists, and
the total wall time required on 48 CPUs for all of the searches. Note that
#C(F4) ≤ N4(5) = 17.
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