
SMALL VALUES OF |L′/L(1, χ)|

YOUNESS LAMZOURI AND ALESSANDRO LANGUASCO

Abstract. In this paper, we investigate the quantity mq := minχ,χ0 |L ′/L(1, χ)|, as q → ∞
over the primes, where L(s, χ) is the Dirichlet L-function attached to a non trivial Dirichlet
character modulo q. Our main result shows that mq � log log q/

√
log q. We also compute

mq for every odd prime q up to 107. As a consequence we numerically verified that for
every odd prime q, 3 ≤ q ≤ 107, we have c1/q < mq < 5/√q, with c1 = 21/200. In
particular, this shows that L ′(1, χ) , 0 for every non trivial Dirichlet character χ mod q where
3 ≤ q ≤ 107 is prime, answering a question of Gun, Murty and Rath in this range. We also
provide some statistics and scatter plots regarding the mq-values, see Section 6. The programs
used and the computational results described here are available at the following web address:
http://www.math.unipd.it/~languasc/smallvalues.html.

1. Introduction

Let q be an odd prime, χ be a non-trivial Dirichlet character mod q, and L(s, χ) be the
Dirichlet L-function attached to χ. We also denote by χ0 the trivial Dirichlet character mod q.
It is well known that the size of the logarithmic derivative of L(s, χ) at 1 is connected with the
distribution of its non-trivial zeros; moreover, its average over non trivial characters was recently
studied by Ihara in his papers [7, 8] about the Euler-Kronecker constant for number fields. In
particular, denoting by ζq a primitive q-th root of unity and ζQ(ζq)(s) the Dedekind zeta-function
of Q(ζq), the expansion of ζQ(ζq)(s) near s = 1 is

ζQ(ζq)(s) =
c−1

s − 1
+ c0 +O(s − 1),

and the Euler-Kronecker constant of Q(ζq) is defined as

lim
s→1

( ζQ(ζq)(s)
c1

− 1
s − 1

)
=

c0
c−1

.

Recalling that ζQ(ζq)(s) = ζ(s)∏χ,χ0 L(s, χ), where ζ(s) is the Riemann zeta-function, by
logarithmic differentiation we immediately get that the Euler-Kronecker constant for the prime
cyclotomic field Q(ζq) is

Gq := γ +
∑
χ,χ0

L′

L
(1, χ). (1.1)

The quantityGq is sometimes denoted by γq but this conflicts with notations used in the literature.
Computational results onGq are developed in the papers of Ford-Luca-Moree [4] and Languasco
[12].
These results motivate the study of extreme values of |L′/L(1, χ)| both theoretically and

computationally. Concerning the large values of |L′/L(1, χ)|, Ihara, Murty and Shimura [9]
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proved that that under the assumption of the Generalised Riemann Hypothesis we have

Mq := max
χ,χ0 mod q

���L′
L
(1, χ)

��� ≤ (2 + o(1)) log log q.

On the other hand, by adapting the techniques of Lamzouri [10], one can show that if q is a large
prime then

Mq ≥ (1 + o(1)) log log q.

Moreover, computational results on Mq can be found in Languasco [12] and in Languasco-Righi
[13].

In this paper, we investigate the small values of |L′/L(1, χ)|. Define

mq := min
χ,χ0 mod q

���L′
L
(1, χ)

��� . (1.2)

Then, we prove the following result

Theorem 1.1. Let q be a large prime. Then, we have

mq �
log log q√

log q
.

In fact, there are at least q(log log q)2/log q non-principal characters χ mod q such that

L′

L
(1, χ) � log log q√

log q
.

Moreover, the implicit constants are absolute and effective.

Theorem 1.1 gives the first known non-trivial upper bound for mq. Furthermore, using the
algorithm developed in Languasco-Righi [13] together with the results of Languasco [12], we
were able to compute the values of mq for q ≤ 107 and obtain the following computational result.

Theorem 1.2. For every odd prime q, 3 ≤ q ≤ 107, we have c1/q < mq < 5/√q, with
c1 = 21/200.

In particular, the lower bound in Theorem 1.2 implies the following

Corollary 1.3. For every odd prime q up to 107 and for every non-trivial Dirichlet character
χ mod q, we have L′(1, χ) , 0.

Corollary 1.3 is connected with a conjecture of Gun, Murty and Rath (see Conjecture 1.2 of
[6]) concerning the linear independence over the algebraic closure of Q of the values log Γ(a/q),
1 ≤ a ≤ q, (a, q) = 1. In particular, letting

Zq :=
{
α : α =

L′

L
(1, χ) for some primitive character χ mod q

}
,

Theorem 1.2 implies that 0 < Zq for every odd prime q up to 107, thus responding affirmatively
to a question on page 6 of [6] in this range of q.
Theorem 1.2 also suggests that the upper bound of Theorem 1.1 is far from being optimal.

In fact, the data on mq for q ≤ 107 (see Figures 1, 2 and 3 at the end of the paper) show a
remarkable fit between the maximal and minimal values of mq, and the curves b1/

√
q and c1/q

respectively, for some constant b1 > 0. Based on this we make the following conjecture



SMALL VALUES OF |L′/L(1, χ)| 3

Conjecture 1.4. For all ε > 0 and for all odd primes q we have

q−1−ε �ε mq �ε q−1/2+ε .

In particular, for all odd primes q, 0 < Zq.
In order to prove Theorem 1.1, our idea consists of studying the distribution of L′/L(1, χ) as

χ varies among non-principal characters modulo q. Indeed, we shall compare this distribution to
that of an adequate probabilistic random model, which we construct as follows. Let {X(p)}p be
a sequence of independent random variables, indexed by the primes, and uniformly distributed
on the unit circle. We extend the X(p) multiplicatively, by putting X(n) = ∏k

i=1 X(pi)ai if the
prime factorization of n is n =

∏k
i=1 pai

i . We now consider the random sum

Ld(1,X) := −
∞∑

n=1

Λ(n)X(n)
n

=
∑

p

(log p)X(p)
p −X(p) , (1.3)

where Λ(n) denotes the von Mangoldt function. Since E(X(n)) = 0 for all n > 1, and∑
n≥2Λ(n)2/n2 < ∞, it follows from Kolmogorov’s three series theorem that Ld(1,X) is almost

surely convergent. Ihara, Murty and Shimura [9] proved that as q → ∞ through primes, the
distribution of L′/L(1, χ) as χ varies over non-principal characters modulo q, converges to that
of Ld(1,X). More precisely, for any rectangle R ⊂ C we have

lim
q→∞

1
q − 1

���{χ , χ0 mod q :
L′

L
(1, χ) ∈ R

}��� = P (Ld(1,X) ∈ R) . (1.4)

In order to gain an understanding of how small L′/L(1, χ) can be, we shall improve the results
of Ihara, Murty and Shimura, by bounding the “discrepancy” of the distribution of L′/L(1, χ),
which we define as

D(q) := sup
R

���� 1
q − 1

���{χ , χ0 mod q :
L′

L
(1, χ) ∈ R

}��� − P (Ld(1,X) ∈ R)���� ,
where the supremum is taken over all rectangles (possibly unbounded) of the complex plan with
sides parallel to the coordinate axes. Using the approach of Lamzouri, Lester and Radziwiłł
[11], we prove the following result, from which we shall deduce Theorem 1.1.
Theorem 1.5. Let q be a large prime. Then we have

D(q) � (log log q)2
log q

.

To establish (1.4), Ihara, Murty and Shimura investigated the moments of L′/L(1, χ). For any
positive integer k, we define

Λk(n) =
∑

n1,n2,...,nk≥1
n1n2···nk=n

Λ(n1)Λ(n2) · · ·Λ(nk). (1.5)

Then for all complex numbers s with Re(s) > 1 we have( L′

L
(s, χ)

) k
= (−1)k

∞∑
n=1

Λk(n)
ns χ(n).

Ihara, Murty and Shimura proved (see Theorem 5 of [9]) that for all fixed integers k, ` ≥ 1 and
for all ε > 0 we have

1
q − 1

∑
χ,χ0 mod q

( L′

L
(1, χ)

) k ( L′

L
(1, χ)

)`
= (−1)k+`

∞∑
n=1

Λk(n)Λ`(n)
n2 +Ok,`,ε(qε−1). (1.6)
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Note that the main term of this asymptotic formula equals the corresponding moments of the
probabilistic random model. Indeed, since E(X(n)X(m)) = 1 if m = n and equals 0 otherwise,
then for all k, ` ≥ 1 we have

E
(
Ld(1,X)kLd(1,X)

`
)
= (−1)k+`

∞∑
n=1

Λk(n)Λ`(n)
n2 . (1.7)

Moreover, the factor qε in the error term of (1.6) is due to the possible “exceptional” character
modulo q†. In order to prove Theorem 1.5, we need to show that the asymptotic formula
(1.6) holds uniformly for k, ` � (log q)/log log q. To this end, we need to remove the possible
contribution of the exceptional character χ1, as it will heavily affect the moments. Let

Fq := {χ , χ0 mod q : χ is not exceptional}. (1.8)
Note that q − 2 ≤ |F| ≤ q − 1. We establish the following result, which improves (1.6).

Theorem 1.6. Let q be a large prime. For all positive integers k, ` ≤ log q/(50 log log q) we
have

1
q − 1

∑
χ∈Fq

( L′

L
(1, χ)

) k ( L′

L
(1, χ)

)`
= E

(
Ld(1,X)kLd(1,X)

`
)
+O

(
q−1/30

)
.

The plan of the paper is as follows. In Section 2 we shall investigate the distribution of the
random model Ld(1,X), and deduce Theorem 1.1 from Theorem 1.5. In Section 3 we establish
Theorem 1.6, which gives asymptotic formulas for large moments of L′/L(1, χ). These are then
used in Section 4 to show that the characteristic function of L′/L(1, χ) is very close to that of
the probabilistic random model Ld(1,X). Theorem 1.5 will be deduced from this result using
Beurling-Selberg polynomials. In Section 5, we shall present the numerical approach we use
to prove Theorem 1.2. Finally, in Section 6, located after the References, we shall insert some
tables and figures.

Acknowledgements. The second author (A. Languasco) would like to thank Luca Righi
(University of Padova) for his help in organising the computation described in Section 5 on the
University of Padova Strategic Research Infrastructure Grant 2017: “CAPRI: Calcolo ad Alte
Prestazioni per la Ricerca e l’Innovazione”, http://capri.dei.unipd.it.

2. The distribution of Ld(1,X), and the deduction of Theorem 1.1

The characteristic function of the joint distribution of Re(Ld(1,X)) and Im(Ld(1,X)) is defined
by

Φrand(u, v) := E
(
exp(iuRe(Ld(1,X)) + ivIm(Ld(1,X))

) )
, (2.1)

for u, v ∈ R. By (1.3) it follows that

Φrand(u, v) =
∏

p

Φrand(u, v; p),

where
Φrand(u, v; p) := E

(
exp

(
iuRe
(log p)X(p)

p −X(p) + ivIm
(log p)X(p)

p −X(p)

))
.

We first show that Φrand(u, v) is rapidly decreasing as |u|, |v | → ∞.
†By an exceptional character modulo a prime q, we mean the unique real character χ1 (if it exists) such that

L(s, χ1) has a zero ρ with Re(ρ) > 1 − c/log(q), where c > 0 is a fixed small constant independent of q.

http://capri.dei.unipd.it
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Proposition 2.1. There exists a constant c0 > 0 such that for all u, v ∈ R such that |u|, |v | ≥ 2
we have

Φrand(u, v) � exp
(
− c0(|u| + |v |)

)
.

Proof. First, note that for all primes p and all u, v ∈ R we have |Φrand(u, v; p)| ≤ 1. Hence, we
get

|Φrand(u, v)| ≤
∏
p≥X

|Φrand(u, v; p)|, (2.2)

for any parameter X ≥ 2. Furthermore, observe that
(log p)X(p)

p −X(p) =
log p

p
X(p) +O

( log p
p2

)
.

This implies

Φrand(u, v; p) = E

(
exp

(
iuRe
(log p)X(p)

p
+ ivIm

(log p)X(p)
p

))
+O

(
(|u| + |v |) log p

p2

)
.

Therefore, if p > max(|u| log |u|, |v | log |v |) then

Φrand(u, v; p) = E
(
1 + iuRe

(log p)X(p)
p

+ ivIm
(log p)X(p)

p

− 1
2

(
uRe
(log p)X(p)

p
+ vIm

(log p)X(p)
p

)2)
+O

( (|u| + |v |)3 log3 p
p3 +

(|u| + |v |) log p
p2

)
= 1 − (u2 + v2) log2 p

4p2 +O
( (|u| + |v |)3 log3 p

p3 +
(|u| + |v |) log p

p2

)
,

(2.3)

since E(X(p)) = 0, E
(
ReX(p)ImX(p)

)
= 0, and E

(
(ImX(p)2

)
= E

(
(ReX(p)2

)
= 1/2. We now

choose X = A max(|u| log |u|, |v | log |v |) for a suitably large constant A > 0. Then inserting this
estimate in (2.2), we obtain

|Φrand(u, v)| ≤ exp
(
−(u2 + v2)

∑
p>X

log2 p
4p2

+O
(
(|u| + |v |)3

∑
p>X

log3 p
p3 + (|u| + |v |)

∑
p>X

log p
p2

))
� exp

(
− c0(|u| + |v |)

)
.

where c0 > 0 is a constant that depends on A. This completes the proof. �

Since Φrand(u, v) is exponentially decreasing by Proposition 2.1, it follows from the Fourier
inversion formula that the distribution of Ld(1,X) is absolutely continuous and has a smooth
density function defined by

g(x, y) :=
1
(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−i(ux+vy)

Φrand(u, v)dudv.

To deduce Theorem 1.1 from Theorem 1.5, we need to show that g(0, 0) > 0. This follows from
the following result of Borchsenius and Jessen [1].
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Theorem 2.2 (Borchsenius and Jessen [1]). Let Y (n) be a sequence of independent random
variables uniformly distributed on the unit circle. Let f (z) = ∑∞

k=1 `k zk be an analytic function
in a disc |z | < ρ, such that `1 , 0. Let {rn}n≥1 and {λn}n≥1 be sequences of real numbers such
that 0 < rn < ρ and

∞∑
n=1
|λn |r2

n < ∞, and
∞∑

n=1
λ2

nr2
n < ∞.

Then the sum of random variables

Y =

∞∑
n=1

λn f (rnY (n)),

is almost surely convergent and has a absolutely continuous distribution with a smooth density
h(x, y). Moreover, if

∑∞
n=1 |λn |rn diverges then h(x, y) > 0 for all (x, y) ∈ R2.

Remark 2.3. Borchsenius and Jessen [1] only proved this result for the sum of random variables∑∞
n=1 f (rnY (n)) (see Theorems 5 and 7 of [1]), but their proof extends easily to the more general

case
∑∞

n=1 λn f (rnY (n)).

Corollary 2.4. We have g(x, y) > 0 for all (x, y) ∈ R2.

Proof. By (1.3) we have

Ld(1,X) =
∑

p

(log p) f
(X(p)

p

)
,

where

f (z) = z
1 − z

=

∞∑
n=1

zn,

is analytic in |z | < 1. We can then verify that all the conditions of Theorem 2.2 are verified,
since

∑
p(log p)/p2 and

∑
p(log p)2/p2 converge, and

∑
p(log p)/p diverges. This completes the

proof. �

Deducing Theorem 1.1 from Theorem 1.5. We recall that q is a prime number. Let ε = ε(q) > 0
be a small parameter to be chosen, such that ε(q) → 0 as q→∞. Let Ψq(ε) denotes the number
of non-principal characters χ , χ0 mod q such that���L′

L
(1, χ)

��� ≤ ε.
By Theorem 1.5 we have

Ψq(ε)
q − 1

≥ 1
q − 1

���{χ , χ0 mod q :
L′

L
(1, χ) ∈

(
−ε

2
,
ε

2

)2}���
= P

(
Ld(1,X) ∈

(
−ε

2
,
ε

2

)2)
+O

( (log log q)2
log q

)
.

(2.4)

On the other hand if ε is suitably small then we have

P
(
Ld(1,X) ∈

(
−ε

2
,
ε

2

)2)
=

∫ ε/2

−ε/2

∫ ε/2

−ε/2
g(x, y)dxdy � ε2,
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since g is continuous on R2 and g(0, 0) > 0 by Corollary 2.4. Hence, choosing ε =

C log log q/
√

log q for some suitably large constant C we deduce that

Ψq(ε) �
q(log log q)2

log q
,

which implies the result. �

We end this section by proving the following the proposition, which gives uniform bounds for
the moments of |Ld(1,X)|. This will be used in the proof of Theorem 1.5.

Proposition 2.5. There exists a constant c > 0 such that for all positive integers k ≥ 8 we have

E
(
|Ld(1,X)|2k

)
≤

(
c log k

)2k
.

Proof. Let y > 2 be a real number to be chosen. By Minkowski’s inequality and a weak form of
the Prime Number Theorem we have

E
(
|Ld(1,X)|2k

)1/(2k)
≤ E

(���∑
n≤y

Λ(n)X(n)
n

���2k )1/(2k)
+ E

(���∑
n>y

Λ(n)X(n)
n

���2k )1/(2k)

≤
∑
n≤y

Λ(n)
n
+ E

(���∑
n>y

Λ(n)X(n)
n

���2k )1/(2k)

� log y + E
(���∑

n>y

Λ(n)X(n)
n

���2k )1/(2k)
.

(2.5)

Let
Λ`,y(n) :=

∑
n1,n2,...,n`>y
n1n2···n`=n

Λ(n1)Λ(n2) · · ·Λ(n`).

Then, we have

E
(���∑

n>y

Λ(n)X(n)
n

���2k )
= E

(∑
n>yk

Λk,y(n)X(n)
n

∑
n>yk

Λk,y(m)X(m)
m

)
=

∑
n>yk

Λk,y(n)2

n2 ≤
∑
n>yk

(log n)2k

n2 ,

since

Λ`,y(n) ≤ Λ`(n) ≤
(∑

m|n
Λ(m)

)`
= (log n)` . (2.6)

Moreover, since (log n)2k/
√

n is decreasing for n > e4k , we deduce that if y ≥ e4 then

E
(���∑

n>y

Λ(n)X(n)
n

���2k )
≤ (k log y)2k

yk/2

∑
n>yk

1
n3/2 �

(k log y)2k

yk .

Choosing y = k2 and inserting this estimate in (2.5) completes the proof. �
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3. Asymptotic formulas for the moments of L′/L(1, χ) : Proof of Theorem 1.6

We first start with the following classical lemma, which provides a bound for L′/L(s, χ) when
s is far from a zero of L(z, χ).
Lemma 3.1. Let χ be a non-principal character modulo q. Let t be a real number and suppose
that L(z, χ) has no zeros for Re(z) > σ0 and |Im(z)| ≤ |t | + 1. Then for any σ > σ0 we have

L′

L
(σ + it, χ) � log(q(|t | + 2))

σ − σ0
.

Proof. Let ρ runs over the non-trivial zeros of L(s, χ). Then it follows from equation (4) of
Chapter 16 of Davenport [2] and a simple density theorem that

L′

L
(σ + it, χ) =

∑
ρ : |t−Im(ρ)|<1

1
σ + it − ρ +O

(
log(q(|t | + 2))

)
� 1

σ − σ0

( ∑
ρ : |t−Im(ρ)|<1

1
)
+ log(q(|t | + 2))

� log(q(|t | + 2))
σ − σ0

,

as desired. �

Using this lemma we can approximate large powers of L′/L(1, χ) by short Dirichlet polyno-
mials, if L(s, χ) has no zeros in a certain region to the left of the line Re(s) = 1.

Proposition 3.2. Let 0 < δ < 1/2 be fixed, and q be large. Let y ≥ (log q)10/δ be a real number
and k ≤ 2 log q/log y be a positive integer. Then, for any non-principal character χ mod q, if
L(s, χ) is non-zero for Re(s) > 1 − δ and |Im(s)| ≤ ykδ, then we have( L′

L
(1, χ)

) k
= (−1)k

∑
n≤yk

Λk(n)
n

χ(n) +Oδ

(
y−kδ/4

)
,

where Λk(n) is defined in (1.5).
Proof. Without loss of generality, suppose that yk ∈ Z + 1/2. Let c = 1/(k log y), and T be a
large real number to be chosen. Then by Perron’s formula, we have

1
2πi

∫ c+iT

c−iT

( L′

L
(1 + s, χ)

) k yks

s
ds = (−1)k

∑
n≤yk

Λk(n)
n

χ(n) +O
( ykc

T

∞∑
n=1

Λk(n)
n1+c | log(yk/n)|

)
.

To bound the error term of this last estimate, we split the sum into three parts: n ≤ yk/2,
yk/2 < n < 2yk and n ≥ 2yk . The terms in the first and third parts satisfy | log(yk/n)| ≥ log 2,
and hence their contribution is

� 1
T

∞∑
n=1

Λk(n)
n1+c =

1
T

( ∞∑
n=1

Λ(n)
n1+c

) k
� (2k log y)k

T
,

by the prime number theorem. To handle the contribution of the terms yk/2 < n < 2yk , we
put r = n − yk , and use that | log(yk/n)| � |r |/yk . In this case, we have Λk(n) ≤ (log n)k ≤
(2k log y)k , and hence the contribution of these terms is

� (2k log y)k
T yk

∑
|r |≤yk

yk

|r | �
(2k log y)k+1

T
.
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We now choose T = ykδ/2 and move the contour to the line Re(s) = −δ/2. By our assumption,
we only encounter a simple pole at s = 0 which leaves a residue (L′/L(1, χ))k . Therefore, we
deduce that

1
2πi

∫ c+iT

c−iT

( L′

L
(1 + s, χ)

) k yks

s
ds =

( L′

L
(s, χ)

) k
+ E1,

where

E1 =
1

2πi

(∫ −δ/2−iT

c−iT
+

∫ −δ/2+iT

−δ/2−iT
+

∫ c+iT

−δ/2+iT

) (
−L′

L
(1 + s, χ)

) k yks

s
ds

�δ
(log(qT))k

T
+ y−kδ/2

( log(qT)
δ

) k+1

�δ y
−kδ/4,

by Lemma 3.1. Finally, since (2k log y)k+1/T � y−kδ/4, the result follows. �

Now, using a standard zero density estimate due to Montgomery (see equation (3.1) below),
we deduce from Proposition 3.2 that large powers of L′/L(1, χ) can be approximated by short
Dirichlet polynomials for almost all non-principal characters χ mod q.
Corollary 3.3. Let q be a large prime. Let k be a positive integer such that k ≤ log q/(50 log log q).
For all except O(q3/4) non-principal characters χ mod q we have( L′

L
(1, χ)

) k
= (−1)k

∑
n≤q

Λk(n)
n

χ(n) +O
(
q−1/20

)
.

Proof. Let N(σ,T, χ) denote the number of zeros of L(s, χ) in the rectangle σ < Re(s) ≤ 1 and
|Im(s)| ≤ T . The standard zero density result of Montgomery [14] states that for q,T ≥ 2 and
1/2 ≤ σ ≤ 4/5 we have ∑

χ mod q

N(σ,T, χ) � (qT)3(1−σ)/(2−σ)(log(qT))9. (3.1)

Choosing δ = 1/5, we deduce that for all except O(q3/4) non-principal characters χ mod q,
L(s, χ) does not vanish in the region Re(s) > 1 − δ and |Im(s)| ≤ qδ. We now take y = q1/k in
Proposition 3.2, to obtain that for all except O(q3/4) non-principal characters χ mod q we have( L′

L
(1, χ)

) k
= (−1)k

∑
n≤q

Λk(n)
n

χ(n) +O
(
q−1/20

)
,

as desired. �

Another consequence of Proposition 3.2 is that L′/L(1, χ) � log log q for all except for a
small exceptional set of non-principal characters χ mod q.
Corollary 3.4. Let q be a large prime. Then for all but O(q3/4) non-principal characters
χ mod q we have

L′

L
(1, χ) � log log q.

Proof. Taking δ = 1/5, k = 1 and y = (log q)50 in Proposition 3.2 and using (3.1) as in the
proof of Corollary 3.3 we deduce that for all except O(q3/4) non-principal characters χ mod q,
we have

L′

L
(1, χ) = −

∑
n≤y

Λ(n)
n

χ(n) +O
(
y−1/20

)
� log log q. �
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We now have all the ingredients to establish asymptotic formulas for large moments of
L′/L(1, χ), over the characters χ ∈ Fq, where Fq is defined in (1.8).

Proof of Theorem 1.6. First, note that for any positive integer r ≥ 1 by the Prime Number
Theorem we have ∑

n≤q

Λr(n)
n
≤

(∑
n≤q

Λ(n)
n

)r
� (2 log q)r . (3.2)

Let Eq be the exceptional set in Corollary 3.3. Then it follows from this result that

1
q − 1

∑
χ∈Fq\Eq

( L′

L
(1, χ)

) k ( L′

L
(1, χ)

)`
=
(−1)k+`
q − 1

∑
χ∈Fq\Eq

∑
n≤q

Λk(n)
n

χ(n)
∑
m≤q

Λ`(m)
m

χ(m) + E2,

(3.3)

where
E2 � q−1/20(2 log q)max(k,`) � q−1/30,

by (3.2). Now, by (3.2) and the orthogonality of Dirichlet characters the main term on the right
hand side of (3.3) equals

(−1)k+`
∑
n≤q

Λk(n)
n

∑
m≤q

Λ`(m)
m

1
q − 1

∑
χ∈Fq\Eq

χ(n)χ(m)

= (−1)k+`
∑

n,m≤q

Λk(n)Λ`(m)
nm

1
q − 1

∑
χ mod q

χ(n)χ(m) +O
(
(2 log q)k+`

q1/4

)
= (−1)k+`

∑
n≤q

Λk(n)Λ`(n)
n2 +O

(
q−1/8

)
,

since |Eq | � q3/4. Finally using (2.6), together with the fact that the function (log t)k/
√

t is
decreasing for t ≥ e2k , we obtain∑

n>q

Λk(n)Λ`(n)
n2 ≤

∑
n>q

(log n)k+`
n2 � (log q)k+`

√
q

∑
n>q

1
m3/2 �

(log q)k+`
q

� q−1/2.

Inserting these estimates in (3.3) gives

1
q − 1

∑
χ∈Fq\Eq

( L′

L
(1, χ)

) k ( L′

L
(1, χ)

)`
= (−1)k+`

∞∑
n=1

Λk(n)Λ`(n)
n2 +O

(
q−1/30

)
. (3.4)

Furthermore, it follows from Lemma 3.1 along with the classical zero-free region for L(s, χ)
that for χ ∈ Fq we have

L′

L
(1, χ) � (log q)2. (3.5)

Therefore, combining this bound with (3.4) yields

1
q − 1

∑
χ∈Fq

( L′

L
(1, χ)

) k ( L′

L
(1, χ)

)`
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=
1

q − 1

∑
χ∈Fq\Eq

( L′

L
(1, χ)

) k ( L′

L
(1, χ)

)`
+O

(
q−1/4(log q)2k+2`

)
= (−1)k+`

∞∑
n=1

Λk(n)Λ`(n)
n2 +O

(
q−1/30

)
. �

4. Bounding the discrepancy of the distribution of L′/L(1, χ): Proof of Theorem 1.5

Theorem 1.5 is proved along the same lines of Theorem 1.1 of [11], which bounds the
discrepancy of the distribution of the logarithm of the Riemann zeta function to the right of
the critical line. The main ingredient of the proof is the following result, which shows that the
characteristic function of the joint distribution of Re(L′/L(1, χ)) and Im(L′/L(1, χ)) is very
close to that of the random variables Re(Ld(1,X)) and Im(Ld(1,X)). For u, v ∈ R we define

Φq(u, v) :=
1

q − 1

∑
χ,χ0 mod q

exp
(
iuRe

L′

L
(1, χ) + ivIm

L′

L
(1, χ)

)
.

Then we prove

Theorem 4.1. Let q be a large prime. There exists an absolute constant b0 > 0 such that for
|u|, |v | ≤ b0(log q)/(log log q)2 we have

Φq(u, v) = Φrand(u, v) +O
(
exp

(
− log q

100 log log q

))
,

where Φrand(u, v) is defined (2.1).

Proof. Let N = blog q/(100 log log q)c and put r = max(|u|, |v |). Recalling (1.8) and using the
Taylor expansion of eu, we have

Φq(u, v) =
1

q − 1

∑
χ∈Fq

exp
(
iuRe

L′

L
(1, χ) + ivIm

L′

L
(1, χ)

)
+O

(1
q

)
=

∑
n≤2N

in

n!
1

q − 1

∑
χ∈Fq

(
uRe

L′

L
(1, χ) + vImL′

L
(1, χ)

)n

+O
( (2r)2N

(2N)!
1

q − 1

∑
χ∈Fq

���L′
L
(1, χ)

���2N
+

1
q

)
.

(4.1)

Now, by Theorem 1.6 and Proposition 2.5 we get

1
q − 1

∑
χ∈Fq

���L′
L
(1, χ)

���2N
= E

(
|Ld(1,X)|2N

)
+O

(
q−1/30

)
� (c log N)2N . (4.2)

Hence, by Stirling’s formula the error term of (4.1) is

�
(3cr log N

N

)2N
+

1
q
� e−N,

by our assumption on u and v, if b0 is small enough.
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Now, let z1 = (u − iv)/2 and z2 = (u + iv)/2. Then, it follows from Theorem 1.6 that the inner
sum in the main term of (4.1) equals

1
q − 1

∑
χ∈Fq

(
uRe

L′

L
(1, χ) + vImL′

L
(1, χ)

)n

=
1

q − 1

∑
χ∈Fq

(
z1

L′

L
(1, χ) + z2

L′

L
(1, χ)

)n

=

n∑
j=0

(
n
j

)
z j
1zn− j

2
1

q − 1

∑
χ∈Fq

( L′

L
(1, χ)

) j ( L′

L
(1, χ)

)n− j

=

n∑
j=0

(
n
j

)
z j
1zn− j

2 E
(
Ld(1,X) jLd(1,X)

n− j )
+O

(
(2r)nq−1/30

)
= E

( (
uReLd(1,X) + vImLd(1,X)

)n
)
+O

(
(2r)nq−1/30

)
.

(4.3)

Now, repeating the same argument leading to (4.1) but for the random model Ld(1,X), and using
the bound (4.2) we deduce that

Φrand(u, v) =
∑

n≤2N

in

n!
E
( (

uReLd(1,X) + vImLd(1,X)
)n

)
+O

(
e−N )

.

Finally, combining this estimate with (4.1) and (4.3) completes the proof. �

To deduce Theorem 1.5 from Theorem 4.1 we use Beurling-Selberg functions. For z ∈ C let

H(z) =
( sin πz

π

)2 ( ∞∑
n=−∞

sgn(n)
(z − n)2

+
2
z

)
and K(z) =

( sin πz
πz

)2
.

Beurling proved that the function B+(x) = H(x)+K(x)majorizes sgn(x) and its Fourier transform
has restricted support in (−1, 1). Similarly, the function B−(x) = H(x) − K(x) minorizes sgn(x)
and its Fourier transform has the same property (see Lemma 5 of Vaaler [16]).

Let ∆ > 0 and a, b be real numbers with a < b. Take I= [a, b] and define

FI,∆(z) =
1
2

(
B−(∆(z − a)) + B−(∆(b − z))

)
.

Then we have the following lemma, which is proved in [11] (see Lemma 4.7 therein and the
discussion above it).

Lemma 4.2. The function FI,∆ satisfies the following properties
1. For all x ∈ R we have |FI,∆(x)| ≤ 1 and

0 ≤ 1I(x) − FI,∆(x) ≤ K(∆(x − a)) + K(∆(b − x)). (4.4)

2. The Fourier transform of FI,∆ is

F̂I,∆(ξ) =
{

1̂I(ξ) +O
(
1/∆

)
if |ξ | < ∆,

0 if |ξ | ≥ ∆.
(4.5)

Proof of Theorem 1.5. First, Corollary 3.4 shows that it suffices to consider rectangles R

contained in [−(log log q)2, (log log q)2]2. Let R = [a, b] × [c, d], with |b − a|, |c − d | ≤
2(log log q)2. We also write I= [a, b] and J= [c, d].
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Let ∆ = b0(log q)/(log log q)2 where b0 is the corresponding constant in Theorem 4.1. By
Fourier inversion, (4.5), and Theorem 4.1 we have that

1
q − 1

∑
χ,χ0

FI,∆

(
Re

L′

L
(1, χ)

)
FJ,∆

(
Im

L′

L
(1, χ)

)
=

1
(2π)2

∫ ∞

−∞

∫ ∞

−∞
F̂I,∆(u)F̂J,∆(v)Φq(u, v) du dv

=
1
(2π)2

∫ ∆

−∆

∫ ∆

−∆
F̂I,∆(u)F̂J,∆(v)Φrand(u, v) du dv +O

( (∆(log log q)2
)2

(log q)10

)
= E

(
FI,∆

(
ReLd(1,X)

)
FJ,∆

(
ImLd(1,X)

) )
+O

( 1
(log q)2

)
.

(4.6)

Next note that K̂(ξ) = max(0, 1 − |ξ |). Applying Fourier inversion, Theorem 4.1, and
Proposition 2.1 we obtain

1
q − 1

∑
χ,χ0

K
(
∆ ·

(
Re

L′

L
(1, χ) − α

))
=

1
2π∆

∫ ∆

−∆

(
1 − |ξ |

∆

)
e−iαξ

Φq(ξ, 0) dξ �
1
∆
,

where α is an arbitrary real number. By this and (4.4) we get that

1
q − 1

∑
χ,χ0

FI,∆

(
Re

L′

L
(1, χ)

)
=

1
q − 1

∑
χ,χ0

1I
(
Re

L′

L
(1, χ)

)
+O

( 1
∆

)
. (4.7)

Lemma 4.2 implies that |FJ,∆(x)| ≤ 1 and 1I(x) − FI,∆(x) ≥ 0. Hence, by this and (4.7) we
derive

1
q − 1

∑
χ,χ0

FI,∆

(
Re

L′

L
(1, χ)

)
FJ,∆

(
Im

L′

L
(1, χ)

)
=

1
q − 1

∑
χ,χ0

1I
(
Re

L′

L
(1, χ)

)
FJ,∆

(
Im

L′

L
(1, χ)

)
+O

( 1
∆

)
.

(4.8)

A similar argument leading to (4.7) yields

1
q − 1

∑
χ,χ0

FJ,∆

(
Im

L′

L
(1, χ)

)
=

1
q − 1

∑
χ,χ0

1J
(
Im

L′

L
(1, χ)

)
+O

( 1
∆

)
.

Hence, combining this estimate with (4.8) and using Lemma 4.2 we obtain

1
q − 1

∑
χ,χ0

FI,∆

(
Re

L′

L
(1, χ)

)
FJ,∆

(
Im

L′

L
(1, χ)

)
=

1
q − 1

���{χ , χ0 mod q :
L′

L
(1, χ) ∈ R

}��� +O
( 1
∆

)
.

(4.9)

A similar argument applied to the random model shows that

E
(
FI,∆

(
ReLd(1,X)

)
FJ,∆

(
ImLd(1,X)

) )
= P (Ld(1,X) ∈ R) +O

( 1
∆

)
. (4.10)

Inserting the estimates (4.9) and (4.10) in (4.6) completes the proof. �
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5. Computational part; proof of Theorem 1.2 and Corollary 1.3

Recalling the main definitions in Section 3 of [12], we denote the first χ-Bernoulli number
as B1, χ := q−1 ∑q−1

a=1 aχ(a), and R(x) = − ∂2

∂s2 ζ(s, x)|s=0 = log(Γ1(x)), x > 0, where ζ(s, x) is the
Hurwitz zeta-function, and s ∈ C \ {1}. By eq. (3.5)-(3.6) of Deninger [3] we have

R(x) := −ζ ′′(0) − S(x),

S(x) := 2γ1x + (log x)2 +
+∞∑
m=1

( (
log(x + m)

)2 − (log m)2 − 2x
log m

m

)
,

where

γ1 = lim
N→+∞

( N∑
j=1

log j
j
− (log N)2

2

)
, ζ ′′(0) = 1

2

(
−(log 2π)2 − π

2

12
+ γ1 + γ

2
)

and γ is the Euler-Mascheroni constant. Arguing as in Sections 3.1-3.2 of [12] we have that

modd
q := min

χ odd

���L′
L
(1, χ)

��� = min
χ odd

���γ + log(2π) + 1
B1, χ

q−1∑
a=1

χ(a) log
(
Γ
(a
q
) )��� (5.1)

and

meven
q := min

χ,χ0
χ even

���L′
L
(1, χ)

��� = min
χ,χ0
χ even

���γ + log(2π) − 1
2

∑q−1
a=1 χ(a) S(a/q)∑q−1

a=1 χ(a) log
(
Γ(a/q)

) ���, (5.2)

where Γ is Euler’s function. In this way we can compute mq = min(modd
q ,meven

q ), 3 ≤ q ≤ 107,
q prime, using the values of log Γ and S obtained in [12] for q ≤ 106 and with a new set of
computation for 106 < q ≤ 107. We recall that computing the needed values of S(a/q) is the
most time consuming step of the whole procedure; for a detailed description on how to obtain
such values, we refer to [12] and to a new, much faster, algorithm developed by Languasco and
Righi in [13]. In fact it is the latter method that made it possible to obtain the new set of results
for 106 < q ≤ 107.

5.1. Computations using PARI/GP (slower but with more digits available). First of all we
notice that PARI/GP, v. 2.11.4, has the ability to generate the Dirichlet L-functions (and many
other L-functions) and hence the computation of mq can be performed directly using (1.2) with
a linear cost in the number of calls of the lfun function of PARI/GP. This, at least on our Dell
OptiPlex-3050 desktop machine (Intel i5-7500 processor, 3.40GHz, 16 GB of RAM and running
Ubuntu 18.04.2), is slower than using (5.1)-(5.2). Using such equations, we wrote a suitable gp
script to obtain the values of mq for every odd prime q up to 1000 with a precision of 30 digits,
see Table 1.

5.2. Computations using the C programming language and the fftw software library. For
larger values of q we exploited the Fast Fourier Transform approach described in Sections
4.1-4.2-4.3 of [12]; in this case we used the fftw software library. This method is much faster
than the one described in the previous paragraph, but produces less digits in the numerical values
obtained for mq. Using the data on S(a/q) for every odd prime q ≤ 106 and a = 1, . . . , q − 1
obtained in [12] and, for 106 < q ≤ 107, computed with the algorithm described in [13], we
obtained the values of mq for every odd prime q ≤ 107 using the long double precision (80
bits) of the C programming language. For q up to 106 this just required about one day of time
on the Dell Optiplex machine previously mentioned since the data on S(a/q) were already
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available from [12]. For the remaining q-range the new current computation was performed
on the University of Padova Strategic Research Infrastructure Grant 2017: “CAPRI: Calclo
ad Alte Prestazioni per la Ricerca e l’Innovazione”, http://capri.dei.unipd.it; this step
was performed using at most 60 computing nodes and it required about 48 hours of time (the
global execution time, obtained by summing the declared computing time on each node, was
of 101 days and 6 hours). Moreover, we recomputed, using a quadruple precision (128 bits)
version of our program, the 192 cases in which we have mq < 10−5. The total time required for
performing such verifications was about twelve hours (on the same Optiplex machine already
mentioned). We also remark that modd

q > meven
q for 333408 cases over a total number of primes

equal to 664578 (50.17%) and that meven
q > modd

q in the remaining 331170 cases (49.83%).
The minimal value is (6311157483 . . . ) · 10−7 and it is attained at q = 6119053; the maximal

value is 0.3682816159701500 . . . and it is attained at q = 3.

5.3. Proofs of Theorem 1.2 and Corollary 1.3. An analysis on the data computed in the
previous subsections reveals that

21
200q

< mq <
5
√

q
(5.3)

for every odd prime 3 ≤ q ≤ 107. This proves Theorem 1.2. Such mq-values are collected in
a comma-separated values (csv) file available, together with the programs that performed the
analysis leading to equation (5.3), at the following web address: http://www.math.unipd.
it/~languasc/smallvalues/results. In Section 6 we include some scatter plots for the
normalised values of m′q := 200

21 qmq to visualise the truth of the lower bound in (5.3). The plots
were obtained using GNUPLOT, v.5.2, patchlevel 8.

As a consequence of (5.3) we have that L′(1, χ) , 0, for every non trivial primitive Dirichlet
character mod q, 3 ≤ q ≤ 107, q prime. Hence Corollary 1.3 is proved.
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6. Tables and Figures

q mq
3 0.368281615970147842633237904076 . . .
5 0.180899098585657908884214228728 . . .
7 0.015635689993720378956622751350 . . .
11 0.084218304297040925093687383995 . . .
13 0.300105391273262471564455827946 . . .
17 0.215168738351581113325995469061 . . .
19 0.084913681787711588506979393826 . . .
23 0.222264564054341426307285821914 . . .
29 0.186466418002260383262831736558 . . .
31 0.156365159195612900544888732701 . . .
37 0.084582297210773917089404219321 . . .
41 0.038491048531500073439045451195 . . .
43 0.137995302770293343459953078899 . . .
47 0.035746012624318111324062775199 . . .
53 0.079345452636605470144626619119 . . .
59 0.070814808482221803352134970016 . . .
61 0.004424742139200355181771341999 . . .
67 0.101724238410284799512624760672 . . .
71 0.083677019184249846969185188938 . . .
73 0.037814195629563525097422478059 . . .
79 0.066716629702353438341139676134 . . .
83 0.106137806076174129263066902611 . . .
89 0.091454122541715140553245678638 . . .
97 0.100225166851282154186793751382 . . .
101 0.088532955088052167463294100498 . . .
103 0.067089590517766187761945182653 . . .
107 0.072842375116831038918164998747 . . .
109 0.050769692347897029380594369802 . . .
113 0.137803959714882644119589746949 . . .
127 0.040736836472454861641890942261 . . .
131 0.034839900905728525833611106595 . . .
137 0.173847605183310967783545356651 . . .
139 0.064875376939531262338130695938 . . .
149 0.015584848820092211525156310710 . . .
151 0.076491986002214823571286680298 . . .
157 0.089056313036529923958481456478 . . .
163 0.007515153792183843621864583202 . . .
167 0.031447516352414412954702343316 . . .
173 0.045901456916810041131888422282 . . .
179 0.079209917602758559902760698720 . . .
181 0.083976658136399152061230909218 . . .
191 0.078930822278753140729685017610 . . .
193 0.070704014179180612385369954742 . . .
197 0.044199502798542042544024860233 . . .
199 0.126082784303363107778654204938 . . .
211 0.088113526491133982480553514525 . . .
223 0.057898365920650110981300560279 . . .
227 0.053459670863865895829857481681 . . .
229 0.059371895090913785790744781928 . . .
233 0.041561490891570865670409968939 . . .
239 0.065820141780365230014091775123 . . .
241 0.110515313722982307702505567111 . . .
251 0.098869364562232118021197879586 . . .
257 0.026289614981049793532191665303 . . .
263 0.047887172323274972467095533810 . . .
269 0.043642785796346713737278821355 . . .

q mq
271 0.072815958227510407092347024304 . . .
277 0.079967970098330852132644457819 . . .
281 0.060062168588754157048255824462 . . .
283 0.003150668094148233344534460700 . . .
293 0.135103364633442165799200521286 . . .
307 0.080361924803122609976003922642 . . .
311 0.020809138839835850375607303360 . . .
313 0.038152433030706606745433863772 . . .
317 0.120310482217012060618479876460 . . .
331 0.090170220408966373277578719363 . . .
337 0.075619767636542281468700635945 . . .
347 0.061562527980707029174085407677 . . .
349 0.024659800399032065009402532442 . . .
353 0.097060672416567490052208231772 . . .
359 0.159565297851633355627166678429 . . .
367 0.120752854906502520642266950975 . . .
373 0.036684373998069703748701756310 . . .
379 0.062512783798157835888293219183 . . .
383 0.072466929059169901487523581460 . . .
389 0.035987070773221029949860780588 . . .
397 0.027227952015046458842733852917 . . .
401 0.104399057003481324855914310851 . . .
409 0.046194322516358621884845050091 . . .
419 0.035877133426605148541131058899 . . .
421 0.092642081105082285944635638338 . . .
431 0.060610872703868562233092295828 . . .
433 0.045778529517913654069080269487 . . .
439 0.108439335102642353657462341324 . . .
443 0.034907168270041629941342334682 . . .
449 0.068236065877290568789408277549 . . .
457 0.111566405402641079895678728654 . . .
461 0.059145596894312275391295323265 . . .
463 0.053641121975254286882026544921 . . .
467 0.082747174213806691900849070014 . . .
479 0.053192268343111159252876782608 . . .
487 0.072015242309793507430557740674 . . .
491 0.088859444946655364010425676492 . . .
499 0.036051482588918952743416502474 . . .
503 0.101930324454999846629303155693 . . .
509 0.046641017175720556427264466580 . . .
521 0.064968723343215369312393768633 . . .
523 0.049490019983931771973278347945 . . .
541 0.078201802572578301759951022229 . . .
547 0.011446072603108451883833352085 . . .
557 0.032649429863770489497073765816 . . .
563 0.040012790875967792748467993796 . . .
569 0.054104318075237066903173731505 . . .
571 0.098800274926131853642566583417 . . .
577 0.057616230049140599007139782512 . . .
587 0.028453221139884652469833267724 . . .
593 0.040633070972329746592792414650 . . .
599 0.040806120000547802001712541751 . . .
601 0.046479560640748491238754689477 . . .
607 0.053431321823469925598884667480 . . .
613 0.026979398051501163961309875661 . . .
617 0.086455608244385173808632307637 . . .

q mq
619 0.036809001877106866180335915559 . . .
631 0.021740655876972247835117056143 . . .
641 0.052039782792164018630583875044 . . .
643 0.094730957910075796006995797872 . . .
647 0.022707532347681205317339648994 . . .
653 0.010979306879031359219927573518 . . .
659 0.046308015595165386046394467522 . . .
661 0.103916589731771042952256481790 . . .
673 0.049755263776059657483605717979 . . .
677 0.057693180910059875967225881005 . . .
683 0.045197591824286077977576512346 . . .
691 0.027389773133139679131666108333 . . .
701 0.025792063381175160731735442054 . . .
709 0.034849613800713838295949488339 . . .
719 0.032014828699399819280375472745 . . .
727 0.046548618667915043102907340089 . . .
733 0.042139831461577750336209045957 . . .
739 0.015708957869736012440269724376 . . .
743 0.116540873617071834980829355749 . . .
751 0.152061136399012561767846170124 . . .
757 0.056975681664997732706139153050 . . .
761 0.075261045249458606915771017644 . . .
769 0.013153110800029449125939080369 . . .
773 0.030651359792302555174852939805 . . .
787 0.019038244204322518422127334614 . . .
797 0.021567891774257723672469454215 . . .
809 0.063775218225541117846581797608 . . .
811 0.092226442843305532398212849968 . . .
821 0.063566957442518142038599317693 . . .
823 0.047289370792256898594184490183 . . .
827 0.012749597279993981378378767012 . . .
829 0.025998031567165045170854485526 . . .
839 0.084436292109806136993754070909 . . .
853 0.058287674110997917235105303450 . . .
857 0.072425046291110298533023943432 . . .
859 0.035678865131857745826151075766 . . .
863 0.046770144442337100055402418780 . . .
877 0.035293865694185936926398081489 . . .
881 0.054634183425280742422051742979 . . .
883 0.037633242851010750275554025237 . . .
887 0.022554269438627487049925937822 . . .
907 0.052643295498117140364919564980 . . .
911 0.035463492708556820560659148802 . . .
919 0.014673360300950560145530422161 . . .
929 0.030444805205138918823987682845 . . .
937 0.036077911931189997653707966581 . . .
941 0.011109552462842771175399709306 . . .
947 0.064185134239730262251762819034 . . .
953 0.046995905606263748103687560739 . . .
967 0.015161604253911836558220368388 . . .
971 0.012974123428335617422790144852 . . .
977 0.016784091339428433806510647310 . . .
983 0.041396365426989204577803463342 . . .
991 0.030826538808886821305709019454 . . .
997 0.032897666762473802681213392412 . . .

Table 1. Values of mq for every odd prime up to 1000 with 30-digit precision;
computed with PARI/GP, v. 2.11.4 . Total computation time: 3 min., 13 sec., 583
millisec. on the Dell Optiplex machine mentioned before.
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mq ≤ 1.1/√q, 3 ≤ q ≤ 100 mq ≤ 4.25/√q, 100 ≤ q ≤ 103

mq ≤ 4/√q, 103 ≤ q ≤ 104 mq ≤ 4.2/√q, 104 ≤ q ≤ 105

mq ≤ 5/√q, 105 ≤ q ≤ 106 mq ≤ 4.85/√q, 106 ≤ q ≤ 107

Figure 1. The values of mq, q prime, 3 ≤ q ≤ 107. m3 = 0.368281 . . . is the
maximal value. The red lines represent the function c/√q for several values of c.
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m′q := 200
21 qmq < 500, 3 ≤ q ≤ 100 m′q := 200

21 qmq < 500, 100 ≤ q ≤ 103

m′q := 200
21 qmq < 500, 103 ≤ q ≤ 104 m′q := 200

21 qmq < 500, 104 ≤ q ≤ 105

m′q := 200
21 qmq < 500, 105 ≤ q ≤ 106 m′q := 200

21 qmq < 500, 106 ≤ q ≤ 107

Figure 2. The values of m′q := 200
21 qmq, q prime, 3 ≤ q ≤ 107. The red line

represents the constant function 1.
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Figure 3. The values of m′q := 200
21 qmq, q prime, 3 ≤ q ≤ 107. The red line

represents the constant function 1. The minimal value for m′q is 1.042379 . . .
and it is attained at q = 7. The maximal value for m′q is 130782.760597 . . . and
it is attained at q = 9561863.


	1. Introduction
	2. The distribution of Ld(1, =`X"80 ), and the deduction of Theorem ??
	3. Asymptotic formulas for the moments of L/L(1, ) : Proof of Theorem ??
	4. Bounding the discrepancy of the distribution of L/L(1, ): Proof of Theorem ??
	5. Computational part; proof of Theorem ?? and Corollary ??
	5.1. Computations using PARI/GP (slower but with more digits available).
	5.2. Computations using the C programming language and the fftw software library
	5.3. Proofs of Theorem ?? and Corollary ??

	References
	6. Tables and Figures

