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A CONSTRUCTION OF MULTIPLICITY CLASS OF

HYPERSURFACES FROM HESSELINK STRATIFICATION OF A

HILBERT SCHEME

CHEOLGYU LEE

Abstract. It is well-known that there is a positive relationship between the
maximal multiplicity and the length of the associated virtual 1-parameter sub-
group of a projective hypersurface. In this paper, we will define the multiplicity
classes of hypersurfaces and construct them from the Hesselink stratification
of a Hilbert scheme.

1. Introduction

In this paper, every scheme is over an algebraically closed field k. It is well-known
that singularities of a semi-stable projective hypersurfaces are restricted [7, p. 80].
We can measure the magnitude of instability and singularity of a hypersurface and
then compare them as in [3]. Consider a Hilbert scheme HilbPr,d(Pr

k) of hypersur-
faces [8, p. 6] and Plücker embedding

(1) HilbPr,d(Pr
k)

∼
−→ P

(

H0
(

P
r
k,OPr

k
(d)

))

where

Pr,d(x) =

(

r + x

r

)

−

(

r + x− d

r

)

for some r, d ∈ N. There is the Hesselink stratification

(2) HilbPr,d(Pr
k)

us =
∐

[λ],δ

Ed,r
[λ],δ

of the chosen Hilbert scheme HilbPr,d(Pr
k) with respect to the canonical action of

SLr+1(k) and Plücker coordinate (1). In [3, Theorem 3.1], it was shown that

(3)
‖λ‖δ − ad

b− a
≤ max

p∈Hq

multpHq ≤
rd

r + 1
− δ

a

‖λ‖

if Hq is represented by q ∈ Ed,r
[λ],δ for some 1-parameter subgroup λ of SLr+1(k)

satisfying
λ(t) = diag(ta0 , ta1 , . . . , tar) ∈ SLr+1(k) for all t ∈ k×,

a = min0≤i≤r ai and b = max0≤i≤r ai for some {ai}ri=0 ∈ Zr+1. Inequality (3)
determines the maximal multiplicity of hypersurface Hq if the difference between
two bounds in (3) is less than 1. Otherwise, (3) cannot determine the maximal
multiplicity. Also, (3) cannot be used to distinguish the maximal multiplicities
between two semi-stable hypersurfaces.
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2 CHEOLGYU LEE

Is there a way to construct an arbitrary multiplicity class

Sr,d,m =
{

q ∈ HilbPr,d(Pr
k)
∣

∣multpHq = m for some p ∈ Hq

}

of hypersurfaces from Hesselink stratification in (2)? By [3, Lemma 4.2], there is
a coordinate g ∈ SLr+1(k) such that both maximal multiplicity and instability of
a hypersurface Hq can be determined by the state polytope ∆g.Hq

. Maximal mul-
tiplicity of Hq is determined by a supporting hyperplane of ∆g.Hq

and instability
of Hq is determined by a sphere centered at the barycenter and tangent to ∆g.Hq

.
Comparing singularity and instability can be considered as comparing certain sup-
porting hyperplanes and spheres, as we will see in figure 3. If we increase the radius
of the sphere, the sphere indicating instability looks like the hyperplane indicating
maximal multiplicity around our state polytope.

To apply this simple idea, we will use the pull-back of the Hesselink stratification
of HilbPr,d+rN (Pr

k)
us via the closed immersion

φr,d,N : HilbPr,d(Pr
k) → HilbPr,d+rN (Pr

k)

given by a monomial multiplication. Such a map is not SLr+1(k)-equivariant, so

we can map every point in HilbPr,d(Pr
k) into the unstable locus of HilbPr,d+rN (Pr

k)

to deal with all hypersurfaces parametrized by HilbPr,d(Pr
k). By taking N → ∞,

we can amplify the multiplicy of Hφr,d,N(q) at a fixed point p ∈ Hq, which will be-
come a unique point of Hφr,d,N(q) attaining maximal multiplicity. Using [3, Lemma
4.2], we can compare the Hesselink stratum containing φr,d,N(q) and the maximal
multiplicity of Hφr,d,N(q), which can be directly computed from the multiplicity of
Hq at p. In this paper (Corollary 4.2), we will prove that Sr,d,m can be constructed

using the Hesselink stratification of another Hilbert scheme HilbPr,d+rN (Pr
k) for suf-

ficiently large N using such an idea.

2. Preliminaries

2.1. Numerical criterion for semi-stability. Suppose that G = SLr+1(k) lin-
early acts on a vector space V . Then there is a G action on P(V ) satisfying
g.[v] = [g.v] for all g ∈ G and v ∈ V . For any 1-parameter subgroup λ ∈ Γ(G) of
G, we have the weight decomposition [6, Proposition 4.14]

V =
⊕

m∈Z

Vm

where
Vm = {v ∈ V |λ(t).v = tmv for all t ∈ k×}.

Consequently, we may express an arbitrary v ∈ V as the sum of eigenvectors v =
∑

m∈Z
vm where vm ∈ Vm for allm ∈ Z. Let’s define a function µ : P(V )×Γ(G) → Z

as follows:

µ([v], λ) = min{m ∈ Z|vm 6= 0}.

[v] ∈ P(V ) is semi-stable if there is an invariant polynomial f ∈ k[V ]G such that
f(v) 6= 0. Now we are ready to state the numerical criterion for semi-stability [7,
Theorem 2.1 in p. 49] in the above case.

Theorem 2.1. If G linearly acts on V , then x ∈ P(V ) is semi-stable if and only if

µ(x, λ) ≤ 0

for all λ ∈ Γ(G).
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2.2. Hesselink stratification of a Hilbert scheme. We can see that G acts on
Γ(G) via conjugation. Let

(g ⋆ λ)(t) = gλ(t)g−1

for all g ∈ G and t ∈ k×. Note that g ⋆ λ ∈ Γ(G) so that ⋆ defines a G action on
Γ(G). µ is invariant under the action of G on P(V )× Γ(G) [7, p. 49]; that is,

(4) µ(g.x, g ⋆ λ) = µ(x, λ)

for all g ∈ G, x ∈ P(V ) and λ ∈ Γ(G). For an arbitrary λ ∈ Γ(G) and n ∈ N, we
can define nλ ∈ Γ(G) as follows:

(nλ)(t) = λ(tn), ∀t ∈ k×.

Our µ(x, λ) measures how much x ∈ P(V ) is unstable under the action of the
image of λ. To measure the magnitude of instability of x ∈ P(V ) under the action
of G, we may normalize µ by some norm ‖ · ‖ : Γ(G) → R≥0 satisfying

• ‖nλ‖ = n‖λ‖ for all n ∈ N and λ ∈ Γ(G),
• ‖g ⋆ λ‖ = ‖λ‖ for all g ∈ G and λ ∈ Γ(G)

because µ(x, nλ) = nµ(x, λ) for all n ∈ N and λ ∈ Γ(G). Furthermore, we may
consider the value

(5) max
λ∈Γ(G)

µ(x, λ)

‖λ‖

as the magnitude of the instability of x ∈ P(V ). Let us state a theorem on the
existence of (5), which had been proven in [2].

Theorem 2.2 (Kempf, [2]). Suppose that the norm ‖·‖ satisfies the above conditions
and there is a maximal torus T of G and integral-valued bilinear form 〈·, ·〉 on the

lattice Γ(T ) such that 〈λ, λ〉 = ‖λ‖2 for all λ ∈ Γ(T ) . If x ∈ P(V ) is an unstable

point, then there is σ ∈ Γ(G) and a parabolic subgroup Gx of G satisfying

µ(x, σ)

‖σ‖
= max

λ∈Γ(G)

µ(x, λ)

‖λ‖

and

Gx = π(σ) =
{

g ∈ G
∣

∣∃ lim
t→0

σ(t)gσ(t−1) ∈ G
}

such that Gx acts transitively on the set

Λx =

{

ρ ∈ Γ(G)

∣

∣

∣

∣

µ(x, ρ)

‖ρ‖
= max

λ∈Γ(G)

µ(x, λ)

‖λ‖

}

via the conjugation action given by ⋆. Furthermore, Gx = π(ρ) for all ρ ∈ Λx.

Let

E[λ],δ =

{

x ∈ P(V )

∣

∣

∣

∣

max
λ∈Γ(G)

µ(x, λ)

‖λ‖
= δ, Λx ∩ [λ] 6= ∅

}

where [λ] is the conjugacy class of Γ(G) containing λ ∈ Γ(G) and δ ∈ R>0. Each
E[λ],δ is a locally closed subset of P(V ) as we can see in [1]. From now on, let V be

k[x0, . . . , xr]d = Symdk[x0, . . . , xr ]1 and let the action be the G-action obtained by
symmetrizing the G-action on k[x0, . . . , xr]1 given by the formula

g.xi =

r
∑

j=0

gjixj , for all g ∈ G and 0 ≤ i ≤ r.
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We see that P(V ) is isomorphic to the Hilbert scheme of hypersurfaces of dimension
r − 1 and degree d.

Let T be the group of diagonal matrices in G. T is a maximal torus of G. Let
X(T ) be the group of characters defined on T and

χi(t) = tii

for all t ∈ T and i ∈ {0, 1, . . . , r}, where tii is the i’th diagonal entry of t. We may
embed X(T )⊗Z R into Rr+1 via map ι : X(T )⊗Z R → Rr+1 satisfying

ι(χi) = ei −
1

r + 1

r
∑

j=0

ej, ∀i ∈ {0, 1, . . . , r}

where ei is the i’th elementary vector in Rr+1. There is a perfect pairing 〈·, ·〉 :
X(T )⊗Z Γ(T ) → Z satisfying

χ(λ(t)) = t〈χ,λ〉

for all χ ∈ X(T ), λ ∈ Γ(T ) and t ∈ k×. Consider the basis {λi}
r
i=0 of Γ(T ), which

is dual to {χi}ri=0 with respect to the pairing 〈·, ·〉. Considering the isomorphism
h : Γ(T ) → X(T ) satisfying h(λi) = χi for all 0 ≤ i ≤ r, we can define a norm ‖ · ‖0
on Γ(T ) induced by the Euclidean norm | · | of Rr+1. Such a norm is invariant under
the conjugation action of the Weyl group of T in G. Therefore, we can extend ‖ ·‖0
to the norm ‖ · ‖ of Γ(G) via conjugation. That is, for an arbitrary λ ∈ Γ(G),

‖λ‖ = ‖g ⋆ λ‖0

if g ⋆ λ ∈ Γ(T ) for some g ∈ G. Such a g always exists since all maximal tori of G
are conjugate. Note that ‖ · ‖ satisfies all the hypotheses in Thoerem 2.2.

Consequently, we have the Hesselink stratification of the Hilbert scheme

HilbPr,d(Pr
k)

us =
∐

[λ],δ

Ed,r
[λ],δ

where

Pr,d(x) =

(

r + x

r

)

−

(

r + x− d

r

)

for each d and r in N.

2.3. State polytope and instability. Let the state polytope1 ∆x of a Hilbert
point x ∈ HilbPr,d(Pr

k) be the newton polytope of the defining equation of x, which

is embedded in Rr+1. Let |∆x| be the Euclidean distance from ξr,d = d
r+11 to

∆x where 1 is the all-1 vector in Rr+1. There is a unique 1-parameter subgroup
λx ∈ Γ(T ) which is indivisible by any non-unit integer and

ι (h(λx)⊗Z 1)

is the distance vector from ξr,d = d
r+11 to ∆x. It is well-known that we can

measure the instability of an arbitrary x ∈ HilbPr,d(Pr
k) using some conditions on

state polytopes.

1According to the literature, such a definition of state polytope is obtained from the canonical

GLr+1(k)-action with the canonical linearization twisted by a power of determinant while we are
considering the canonical SLr+1(k)-action. However, such a set-up does not changes the situation
of our problem in the viewpoint of GIT as we can see in [4, 2.2]. Also, such a definition of state
polytope let us observe the symmetry within our problem directly from the picture.
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Theorem 2.3. p ∈ HilbPr,d(Pr
k) is semi-stable if and only if ξr,d ∈ ∆g.p for all

g ∈ G. Furthermore, if p ∈ HilbPr,d(Pr
k) is unstable, then there is gm ∈ G satisfying

|∆gm.p| = max
g∈G

|∆g.p|

and p ∈ Ed,r
[λ],δ if and only if δ = |∆gm.p| and λgm.p ∈ [λ].

Proof. See [5] for semi-stability case. See [1] and [2] for the remainder. This theorem
also can be derived from [4, Theorem 2.2]. �

From now on, we will call ∆gm.x in Theorem 2.3 as a worst state polytope of x.

Example Let k = C and f = y3 + 2xy2 + yz2 ∈ C[x, y, z]3 and let [f ] be the class
in P(C[x, y, z]3) containing f . The state polytope ∆[f ] looks like the gray triangle
in figure 1.

ξ2,3

y3

xy2

yz2

Figure 1. The state polytope of [y3 + 2xy2 + yz2].

It is easy to observe that f is a product of two polynomials y and y2 + 2xy +
z2 , which are both irreducible. We can also notice that g ∈ C[x, y, z]3 must
be the product of some linear polynomials if g satisfies |∆[g]| > |∆[f ]|. That is,

|∆[f ]| = maxg∈SLr+1(C) |∆g.[f ]|, so that [f ] ∈ E3,2

[λ],
√
2/2

where λ(t) = diag(t, t−1, 1) ∈

SLr+1(C) for all t ∈ C×. We will use this example throughout the next section.

3. Multiplicities and adapted-1PS of a destabilization

We can see that the multiplicity of a hypersurface Hp represented by p ∈

HilbPr,d(Pr
k) at a point [1 : 0 :, . . . , : 0] ∈ P

r
k is determined by a supporting hy-

perplane of ∆p in [3, Lemma 4.1]. For example, if p = [y3 + 2xy2 + yz2] ∈

P (C[x, y, z]3) ∼= HilbP2,3
(

P2
C

)

, then we can compute the multiplicity of the curve
represented by x at [1 : 0 : 0] by looking at figure 2.
Theorem 2.3 means that the Kempf index is the radius of the sphere which is cen-
tered at ξr,d and tangent to a worst state polytope, as we can see in figure 1. There-
fore, comparing instability and singularity of a hypersurface can be considered as
comparing hyperplane and sphere. When does a sphere looks like a hyperplane? We
may increase the radius of the sphere and look at it locally around state polytope,
by multiplying a monomial. For example, the state polytope ∆[yNzN (y3+2xy2+yz2)]

of [yNzN(y3 + 2xy2 + yz2)] ∈ (C[x, y, z]3+2N ) ∼= HilbP2,3+2N
(

P
2
C

)

looks like the
gray triangle in figure 3 when N ∈ {0, 2, 4}. We can see that sphere approaches
hyperplane around ∆[yNzN (y3+2xy2+yz2)] as N → ∞ in figure 3. To state this idea
generally, we need to embed the Hilbert scheme via morphism

φr,d,N : HilbPr,d(Pr
k) → HilbPr,d+rN (Pr

k)
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ξ2,3

y3

xy2

yz2

1multiplicity 0 2

Figure 2. The lines which determine the multiplicity at [1 : 0 : 0].

y3

x3 z3

N = 0

y7

x7 z7

N = 2

y11

x11 z11

N = 4

Figure 3. Supporting hyperplane and circle of the state polytope
of [yNzN(y3 + 2xy2 + yz2)], when N is equal to 0, 2 and 4.

which maps [f ] ∈ P(k[x0, x1, . . . , xr]d) ∼= HilbPd(Pr
k) to

[

f
r
∏

i=1

xN
i

]

∈ P(k[x0, x1, . . . , xr ]d+rN) ∼= HilbPd+rN (Pr
k).

For an arbitrary q ∈ HilbPr,d(Pr
k), ∆φr,d,N (q) is contained in the polytope

Qr
d,N =

{

(y0, y1, . . . , yr) ∈ R
r+1

∣

∣

∣

∣

r
∑

i=0

yi = d+rN, yi ≥ N for all 1 ≤ i ≤ r, y0 ≥ 0

}

.

∆φr,d,N(q) is not always a worst state polytope of φr,d,N(q). However, the distance
vector from ξr,d+rN to a worst state polytope of φr,d,N(q) is lying in some bounded
region if N > d. Let lrd,N,m be the Euclidean distance from ξr,d+rN to the point

(d−m,m+N,N, . . . , N) ∈ Rr+1. We can check that

(6) lrd,N,m = max

{

|ξr,d+rN − y|

∣

∣

∣

∣

y = (yi)
r
i=0 ∈ Qr

d,N , y0 = d−m

}

.
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Let

Br
d,N,m =

{

y = (yi)
r
i=0 ∈ R

r+1
≥0

∣

∣

∣

∣

r
∑

i=0

yi = d+rN, |ξr,d+rN−y| ≤ lrd,N,m, y0 ≤ d−m

}

.

The following lemma shows that we can derive a condition satisfied by the associated
1-parameter subgroup and the Kempf index of φr,d,N (q), if we know mult[1:0:...:0]Hq.

Lemma 3.1. Suppose that q ∈ HilbPr,d(Pr
k), mult[1:0:...:0]Hq = m and N > d.

Then, φr,d,N (q) ∈ Ed+Nr,r
[λ],δ for some λ ∈ Γ(T ) and δ > 0 satisfying

δ

‖λ‖
ι(h(λ) ⊗Z 1) ∈ Br

d,N,m.

Proof. Let HN be the hypersurface embedded in P
r
k defined by the polynomial

∏r
i=1 x

N
i . HN has a unique closed point [1 : 0 : . . . : 0] of maximal multiplicity and

multpH
N ≤ (r − 1)N for p 6= [1 : 0 : . . . : 0].

Note that

multpHφr,d,N(q) = multpHq +multpH
N .

for all p ∈ Pr
k. If p = [1 : 0 : . . . : 0], then multpHφr,d,N(q) = m+ rN . Otherwise,

multpHφr,d,N (q) = multpHq +multpH
N ≤ multpHq + (r − 1)N.

≤ d+ (r − 1)N < rN < m+ rN.

Therefore, [1 : 0 : . . . : 0] is the unique point of Hφr,d,N (q) attaining maximal
multiplicity. By [3, Lemma 4.2], there is g ∈ G such that ∆g.φr,d,N (q) is a worst
state polytope of φr,d,N(q) and [1 : 0 : . . . : 0] is still the point of Hg.φr,d,N (q)

attaining maximal multiplicity. By the uniqueness of the point attaining maximal
multiplicity, The dual action of g on P

r
k fixes the point [1 : 0 : . . . : 0]. That is, g is

in the form

g =

[

1 0

⋆ g′

]

for some g′ ∈ SLr(k). Without loss of generality, zi ≥ zi+1 for all 1 ≤ i ≤ r − 1
where

δ

‖λ‖
ι(h(λg.φr,d,N (q))⊗Z 1) = (z0, z1, . . . , zr).

There are upper triangular matrix u with 1’s in the diagonal, lower triangular
matrix l and a permutation matrix σ satisfying g′ = ulσ. Let u be the matrix of
the form

[

1 0

0 u

]

.

Then, u−1 ∈ π(λg.φr,d,N (q)) so that ∆u−1g.φr,d,N (q) is a worst state polytope of

φr,d,N(q) by Theorem 2.2. Let σ be the matrix of the form
[

detσ 0

0 σ

]

∈ SLr+1(k)

and let <lex be the lexicographic monomial order satisfying

x0 > x1 > . . . > xr.



8 CHEOLGYU LEE

Under the identification HilbPr,d+rN (Pr
k)

∼= P(k[x0, . . . , xr]d+rN), σ.φr,d,N (q) = [f ]
for some f ∈ k[x0, . . . , xr]d+rN . Let η be the leading monomial of f with respect
to <lex. We can write f as follows:

f = cηη +
∑

n∈Mr
d+rn

,n<lexη

cnn

where M r
d is the set of monomials in k[x0, . . . , xr]d and cn ∈ k for all n ∈ M r

d+rN .

Note that degx0
η = d −m and the lattice point in Rr+1 corresponding to η is in

Qr
d,N . Let l = u−1gσ−1 ∈ SLr+1(k) , which is in the form

[

det σ 0

⋆ l

]

.

We know that the leading monomial of l.f is still η, because l is lower-triangular.
It means that the Newton polytope of l.f contains the lattice point corresponding
to η. By the definition, ∆u−1g.φr,d,N (q) contains the lattice point corresponding to
η. Thus,

|∆u−1g.φr,d,N (q)| ≤ lrd,N,m

by (6). [1 : 0 : . . . : 0] is still the point of Hu−1g.φr,d,N (q) which attains the maximal
multiplicity so that

δ

‖λ‖
ι(h(λu−1g.φr,d,N (q))⊗Z 1) ∈ Br

d,N,m

by [3, Lemma 4.1]. By Theorem 2.3, we know that

φr,d,N (q) ∈ Ed+Nr,r
[λ

u−1g.φr,d,N (q)],δ

and it completes the proof. �

When N ≫ 0, our spheres centered at ξr,d+rN looks like a plane around polyno-
mial Qr

d,N so that we can say that the sets in {Br
d,N,m|0 ≤ m ≤ d} are disjoint.

Lemma 3.2. Fix r and d. When N > r−1
2r d2 + d, Br

d,N,m ∩ Br
d,N,m′ = ∅ for all

0 ≤ m < m′ ≤ d.

Proof. It suffices to show that

lrd,N,m < min

{

|ξr,d+rN − y|

∣

∣

∣

∣

y = (yi)
r
i=0 ∈ R

r+1
≥0 ,

r
∑

i=0

yi = d+ rN, y0 = d−m′
}

.

ifN > r−1
2r d2+d. The right-hand side of the above inequality is equal to |ξr,d+rN−y|

when

y = zN =

(

d−m′, N +
m′

r
, . . . , N +

m′

r

)

by the convexity of the square-sum function. By definition,

|zN − ξr,d+rN |2 − (lrd,N,m)2 =

(

rd

r + 1
−

rN

r + 1
−m′

)2

+ r

(

−
d

r + 1
+

N

r + 1
+

m′

r

)2

−

(

rd

r + 1
−

rN

r + 1
−m

)2

−

(

m−
d

r + 1
+

N

r + 1

)2

− (r − 1)

(

−
d

r + 1
+

N

r + 1

)2
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= (m′ −m)

(

2N + 2m′ + 2m− 2d−
(r − 1)(m′)2

r(m′ −m)

)

.

We know that
r − 1

2r
d2 + d ≥ d+

(r − 1)(m′)2

2r(m′ −m)
−m−m′

and it completes the proof. �

4. Recovering constructible subsets of a Hilbert scheme indicating
possible multiplicities from a Hesselink stratification

By Lemma 3.1 and Lemma 3.2, we can separate two hypersurfaces whose mul-
tiplicities at [1 : 0 : . . . : 0] are different by using two Hesselink strata containing
each destabilization. Let us define

FN
r,d,m =

⋃

{

Ed+Nr,r
[λ],δ

∣

∣

∣

∣

λ ∈ Γ(SLr+1(k)), δ ∈ R>0,
δ

‖λ‖
ι(h(λ) ⊗Z 1) ∈ Br

d,N,m

}

.

Then, we can prove the following theorem.

Theorem 4.1. For arbitrary r and d in N,

φ−1
r,d,N

(

FN
r,d,m

)

=
{

q ∈ HilbPr,d(Pr
k)
∣

∣mult[1:0:...:0]Hq = m
}

.

for all m ∈ {0, 1, . . . , d} and N > r−1
2r d2 + d.

Proof. ”⊂” is clear from Lemma 3.2. ”⊃” is clear from Lemma 3.1. �

In the next example, we can see that Theorem 4.1 is sometimes very useful when
we need to compute the Hesselink stratum containing a Hilbert point of very high
degree.

Example Let f ′ = y3 + xz2 + z3 ∈ k[x, y, z]. We know that [f ′] ∈ P(k[x, y, z]3) ∼=
HilbP2,3(Pr

k) and [yNzNf ′] ∈ P(k[x, y, z]3+2N ) ∼= HilbP2,3+2N (Pr
k) for all N ∈ N. By

Theorem 4.1, φ2,3,N ([f ′]) ∈ FN
2,3,2 for all N ≥ 6 since mult[1:0:0]H[f ′] = 2. That is,

φ2,3,N ([f ′]) ∈ E3+2N,2
[λN ],δN

for all N ≥ 6 where λN ∈ Γ(SLr+1(k)) and δN ∈ R>0 satisfy

(7)
δN

‖λN‖
ι(h(λN )⊗Z 1) ∈ B2

3,N,2

for all N ≥ 6. On the other hand, we know that B2
3,N,2 and ∆φ2,3,N ([f ′]) meets

at a unique point (1, N,N + 2) ∈ R3 whenever N ≥ 6 as we can see in figure 4.
Therefore, by Theorem 2.3, |∆φ2,3,N ([f ′])| already attains the maximal value by (7),

so that δN = |∆φ2,3,N ([f ′])| =
√

2
3N

2 + 2 and there is g ∈ SL3(k) and a ∈ N such

that (g ⋆ λN )(ta) = diag(t−2N , tN−3, tN+3) for all t ∈ k×, whenever N ≥ 6.

Theorem 4.1 means that a slice of the union of all strata in FN
r,d,m can be con-

structed by intersecting finitely many linear subspaces and complements of linear
subspaces if N is large enough.

Also, Theorem 4.1 means that we can recover the constructible subset

Sr,d,m =
{

x ∈ HilbPr,d(Pr
k)
∣

∣multpHx = m for some p ∈ Hx

}

of HilbPr,d(Pr
k) from the Hesselink stratification of HilbPr,d+rN (Pr

k) for sufficiently
large N ∈ N. That is,
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y9z6

xy6z8
y6z9

B2
3,6,2 ∆[y6z6(y3+xz2+z3)]

Figure 4. B2
3,6,2 around the state polytope of [y6z6(y3 + xz2 + z3)].

Corollary 4.2. Suppose that r and d are in N. Then,

G.φ−1
r,d,N

(

FN
r,d,m

)

= Sr,d,m

for all m ∈ {0, 1, . . . , d} and N > r−1
2r d2 + d.

Example Let f1 = xz(x2 + z2) ∈ k[x, y, z]4 and f2 = y2z2 ∈ k[x, y, z]4. Let us

consider [f1], [f2] ∈ P(k[x, y, z]4) ∼= HilbP (Pr
k). Multiplicities of H[f1] and H[f2] at

[1 : 0 : 0] are 1 and 4, respectively. Thus, we know that φ2,4,N ([f1]) ∈ FN
2,4,1 and

φ2,4,N ([f2]) ∈ FN
2,4,4 for all N > 8 by Theorem 4.1. On the other hand, we also know

that maximal multiplicities of H[f1] and H[f2] are both 4. By [3, Lemma 4.2], both

[f1] and [f2] are in the stratum E4,2

[λ],2
√
2/

√
3
where λ(t) = diag(t−2, t, t) ∈ SL3(k)

for all t ∈ k×. Furthermore, H[f2] /∈ S2,4,1 so that φ2,4,N (g.[f2]) /∈ FN
2,4,1 for all

g ∈ SLr+1 and N > 8.

References

[1] Wim H. Hesselink. Uniform instability in reductive groups. J. Reine Angew. Math.,

303/304:74–96, 1978.
[2] George R. Kempf. Instability in invariant theory. Ann. of Math. (2), 108(2):299–316, 1978.
[3] Cheolgyu Lee. Instability and singularity of projective hypersurfaces. Proc. Amer. Math. Soc.,

146(12):5015–5023, 2018.
[4] Cheolgyu Lee. Worst unstable points of a Hilbert scheme. J. Algebra, 544:92–124, 2020.
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