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Abstract

We study a one-parameter family of nonisomorphic solvable Lie groups,
which, when equipped with canonical left-invariant metrics,

ds2 = e−2zdx2 + e2αzdy2 + dz2

becomes an interpolation from a model of the Sol geometry to a model of
Hyperbolic Space, with a stop at H2 × R. These Lie groups are also Bianchi
groups of Type VI with orthogonal coordinates. As a continuation of joint
work with Richard Schwartz on Sol, we primarily analyze those Lie groups in
our interpolation with some positive sectional curvature. Our main result is a
characterization of the cut locus at the identity of the group that maximizes
scalar curvature.

1 Introduction

We study a one-parameter family of homogeneous Riemannian 3-manifolds that in-
terpolates between three Thurston geometries: Sol, H2 × R, and H3. Sol is quite
strange from a geometric point of view. For example, it is neither rotationally sym-
metric nor isotropic, and, since Sol has sectional curvature of both signs, there is
an interplay between focus and dispersion that causes the Riemannian exponential
map to be singular. On the other hand, since both H2 ×R and H3 have nonpositive
sectional curvature, the exponential map at any point is a diffeomorphism onto the
whole space. In this article, we attempt to show that Sol’s peculiarity can be slowly
untangled by an interpolation of geometries until we reach H2 × R, which has a
qualitatively “better” behavior than Sol. The interpolation continues on to H3, but
we will not spend much time with that part of the family.
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The study of families of geometric structures is growing in application. Although
done with a different aim, Steve Trettel’s Ph.D. thesis [15] takes this approach.
It describes a collection of geometric transitions, defined by constructing analogs
of familiar geometries (projective geometry, hyperbolic geometry, etc.) over real
algebras. The similarity with our work is the concept of investigating well-known
geometric structures as part of a single family.

Our family of Riemannian 3-manifolds arises from a one-parameter family of
solvable Lie groups equipped with canonical left-invariant metrics. We denote the
groups by Gα with −1 ≤ α ≤ 1. Each Gα is the semi-direct product of R with R2,
with the following operation on R3:

(x, y, z) ∗ (x′, y′, z′) = (x′ez + x, y′e−αz + y, z′ + z).

Then R3, which is only the underlying set, can be equipped with the following left-
invariant metric:

ds2 = e−2zdx2 + e2αzdy2 + dz2.

These Gα groups, when endowed with the canonical metric, perform our desired
interpolation: linking the familiar and the unfamiliar. It is a natural question to
analyze what happens in between.

We would also like to note the physical relevance of the Gα groups. First, the
connection between the Bianchi groups (introduced first in [3]) and cosmology is well-
explored. Indeed, a three-dimensional Lie group associated with a certain Bianchi
Lie algebra corresponds to a symmetry group of space (as a part of space-time). The
groups of Type VI (corresponding in our paper to Gα groups with 0 < |α| < 1)
are associated to a cosmological model of space as homogeneous but anisotropic.
Although the current consensus is that the universe is isotropic, one recent report
[17] has experimental evidence suggesting the possibility of anisotropy. The authors
of [17] report that the fine-structure constant exhibits statistically significant spatial
variability. For further reading about the relationship between Bianchi groups and
cosmology, see [7]. Lastly, the physical ramifications of the geodesic flow in a Lie
group have been studied in detail since at least the work of [2], where it was linked
to hydrodynamics.

Our primary focus will be on Gα where α is positive. On this side of the family,
we have the presence of both positive and negative sectional curvature, which makes
the geometry of the geodesics and geodesic spheres quite interesting. In the limiting
case when α = 1 (Sol) much is already known. Many properties of the geodesics were
discovered by Grayson in [10]. In [4], Richard Schwartz and the author give an exact
characterization of which geodesic segments in Sol are length minimizers, thereby
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giving a precise description of the cut locus of the identity in Sol (studying geodesics
that start at the origin is sufficient since the spaces are homogeneous). This, in turn,
led to the proof (also in [4]) that the geodesic spheres in Sol are homeomorphic to
S2. Recently, Richard Schwartz has computed area bounds of the spheres in Sol, and
this interesting result may be found in [13]. We look to generalize some of this work.

For positive α, it happens that typical geodesics starting at the origin in Gα spiral
around certain cylinders, as we will prove in Theorem 3.1. For each such geodesic,
there is an associated period that determines how long it takes for it to spiral exactly
once around. We denote the function determining the period by P , and we will show
that it is a function of the initial tangent vector. We call a geodesic segment γ of
length T small, perfect, or large whenever T < Pγ, T = Pγ, or T > Pγ, respectively.
Our primary aim is the following conjecture:

Conjecture. A geodesic segment in Gα is a length minimizer if and only if it is
small or perfect.

The above conjecture is already known for G1, or Sol, and was proven in [4].
In this article, we will reduce the general conjecture to obtaining bounds on the
derivative of the period function by proving the Bounding Box Theorem. In
particular, we will define a certain curve ∂0N in Section 3.3, and a key step in our
would-be proof of the main conjecture is that a portion of this curve should be
the graph of a monotonically decreasing function. The main obstacle to proving
the whole conjecture is this monotonicity result. We are able to show the desired
monotonicity of ∂0N for the group G1/2 with our Monotonicity Theorem because
we have found an explicit formula for the period function in this case. The group
G1/2 maximizes scalar curvature in our family, which offers more credence that it
is truly a “special case” along with Sol. Thus, our main theorem is a proof of the
conjecture for α = 1/2:

Theorem. A geodesic segment in G1/2 is a length minimizer if and only if it is small
or perfect.

Here we outline our paper. In the next section, we will present the basic differ-
ential geometric facts about all of the Gα groups, ending with a look at the geodesic
flow (restricted to the unit tangent bundle). In section 3, we begin by generalizing
certain results from [10] and [4] to all of the Gα with 0 < α ≤ 1. Among these are
Theorem 3.1, various propositions from [4], and Corollary 3.12, which proves half of
our main conjecture: large geodesic segments are not length minimizing in any pos-
itive α group. Essential to our analysis is the idea of concatenation, introduced first
in [4], that extends to the other Gα. Just as in [4], we afterwards turn our attention
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to using symmetric flow lines to analyze the cut locus of each Gα. Near the end of
section 3, we state the Bounding Box Theorem (valid for all 0 < α ≤ 1) and the
Monotonicity Theorem (which we only manage to prove when α = 1/2). Assuming
these, we finish the proof of our main theorem. In section 4, we prove the Bounding
Box Theorem, and in Section 5 we prove the Monotonicity Theorem by narrowing
our analysis to the group G1/2. We have sufficient information about the period func-
tion for this group to extend the main result from [4], obtaining a characterization
of the cut locus in G1/2 and its consequences for geodesic spheres. We also have two
appendices: Appendix A contains the (tiresome) proof of a lemma used in Section 5
and Appendix B has the Mathematica code that generates the figures in our paper.
We remark that many of the results we will prove can be considered independently of
their geometric consequences, as properties of certain nonlinear ordinary differential
equations. In particular, the proof of the Bounding Box Theorem is purely analytic
in nature.

We would like to thank Richard Schwartz for his support throughout the devel-
opment of this article. His encouragement was essential in finishing this work and his
geometric insights were invaluable. We also thank him for pointing out omissions in
earlier drafts. We thank Benoit Pausader for his advice on tackling the differential
equations that we encountered and Georgios Daskalopoulos for teaching us differen-
tial geometry. We are also grateful to Stephen Miller for helping us with a numerical
computation. We would like to thank the anonymous referees for their very helpful
and detailed comments. Lastly, we would like to acknowledge Matthew Grayson’s
incisive work on Sol, which continues to inspire us.

2 The Basic Structure

In this section, we collect some basic facts about all of the Gα groups. The main
idea is that a fruitful way of analyzing the geometry of these Lie groups is to first
understand the geodesic flow, and this is the setting in which we will continue our
analysis for the remainder of this paper.

The principal object of our study will be a one-parameter family of three-dimensional
Lie groups, whose Lie algebras are of Type VI in Bianchi’s classification, as elabo-
rated in [3]. For ease of computation, we can also construct our groups as certain
subgroups of GL3(R), and to that end we let

Gα =

{ez 0 x
0 e−αz y
0 0 1

∣∣∣∣x, y, z ∈ R
}

for all − 1 ≤ α ≤ 1
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We can consider each Gα as a matrix group or, equivalently, as R3 with the following
group law:

(x, y, z) ∗ (x′, y′, z′) = (x′ez + x, y′e−αz + y, z′ + z).

Then, R3 with this group law has the following left-invariant metric

ds2 = e−2zdx2 + e2αzdy2 + dz2.

The Lie algebra of Gα, which we denote gα, has the following orthonormal basis:

{
X =

0 0 1
0 0 0
0 0 0

 Y =

0 0 0
0 0 1
0 0 0

 Z =

1 0 0
0 −α 0
0 0 0

}
or

X = ez
∂

∂x
, Y = e−αz

∂

∂y
, Z =

∂

∂z
. (1)

So, the structure equations are:

[X, Y ] = 0 [Y, Z] = αY [X,Z] = −X (2)

The behavior of gα coincides with the Lie algebras of Type VI (in Bianchi’s Classifi-
cation) when 0 < |α| < 1 and we have three limiting cases: α = 1, which is a Bianchi
group of type VI0, α = 0, which is a Bianchi group of type III, and α = −1, which
is a Bianchi group of type V. The intermediate cases are not unimodular, unlike the
limiting cases, and that may also be of interest. As a consequence of the classification
done in [3], no two of the Lie algebras gα are isomorphic, hence

Proposition 2.1 (Bianchi, [3]). No two of the Gα are Lie group isomorphic.

One might ask what occurs if we let the parameter |α| > 1, and the answer is
simple. In this case, the Lie algebra will be isomorphic to that of one of our Gα

groups with |α| < 1. Since we restrict ourselves to simply connected Lie groups
(indeed, Lie groups that are diffeomorphic to R3), this means that the corresponding
Lie groups are isomorphic as well.

Now we recall an essential fact from Riemannian geometry. Given a smooth
manifold with a Riemannian metric, there exists a unique torsion-free connection
which is compatible with the metric, which is called the Levi-Civita connection.
This can be easily proven with the following lemma, the proof of which may be
found in [11].
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Lemma 2.2 (Koszul Formula). Let ∇ be a torsion-free, metric connection on a
Riemannian manifold (M, g). Then, for any vector fields X, Y, and Z, we have:

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(X,Z))− Z(g(X, Y ))+

+g([X, Y ], Z)− g([X,Z], Y )− g([Y, Z], X)

Using the Koszul Formula, we can easily compute the Levi-Civita connection ∇
for each Gα from equation (2). We get:

Proposition 2.3. The Levi-Civita connection of Gα, with its left-invariant metric,
is completely determined by∇XX ∇XY ∇XZ

∇YX ∇Y Y ∇YZ
∇ZX ∇ZY ∇ZZ

 =

Z 0 −X
0 −αZ αY
0 0 0


where {X, Y, Z} is the orthonormal basis of the Lie algebra, as in (1).

Proof. As an illustration of this computation, we derive ∇XX explicitly. The other
entries in the matrix of covariant derivatives can be found in an identical manner.
First, since [X,X] = 0 and X, Y, Z form an orthonormal basis of the Lie Algebra,
the Koszul formula yields:

2g(∇XX, V ) = −2g([X, V ], X),

where V ∈ {X, Y, Z}. Hence, using the structure equations in (2), we get

g(∇XX,X) = 0, g(∇XX, Y ) = 0, g(∇XX,Z) = Z

so ∇XX = Z, as desired.

The coordinate planes play a special role in the geometry of Gα. Each group
(which is diffeomorphic to R3) has three foliations by the XZ, Y Z, and XY planes.
It will be worthwhile to compute the curvatures of these surfaces in Gα. The sectional
curvature can be computed easily from the Levi-Civita Connection, while the extrin-
sic (Gaussian) curvature and mean curvature are computed using the Weingarten
equation. Lastly, for surfaces in a Riemannian 3-manifold we have the relation

Intrinsic = Extrinsic+ Sectional (3)

from Gauss’ Theorema Egregium. For details, see the first chapter in [12]. Straight-
forward computations yield the following proposition and its immediate consequences.
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Proposition 2.4. The relevant curvatures of the coordinate planes:

Plane Sectional Intrinsic Extrinsic (Gaussian) Mean

XY α 0 −α (1− α)/2
XZ -1 -1 0 0
YZ −α2 −α2 0 0

Corollary 2.5. The XY plane is a minimal surface (having vanishing mean curva-
ture) in Gα if and only if α = 1, and the XZ and Y Z planes are minimal for all α.
Also, the XY plane is always a constant-mean-curvature surface.

We will later strengthen this corollary by proving that the XZ and Y Z planes
are geodesically embedded.

It can be easily seen that G1 is a model for the Sol geometry, G0 is a model of
H2 × R, and G−1 is a model of H3, or hyperbolic space. We can also compute the
Ricci and scalar curvatures as well and we get that the scalar curvature of Gα is
Sα = 2α − 2 − 2α2. Sα attains its maximum over the family at S1/2 = −3/2, and
the minimum is attained at S−1 = −6 (as might be expected). Therefore, the group
G1/2 may also be considered a special case: the member of the interpolation that
maximizes scalar curvature. Moreover, Sα is symmetric in the positive side of the
family, in the sense that for all non-negative α, Sα = S1−α.

Other self-evident properties of the coordinate planes could be stated, but we let
the reader find these. Now, we turn our attention to the geodesic flow of Gα. Rather
than attempting to derive analytic formulas for the geodesics from the geodesic
equation, as done for Sol in [16], we restrict the geodesic flow to the unit-tangent
bundle and consider the resulting vector field. The idea of restricting the geodesic
flow to S(G1) for Sol was first explored by Grayson in his thesis [10] and then used by
Richard Schwartz and the current author to characterize the cut locus of the origin
of Sol in [4]. We recall that the cut locus of a point p in a Riemannian manifold
(M, g) is the locus of points on geodesics starting at p where the geodesics cease to
be length minimizing.

Now, we extend the previous ideas to the other Gα groups. Indeed, consider gα
and let S(Gα) be the unit sphere centered at the origin in gα. Suppose that γ(t) is
a geodesic parametrized by arc length such that γ(0) is the identity of G. Then, we
can realize the development of γ′(t), the tangent vector field along γ, as a curve on
S(Gα), which will be the integral curve of a vector field on S(Gα) denoted by Σα.
We compute the vector field Σα explicitly.

Proposition 2.6. For the group Gα the vector field Σα is given by

Σα(x, y, z) = (xz,−αyz, αy2 − x2)
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Proof. Since we are dealing with a homogeneous space (a Lie group) it suffices to
examine the infinitesimal change of V = γ′(0) = (x, y, z). We remark that parallel
translation along γ preserves γ′ because we have a geodesic, but parallel translation
does not preserve the constant (w.r.t. the left-invariant orthonormal frame) vector
field V = γ′(0) along γ. Indeed, the infinitesimal change in the constant vector field
V as we parallel translate along γ is precisely the covariant derivative of V with
respect to itself, or ∇V V. Then, our vector field on S(Gα) is precisely:

Σα = ∇V (γ′ − V ) = ∇V γ
′ −∇V V = −∇V V.

We also remark that since V is a constant vector field, Σα is determined completely
by the Levi-Civita connection that we previously computed, and this computation
is elementary.

We remark where the equilibria points of Σα are, since these correspond to
straight-line geodesics. When 0 < α ≤ 1, the equilibria are(

±
√

α

1 + α
,±
√

1

1 + α
, 0

)
and (0, 0,±1).

When α = 0, the set {X = 0}∩S(Gα) is an equator of equilibria, and when α < 0, the
only equilibria are at the poles. A glance at Σα gets us our promised strengthening
of Corollary 2.5:

Corollary 2.7. The XZ and Y Z planes are geodesically embedded. The XY is
never geodesically embedded, even when it is a minimal surface (i.e. for α = 1).

Proof. Let γ be a geodesic starting at the origin, with initial tangent vector in the
XZ plane of gα (i.e. the Y coordinate of γ′(0) is 0). Then, Σα tells us that the Y
coordinate of γ′(t) is 0 ∀t > 0. Hence XZ is totally geodesic. The proof for the Y Z
plane is identical. Now we prove the statement about the XY plane. Observe that
for any initial direction (excluding the straight line geodesic) in the XY plane, the
third coordinate of Σα is different from 0. Thus, a geodesic γ with a direction in the
XY plane cannot stay in the XY plane, proving the last desired assertion.

Consider the complement of the union of the two planes X = 0 and Y = 0 in
gα. This is the union of four connected components, which we call sectors. Since the
XZ and Y Z planes are geodesically embedded, we have

Corollary 2.8. The Riemannian exponential map, which we denote by E, pre-
serves each sector of gα. In particular, if (x, y, z) ∈ gα is such that x, y > 0, then
E(x, y, z) = (a, b, c) with a, b > 0.
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We will use Corollary 2.8 often and without mentioning it. We make the following
key observation about Σα.

Proposition 2.9. The integral curves of Σα are precisely the level sets of the function
H(x, y, z) = |x|αy on the unit sphere.

Proof. Without loss of generality, we consider the positive sector. We recall that
the symplectic gradient is the analogue in symplectic geometry of the gradient in
Riemannian geometry. In the case of the sphere with standard symplectic structure,
the symplectic gradient is defined by taking the gradient of the function H (on the
sphere) and rotating it 90 degrees counterclockwise. Doing this computation for H,
yields ∇symH = xα−1 ·Σα(x, y, z). Since this vector field is the same as the structure
field up to a scalar function, the desired property follows.

Remark 2.10. Σα is a Hamiltonian system in these coordinates if and only if α = 1,
i.e. for Sol (G1)

We finish this section with a conjecture that, if true, provides some connection
between the groups in the Gα family, for α ∈ [−1, 1]. We recall that the volume
entropy, h, of a homogeneous Riemannian manifold (M, g) is a measure of the volume
growth in M . We can define

h(M, g) := lim
R→∞

log(Vol B(R))

R

where B(R) is a geodesic ball of radius R in M . Since G−1 is a model of Hyperbolic
space and G1 is Sol, we know that h(G−1) = 2 and h(G1) = 1 (see [13]). Based on
this, we conjecture that:

Conjecture 2.11. h(Gα) is a monotonically decreasing function of α for α ∈ [−1, 1].

3 The Positive Alpha Family

In this section, we start to explore the positive α side of the family. These geometries
exhibit common behaviors such as geodesics always lying on certain cylinders, spi-
raling around in a “periodic-drift” manner. A natural way to classify vectors in the
Lie algebra is by how much the associated geodesic segment under the Riemannian
exponential map spirals around its associated cylinder. This classification allows us
to discern how the exponential map behaves with great detail.
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3.1 Grayson Cylinders and Period Functions

More than a few of our theorems in Section 3 may be considered generalizations of
results in [10] and [4]. To begin our analysis, we study the Grayson Cylinders of the
Gα groups.

Definition 1. We call the level sets of H(x, y, z) = |x|αy that are closed curves loop
level sets.

We prove the following theorem by adapting a method first used in [10] for Sol.

Theorem 3.1 (The Grayson Cylinder Theorem). Any geodesic with initial tangent
vector on the same loop level set as(

β

√
α

1 + α
,

β√
1 + α

,
√

1− β2

)
, β ∈ [0, 1]

lies on the cylinder given by

w2 + e2z +
1

α
e−2αz =

1 + α

α
· 1

β2

where w = x− y
√
α. We call these cylinders “Grayson Cylinders”.

Proof. We will consider, without loss of generality, the positive sector. Additionally,
since we can always travel along a geodesic until we reach an initial tangent vector
as in the statement above, it suffices to prove that such geodesics lie, locally, on our
cylinders. More precisely, the above path of initial tangent vectors is a path on the
unit tangent sphere which intersects each level set exactly once (a one-parameter
family of level sets). Projecting the vector field Σα onto the xy plane, we get flat
flow lines, which correspond to the following flows on the unit tangent sphere:

Sβ(t) =

(
β

√
α

1 + α
et,

β√
1 + α

e−αt, zβ(t)

)
where

zβ(t) =

√
1− β2

1 + α
(αe2t + e−2αt).

The function zβ(t) is only defined until the flat flow lines reach the unit circle;
however, we are only concerned with the local behavior of the geodesics. The
parametrization of the level sets induced from the flat flow lines is not actually
the one induced by Σα, indeed, there is a scalar function σβ(t) such that S ′β(t) =
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σβ(t) ·Σα(Sβ(t)). After a calculation, we see that σβ(t) = 1/zβ(t). Now, if γ(t) is the
point on the geodesic corresponding to Sβ(t), it follows that

dγ(t)

dt
= σβ(t)Sβ(t),

whence the z coordinate of γ(t) is linear in t. The x, y travel is similarly obtained,
after accounting for their respective infinitesimal distortion, which is done using the
orthonormal basis of the Lie algebra as presented in equation (1) . We have:

γx(t) = β

√
α

1 + α

∫ t

0

e2tσβ(t)dt

and

γy(t) =
β√

1 + α

∫ t

0

e−2αtσβ(t)dt.

The function w(t) = γx(t)−
√
αγy(t) can be explicitly integrated and doing so gets

us (where z = t)

w2 + e2z +
1

α
e−2αz =

1 + α

α
· 1

β2

as desired.

If we consider Grayson Cylinders as regular surfaces in R3 with the ordinary
Euclidean metric, then a simple derivation of their first and second fundamental
forms reveals that they are surfaces with Gaussian curvature identically equal to
zero. Hence, they are locally isometric to ordinary cylinders, and, because they are
also diffeomorphic to ordinary cylinders, Grayson Cylinders are in fact isometric to
ordinary cylinders, for all choices of α and β.

It is easier to gauge the shape of a Grayson Cylinder by looking at its projection
onto the planes normal to the line x − y

√
α, or, alternatively, as the implicit plot

of a function of the two variables w and z defined in the statement of Theorem 3.1.
It appears that as α is fixed, the Grayson Cylinders limit to two “hyperbolic slabs”
as β goes to zero. Alternatively, as β is fixed and α varies, it appears that one side
of the Grayson Cylinder is ballooning outwards. In Figures 1 and 2, we have some
examples generated with the Mathematica code provided in Section 7.1.
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(a) α = 1 and β = 1/2.

(b) α = 1/4 and β = 1/2.

Figure 1: Slices of Grayson Cylinders with varying α

(a) α = 1/2 and β = 1/2.

(b) α = 1/2 and β = 1/5.

Figure 2: Slices of Grayson Cylinders with varying β

We denote loop level sets by λ. Each loop level set has an associated period, Pλ,
which is the time it takes for a flowline to go exactly once around λ, and it suffices
to compute the period at one vector in a loop level set to know Pλ. We can compare
Pλ to the length T of a geodesic segment γ associated to a flowline that starts at
some point of λ and flows for time T. We call γ small, perfect, or large whenever
T < Pλ, T = Pλ, or T > Pλ, respectively. It seems that this “classification” of
geodesic segments in Gα is ideal. For instance, it was shown in [4] that a geodesic
in Sol is length-minimizing if and only if it is small or perfect. We now derive an
integral formula for Pλ and simplify the integral in two special cases.

Proposition 3.2. Let λ be the loop level set associated to the vector

Vβ =

(
β

√
α

1 + α
,

β√
1 + α

,
√

1− β2

)
,

12



then

Pλ(β) =

∫ t0

−t1

2dt√
1− β2

α+1
(αe2t + e−2αt)

where t0 and t1 are the times it takes to flow from Vβ to the equator of S(Gα) in the
direction of, and opposite to the flow of λ, respectively.

Proof. The loop level sets are symmetric with respect to the XY plane. Also, we
recall from the proof of Theorem 3.1 that

dγ(t)

dt
= σβ(t)Sβ(t), hence

∥∥∥∥dγ(t)

dt

∥∥∥∥ = σβ(t).

Thus, the length of a perfect geodesic segment γ starting at Vβ is

Pλ(β) = 2 · Length(γ) = 2 ·
∫ t0

−t1

∥∥∥∥dγ(t)

dt

∥∥∥∥dt =

∫ t0

−t1

2dt√
1− β2

α+1
(αe2t + e−2αt)

.

Remark 3.3. The times t0 and t1 are precisely when the flat flow lines hit the unit
circle, or when

αe2t0 + e−2αt0 =
α + 1

β2
and αe−2t1 + e2αt1 =

α + 1

β2
(4)

Stephen Miller helped us to numerically compute the period function for any
choice of positive α. The Mathematica code for this can be found in Section 7.6. An
explicit formula for the period function in Sol (G1) was derived in [4] and [16]. It is:

Pλ(β) =
4√

1 + β2
·K
(

1− β2

1 + β2

)
where K(m) is the complete elliptic integral of the first kind, with the parameter as
in Mathematica.

A closed-form expression of Pλ can also be obtained for G1/2. Since elliptic
integrals have been studied extensively and many of their properties are well-known,
the following expression allows us to analyze Pλ more easily.

13



Corollary 3.4. When α = 1/2, or for the group G1/2, the period function is given
by

Pλ(β) =
4
√

3

β
√
et0−t1 + 2et1

·K
(

2(et1 − e−t0)
et0−t1 + 2et1

)
where

t0 = log

(
1

β
·
(

1

(−β3 +
√
−1 + β6)

1
3

+ (−β3 +
√
−1 + β6)

1
3

))
and

t1 = log

(
1

2

(
1

β2
+

1

β4(−2 + 1
β6 +

2
√
−1+β6

β3 )
1
3

+ (−2 +
1

β6
+

2
√
−1 + β6

β3
)
1
3

))

Proof. The fact that t0 and t1 are as above is nothing more than solving Equation
(4), which becomes a cubic polynomial when α = 1

2
. Now, from Proposition 3.2,

we have the integral formula for the period, and we perform the change of variables
u = et:

Pλ(β) =

∫ t0

−t1

2dt√
1− 2β2

3
(1
2
e2t + e−t)

=

∫ et0

e−t1

2du√
u2 − 2β2

3
(1
2
u4 + u)

.

Further simplifications yield:

Pλ(β) =
2
√

3

β
·
∫ et0

e−t1

du√
u( 3

β2u− u3 + 2)
.

However, we know the four roots of the quartic polynomial in the square root, they
are u = 0, e−t1 , et0 , and using Viète’s Formulas, −2et1−t0 . So, we factor and get

Pλ(β) =
2
√

3

β
·
∫ et0

e−t1

du√
u(et0 − u)(u− e−t1)(u+ 2et1−t0)

.

The above integral has already been computed for us in terms of elliptic integrals.
Indeed, we find our integral in formula 6 of section 3.147, page 275 in the tome [9].
Further simplifications get us our desired expression for Pλ.

Here we state an essential fact, which is forthrightly supplied to us by the above
expression of Pλ(β) in terms of an elliptic integral. We have:
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Proposition 3.5.
d

dβ

(
Pλ(β)

)
< 0

when α = 1 and α = 1/2. Moreover, for α = 1,

lim
β→1

Pλ(β) = π
√

2

and for α = 1/2,
lim
β→1

Pλ(β) = 2π.

We could not find a similar formula for Pλ, when α is not 1 or 1/2, in terms of
elliptic integrals or hypergeometric functions. This is unfortunate, as Proposition 3.5
is vital to the method here and in [4] to characterize the cut locus of G1 and G1/2.
However, we can still numerically compute the period function as presented in the
appendix, and this allows us to conjecture:

Conjecture 3.6. Let P (β) be the period function in Gα, then

d

dβ

(
Pλ(β)

)
< 0

and

lim
β→1

P (β) =
π
√

2√
α
.

This conjecture would lend something quantitative to the idea that the bad be-
havior (or the cut locus) of Gα dissipates at infinity as Sol interpolates to H2 × R.
With the Mathematica code in Section 7.6, we get the following numerical evidence
for Conjecture 3.6.

α Numerical Value of P (α, β = .999) π
√

2/
√
α

0.1 14.0792 14.0496
0.2 9.94735 9.93459
0.3 8.11985 8.11156
0.4 7.03114 7.02481
0.5 6.28842 6.28319
0.6 5.7403 5.73574
0.7 5.31436 5.31026
0.8 4.97106 4.96729
0.9 4.68673 4.68321
1. 4.44622 4.44288
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3.2 Concatenation and Some Other Useful Facts

An important property which extends from Sol to Gα for 0 < α < 1 is that the loop
level sets are symmetric with respect to the plane Z = 0. This simple observation
allows the technique of concatenation, essential to the analysis in [4], to be replicated
for all of the Gα groups, when α > 0. For the interested reader, Richard Schwartz’s
Java program [14] uses concatenation to generate geodesics and geodesic spheres in
Sol, and a modified version of this program can generate the spheres and geodesics
in any Gα group as well as in other Lie groups, such as Nil. As an illustration of the
power of this technique in numerical simulations, we present in Figure 3 the geodesic
spheres of radius around 5 in four different geometries. The spheres are presented
from the same angle, the purple line is the z axis, and the red lines are the horizontal
axes. The salient phenomenon is that one “lobe” of the sphere is contracting as α
goes to zero. Qualitatively, this corresponds to the dissipation of the “bad” behavior
(or the cut locus) of Gα as α tends to zero, since the amount of shear diminishes.

(a) In Sol, or the group G1. (b) In the group G3/4.

(c) In the group G1/2

(d) In the group G0, or H2 × R.

Figure 3: Geodesic spheres of radius around 5 in four different geometries.
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Each flowline λ of our vector field corresponds to a segment of a geodesic γ. Let
T be the time it takes to trace out λ, then T is exactly the length of γ since we
always take unit-speed geodesics. Let Lλ be the far endpoint of γ and consider the
equally spaced times

0 = t0 < t1 < . . . < tn = T

with corresponding points λ0, . . . , λn along λ. Then we have

Lλ = lim
n→∞

(εnλ0) ∗ . . . ∗ (εnλn), εn = T/(n+ 1)

where ∗ is the group law in Gα. The above equation is well-defined because the
underlying space of both Gα and its Lie algebra is R3. We will also use the notation
λ = a|b to indicate that we are splitting λ into two sub-trajectories, a and b.

The above equation yields:
Lλ = La ∗ Lb

when λ = a|b. We set εnλj = (xn,j, yn,j, zn,j). Vertical displacements commute in Gα,
therefore the third coordinate of the far endpoint of γ is given by

lim
n→∞

n∑
j=0

zn,j.

From this, and the symmetry of the flow lines with respect to Z = 0, we get the
following lemmas. Since these results are an immediate extension of the results in
[4], we provide only sketches of their proofs.

Lemma 3.7. If the map (x, y, z) → (x, y,−z) exchanges the two endpoints of the
flowline λ then the endpoints of the geodesic segment γ both lie in the plane Z = 0
and Lλ is a horizontal translation. In this case we call λ symmetric.

Proof. Since λ is symmetric, the sum limn→∞
∑n

j=0 zn,j vanishes, so the total vertical
displacement is zero.

Lemma 3.8. If λ is not symmetric then we can write λ = a|b|c where a, c are either
symmetric or empty, and b lies entirely above or entirely below the plane Z = 0.
Since La and Lc are horizontal translations – or just the identity in the empty cases
– and Lb is not such a translation, the endpoints of λ are not in the same horizontal
plane.

Lemma 3.9. If λ = a|b, where both a and b are symmetric, then both endpoints of
γ lie in the plane Z = 0. We can do this whenever λ is one full period of a loop
level set. Hence, a perfect geodesic segment has both endpoints in the same horizontal
plane.
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Proof. Since λ = a|b, we know that Lλ = La ∗ Lb. Since La and Lb are horizontal
translations by Lemma 3.7, it follows that Lλ stays in the same Z = 0 plane.

Lemma 3.10. If λ1 and λ2 are full trajectories of the same loop level set, then we
can write λ1 = a|b and λ2 = b|a, which leads to Lλ2 = L−1a Lλ1La. Working this out
with the group law in Gα gives: (a1e

−z, b1e
αz, 0) = (a2, b2, 0), where (x, y, z) = La

and (ai, bi, 0) = Lλi. In particular, we have aα1 b1 = aα2 b2 and we call the function (of
the flowlines) Hλ =

√
|aα1 b1| the holonomy invariant of the loop level set λ.

Let E be the Riemannian exponential map. We call V+ = (x, y, z) and V− =
(x, y,−z), vectors in the Lie algebra, partners . The symmetric trajectories discussed
in Lemma 3.7 have endpoints which are partners. Note that if V+ and V− are partners,
then one is perfect if and only if the other one is, because they lie on the same loop
level set. The next two facts are generalizations of results from [4] about Sol, and,
in particular, Corollary 3.12 proves half of our main conjecture.

Theorem 3.11. If V+ and V− are perfect partners, then E(V+) = E(V−).

Proof. Let λ± be the trajectory which makes one circuit around the loop level set
starting at U±. As above, we write the flowlines as λ+ = a|b and λ− = b|a. Since
V+ and V− are partners, we can take a and b both to be symmetric. But then the
elements La, Lb, Lλ1 , Lλ2 all preserve the plane Z = 0 and hence mutually commute,
by Lemma 3.7. By Lemma 3.10, we have Lλ+ = Lλ− . But E(V±) = Lλ± .

Corollary 3.12. A large geodesic segment is not a length minimizer.

Proof. If this is false then, by shortening our geodesic, we can find a perfect geodesic
segment γ, corresponding to a perfect vector V = (x, y, z), which is a unique geodesic
minimizer without conjugate points. If z 6= 0 we immediately contradict Theorem
3.11. If z = 0, we consider the variation, ε → γ(ε) through same-length perfect
geodesic segments γ(ε) corresponding to the vector Vε = (xε, yε, ε). The vectors Vε
and V−ε are partners, so γ(ε) and γ(−ε) have the same endpoint. Hence, this variation
corresponds to a conjugate point on γ and again we have a contradiction.

The next step is to analyze what happens for small and perfect geodesics. To
begin, we point out another consequence of Theorem 3.11. Let M be the set of
vectors in the Lie algebra of Gα associated to small geodesic segments and let ∂M
be the set of vectors associated to perfect geodesic segments. Lastly, let ∂0M be the
intersection of ∂M with the plane Z = 0. Since E identifies perfect partner vectors,
we have a vanishing Jacobi field at each point of ∂0M. However, we still have:

Proposition 3.13. dE is nonsingular in ∂M − ∂0M
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Proof. Let V ∈ ∂M − ∂0M and let γ be its corresponding geodesic segment. Let
S be the round sphere around the origin in the Lie algebra that contains V. By the
Gauss Lemma, we know that it suffices to show dE is nonsingular when restricted to
the tangent plane of S at V. We produce two linearly independent geodesic variations
that proves the sufficient condition.

First, let Vt be a curve on S perpendicular to all loop level sets and such that
the associated geodesic segments γt are small for t > 0. In the proof of the Grayson
Cylinder Theorem, we showed that the third-coordinate of our geodesic segment will
vary linearly in t away from Z = 0. This is our first nonzero variation. Now consider
the variation Vt on the same loop level set. Since all Vt are perfect, with the same
holonomy invariant (as in Lemma 3.10), the actual holonomy of γt will vary on the
hyperbola xαy = H2

λ, which is our second, linearly independent, nonzero variation.
We note that this proposition is equivalent to stating that no vector in ∂M−∂0M has
a conjugate point, i.e. the geodesic segment associated to any vector in ∂M − ∂0M
cannot have any non-trivial Jacobi Field along it which vanishes at its endpoints.

Another useful consequence of what we have heretofore shown is that the Holon-
omy function (defined in Lemma 3.10) is monotonically increasing. The following
result will be useful later, when we analyze the behavior of E on the set of perfect
vectors. More precisely, we have:

Proposition 3.14. Let P be the unique period associated to a flowline λ. We know
that the holonomy Hλ is an invariant of the flowline, so it is a function of P . More-
over, Hλ varies monotonically with the flowlines. Explicitly, we have dH

dP
(P ) > 0.

Proof. Consider the point (that is on the straight line geodesic) (R
√
α,R, 0) in Gα,

where R > 0 is a large number. Let V be the shortest vector in the Lie algebra of
Gα such that E(V ) = (R

√
α,R, 0). Such a vector is guaranteed to exist because the

straight-line geodesic (which, however, may not be length-minimizing) sends a vector
in the Lie algebra to this point. By Corollary 3.12, V is either a short or a perfect
vector. In any case, there exists a constant δ ≥ 1 such that δV is a perfect vector,
and since δV is perfect, we also know that E(δV ) = (a, b, 0) for some a, b such that
a ≥ R

√
α and b ≥ R. It follows that

H(P (δV )) = H(‖δV ‖) ≥ R
1+α
2 αα/4.

Since α is a constant for each Gα and R can be arbitrarily large, we see that H is an
unbounded function of P .

Now we show that dH/dP cannot vanish, which coupled with the unboundedness
of H, proves the desired monotonicity result. Assume that dH/dP (P0) = 0 for some
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choice of period P0 (in other words, for some choice of flowline λ0 of period P0).
Choosing the necessary ν, we consider the vector

U0 =

(
ν

√
α

1 + α
,

ν√
1 + α

,
√

1− ν2
)

=
(
x(0)
√
α, x(0), z(0)

)
that is on the flowline λ0. Theorem 3.1 states that the geodesic with this initial
tangent vector spirals around its corresponding Grayson Cylinder with companion
line x = y

√
α in the Z = 0 plane of Sol. Thus, its endpoint after spiraling exactly

once around is in fact E(U0) = (a
√
α, a, 0) for some number a. We consider the

variation of perfect vectors in the positive sector U(t) = (x(t)
√
α, x(t), z(t)) such that

‖U(t)‖ = P0+t. Since we assumed that dH/dP (P0) = 0, it follows that da/dt(0) = 0
which implies that dE is singular at the perfect vector U0, a contradiction.

To begin our analysis of the small geodesic segments, we prove an interesting
generalization of the Reciprocity Lemma from [4]. If V is a perfect vector, then
E(V ) will lie in the Z = 0 plane by Lemma 3.9; however, we can get something
better.

Theorem 3.15. Let V = (x, y, z) be a perfect vector. There exists a number µ 6= 0
such that E(V ) = µ(αy, x, 0).

Proof. We proceed as in [4]. As usual, it suffices to prove the result for the positive
sector. Let g(t) = (x(t), y(t), z(t)) be a flowline of Σα with initial conditions

(x(0), y(0), z(0)) =

(
ν

√
α

1 + α
,

ν√
1 + α

,
√

1− ν2
)
,

where ν is a constant corresponding to the appropriate level set, and let (a(t), b(t), 0) =
E(x(t), y(t), z(t)). We define the functions

h(t) =
1

α

a(t)

b(t)
and v(t) =

y(t)

x(t)
.

Where it is understood, we shall avoid writing that the functions defined above are
functions of t. To prove the theorem, it suffices to show h(t) = v(t) for all t, which
we do by demonstrating that h and v are solutions of the same ODE initial value
problem. It is evident that v(0) = 1/

√
α, and we can see that h(0) = 1/

√
α by

geometric considerations. We recall from Theorem 3.1 that a geodesic with initial
velocity vector (x(0), y(0), z(0)) spirals with the companion line (in the Z = 0 plane)
x − y

√
α. Since we have a perfect vector, the holonomy (a(0), b(0), 0) lies on this
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line, whence: h(0) = 1
α
a(0)
b(0)

= 1
α

√
α = 1√

α
= v(0). Having shown that h(0) = v(0), all

that remains is to show that the functions satisfy the same ODE. By using Lemma
3.10, we can consider the following approximation of the infinitesimal change in
(a(t), b(t), 0) :

(a(t+ ε), b(t+ ε), 0) = u−1ε ∗ (a(t), b(t), 0) ∗ uε where uε = (εx, εy, εz),

or
(a(t+ ε), b(t+ ε), 0) = (a(t)e−εz, b(t)eαεz, 0).

Then, we have
d

dt
h(t) =

1

α
lim
ε→0

(
a(t+ ε)

b(t+ ε)
− a(t)

b(t)

)
so

d

dt
h(t) =

1

α

a

b
lim
ε→0

e−ε(1+α)z − 1

ε
= −(1 + α)zh.

We can use the structure field and elementary calculus to compute the other deriva-
tive:

d

dt
v(t) =

d

dt
(y/x) =

xy′ − yx′

x2
= −(1 + α)zv.

Having shown that v, h satisfy the same initial value problem, it follows that they
are equal for all time. Another, shorter proof of this lemma will be offered later.

3.3 Symmetric Flowlines

We now introduce another technique introduced first in [4]: the emphasis on sym-
metric flow lines, which is justified by Lemma 3.9. We introduce the following sets
in gα and Gα:

• Let M,∂M ⊂ gα be the set of small and perfect vectors, as previously defined.

• Let Π be the XY plane in gα and Π̃ be the XY plane in Gα.

• Let ∂0M = ∂M ∩ Π.

• Let M symm ⊂ M be those small vectors which correspond to symmetric flow-
lines as in Lemma 3.7.

• Let ∂0N = E(∂0M).

• Let ∂N be the complement, in Π̃, of the component of Π̃− ∂0N that contains
the origin.
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• Let N = Gα − ∂N .

• For any set A in either gα or Gα, we denote A+ to be the elements of A in the
positive sector, where x, y > 0.

Our underlying goal is to show that ∂N is the cut locus of the origin in Gα. This has
already been done for Sol (G1) in [4], and we shall prove the same for G1/2. Thus,
although the notation we use here is suggestive of certain topological relationships
(e.g. is ∂N the topological boundary of N?), we are only able to prove these relation-
ships for G1/2 in the present paper. Reflections across the XZ and Y Z planes are
isometries in every Gα, so proving something for the positive sector (where x, y > 0)
proves the same result for every sector. This is useful in simplifying many proofs.

A first step towards proving that the cut locus is ∂N is to show that

E(M) ∩ ∂N = ∅,

or, intuitively, that the exponential map “separates” small and perfect vectors. The
following lemma is a step towards this.

Lemma 3.16. If E(M) ∩ ∂N 6= ∅, then E(M symm
+ ) ∩ ∂N+ 6= ∅.

Proof. Let V = (x, y, z) ∈ M be such that E(V ) ∈ ∂N . By symmetry, it suffices to
assume that x, y ≥ 0. Since E is sector-preserving, we must have E(V ) ∈ ∂N+. If
x = 0 then E(V ) lies in the plane X = 0, a set which is disjoint from ∂N+. Hence
x > 0. Similarly, y > 0. Since V ∈ M, V is associated to a small flowline. Since
∂N+ ⊂ Π̃, we must have E(V ) ∈ Π̃. Then, V is associated to a small symmetric
flowline, by Lemma 3.9. In this case, we must have z 6= 0 because the endpoints
of small symmetric flowlines are partner points in the sense of Theorem 3.11. So,
V ∈M symm

+ , as claimed.

With this lemma in hand, we should analyze the symmetric flowlines in detail
in order to prove that E(M symm

+ ) ∩ ∂N+ = ∅. Symmetric flowlines are governed by
a certain system of nonlinear ordinary differential equations. Let Θ+

P denote those
points in the (unique in the positive sector) loop level set of period P having all coor-
dinates positive. Every element of M symm

+ corresponds to a small symmetric flowline
starting in Θ+

P .

The Canonical Parametrization: The set Θ+
P is an open arc. We fix a period P

and we set ρ = P/2. Let p0 = (x(0), y(0), 0) ∈ ΘP ∩Π be the point with x(0) > y(0).
The initial value x(0) varies from

√
(α + 1)/α to 1. We then let

pt = (x(t), y(t), z(t)) (5)
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be the point on Θ+
P which we reach after time t ∈ (0, ρ) by flowing backwards along

the structure field Σ. That is

dp

dt
= (x′, y′, z′) = −Σ(x, y, z) = (−xz,+αyz, x2 − αy2). (6)

Henceforth, we use the notation x′ to stand for dx/dt, etc.

The Associated Flowlines: We let p̂t be the partner of pt, namely

p̂t = (x(t), y(t),−z(t)). (7)

We let λt be the small symmetric flowline having endpoints pt and p̂t. Since the
structure field Σ points downward at p0, the symmetric flowline λt starts out small
and increases all the way to a perfect flowline as t increases from 0 to ρ. We call the
limiting perfect flowline λρ.

The Associated Plane Curves: Let Vt ∈ M symm
+ be the vector corresponding

to λt. (Recall that E(Vt) = Lλt) Define

ΛP (t) := E(Vt) = (a(t), b(t), 0) t ∈ (0, ρ]. (8)

These plane curves are in Π̃ because they are endpoints of symmetric flowlines, and
they will be among our main objects of interest in what follows. In Figure 4, we
present a collection of the plane curves (colored blue) for α = 1/2 with the choice of
x(0) varying from 0.6 to 0.95 at intervals of 0.05. We also include the initial value
x0 = 1/

√
3, which corresponds to the straight geodesic segment in G1/2. The black

curve is an approximation of ∂0N+, or endpoints of perfect flowlines, which are the
right-hand endpoints of each ΛP curve.

Figure 4: The image of ΛP over the interval (0, ρ] for varying x0 and ∂0N+.
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Lemma 3.17. ΛP (ρ) ∈ ∂0N+, and 0 < b(ρ) < a(ρ).

Proof. We have ΛP (ρ) ∈ ∂0N+ because λρ is perfect and starts at (x(ρ), y(ρ), 0).
Note that, by symmetry of the flowlines,

x(0)α = y(ρ) and y(0) = x(ρ)α (9)

Hence x(ρ) < y(ρ). Theorem 3.15, applied to the perfect vector Vρ, now gives

0 < b(ρ) < a(ρ).

We have E(M symm
+ ) ∩ ∂N+ = ∅ provided that

ΛP (0, ρ) ∩ ∂N+ = ∅, for all periods P. (10)

So all we have to do is establish Equation 10. Let BP be the rectangle in the XY
plane with vertices

(0, 0, 0), (0, b(ρ), 0), (a(ρ), 0, 0), and (a(ρ), b(ρ), 0).

Our first step in proving Equation 10 is to contain the image of ΛP with the following
theorem, which we will prove to be true for each Gα group:

Theorem 3.18 (The Bounding Box Theorem). ΛP (0, ρ) ⊂ interior(BP ) for all P .

The Bounding Triangle Theorem serves a similar role in [4] for Sol (G1), but it
cannot be generalized to any other Gα group. It states that ΛP (0, ρ) is contained
inside the triangle with vertices (0, 0, 0), (a(ρ), 0, 0), and (a(ρ), b(ρ), 0). In Figure 6,
we depict the image of a single plane curve ΛP for α = 1/2 and x0 = 0.99945, which
illustrates the failure of the Bounding Triangle Theorem in the other Lie groups.

Now, if we could also manage to show interior(BP ) ∩ ∂N+ = ∅, we would finish
proving Equation 10. Since the Bounding Box Theorem is not as powerful as the
Bounding Triangle theorem of [4], we need more information about ∂N0 to prove
Equation 10 than was needed in [4]. We succeed in performing this second step for
the group G1/2 by getting bounds on the derivative of the period function (using its
expression in terms of an elliptic integral in that case). The necessary ingredient
that we get is

Theorem (The Monotonicity Theorem). For α = 1/2, ∂0N+ is the graph of a non-
increasing function (in Cartesian coordinates).
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3.4 Proof of the Main Results for G1/2

For G1/2, assuming that the Bounding Box and Monotonicity Theorems are true, we
can proceed to characterize the cut locus of the identity.

First, we prove equation (10):

Theorem 3.19. For the group G1/2 we have, for all P ,

ΛP (0, ρ) ∩ ∂N+ = ∅

Proof. By the Bounding Box Theorem we know that ΛP (0, ρ) ⊂ interior(BP ) for
all P . By the Monotonicity Theorem, we know that ∂0N+ is the graph of a de-
creasing function in Cartesian coordinates, so we conclude that ∂N+ is disjoint from
interior(BP ) for all P . Our desired result holds.

The above theorem, combined with Lemma 3.16 gets us:

Corollary 3.20.
E(M) ∩ ∂N = ∅

The rest of our argument for showing that the cut locus of G1/2 is ∂N follows
exactly as in [4]. Let E be Riemannian exponential map. Let M be the component
of ∂M+ − ∂0M+ which contains vectors with all coordinates positive. Let N =
∂N+ − ∂0N+. We first prove a few lemmas.

Lemma 3.21. The map E is injective on M.

Proof. Let V1 and V2 be two vectors in M such that E(V1) = E(V2). We also let
U1 = E(V1) and U2 = E(V2) and denote the jth coordinate of Ui as Uij and likewise
for Vi

‖Vi‖ . Since U1 and U2 have the same holonomy invariant and since the holonomy

is monotonic with respect to choice of flowline (Proposition 3.14), it follows that V1
‖V1‖

and V2
‖V2‖ lie on the same loop level set in S(G1/2). Thus, V11V

2
12 = V21V

2
22. By the

Reciprocity Lemma, and since U1 = U2, we get

V12
V11

=
V22
V21

.

We can now conclude that V11 = V21 and V12 = V22. Since ‖V1‖ = ‖V2‖, we get
V1 = V2, finishing the proof.

Lemma 3.22. E(M) ⊂ N .
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Proof. The map E is injective on M∪ ∂0M+, by the previous lemma. At the same
time, E(∂0M+) = ∂0N+. Hence

E(M) ⊂ Π− ∂0N+. (11)

By definition, N is one of the components of the Π − ∂0N+. Therefore, since M is
connected, the image E(M) is either contained in N or disjoint from N . Since the
sets are evidently not disjoint (large perfect vectors land far away from the identity
and near the line x = y/

√
2), we have containment.

Corollary 3.23. E(∂M) ∩ E(M) = ∅.

Proof. Up to symmetry, every vector in ∂M lies either inM or in ∂0M+. By defini-
tion, E(∂0M) = ∂0N ⊂ ∂N . So, by the previous result, we have E(∂M) ⊂ ∂N . By
Corollary 3.20 we have E(M) ∩ ∂N = ∅. Combining these two statements gives the
result.

Theorem 3.24. Perfect geodesic segments are length minimizing.

Proof. Suppose V1 ∈ ∂M and E(V1) = E(V2) for some V2 with ‖V2‖ < ‖V1‖. By
symmetries of G1/2 and the flowlines, we can assume that both V1 and V2 are in the
positive sector and that their third coordinates are also positive. By Corollary 3.12,
we have V2 ∈ M ∪ ∂M . By Corollary 3.23 we have V2 ∈ M. But then V1 = V2, by
Lemma 3.21, which contradicts ‖V2‖ < ‖V1‖.

The results above identify ∂N as the cut locus of the identity of G1/2 just as
obtained in [4] for Sol. We can summarize by saying

Theorem 3.25. A geodesic segment in G1/2 is a length minimizer if and only if it
is small or perfect.

In addition, small geodesic segments are unique length minimizers and they have
no conjugate points. Hence, using standard results about the cut locus, as in [12],
we get that E : M → N is an injective, proper, local diffeomorphism. This implies
that E : M → N is also surjective and hence a diffeomorphism. Moreover, E :
∂0M+ → ∂0N+ is a diffeomorphism, by similar considerations. Results about the
geodesic spheres in G1/2 follow immediately, as in [4] for Sol, by “sewing up” ∂M in
a 2-1 fashion with E. In particular, we have:

Corollary 3.26. Geodesic spheres in G1/2 are always topological spheres.
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The rest of our paper is devoted to proving our technical results: the Bounding
Box Theorem and the Monotonicity Theorem. We will prove the Bounding Box
Theorem in full generality, i.e. for all α ∈ (0, 1]. However, we only manage to prove
the Monotonicity Theorem for G1/2, where we have an expression of the period in
terms of an elliptic integral. It is our opinion that either an expression for P in
terms of hypergeometric functions exists for general α or a thorough analysis of
the (novel?) integral function in Proposition 3.2 can be done to demonstrate the
monotonicity results required. Regardless, our Bounding Box Theorem does half of
the work necessary to finish the proof of our main conjecture: for all Gα groups, a
geodesic segment is length minimizing if and only if it is small or perfect.

We reiterate that the necessary step to prove our conjecture is to show the Mono-
tonicity Theorem holds for general Gα and that there is encouraging numerical ev-
idence supporting this proposition. We plan to investigate this last step and prove
our main conjecture in the future.

Figure 5: Here, for G1/2, we have plotted points on ∂0N+, as x0 varies from 0.6 to
0.98 in increments of 0.02.
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Figure 6: This depicts a the image of ΛP for α = 1/2 and x0 = 0.99945 over the
interval (0, ρ].

4 Proof of the Bounding Box Theorem

We now study the system of ODE’s that governs the behavior of x, y, z, a, and b as
in equations (6) and (8). We write λt+ε = u|λt|v, where u is the flowline connecting
pt+ε to pt and v is the flowline connecting p̂t to p̂t+ε. We have

(a′, b′, 0) = Λ′P (t) = lim
ε→0

ΛP (t+ ε)− Λ(t)

ε
,

ΛP (t+ ε) ≈ (εx, εy, εz) ∗ (a, b, 0) ∗ (εx, εy,−εz).

The approximation is true up to order ε2 and (∗) denotes multiplication in Gα. A
direct calculation gives

a′ = 2x+ az and b′ = 2y − αbz. (12)

Simply from its differential equation, it is evident that a′ > 0 on (0, ρ). This
implies that ΛP (t) is the graph of a function for t ∈ (0, ρ), hence ΛP (t) avoids
the vertical sides of BP . This is the first, easy step in proving the Bounding Box
Theorem.

To finish the proof, it would suffice to show that ΛP (t) also avoids the horizontal
sides of BP , which amounts to proving that b′(t) > 0 for all t ∈ (0, ρ]. A priori, it is
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not evident that b′ > 0 in this interval. For example, the function b may start out
concave as depicted in Figure 7. Also, after the half-period ρ, b′ may actually be
negative as depicted in Figure 8. However, the remarkable fact that b′ > 0 in (0, ρ]
for all choices of α and x0 is also true, and we demonstrate this fact in what follows.

Figure 7: This is the graph of b′(t) over the interval (0, ρ) for the parameter choices
α = 3/4 and x(0) = .985. We can see that b′ is initially decreasing.
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Figure 8: This is the graph of b′(t) over the interval (0, 4ρ) for the parameter choices
α = 3/4 and x(0) = .985, illustrating that b′ is not necessarily positive outside of the
half-period interval. Figure 7 is contained in the small box shown in this figure.
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Once again, we collect the ODE’s of interest to us together:

x′ = −xz y′ = αyz z′ = x2 − αy2 b′ = 2y − αbz

from which we compute

z′′ = −2z(x2 + αy2) b′′ = αb(αz2 − z′). (13)

Lemma 4.1. To show that b′ > 0 in (0, ρ), it suffices to show that b′ > 0 whenever
b′′ < 0 in the interval (0, ρ).

Proof. We remark that the function b′′ changes sign at the unique point t0, where
αz(t0)

2 = z′(t0). Since x, y, z > 0 in the whole interval (0, ρ), and since x(0) > y(0),
we get that z′(0) > 0. Thus, b′′(0) < 0. At the point t0 where b changes concavity,
we have x(t0) =

√
α
α+1

. Since x is monotonically decreasing in our interval (0, ρ),
it follows that b′′ changes sign at most once in the interval (0, ρ). By elementary
calculus, it follows that to show b′ > 0 in (0, ρ), it suffices to show b′ > 0 in the
interval (0, t0) if t0 < ρ, or else on the whole interval (0, ρ). Either case amounts to
showing that b′ > 0 whenever b′′ < 0 in the interval (0, ρ).

We observe that z′′ < 0 everywhere in (0, ρ). Also, whenever b′′ < 0, we have
that z′ > αz2 > 0. We first get an inequality regarding the function z(t) :

Lemma 4.2.

2α

∫ t

0

z(s)ds ≥ tαz(t)

Proof. By the well known Hermite-Hadamard Inequality for concave functions, the
concavity of z in (0, ρ), and the fact that z(0) = 0, we get:

1

t

∫ t

0

z(s)ds ≥ z(t) + z(0)

2
= z(t)/2.

Multiplying by 2αt > 0, we get our desired inequality.

We now recall the Log-Convex Version of Hermite-Hadamard, proven first in [8]:

Proposition 4.3 ([8]). If f is log-convex on [a, b] then

1

b− a

∫ b

a

f(s)ds ≤ f(b)− f(a)

log f(b)− log f(a)
.
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Let’s return to one of our initial ODE’s: y′ = αyz. Dividing by y, integrating,
and multiplying by 2, we get:

2 log y(t)− 2 log y(0) = 2α

∫ t

0

z(s)ds. (14)

Since z′ > 0 whenever b′′ < 0, we get that y2 is log-convex whenever b′′ < 0. We can
now get:

Lemma 4.4. For all t where b′′(t) < 0, we have∫ t

0

y(s)2ds ≤ t · y(t)2

2 log y(t)/y(0)

Proof. By Proposition 4.3, we have∫ t

0

y(s)2ds ≤ t · y(t)2 − y(0)2

2 log y(t)/y(0)
≤ t · y(t)2

2 log y(t)/y(0)

where the last inequality comes from y(0) > 0.

We are now in a position to prove the Bounding Box Theorem:

Proof. By Lemma 4.1, it suffices to show that b′ > 0 whenever b′′ < 0. If we integrate
the ODE for b, we get

b(t) =
2

y(t)

∫ t

0

y(s)2ds. (15)

Differentiating, we want to show y(t)3− y′(t)
∫ t
0
y(s)2ds ≥ 0 whenever b′′ < 0. Equiv-

alently (we can divide by y, y′ since they are always strictly greater than 0):∫ t

0

y(s)2ds ≤ y(t)3

y′(t)
.

By Lemma 4.4 it suffices to show

t · y(t)2

2 log y(t)/y(0)
≤ y(t)3

y′(t)

or, by cancelling some terms and taking the reciprocal,

2 log y(t)/y(0) ≥ t · y
′(t)

y(t)
.
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Since y′ = αyz, this is equivalent to

2α

∫ t

0

z(s)ds ≥ tαz(t)

which is nothing but the inequality of Lemma 4.2.

Finally, since b′ > 0,ΛP (t) is an increasing function, so ΛP (t) avoids the vertical
sides of BP when t ∈ (0, ρ). This, along with the previously stated fact that ΛP (t)
avoids the horizontal sides of BP , finishes the proof of the Bounding Box Theorem.

5 Proof of the Monotonicity Theorem

5.1 Endpoints of Symmetric Flowlines

Henceforth, we view ∂0N+ as the following parametrized curve in the XY plane.
Denote x(0) = x0, then

∂0N+ = {(ax0(P (x0)/2), bx0(P (x0)/2), 0)}, as x0 varies in

(√
α

1 + α
, 1

)
.

To prove Equation 10 in general it would suffice, by using the Bounding Box Theorem,
to prove BP ∩ ∂+N = ∅, and, to prove the latter statement, it suffices to show
that ∂0N+ is the graph of a decreasing function in Cartesian coordinates. This
involves differentiating our ODE’s with respect to the initial value x0. Let x̄ denote
dx(t, x0)/dx0, etc. Then we get

x̄′ = −xz̄ − zx̄, ȳ′ = αyz̄ + αzȳ, z̄′ = 2xx̄− 2αyȳ,

ā′ = 2x̄+ ax̄+ xā, b̄′ = 2ȳ − αȳb− αyb̄.

Since x2 + y2 + z2 = 1 for all t, x0, it follows that

xx̄+ yȳ + zz̄ = 0 (16)

always, and we can get a similar equation for the time derivative. Now, we prove
some very useful propositions:

Proposition 5.1. ax− αby = 2z for all t and x0.
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Proof. By integrating the ODE’s in time for a and b we get:

ax = 2

∫ t

0

x(s)2ds and αby = 2

∫ t

0

αy(s)2ds

hence

ax− αby = 2

∫ t

0

x(s)2 − αy(s)2ds = 2z(t)− 2z(0) = 2z

since z(0) = 0 always. Note: this gives us our promised second proof of the Reci-
procity Lemma, if we evaluate at t = ρ.

Since the above equality is true for all t and x0 we can differentiate with respect
to x0 and get

Corollary 5.2. ax̄+ xā− αbȳ − αyb̄ = 2z̄ for all t and x0.

Now we prove:

Proposition 5.3. xā+ yb̄ = 0 for all t and x0.

Proof. Integrating the ODE’s (in time) for ā and b̄ gets us:

xā =

∫
2xx̄+ axz̄ and yb̄ =

∫
2yȳ − αbyz̄.

Adding the two integrals above and using equation (16) gets us our desired equality.

Corollary 5.2 and Proposition 5.3 combine to get us the following useful expres-
sions for ā and b̄.

Corollary 5.4. We have

ā =
1

x(1 + α)

(
2z̄ + αbȳ − ax̄

)
and

b̄ = − 1

y(1 + α)

(
2z̄ + αbȳ − ax̄

)
.
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5.2 The Monotonicity Theorem for G1/2

To get our desired results about ∂0N+, we must look at a particular case of our one-
parameter family, where we have more information about the derivative of P (x0),
courtesy of the expression of P in terms of an elliptic integral. Everything we have
heretofore shown is, however, applicable to every Gα with 0 < α ≤ 1. Although we
restrict ourselves to G1/2, the methods presented here could just as well be applied
to G1, where we also have an explicit formula for the period function.

In this section, we show that ∂0N+ is the graph of a non-increasing function
in Cartesian coordinates (for G1/2) by using properties of the period function. This
finishes the proof of Equation 10, which in turn allows us to prove our main theorem.
For encouragement, we refer the reader back to Figure 5, where we can see that ∂0N+

is indeed the graph of a non-increasing function in Cartesian coordinates. It will be
relatively easy to show that ∂0N+ is the graph of a Cartesian function, but the proof
that ∂0N+ is a non-increasing function will be more involved. For example, we will
first need to show that ∂0N+ limits to the line b = 4 as x0 → 1.

Recall Proposition 3.5, which states that P (β) is decreasing with respect to β in
the case when α = 1 or 1/2. Here, we change variables for the period function from
β to x0 ∈ (1/

√
3, 1) and get:

Proposition 5.5.
d

dx0

(
P (x0)

)
> 0

Proof. This amounts to an application of the chain rule. Since the vector (associated
to β) as in the statement of Theorem 3.1 is on the same flow line as the vector
associated to x0, we know

x
1/2
0

√
1− x20 =

(
β

√
1

3

)1/2
β
√

2√
3

so

β3 =
3
√

3

2
(x0 − x30),

thus
dβ

dx0
=

√
3

2β2
(1− 3x20) < 0

since x20 > 1/3. By the chain rule and Proposition 3.5, we get our desired result.

Since z always vanishes at the half period, we have
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Proposition 5.6. For any initial value x0, we have

z̄ + (
1

2

dP

dx0
)z′ = 0

at the time t = P (x0)/2. Also, by Proposition 5.5, and since z′ < 0 at the half period,
we get that

z̄(P (x0)/2) > 0, ∀x0.

From equation (9) and the fact that x′ and y′ always vanish at the half-period,
we have

Proposition 5.7.

ȳ(P (x0)/2) =
1

2
√
x0

> 0 and x̄(P (x0)/2) = −2x0 < 0

We are ready to get some information about ∂0N+, beginning with:

Corollary 5.8. ∂0N+ is the graph of a function in Cartesian coordinates.

Proof. This is equivalent to showing that

d

dx0
ax0(P (x0)/2) > 0.

The chain rule gets us

d

dx0
ax0(P (x0)/2) = ā(P (x0)/2) + (

1

2

dP (x0)

dx0
)a′(P (x0)/2)

=

(
2

3x

(
2z̄ +

1

2
bȳ − ax̄

)
+ (x+ az/2)

dP

dx0

)∣∣∣∣
t=P (x0)/2

By Propositions 5.5, 5.6, and 5.7, we know that all the terms above are positive at
P (x0)/2, whence the desired result.

As with showing that b′ > 0 in the interval (0, ρ), things are more difficult with
the function b. We need three lemmas first. The proof of the following may also
suggest that α = 1/2 is a “special case”; nevertheless, the situation is different than
for Sol. Richard Schwartz proves a similar limit in [13] for Sol (in which case, the
limit is 2), but his method uses an additional symmetry of the flow lines that we
cannot use here.
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Lemma 5.9. For α = 1/2,

lim
x0→1

bx0(P (x0)/2) = 4

Proof. Recall equation (15), which gives us an integral form for b:

bx0(P (x0)/2) =
2

y(P (x0)/2)

∫ P (x0)/2

0

y(s)2ds.

From Equation (9), we know that limx0→1 y(P (x0)/2) = 1, so it suffices to show

lim
x0→1

∫ P (x0)/2

0

y(s)2ds = 2.

Now, a minor miracle occurs. There is a second order ODE for y

2yy′′ = y2 − 3

2
y4 − 2(y′)2

from which we can also get an ODE for y2:

(y2)′′ = y2 − (3/2)y4.

Here we remark that the cases α = 1 and 1/2 are the only ones where we do not also
get an additional, unpleasant, and nonlinear term: (y′)2. Let f = y2, then we can
solve the ODE f ′′ = f − (3/2)f 2 for f and get (as done, for example, in [5]):

f(t, x0) = ν1 + ν2dn(tν3, ν4)
2

where dn(u,m) is the Jacobi elliptic function (with parameters as in Mathematica)
and with

ν1 =
1

2
(x20 −

√
4x20 − 3x40)

ν2 =
1

2
(2− 3x20 +

√
4x20 − 3x40)

ν3 =

√
2− 3x20 +

√
4x20 − 3x40

2
√

2

ν4 =
2− 3x20 −

√
4x20 − 3x40

2− 3x20 +
√

4x20 − 3x40
.
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Since the function is periodic with period P (x0), and since we know that dn(u, k)2

has period 2K(k), where K is the complete elliptic integral of the first kind, we get
the identity

P (x0) =
2K(ν4)

ν3
. (17)

Now, in [16], many properties of elliptic integrals and elliptic functions are reviewed,
including:

E(k) =

∫ K(k)

0

dn(u, k)2du

where E is the complete elliptic integral of the second kind. Therefore, we can write
our original integral as∫ P (x0)/2

0

y(s)2ds =
ν1
2
P (x0) +

ν2
ν3
E(ν4).

As x0 tends to 1, the term ν1P (x0)/2 converges to 0 and the term ν2
ν3
E(ν4) converges

to 2, which is what we desired to prove.

More generally, we have the following conjecture

Conjecture 5.10. Let

L(α) := lim
x0→1

bx0,α(P (x0, α)/2), defined for all α ∈ (0, 1].

We conjecture that L(α) is monotonically decreasing from α = 0 to α = 1 and that
limα→0 L(α) =∞. In fact, we also conjecture that

L(α) =
2

α
.

The next technical lemma is quite wearisome; we have placed its demonstration
in Appendix A. We direct the reader who does not wish to plough through its proof
to Figure 9, which provides numerical evidence for its veracity.

Lemma 5.11. For α = 1/2, we have

G(x0) :=
dP

dx0
(x0)− π

(
1

2
√
x0

+
2x0
√
x0

1− x20

)
< 0, ∀x0 ∈

(
1√
3
, 1

)
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Figure 9: The graph of the function G(x0).

The penultimate step towards the Monotonicity Theorem:

Lemma 5.12.

d

dx0
bx0(P (x0)/2) < 0, whenever bx0(P (x0)/2) > π

Proof. By the chain rule we know (as we did for Corollary 5.4)

d

dx0
bx0(P (x0)/2) =

(
− 2

3y

(
2z̄ +

1

2
bȳ − ax̄

)
+ (y − 1

4
bz)

dP

dx0

)∣∣∣∣
t=P (x0)/2

.

The bz term is zero at the half period, and we can simplify further. The above is
less than zero if and only if

(2x2 + 2y2)
dP

dx0
< bȳ − 2ax̄ at t = P (x0)/2.

However we know x2 + y2 = 1 at the half period, and we may also employ the
Reciprocity Lemma (equivalently, Theorem 3.15 or Proposition 5.1). This yields
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that our desired result is equivalent to showing

dP

dx0
(x0) <

(
b(ȳ − y

x
x̄)
)∣∣
t=P (x0)/2

.

By hypothesis, bx0(P (x0)/2) > π, and we can use equation (9) and Proposition 5.7.
This means it suffices to show

dP

dx0
(x0) < π

(
1

2
√
x0

+
2x0
√
x0

1− x20

)
, ∀x0 ∈

(
1√
3
, 1

)
which is nothing but Lemma 5.11.

Now we are ready to prove the Monotonicity Theorem.

Theorem 5.13 (The Monotonicity Theorem). For α = 1/2, ∂0N+ is the graph of a
non-increasing function (in Cartesian coordinates).

Proof. This is equivalent to showing

d

dx0
bx0(P (x0)/2) ≤ 0

or, as in the proof of the previous lemma,

dP

dx0
(x0) ≤

(
b(ȳ − y

x
x̄)
)∣∣
t=P (x0)/2

.

We now show that bx0(P (x0)/2) ≥ 4 always. If this is true, then the theorem follows
by Lemma 5.12. Otherwise, assume that bx0(P (x0)/2) < 4 for some choice of x0. By
Lemma 5.9, bx0(P (x0)/2) limits to 4 as x0 tends to 1, so bx0(P (x0)/2) must eventually
be greater than π. Let x′0 be the last initial value where b(P/2) ≤ π. By Lemma
5.12, bx0(P (x0)/2) will be strictly decreasing in x0, which is a contradiction. Hence,
b > 4 always and the theorem is proven.

6 Appendix A: Proof of Lemma 5.11

Lemma (5.11). For α = 1/2, we have

G(x0) :=
dP

dx0
(x0)− π

(
1

2
√
x0

+
2x0
√
x0

1− x20

)
< 0, ∀x0 ∈

(
1√
3
, 1

)

40



Proof. In the course of proving Lemma 5.9, we defined the functions

ν3(x0) =

√
2− 3x20 +

√
4x20 − 3x40

2
√

2

and

ν4(x0) =
2− 3x20 −

√
4x20 − 3x40

2− 3x20 +
√

4x20 − 3x40
.

To avoid a disarray of variables, we will omit writing the dependence of ν3 and ν4 on
x0 explicitly. Recall Equation 17, where we found the following expression for the
period function in G1/2:

P (x0) =
2K(ν4)

ν3
where the parameter for the complete elliptic integral K is as in Mathematica. We
use the imaginary-modulus transformation in [6, Eq. 19.7.5] to change the argument
of K to something more appropriate:

P (x0) =
2K(ν4)

ν3
=

2

ν3
√

1− ν4
·K
(

ν4
ν4 − 1

)
We prefer the above expression since the argument for K is now a diffeomorphism
from [1/

√
3, 1) onto [0, 1). Again, for brevity’s sake, we define the following rational

functions:

σ1(x0) =
2

ν3
√

1− ν4
σ2(x0) =

ν4
ν4 − 1

to get the following expression for the period function

P (x0) = σ1(x0)K(σ2(x0)).

Remembering the differentiation formula for K (also given in [6, Eq. 19.4.1]), we
get (again omitting dependences on x0)

dP

dx0
= K(σ2)

(
dσ1
dx0
− σ1

2σ2
· dσ2
dx0

)
+ E(σ2) ·

σ1 · dσ2dx0

2σ2(1− σ2)

Thus, proving this lemma amounts to demonstrating that

K(σ2)

(
dσ1
dx0
− σ1

2σ2
· dσ2
dx0

)
+ E(σ2) ·

σ1 · dσ2dx0

2σ2(1− σ2)
− π

(
1

2
√
x0

+
2x0
√
x0

1− x20

)
< 0 (18)
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We will use the following inequality, proven in [1], that also gives a good approxima-
tion of K,

π

2

(
arctanh r

r

)1/2

< K(r2) <
π

2

(
arctanh r

r

)
, ∀r, 0 < r < 1 (19)

Before continuing, we wish to emphasize that the parameter for K above is as in
Mathematica for the EllipticK function, which causes a difference (albeit superficial)
between our statement of the inequality and the statement given in [1]. Now, it can
be verified with Mathematica that the quantity(

dσ1
dx0
− σ1

2σ2
· dσ2
dx0

)
is always negative and

σ1 · dσ2dx0

2σ2(1− σ2)

is always positive for x0 ∈ (1/
√

3, 1). Thus, using the inequality given in (19) (and
the well-known fact that E(k) ≤ π/2 for any real 0 < k < 1), we know that

K(σ2)

(
dσ1
dx0
− σ1

2σ2
· dσ2
dx0

)
+ E(σ2) ·

σ1 · dσ2dx0

2σ2(1− σ2)
− π

(
1

2
√
x0

+
2x0
√
x0

1− x20

)
<

π

2

(
arctanh

√
σ2√

σ2

)1/2(
dσ1
dx0
− σ1

2σ2
· dσ2
dx0

)
+
π

2
·

σ1 · dσ2dx0

2σ2(1− σ2)
− π

(
1

2
√
x0

+
2x0
√
x0

1− x20

)
It follows that, to finish our proof, it suffices to prove(

arctanh
√
σ2√

σ2

)1/2(
dσ1
dx0
− σ1

2σ2
· dσ2
dx0

)
+

σ1 · dσ2dx0

2σ2(1− σ2)
− 2

(
1

2
√
x0

+
2x0
√
x0

1− x20

)
< 0.

We remember that (
dσ1
dx0
− σ1

2σ2
· dσ2
dx0

)
is always negative, so it in fact suffices to show:

arctanh
√
σ2√

σ2
>

(
2

(
1

2
√
x0

+
2x0
√
x0

1− x20

)
−

σ1 · dσ2dx0

2σ2(1− σ2)

)2

· 1(
dσ1
dx0
− σ1

2σ2
· dσ2
dx0

)2 .
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Using elementary calculus, it can be proven that the function

F (x) =
arctanhx

x

satisfies
F (x) ≥ 1

with equality if and only if x = 0. We can simplify σ2 and see that

σ2(x0) =
−2 + 3x20 +

√
4x20 − 3x40

2
√

4x20 − 3x40

so σ2(x0) = 0 if and only if x0 = ±1/
√

3. It follows that

arctanh
√
σ2√

σ2
≥ 1

for x0 ∈ [1/
√

3, 1) and the inequality is strict unless x0 = 1/
√

3. So, we have reduced
our desired inequality (18) to showing that

1 >

(
2

(
1

2
√
x0

+
2x0
√
x0

1− x20

)
−

σ1 · dσ2dx0

2σ2(1− σ2)

)2

· 1(
dσ1
dx0
− σ1

2σ2
· dσ2
dx0

)2

for x0 ∈ (1/
√

3, 1). After simplification, the desired inequality is

(
27x60 − 36x40 − 3x20 + 8 4

√
4 − 3x20 + 4

)2 (
−3x20 +

√
4 − 3x20x0 + 2

)4

64
√

4 − 3x20

(
−27x80 + 72x60 − 57x40 + 12x20 + 6

√
4 − 3x20x0 − 9

√
4 − 3x20x

7
0 + 18

√
4 − 3x20x

5
0 − 17

√
4 − 3x20x

3
0 + 2

)2
< 1 (20)

for x0 ∈ (1/
√

3, 1). Fortunately for us, Mathematica (and presumably other com-
puter algebra systems) can verify inequality (20) very quickly, which allows us to
conclude our proof.

We have included the Mathematica code that proves this last inequality in Ap-
pendix B.

7 Appendix B: Computer Code

Here we present the Mathematica code that generates the figures we have presented.
In addition, we present the modification to Richard Schwartz’s Java program, [14],
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which allows the rendering of geodesics and geodesic spheres in Gα groups (Figure 3),
the Mathematica code written by Stephen Miller that allows numerical computation
of the period function for arbitrary positive α, and the Mathematica code that verifies
the inequality in (20). We note that the whole of the program [14] is available online,
on Richard Schwartz’s website.

7.1 Figures 1 and 2

This gets us the implicit plots in the plane:

Manipulate [
ContourPlot [ ( 1 / a ) Eˆ(2∗ a∗z ) + Eˆ(−2 z ) +

wˆ2 == (1+a )/( a∗b ˆ2) , {w, −10 ,10} , {z , −10 ,10} ,
PlotRange −> All , AspectRatio −> Automatic , PlotPoints −> 5 0 ] ,
{b , 0 . 0 0 1 , 1} , {a , 0 . 0 0 1 , 1 } ]

A 3-D rendering can be obtained with:

Manipulate [
ContourPlot3D [ ( 1 / a ) Eˆ(2∗ a∗z ) +

Eˆ(−2 z ) + ( x − Sqrt [ a ]∗ y )ˆ2 == (1 + a )/( a∗b ˆ2) , {x , −10,
10} , {y , −10 ,10} , {z , −10 ,10} , PlotRange −> All ] , {b , 0 . 0 1 ,

1} , {a , 0 . 0 5 , 1 } ]
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7.2 Figure 3

The GroupStructure class file in [14] contains a routine which specifies both the
structure equations and the structure vector field (Σα for the Gα groups). Richard
Schwartz made his program to explore Sol, but a small modification to the structure
routine allows us to use his program for all of theGα groups as well as other Lie groups
(equipped with a choice of left-invariant metric) such as Nil. If the reader would like
to investigate the geodesic geometry of the Gα groups using Schwartz’s program, they
need only download Schwartz’s program from [14], insert the following subroutine
into the GroupStructure class file, and quickly make the necessary modifications to
the user interface.

/∗∗For G Alpha groups , where ”A” denotes the cho ice o f a lpha ∗/

/∗∗This s p e c i f i e s the group law∗/
public stat ic Vector l e f tTrans la t i onGroup ( Vector V, Vector W) {

double x=V. x [ 0 ] ;
double y=V. x [ 1 ] ;
double z=V. x [ 2 ] ;
double a=W. x [ 0 ] ;
double b=W. x [ 1 ] ;
double c=W. x [ 2 ] ;
double aa=a∗Math . exp(+z)+x ;
double bb=b∗Math . exp(−A∗z)+y ;
double cc=c+z ;
Vector Z=new Vector ( aa , bb , cc ) ;
return Z ;

}
/∗∗This s p e c i f i e s the s t r u c t u r e e q u a t i o n s ∗/

public stat ic Vector s t ructureFie ldGroup ( Vector V) {
double x=V. x [ 0 ] ;
double y=V. x [ 1 ] ;
double z=V. x [ 2 ] ;
double a=+x∗z ;
double b=−A∗y∗z ;
double c=+A∗y∗y−x∗x ;
Vector W=new Vector ( a , b , c ) ;
return W;

}
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7.3 Figure 4, 5, and 8

The following renders the symmetric flowline associated to any choice of x0 ∈ ( 1√
3
, 1)

for the G1/2 group. Moreover, this provides numerical evidence that the unwieldy
expression for the period function in G1/2 we presented earlier is indeed correct.
Figure 5 just adds the straight line from the origin to the endpoint of the flowline to
show that the “Bounding Triangle Theorem” does not work in general while Figure
8 just plots the endpoints of the flowlines.

(∗ This i s the per iod f u n c t i o n f o r the G {1/2} group ,
as in C o r o l l a r y 3 .4 ∗)

P[ B ] := (∗ as in the s ta tement o f the c o r o l l a r y ∗)

(∗ This i s the per iod funct ion ,
a f t e r the change o f v a r i a b l e s from \ be ta to x0 ∗)

L1 [ x0 ] := P[ ( ( 3 ∗ Sqrt [ 3 ] / 2 ) ∗ ( x0−x0 ˆ 3 ) ) ˆ ( 1 / 3 ) ]

(∗ This numer ica l l y s o l v e s the fundamental system of ODE’ s ∗)

Manipulate [
s1 = NDSolve [{ x ’ [ t ] == −x [ t ]∗ z [ t ] , y ’ [ t ] == (1/2)∗ y [ t ]∗ z [ t ] ,

z ’ [ t ] == −(1/2)∗y [ t ] ˆ2 + x [ t ] ˆ 2 , a ’ [ t ] == 2∗x [ t ] + a [ t ]∗ z [ t ] ,
b ’ [ t ] == 2 y [ t ] − (1/2)∗b [ t ]∗ z [ t ] , z [ 0 ] == 0 , a [ 0 ] == 0 ,
b [ 0 ] == 0 , x [ 0 ] == x0 , y [ 0 ] == Sqrt [ 1 − x0 ˆ2 ]} , {x , y , z , a ,
b} , {t , 0 , Re [ L1 [ x0 ] ] / 2 } ] , {x0 , 1/Sqrt [ 3 ] , 1} ]

(∗ This p l o t s the f l o w l i n e ∗)

ParametricPlot [{ a [ t ] , b [ t ]} / . s1 , {t , 0 ,Re [ L1 [ x0 ] / 2 ] } ,
PlotRange −> All ]
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7.4 Figures 6 and 7

We can use Stephen Miller’s program to compute the period for arbitrary alpha, or
we can “find” it by inspection, preferably looking at the function z.

(∗ This numer ica l l y s o l v e s our ODE’ s , d i s a lpha here ∗)

Manipulate [
s = NDSolve [{ x ’ [ t ] == −x [ t ]∗ z [ t ] , y ’ [ t ] == d∗y [ t ]∗ z [ t ] ,

z ’ [ t ] == −d∗y [ t ] ˆ2 + x [ t ] ˆ 2 , a ’ [ t ] == 2∗x [ t ] + a [ t ]∗ z [ t ] ,
b ’ [ t ] == 2 y [ t ] − d∗b [ t ]∗ z [ t ] , z [ 0 ] == 0 , a [ 0 ] == 0 , b [ 0 ] == 0 ,
x [ 0 ] == c1 , y [ 0 ] == Sqrt [ 1 − c1 ˆ2 ]} , {x , y , z , a , b} , {t , 0 ,
20} ] , {c1 , Sqrt [ d/(d + 1 ) ] , 1} , {d , 0 , 1} ]

(∗We can use t h i s to f i n d \ rho by i n s p e c t i o n ∗)
Manipulate [ z [ t ] / . s , {t , 0 , 20} ]

(∗ This p l o t s the d e r i v a t i v e o f b ∗)
Plot [ b ’ [ t ] / . s , {t , 0 , 15 .99} , AspectRatio −> Automatic ,
AxesOrigin −> {0 , 0} ]

7.5 Figure 9

This code provides the numerical evidence for Lemma 5.11.

L1 [ x0 ] := (∗As b e f o r e ∗)

(∗ F i r s t we e v a l u a t e the d e r i v a t i v e ∗)
D[ L1 [ x0 ] , x0 ]

(∗Then , we p l o t G( x0 ) ∗)
Plot [% − 3 (1/(2 Sqrt [ x0 ] ) + 2∗x0∗Sqrt [ x0 ] / ( 1 − x0 ˆ2 ) ) ,
{x0 ,1/ Sqrt [ 3 . ] , 1 } , AxesOrigin −> {1/Sqrt [ 3 . ] , 0} ]

47



7.6 Computing the General Period Function

Stephen Miller helped us with this code. It allows us to compute the period function
for any choice of α and β. Using it, it appears that the monotonicity results we
would like are indeed true for arbitrary α, a promising sign for our Main Conjecture.

(∗ Def in ing the in tegrand ∗)
in tegrand [ t , A , B ] = 2/
Sqrt [ 1 − Bˆ2/(A +

1) (A Exp [ 2 t ] + Exp[−2 A t ] ) ]

(∗ Numerica l ly f i n d i n g the endpo in t s o f i n t e g r a t i o n ∗)
endpoints [ A , B ] :=

Sort [ Log [ Flatten [
y / . NSolve [

1 − Bˆ2/(A + 1) (A y + yˆ−A) == 0 ,
y , 2 0 ] ] ] / 2 ]

(∗ Numerical i n t e g r a t i o n ∗)
p [ A , B ] :=

NIntegrate [ in tegrand [ t , A, B] ,
Join [{ t } , endpoints [A, B ] ] ]

(∗ Generates the t a b l e presen ted e a r l i e r ∗)
Table [{ a , p [ a , . 9 9 9 ] , Pi∗Sqrt [ 2/ a ]} , {a , 0 . 1 , 1 , 0 . 1 } ]

7.7 Verification of Inequality (20)

Mathematica and other computer algebra systems can prove inequalities involving
rational functions fairly quickly. A human-readable proof could in practice be gen-
erated as well, but an output of “true” suffices for our purposes.

Reduce [ ForAll [ x0 ,
1/Sqrt [ 3 ] < x0 <

1 , . . . The exp r e s s i on in ( 2 0 ) . . . < 1 ] ]
(∗ The output to t h i s code i s t r u e ∗)
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