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Abstract

Ahmadi-Shparlinski conjectured that every ordinary, geometrically simple Jacobian over a
finite field has maximal angle rank. Using the L-Functions and Modular Forms Database, we
provide two counterexamples to this conjecture in dimension 4.

1 Introduction

The following is a conjecture of Ahmadi–Shparlinski:

Conjecture 1.1 ([AS10, §5]). Every ordinary, geometrically simple Jacobian over a finite field has
maximal angle rank.

In this paper we report that this conjecture is false. Our work used the L-Functions and Modular
Forms Database (LMFDB), specifically its database of abelian varieties over finite fields which can
be found here:

https://www.lmfdb.org/Variety/Abelian/Fq/.

Documentation, further conjectures, and interesting statistics are reported in [DKRV20].
Apart from the counterexamples of Section 7, this article briefly recalls the notion of angle

rank in Section 2, presents how geometric simplicity is computed in the LMFDB (Section 3) and
how Jacobians are tested for in the LMFDB (Section 4). Following this, we describe our search
(Section 5), and because angle ranks are computed numerically in the LMFDB, we provide a proof
of the computation of the angle rank for both examples in Section 6. Readers can verify these
counterexamples themselves using the code provided at

https://github.com/LMFDB/abvar-fq/,

which uses Sage [S+20], PARI [PAR19] and Magma [BCP97]. Finally, the two counterexamples are
in Section 7. We remark that in addition to providing counterexamples to the conjecture, we give
two new methods for algebraically certifying angle ranks (as remarked above, as of January 2020,
in the LMFDB the angle ranks are computed numerically using an LLL algorithm).

Remark 1.2. We began searching for counterexamples to Conjecture 1.1 since it is incompatible
with the Shankar-Tsimerman conjecture [ST18, Conj. 2.5] which states that every simple abelian
fourfold over Fp is isogenous to a Jacobian; since angle rank, ordinarity, and geometric simplicity
are preserved under base change, this would imply that every simple abelian fourfold has maximal
angle rank.
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2 Frobenius Angle Rank

This section very briefly presents the definition of the angle rank of an abelian variety defined over
a finite field; for more context and a longer discussion the reader is directed to [DKRV20, §2.6, 3.8]
and [DZB20].

For A an abelian variety of dimension g with L-polynomial L(T ) =
∏2g

i=1(1 − αiT ), the angle

rank of A is the quantity

δ(A) = dimQ(SpanQ({arg(αi) : 1 ≤ i ≤ 2g} ∪ {π})) − 1 ∈ {0, . . . , g}.

The angle rank detects multiplicative relations among the roots of L; these are closely related
to exceptional Hodge classes on powers of A. For example, by a theorem of Zarhin [Zar94, Theo-
rem 3.4.3], δ(A) = g if and only if there are no exceptional Hodge classes on any power of A. At
the other extreme, δ(A) = 0 if and only if A is supersingular.

3 Geometric Simplicity

To check that an ordinary isogeny class defined over Fq is geometrically simple, we compute the
tensor square of the L-polynomial, note that it has no nontrivial cyclotomic factors, and apply
[CMSV19, Lemma 7.2.7 (b)] to deduce that all of the geometric endomorphisms are defined over Fq;
in particular, each simple isogeny factor is geometrically simple. In the counterexamples presented
in this article, ordinarity and simplicity over Fq follow from the irreducibility of the L-polynomial.
For a discussion of the geometric endomorphism algebra in more generality, see [DKRV20, §3.5].

4 Searching for Jacobians

The current version of the LMFDB contains substantial data about whether isogeny classes contain
Jacobians up to dimension 3 (see [DKRV20, §3.7]). However, for this paper we need data in
dimension 4, for which the LMFDB currently contains only negative results (e.g., a given isogeny
class may fail to contain a Jacobian because it contains no principally polarizable variety, or because
it corresponds to an impossible sequence of point counts on a curve). We thus cannot use the
LMFDB alone to certify that a given isogeny class contains a Jacobian.
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We instead take the approach of constructing curves, computing their zeta functions, and match-
ing their numerators to the Weil polynomials contained in the LMFDB. To construct the curves,
we note that in genus 4, every nonhyperelliptic curve is the intersection of a quadric and a cubic
in P3. In practice, over F2, this allows us to make an exhaustive search over both hyperelliptic
and nonhyperelliptic curves, using Magma to compute zeta functions. (In the nonhyperelliptic
case, we limit the options for the quadric as in [Sav03].) Over F3 and F5, we enumerate only
over hyperelliptic curves, using Sage to compute zeta functions. This was enough to find the two
counterexamples presented here.

5 Results of the Search

The Ahmadi-Shparlinski conjecture is a theorem in dimension 2, even without the ordinary condi-
tion [AS10, Theorem 2]. It is also a theorem in dimension 3, but this time it requires the ordinary
condition [Zar15, Theorem 1.1]. We verified the consistency of these results with the LMFDB
database.

In dimension 4 over F2 there are 52 isogeny classes of ordinary, geometrically simple abelian
varieties with angle rank at most 3 (in fact they are all equal to 3). Searching through curves, we
found 620 distinct zeta functions, none of which occur among the previous list of 52 isogeny classes.
Therefore there are no such 4-dimensional Jacobians over F2, and the conjecture holds in this case.

By contrast, the conjecture fails in dimension 4 over F3 and F5, as shown by the examples
presented in Section 7.

6 Algebraic Certification of Angle Ranks

We now describe the procedure we used to compute a rigorous upper bound on δ(A). See [DKRV20,
§3.8] for an alternate approach that also gives a rigorous lower bound (which we do not need here).

Let P (T ) be the Weil polynomial of an abelian variety A over Fq. Fix a precision ρ = σ2 (we
default to ρ = 625).

1. Compute the roots {αi} of P (T ) that have positive imaginary part, in a complex field C of
precision ρ. Set ti = arg(αi)/π, where arg is the principal branch of the logarithm. Throw
away duplicates, obtaining 0 < t1 < · · · < tm < 1.

2. Use LLL to find independent integer relations R1, . . . , Rs among {t1, . . . , tm, 1}. A relation is
considered spurious if all coefficients are larger than 2σ, and we interrupt the computation if
some value is larger than 2σ but others are not (this did not happen for any isogeny class in
the database). The numerical angle rank is m− s.

3. Find a number field K in which P (T ) splits completely. Choose an embedding ι : K →֒ C
and let β1, . . . , βm be the roots of P (T ) in K with 0 < arg(ι(β1)) < · · · < arg(ι(βm)) < π.
(In other words, the root βi has argument approximated by ti above.)

4. The roots β1, . . . , βm together with the relations R1, . . . , Rs provide a certificate that the
angle rank of A is at most m− s. One can check using exact arithmetic in K that a relation
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Ri = (c1, . . . , cm+1) holds by confirming that

(−q)cm+1

m∏

i=1

βci
i = 1.

Remark 6.1. The upper bound m − s can only fail to be sharp if at some point we discarded a
relation as spurious when it was real. Such a relation would have all coefficients larger than 2σ.

Remark 6.2. Let P (T ) =
∏2g

i=1(T−αi) be a Weil polynomial, with roots ordered so that αiαi+g = q
(where the indices are taken modulo 2g). This remark explains an alternative method, using
resultants and “taking cyclotomic parts,” to verify the existence of a relation of the form

αe1
i1
αe2
i2
· · ·α

ej
ij

= ζqj/2, (1)

where e1, . . . , ej are specified positive integers and ζ is an unspecified root of unity. Such a relation
is guaranteed to be nontrivial (i.e., not a consequence of the known relations αiαi+g = q) provided
that i1, . . . , ij are pairwise distinct mod g; when this occurs, the existence of the relation implies
that the angle rank is not maximal. Note however that as presented, this method cannot always
certify a sharp upper bound on the angle rank.

Before presenting this method, we present three preliminary facts which we will need and take
for granted:

1. If F (T ) and G(T ) are any two polynomials, the polynomial

H(T ) = ResS(F (S), G(T/S)Sdeg G)

is a polynomial whose roots are products of the roots of F and G.

2. If A is an abelian variety over Fq of dimension g with characteristic polynomial P (T ) =

PAFq
(T ) =

∏2g
i=1(T − αi), then for any positive integer n, PAFqn

(T ) =
∏2g

i=1(T − αn
i ). One

can show that there is a formula for this polynomial in terms of resultants given by PAFqn
(T ) =

ResS(P (S), Sn − T ).

3. If F (T ) is a polynomial with integer coefficients, then it factors as F (T ) = C(T )G(T ) where
C(T ) is a cyclotomic polynomial and G(T ) has no cyclotomic factors. The computation of
the cyclotomic part C(T ) can be done efficiently using an algorithm described in [BS02]; this
is implemented in Sage by the function cyclotomic part() called on F (T ), which returns
C(T ).

With these facts granted, note first that we are free to make the test after performing a base
change as in the second point above; we may thus assume without loss of generality that q is a
perfect square, so that P (T ) = P (q1/2T ) is a root-unitary polynomial with rational coefficients.
Set α̃i = q−i/2αi, so that the roots of P (T ) are α̃1, . . . , α̃2g.

Using the first and second point, we produce the polynomial

Q(T ) =
∏

i1,i2,...,ij

(T − α̃e1
i1
α̃e2
i2
· · · α̃

ej
ij
),
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where the product is taken over all tuples (i1, i2, . . . , ij) in which 1 ≤ ik ≤ 2g. We then use the
third point to compute the cyclotomic part of Q(T ), and compare its degree with that of the
“trivial cyclotomic factor” coming from the relations αiαi+g = q. (For example when j = 2 and
e1 = e2 = 1, Q(T ) is divisible by (T − 1)g.) If these degrees disagree, this implies the existence of a
nontrivial relation. (However, this relation might be “partially trivial” and thus involve fewer than
j distinct roots.)

In practice, we predict j and e1, . . . , ej in the relation (1) using LLL, and then verify the
existence of a relation as we have just described, by showing that its cyclotomic part is greater
than predicted by the trivial relations.

7 Counterexamples

7.1 A Counterexample when g = 4 and q = 3

Let C be the hyperelliptic curve over F3 given by

y2 = x9 + x8 + x7 + 2x5 + x.

Then
L(C/F3, T ) = 1− T + 2T 2 − 4T 3 − 2T 4 − 12T 5 + 18T 6 − 27T 7 + 81T 8,

so the Jacobian A of C belongs to isogeny class 4.3.ab c ae ac, which is ordinary and geometrically
simple. We compute the minimal splitting field of this polynomial, which has degree 48 over Q,
and fix an ordering of the roots of PA(T ) such that βiβi+4 = 3, where the indices are taken modulo
8. Using the method of Section 6, we show that these roots satisfy the nontrivial relation

β1β3β4 = −3β2.

The angle rank of A is thus at most 3, and is equal to 3 unless there is a relation with exponents
all larger than 225.

7.2 A Counterexample when g = 4 and q = 5

Similarly, let C be the hyperelliptic curve over F5 given by

y2 = x9 + x6 + 2x5 + x.

Then
L(C/F5, T ) = 1− T + 2T 2 − 4T 3 + 16T 4 − 20T 5 + 50T 6 − 125T 7 + 625T 8,

so the Jacobian A of C belongs to isogeny class 4.5.ab c ae q. Again, A is ordinary, geometrically
simple, and has angle rank bounded above by 3. If once again we order the roots of PA(T ) such
that βiβi+4 = 3, where the indices are taken modulo 8, there is now a nontrivial relation of the
form

β1β4 = β2β3.
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