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Appendix to the paper “On skew braces and their

ideals”

Agata Smoktunowicz

Abstract

This paper introduces the notion of a strongly prime ideal, and shows that the

largest solvable ideal in a finite brace equals the intersection of all strongly prime

ideals in this brace. This is used to generalise some well known results from ring

theory into the context of braces and pre-Lie algebras. Several open questions are

also posed.

Prime ideals are an important part of noncommutative ring theory. Prime rings are
used for constructing Martindale rings of quotients, and they appear in the theory of rings
with generalised polynomial identities. Goldie’s theorem assures that prime Noetherian
rings have Artinian rings of quotients. The Faith-Utumi theorem permits even better
characterisation of prime Noetherian rings, ’sandwiching’ them between two matrix rings.
Subsequently, the notion of prime ideal was generalised to various other structures. For
example, in [17, 18] Zelmanov obtained fundamental results on the structure theory of
strongly prime Jordan algebras. Moreover, in [2] Amitsur defined the prime radical for
non-associative algebras and generalised Levitsky’s theorem that the prime radical equals
the intersection of all prime ideals in all associative rings. In this paper we introduce
strongly prime ideals for braces and pre-Lie algebras. Our approach is similar to that
of Levitsky and Amitsur, but we define N -sequences differently so as to make a better
fit with braces and pre-Lie algebras. We consider strongly prime ideals instead of prime
ideals for this same reason.

We consider a different model to that in [11], which also generalised the notion of
a prime ideal from ring theory to braces. In [11], it was not possible to prove some
structure theorems, so the notion of strongly prime braces is introduced in this paper to
differentiate it from the notion of the prime brace considered there. This allows us to
show that the largest solvable ideal in a finite brace equals the interesection of all strongly
prime ideals in this brace for example. Hence every finite brace without non-zero solvabe
ideals can be embedded in a direct product of strongly prime braces. Recall that the
notion of a solvable ideal was introduced for braces in [3]. An ideal I of a brace A is
called solvable if Ik = 0 for some k > 0 where I i is defined inductively by I1 = I and
I i+1 = I i ∗ I i. Various radicals have been introduced for braces by many authors. In [12]
Rump introduced left and right nilpotent braces and radical chains Ai+1 = A ∗ Ai and
A(i+1) = A(i) ∗ A for a left brace A, where A = A1 = A(1) (the original construction of
Rump is for right braces, but we give the natural translation of it to left braces here).

Various other radicals in braces were subsequently introduced, in analogy with ring
theory and group theory. Recall that solvable braces were introducted in [3], and in [10]
the radical of a brace was introduced as the intersection of all maximal ideals in a given
brace.
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Various radicals have been defined for pre-Lie algebras, including the left nilpotent
radical, the Koszul radical and Albert radical. Recall that an ideal I of a pre-Lie algebra
A is called solvable if Ik = 0 for some k > 0, where I(i) is defined inductively by I1 = I
and I i+1 = I i · I i. Another important radical in pre-Lie algebras, the Albert radical α(a),
is defined to be the intersection of all maximal ideals M of A such that A2 is not a subset
of M . If such a maximal ideal does not exist then we let α(A) = A [8].

1 Background information

Recall that a set B with binary operations + and ∗ is a left brace if (B,+) is an abelian
group and the following version of distributivity combined with associativity holds:

(a + b + a ∗ b) ∗ c = a ∗ c + b ∗ c + a ∗ (b ∗ c), a ∗ (b + c) = a ∗ b + a ∗ c

for all a, b, c ∈ B. Moreover (B, ◦) is a group where we define a ◦ b = a + b + a ∗ b.
See [12] for the original definition. For a shorter equivalent definition using group

theory see [7]. In what follows we will use the definition in terms of operation ‘◦’ (
presented in [7]): a set B with binary operations of addition +, and multiplication ◦ is a
brace if (B,+) is an abelian group, (B, ◦) is a group and for every a, b, c ∈ B

a ◦ (b + c) + a = a ◦ b + a ◦ c.

We will use the following commonly used definition of an ideal in a brace.

Definition 1. [13] We say that I is an ideal in a brace (B,+, ◦) if I is a subset of B
and for each a, b ∈ I and each r ∈ B we have a + b ∈ I, a− b ∈ I, r ∗ a ∈ I, a ∗ r ∈ I.

Recall that a ◦ b = a ∗ b + a + b for all a, b ∈ B.
We will use the following notation: Let I, J be subsets of a left brace A, then I ∗ J is

the additive subgroup of A generated by elements i ∗ j, where i ∈ I, j ∈ J .
Similarly, if I, J are subsets of a pre-Lie algebra A then I · J is the additive subgroup

of A generated by elements i ∗ j where i ∈ I, j ∈ J .

Definition 2. We say that I is an ideal in a pre-Lie algebra (A,+, ·) if I is a subset of
A and for each a, b ∈ I and each r ∈ A we have a + b ∈ I, a− b ∈ I, r · a ∈ I, a · r ∈ I.

All braces and F-braces considered in this paper are left braces.

1.1 Strongly prime ideals

In what follows, A is a brace with operations +, ◦, ∗, where (A,+) is an abelian group,
(A, ◦) is a group, and, as usual, a ◦ b = a ∗ b + a + b. Moreover, a ∗ (b + c) = a ∗ b + a ∗ c
for a, b, c ∈ A. We introduce a strongly prime brace.

Definition 3. Let A be a brace. We say that a brace A is a strongly prime brace if
every product of any number of non-zero ideals in A is non-zero. All the products use the
operation ∗.

Definition 4. Let A be a brace. We say that a brace A is a strongly semiprime brace if,
for every non-zero ideal I in A, every product of any number of copies of I is non-zero.
All the products use the operation ∗.
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Definition 5. Let A be a brace. We say that an ideal I in A is strongly prime if the
factor brace A/I is a strongly prime brace.

Definition 6. Let A be a brace. We say that an ideal I in A is strongly semiprime if the
factor brace A/I is strongly semiprime.

2 N-sequences and N-ideals

Let A be a brace and a ∈ A. By < a > we will denote the smallest ideal in A containing
a. Recall that for an ideal I of A, we define I1 = I, and inductively In+1 = In ∗ In. So I
is solvable if and only if In = 0 for some n.

Definition 7. Let A be a brace and let a ∈ A. We define the N-sequence to be a sequence
a1, a2, a3, . . . of elements in A satisfying

an+1 ∈< an >αn

for some natural numbers 0 < α1 < α2 < . . ..

We will say that this N -sequence starts with element a1.

Definition 8. Let A be a brace and let I be an ideal in A. We say that I is an N-ideal
if every N-sequence in A starting with an element in I reaches zero.

Lemma 9. Let A be a brace. The sum of any number of N-ideals in A is an N-ideal in
A.

Proof. Let I, J be two N -ideals in A. We will first show that I+J = {a+b : a ∈ I, b ∈ J}
is an n-ideal in I. Let a1, a2, . . . be an N -sequence with a1 = a+ b where a ∈ I and b ∈ J .
Consider the factor brace A/J and the N -sequence a′1 = a1 + J = a + J , a′2 = a2 + J, . . .
in A/J . Notice that every N -sequence in A starting with a ∈ I will reach zero, therefore
every n-sequence in A/J will reach zero (because (r + J) ∗ (s + J) = r ∗ s + J for all
r, s ∈ A). It follows that a′k = 0 for some k, hence ak ∈ J for some k. Observe that
ak, ak+1, ak+2, . . . form an N -sequence in A starting with a′′1 = ak ∈ J , and since J is an
N -ideal we see that an = 0 for some n. This proves that I +J is an N - ideal in A. Notice
also that I + J is an ideal in A by Lemma 2.7 [11].

Observe that this implies that the sum of a finite number of N -ideals is an N - ideal.
Therefore the sum of any number of N -ideals is an N -ideal, as a1 belongs to a sum of
such ideals if and only if it belongs to a sum of finite number of strongly prime ideals,
therefore every N -sequence starting with a1 reaches zero.

2.1 Solvable ideals

Recall that the sum of a finite number of solvable ideals is a solvable ideal [11]. Similarly
as for pre-Lie algebras [5, 6, 8], we can define for every finite brace the solvable radical
as the largest solvable ideal, which also equals the sum of all solvable ideals in this brace.
We define the prime radical of a brace A to be the largest N -ideal in A. In this section
of the paper, we show that for finite braces the prime radical and the solvable radical
coincide.

We recall a definition of a solvable brace from [3]:
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Definition 10. For a brace A we define A1 = A and inductively Ai+1 = Ai ∗Ai for i ≥ 1.
Recall that A is said to be solvable if An = 0 for some n. By induction one proves that
Ai+1 ⊆ Ai for all i.

Definition 11. An ideal I in a brace A is solvable, if I is a solvable skew brace.

We obtain the following result:

Theorem 12. Let A be a finite brace. Then the largest solvable ideal of A equals the
intersection of all strongly prime ideals in A.

Proof. Let a ∈ A be such that the ideal generated by a is solvable, and let P be a
strongly prime ideal in A. Then J =< a > +P is an ideal in A containing P , by Lemma
2.7 [11]. Observe that {j +P : j ∈ J} is a solvable ideal in the factor brace A/P . As the
factor brace A/P is strongly prime it cannot have non-zero solvable ideals. Consequently
J ⊆ P , so a ∈ P . It holds for every strongly prime ideal in A. Therefore a is in the
intersection of all strongly prime ideals in A.

Suppose now that a is in every strongly prime ideal in A. We will show that the ideal
< a > generated by a in A is solvable (< a > is the smallest ideal in A containing a).
We will first show that every N -sequence starting in a will reach zero, so < a > is an
N -ideal. Suppose on the contrary that there is an N -sequence a1, a2, . . . which has all
elements non-zero and a1 = a. Let I be an ideal of A which is maximal with respect
to the property that I does not contain any element ai (such an ideal exists by Zorn’s
lemma, and it may be the zero ideal). Observe that I is a strongly prime ideal, because
if J [1], . . . J [n] are ideals containing I and larger than I, then by the maximality of I
there is an element at from our N -sequence such that at ∈ J [k] for k = 1, 2, . . . n (since
if ai ∈ J [k] then ai+1 ∈ J [k]). Define J =

⋂n

i=1 J [i]. Notice that J 6= 0 since at ∈ J . Let
L be some product of ideals J [1], . . . , J [n]. It can be proved that L contains Jm for all
m > j for some j (with a similar proof as in Lemma 6.11 in [11]). Let k > t be such that
αk > j. Recall that αk comes from the definition of our fixed n sequence where we have
ak+1 ∈< ak >αk

. Notice that ak ⊆ J implies

ak+1 ⊆< ak >αk
⊆ Jαk

⊆ Jj ⊆ L.

Therefore all products of ideals J1, . . . , Jn are non-zero (because all elements ai are non-
zero). Therefore I is a strongly prime ideal in A which does not contain a, a contradiction.

We will now show that < a > is a solvable ideal. Notice that < a > is a brace. It
suffices to show that every finite brace B in which each N -sequenceence reaches zero is
solvable.

We will prove that B is solvable by induction on the number of elements in B. If B
has only one element then it is a zero element, as every brace contains zero, and the result
holds. Suppose the result holds for all braces of cardinality smaller than i, and suppose
that B has cardinality i + 1. We will construct an N -sequence of elements in B, let a1
be an arbitrary non-zero element in B, and we construct our N -sequence by induction
by taking as ai+1 an arbitrary non-zero element from < ai >i. Because every N -sequence
will reach zero we will have ai 6= 0 and < ai >i= 0 for some i. Because ai ∈< ai > we
have that < ai > is a non-zero solvable ideal in A. Notice that < ai > is an ideal in brace
B. Since every N -sequence in brace B reached zero, then every N -sequence in the factor
brace B/ < ai > reaches zero. By the inductive assumption B/ < ai > is a solvable
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brace. Notice that < ai > and B/ < ai > are solvable braces, so by Lemma 6.4 from [11]
B is a solvable brace.

Lemma 13. A finite (non-trivial) brace is strongly semiprime if and only it has no non
zero solvable ideals.

Proof. It suffices to show that the solvable radical of A is not zero if and only if A is not
strongly semiprime. If A is not strongly semiprime then there is some non-zero ideal I
such that some product L of some number of copies of I is zero. It can be proved by
induction (on the number of copies of I) that any product of some copies on I contains
In, for some n. Therefore I is a solvable ideal (since In ⊆ L = 0 for some n).

Assume now that the solvable radical of A is not zero, and let I be a non-zero solvable
ideal in A, then In = 0 for some n. As product In of some copies of I is zero then A is
not strongly semiprime.

Let A1, A2, . . . , An be braces, then the direct product A1 ⊕ A2 ⊕ · · · ⊕ An is a brace
consisting of elements (a1, . . . , an) with ai ∈ Ai with the addition

(a1, . . . , an) + (a′1, . . . , a
′

n) = (a1 + a′1, . . . , an + a′n)

and multiplication

(a1, . . . , an) ∗ (a′1, . . . , a
′

n) = (a1 ∗ a
′

1, . . . , an ∗ a
′

n).

We obtain the following classification of strongly semiprime braces.

Theorem 14. Every finite strongly semiprime brace A embeds as a skew brace in the
direct product of some strongly prime braces A1, . . . , An, for some n. Moreover A contains
the direct product of some braces L1, . . . , Ln, where each Li is a non-zero ideal in the brace
Ai.

Proof. Because A is finite, we can find the minimal possible number n such that there
exist strongly prime ideals P1, . . . , Pn in A such that

⋂n

i=1 Pn = 0. A embeds in a
direct product of strongly prime braces A/P1, A/P2, . . . , A/Pn under the mapping f(a) =
(a + P1, . . . , a + Pn) (because kernel of the map f is zero, since

⋂n

i=1 Pn = 0).
By the minimality of n, for every i there is an ai ∈ A such that ai ∈ Pj for j 6= i and

a /∈ Pi. Let L′

i be the smallest ideal of A containing ai, then L′

i ⊆ Pj for j 6= i. Notice
that Li = {l + Pi : l ∈ L′

i} is an ideal in A/Pi. It follows that the direct product of
ideals Li is contained in the image of A under the map f(a) = (a + P1, . . . , a + Pn), as
required.

Remark. The above results can be generalised to the case of pre-Lie algebras by sub-
stituting the words pre-Lie algebra for the word brace at all occurences of the word brace.
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3 The Baer radical

In [11], the Baer radical of a brace was defined. It was shown that the Baer radical
equals the intersection of all prime ideals in A. Recall that an ideal I in a brace A is
prime if for any two ideals I ⊆ J, I ⊆ K in A, if J 6= I, and I 6= K then J ∗ K is not
a subset of I. In other words, the factor brace A/I is a prime brace, i.e. a brace in
which the product of any two non-zero ideals is non-zero. To construct the Baer radical,
the following definition of n-sequence was defined, see [11]. Notice that this is a different
definition of N -sequence than in this paper but both generalise the ring theoretical notion
of n-sequence.

Let A be a brace, the sequence of elements a1, a2, . . . from A is an n-sequence in A if
for every i, ai+1 ∈< ai > ∗ < ai >.

Remark. Notice that there are some typos in the paper [11] as follows: In Lemma
5.15-it should be added that I is a Baer radical ideal in A. In the statement and in the
first line of the proof of Theorem 6.6, and on line 10 on page 8 in [11] instead of “skew
brace” should be written “two-sided brace”. Proof of Lemma 6.11-the last two lines of
this proof should be removed. Statement of Lemma 5.27, Theorem 5.28, Corollary 5.29
and the second line of its proof- it should be written “two-sided brace” instead of “skew
brace”.

There is also a typesetting error in the definition of the Baer radical ideal in [11] and
it should be added that every n-sequence starting with an element a1 ∈ I reaches zero.
This assumption was later used in Theorem 5.22 and Lemma 5.13 in [11].
So an ideal I in A is Baer radical if and only if every n-sequence starting with an element
in I reaches zero.

Acknowledgments. This research was supported by the EPSRC grant EP/R034826/1.
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ON SKEW BRACES AND THEIR IDEALS

A. KONOVALOV, A. SMOKTUNOWICZ, AND L. VENDRAMIN

Abstract. We define combinatorial representations of finite skew braces and
use this idea to produce a database of skew braces of small size. This database
is then used to explore different concepts of the theory of skew braces such
as ideals, series of ideals, prime and semiprime ideals, Baer and Wedderburn
radicals and solvability. The paper contains several questions.
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Introduction

In this work we explore some algebraic structures related to solutions to the
celebrated Yang–Baxter equation. Following Drinfeld [23], a set-theoretic solution
of the Yang–Baxter equation is defined as a pair (X, r), where X is a set and
r : X ×X → X ×X is a bijection such that

r1r2r1 = r2r1r2, r1 = r × id, r2 = id× r.

We will be interested in non-degenerate solutions, that is solutions (X, r) where
r can be written as r(x, y) = (σx(y), τy(x)) for permutations σx and τx of X .

Rump found that there is a deep connection between radical rings and set-
theoretic solutions of the Yang–Baxter equation. The key observation is the follow-
ing. Let R be a radical ring, that is an associative ring R such that for each x ∈ R
there exists y ∈ R such that x+ y+ xy = 0. Then the operation x ◦ y = x+ y+ xy
turns R into a group and

r : R×R → R ×R, r(x, y) = (xy + y, (xy + y)′ ◦ x ◦ y),

where z′ denotes the inverse of z with respect to the circle operation ◦, is a non-
degenerate solution of the Yang–Baxter equation such that r2 = idR×R. A natural
question arises: do we really need radical rings to construct such solutions?

Key words and phrases. Braces, Yang–Baxter equation, Radical rings.
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2 A. KONOVALOV, A. SMOKTUNOWICZ, AND L. VENDRAMIN

In [30] Rump introduced braces, a generalization of radical rings that produces
involutive solutions. There is a rich theory of braces, see for example [5, 6, 7, 8,
10, 13, 16, 17, 18, 19, 22, 25, 29, 31, 32]. Later braces were generalized to skew
braces to allow the construction of non-involutive solutions [26]. A skew brace is
a triple (A, ◦,+), where (A,+) and (A, ◦) are (not necessarily abelian) groups and
the compatilibity condition

a ◦ (b+ c) = a ◦ b− a+ a ◦ c

holds for all a, b, c ∈ A.
If X is a property of groups, a skew brace is said to be of X -type if its additive

group belongs to X . For example, skew braces of abelian type are those braces
introduced by Rump in [30] to study involutive set-theoretic solutions. Such braces
will be also called either classical braces or braces.

Skew braces have connections to several different topics, see for example [4, 12,
14, 20, 21, 27, 33]. In particular, skew braces provide the right algebraic framework
to study set-theoretic solutions to the Yang–Baxter equation. The connection be-
tween set-theoretic solutions and skew braces is explained in the following theorems.
The first one shows that skew braces produce set-theoretic solutions:

Theorem. [26, Theorem 3.1] Let A be a skew brace. The map

rA : A×A → A×A, rA(a, b) = (−a+ a ◦ b, (−a+ a ◦ b)′ ◦ a ◦ b),

is a non-degenerate set-theoretic solution of the Yang–Baxter equation.

The second theorem shows that solutions associated to skew braces are, in some
sense, universal. Similar results are [24, Theorem 2.9] for involutive solutions,
and [28, Theorem 9] and [34, Theorem 2.7] for non-involutive solutions. Recall
that the structure group of a solution (X, r) is the group G(X, r) generated by
{x : x ∈ X} with relations xy = uv whenever r(x, y) = (u, v).

Theorem. [33, Theorem 4.5] Let (X, r) be a non-degenerate solution of the Yang–
Baxter equation. Then there exists a unique skew left brace structure over the group
G(X, r) such that

(ι× ι)r = rG(x,r)(ι× ι),

where ι : X → G(X, r) is the canonical map. Moreover, the pair (G(X, r), ι) has the
following universal property: if B is a skew left brace and f : X → B is a map such
that (f × f)r = rB(f × f), then there exists a unique skew brace homomorphism
φ : G(X, r) → B such that f = φι and (φ× φ)rG(X,r) = rB(φ× φ).

This theorem allows us to define G(X, r) as the structure skew brace of the
solution (X, r). Clearly, skew braces are useful for understanding non-degenerate
set-theoretic solutions of the Yang–Baxter equation. Moreover, to study finite
solutions one only needs finite skew braces, see [4, Theorem 3.11]. Hence, since
skew braces generalize radical rings, tools and ideas from ring theory can be used
to study the Yang–Baxter equation.

Braces and skew braces have a strong connection with regular subgroups, see for
example [6, Proposition 2.3], [15, Theorem 1] and [26, Theorem 4.2]. Based on this
fact, an algorithm for constructing all skew braces of a given size was developed
in [26]. Using it, one produces a huge database of all (skew) braces of a given order.



ON SKEW BRACES AND THEIR IDEALS 3

The first and the third author produced the GAP package YangBaxter that
implements several methods for studying skew braces and other structures re-
lated to the set-theoretic Yang–Baxter equation. The package contains a data-
base of classical and skew braces of small orders and it is freely available at
http://gap-packages.github.io/YangBaxter/.

The paper is organized as follows. In Section 1 we introduce combinatorial
representations of skew braces; this concept is needed to store small skew braces in
a database. In Sections 2 and 3 we study ideals and some particular series of ideals
of skew braces; these sections contain several examples that answer some natural
questions. Section 4 is devoted to study prime and semiprime ideals and related
concepts such as the Baer radical and the Wedderburn radical of a skew brace.
This section contains some of our main results. In Theorem 4.21 we prove that a
skew brace is semiprime if and only if its Baer radical is zero. Theorem 4.22 proves
that the Baer radical of a skew brace is the intersection of all its prime ideals. In
Theorem 4.24 we prove that every semiprime skew brace is a subdirect product of
prime skew braces. A relation between the Wedderburn and the Baer radical is
stated in Theorem 4.28. Solvable ideals of skew braces are studied in Section 5.
One of our main results is Theorem 5.6, where it is proved that a finite skew brace
is solvable if and only if it is Baer radical.

1. Combinatorial representations of finite skew braces

When storing skew braces in a database, an obvious question is how to repre-
sent them efficiently. Obviously, each skew brace can be given by the tables for
addition and multiplication, but that would cause a substantial overhead. On the
other hand, one can substantially reduce the storage size by keeping only genera-
tors for the additive and multiplicative groups of a skew brace, and recording a way
to reconstruct its full structure. This process should be deterministic and should
not depend on some randomized algorithms. If we store additive and multiplica-
tive groups as permutation groups, we can rely on the lexicographic ordering of
permutations and store skew braces as explained below.

Definition 1.1. For permutations f and g, f < g if and only if the image of f on
the range from 1 to the degree of f is lexicographically smaller than the corresponding
image for g.

Recall from [26, Proposition 1.11] that a skew brace of size n with additive group
A is equivalent to a pair (G, π) where G is a group acting by automorphisms on
A and π : G → A is a bijective 1-cocycle. Without loss of generality we can write
G = {g1, g2, . . . , gn} and A = {a1, a2, . . . , an} as permutation groups and assume
that π(gj) = aj for all j ∈ {1, . . . , n}. Then the skew brace is the additive group
A = {a1, . . . , an} with the multiplication

ai ◦ aj = ak,

where gigj = gk. This means that to store our skew brace we only need these
two tuples of permutations (a1, a2, . . . , an) and (g1, g2, . . . , gn). Observe the use of
tuples is very important because it implies that elements of G and A are listed in
a particular order, determined by the bijection π.

This way, we will need 2n permutations to store a brace of size n. We can try to
be more efficient by storing generating sets of groups G and A, together with the
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Table 1.1. Number of skew and classical braces for n ≤ 16.

n 1 2 3 4 5 6 7 8
s(n) 1 1 1 4 1 6 1 47
b(n) 1 1 1 4 1 2 1 27

n 9 10 11 12 13 14 15 16
s(n) 4 6 1 38 1 6 1 1605
b(n) 4 2 1 10 1 2 1 357

data needed to recover the tuples (a1, a2, . . . , an) and (g1, g2, . . . , gn). To recover
these tuples, first we use an algorithm that constructs the lists of all elements of
the groups G and A from the chosen generating sets, and then sort each of the
resulting lists in lexicographic order (see Definition 1.1). So we obtain

aσ(1) < aσ(2) < · · · < aσ(n), gτ(1) < gτ(2) < · · · < gτ(n),

where σ and τ are some permutations of {1, . . . , n}. These translate into two tuples
(aσ(1), aσ(2), · · · , aσ(n)) and (gτ(1), gτ(2), · · · , gτ(n)). Acting with the inverses of σ
and τ we recover the tuples (a1, a2, . . . , an) and (g1, g2, . . . , gn) respectively.

Note that the generating sets of G and A do not have to be of a minimal size,
although for practical purposes it is useful to choose them as small as possible.

A database of small skew braces. Motivated by [11] and using the algorithm
described in [26], one constructs a database of small (skew) braces. Thanks to the
representation described in the previous section, we were able to reduce the size of
the database from more than 300 MB in the initial representation (which kept full
lists of elements of permutation representation of the additive and multiplicative
group of a skew brace) to less than 30 MB.

At the present moment, the database contains all (up to isomorphism) skew
braces of sizes up to 85 except some orders including large prime powers, e.g. 32,
64, etc. and all (up to isomorphism) classical braces of sizes up to 127 except 32,
64, 81 and 96. In total, it included 96830 skew braces and 8828 classical braces.

Each classical brace (respectively skew brace) is named by their library index as
Bn,k (resp. Sn,k), where n is its size and k is its index in the database of braces of
size n. For example, the list of skew braces of size eight is S8,1, S8,2, . . . , S8,47, and
the list of classical ones is B8,1, B8,2, . . . , B8,27.

The number s(n) of isomorphism classes of skew braces and b(n) of classical
braces for n ≤ 16 is given in Table 1.1.

An application to two-sided skew braces. In [16, Question 2.1(2)] one finds
the following interesting question: Is it true that any brace such that the operation
a ∗ b = −a + a ◦ b − b is associative is a two-sided brace? We check that the
answer is affirmative for all the classical braces of our database. We know from [16,
Proposition 2.2] that we only need to check classical braces of even size. We have
tested all such classical braces in our database and we found no answer to this
question.

What happens if we ask the same question for skew braces? Now it turns out
that indeed we have an answer! The smallest skew braces which are not two-sided
and have an associative ∗ operation are

S16,j, j ∈ {230, 235, 424, 429, 547, 554, 556, 561}.
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It is interesting to observe that the additive groups of these skew braces are nilpo-
tent. Since skew braces with nilpotent additive groups are almost like classical
braces, these examples of size 16 suggest that one should expect an answer to
Question [16, Question 2.1(2)] in the positive.

2. Ideals of skew braces

Since skew braces are generalizations of radical rings, one can try to exploit ideas
from ring theory. Let us first recall a very useful lemma:

Lemma 2.1. Let A be a skew brace. Then λ : (A, ◦) → Aut(A,+) given by a 7→ λa,
where λa(b) = −a+ a ◦ b, is a well-defined group homomorphism.

Proof. See [7, Corollary 1.10]. �

An ideal of a skew brace A is a normal subgroup I of the multiplicative group of
A such that λa(I) ⊆ I and a+ I = I + a for all a ∈ A. The following easy lemma
is useful for computational purposes:

Lemma 2.2. Let A be a skew brace and I be a subset of A. Then I is an ideal
if and only if I is a normal subgroup of the additive group of A, a ◦ I = I ◦ a and
λa(I) ⊆ I for all a ∈ A.

Proof. Assume first that I is an ideal of A. Then the claim follows from [26,
Lemma 2.3(1)]. To prove the converse we need to show that I is a subgroup of the
multiplicative group of A. For x, y ∈ I,

x ◦ y′ = xλx(−λy′(y)) ∈ I

and hence the claim follows. �

The socle of a skew brace A is defined as Soc(A) = kerλ ∩ Z(A,+) and it is an
ideal of A. A skew brace A is said to be trivial if a+ b = ab for all a, b ∈ A.

Example 2.3. Let A = S6,1, the trivial skew brace over S3. Then Soc(A) = 0
because S3 has a trivial center.

Naturally, one can quotient out skew braces by ideals to produce new skew
braces. Using the map λ from Lemma 2.1 one shows that I is a normal subgroup
of the additive group of A (see Lemma 2.2) and that for every a ∈ A we have
a ◦ I = a+ I. Then it follows that A/I is a skew brace.

Example 2.4. Let A = B8,5. This is the only classical brace of size eight with
additive group is isomorphic to C8 and multiplicative group isomorphic to C4 ×C2.
It has four ideals which are isomorphic to 0, B2,1, B4,1 and B8,5. The quotients of
A are then isomorphic to B8,5, B4,2, B2,1 and 0.

A left ideal I of A is a subgroup I of the additive group of A such that λa(I) ⊆ I
for all a ∈ A.

Example 2.5. Let A = B6,2, the only classical brace of size six with additive and
multiplicative groups isomorphic to C6. It has four left ideals which are isomorphic
to 0, B2,1, B3,1 and B6,2 (in fact, all of them are two sided ideals in A).

Example 2.6. Let A = B6,1, the only non-trivial classical brace of size six with
additive group isomorphic to C6 and multiplicative groups isomorphic to S3. It has
one left ideal of size two, which is not a two-sided ideal.
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Let I and J be ideals of a skew brace A. Then I ∩ J is an ideal of A. The
sum I + J of I and J is defined as the additive subgroup of A generated by all the
elements of the form u+ v, u ∈ I and v ∈ J .

Lemma 2.7. Let A be a skew brace and let I and J be ideals of A. Then I + J is
an ideal of A.

Proof. Let a ∈ A, u ∈ I and v ∈ J . Then λa(u + v) ∈ I + J and hence it follows
that λa(I + J) ⊆ I + J . Moreover,

(u + v) ∗ a = (u ◦ λ−1
u (v)) ∗ a = u ∗ (λ−1

u (v) ∗ a) + λ−1
u (v) ∗ a+ u ∗ a ∈ I + J.

This formula implies that

a ◦ (u + v) ◦ a′ = a+ λa((u + v) + (u+ v) ∗ a′)− a ∈ I + J.

Thus it follows that a ◦ (I + J) ◦ a′ ⊆ I + J .
Finally I + J is a normal subgroup of (A,+) since

a+

(

∑

k

uk + vk

)

− a =
∑

k

((a+ uk − a) + (a+ vk − a)) ∈ I + J

whenever uk ∈ I and vk ∈ J for all k. �

For a, b ∈ A we write a∗ b = λa(b)− b. For subsets X and Y of A we write X ∗Y
to denote the subgroup of (A,+) generated by {x ∗ y : x ∈ X, y ∈ Y }.

Example 2.8. Let A = B8,18. It has three ideals which are isomorphic to 0, B4,3

or A. Let I be the ideal isomorphic to B4,3. Since A has no ideals of size two, the
subset A ∗ I of size two cannot be an ideal of A.

3. Series of ideals

Following Rump [30], one defines the left series of a skew brace A recursively by
A1 = A and An+1 = A ∗An for n ≥ 1. Each An is a left ideal of A. The following
example shows that in general An is not a normal subgroup of the additive group
of A:

Example 3.1. Let A = S36,191. The left series of A is A1 = A, A2 ≃ S18,22 and
A3 ≃ B3,1. Then the additive group A3 is not normal in the additive group of A.
Indeed, the additive group of A contains no normal subgroup of order three.

Similarly the right series of A is defined by A(1) = A and A(n+1) = A(n) ∗ A
for n ≥ 1. Each A(n) is an ideal of A. A skew brace A is said to be left nilpotent
(resp. right nilpotent) if An = 0 (resp. A(n) = 0) for some n ∈ N. See [9] or [30]
for examples.

Example 3.2. Let A = B16,73. Up to isomorphism, the ideals of A are

0, B2,1, B4,1, B4,2, B4,3, B8,10, B8,13, B8,19, B16,73.

Let I be the ideal isomorphic to B8,10. Then I ∗ I is a subset of size two which is
not an ideal of A.
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Simple skew braces. Recall that a skew brace A is said to be simple if its only
ideals are {0} and A. Simple skew braces are intensively studied, in particular
simple classical braces [7, 9].

Example 3.3. Let A = S12,22. Then (A,+) ≃ A4 and (A, ◦) ≃ C3⋊C4. The skew

brace A is a simple skew brace and A = An = A(n) for all n ∈ N.

Example 3.4. Let A = S24,50. Then (A,+) ≃ SL2(3) and (A, ◦) ≃ C3 ⋊ C8.

Furthermore A = An = A(n) for all n ∈ N. This skew brace is not simple since for
example Soc(A) ≃ B2,1.

Let us count how many simple classical braces appear in our database. It is
known that classical braces of prime-power size are not simple. Computer calcula-
tions show the following results:

Proposition 3.5. Let A be a simple brace of order n, where 1 ≤ n ≤ 127 and
n 6= 96. Then A is isomorphic to B24,94 or B72,475.

For skew braces we can prove the following proposition:

Proposition 3.6. Let A be a simple skew brace of order n, where 1 ≤ n ≤ 63 and
n 6∈ {32, 48, 54}. Then A is isomorphic to S12,22, S12,23, S24,853

∼= B24,94 or to one
of the skew braces S60,k, where 145 ≤ k ≤ 152, which are the only skew braces with
additive group isomorphic to A5.

Question 3.7. Are there simple two-sided skew braces of nilpotent type?

4. Prime ideals and prime skew braces

At the conference “Groups, rings and the Yang–Baxter equation”, Spa, 2017,
Louis Rowen suggested that it could be interesting to study prime ideals of skew
braces.

Definition 4.1. A skew brace A is said to be prime if for all non-zero ideals I and
J one has I ∗ J 6= 0.

Simple non-trivial skew braces are prime. The converse does not hold:

Example 4.2. The skew brace A = S24,708 is not simple and it is prime. The
additive group of A is not nilpotent since it is isomorphic to S4.

We found several examples of non-simple prime skew braces; in all cases the
additive group is not nilpotent. Therefore it seems natural to ask the following
questions:

Question 4.3. Let A be a finite prime skew brace of nilpotent type. Is A simple?

Question 4.4. Let A be a finite classical prime brace. Is A simple?

Question 4.5. Are there prime two-sided skew braces of nilpotent type?

Definition 4.6. A skew brace A is said to be semiprime if for each non-zero ideal
I of A one has I ∗ I 6= 0.

Of course, prime skew braces are semiprime. The converse does not hold:

Example 4.7. Let A = S12,22. Since A is a simple skew brace, A is prime. The
direct product A×A is semiprime and not prime.
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Definition 4.8. We say that an ideal I of a skew brace A is prime (resp. semiprime)
if A/I is a prime (resp. semiprime) skew brace.

In non-commutative ring theory there is a strong connection between prime
ideals and the Baer radical of the ring. Recall that the Baer radical of a ring
R (also called the prime radical) equals the intersection of all prime ideals in R.
Solvable and Baer radicals were also considered for non-associative algebras, loop
algebras and semigroups by Amitsur in [1, 2, 3]. Below, we generalize some classical
results which hold for rings to skew braces. Our definitions are similar to those of
ring theory but not identical.

Let A be a skew brace and a ∈ A. By 〈a〉 we will denote the smallest ideal of A
which contains a (i.e., the ideal generated by a in A).

Definition 4.9. Let A be a skew brace. We say that a1, a2, a3, . . . ∈ A is an
n-sequence if ai+1 ∈ 〈ai〉 ∗ 〈ai〉 for i ≥ 1.

Definition 4.10. A skew brace A is said to be Baer radical if for each a ∈ A, every
n-sequence starting with a reaches zero at some point. An ideal I of A is said to be
Baer radical if every n-sequence in A starting with an element in I reaches zero.

Lemma 4.11. Let A be a skew brace and J be an ideal in A. Let a, b ∈ A such
that a− b ∈ J and c ∈ 〈a〉. Then there exists c′ ∈ 〈b〉 such that c− c′ ∈ J .

Proof. It follows from using the canonical map A → A/J . �

Lemma 4.12. Let A be a skew brace and let I and J be ideals of A. Let a1, a2, . . .
be an n-sequence such that ak ∈ I + J for all k. Then there exist an n-sequence
i1, i2, . . . in I and j1, j2 · · · ∈ J such that ak = ik + jk for all k.

Proof. We proceed by induction on the length l of the n-sequence a1, a2, . . . al. The
case l = 1 is trivial, so let us assume that the result holds for some l ≥ 1. Since
al+1 ∈ 〈al〉 ∗ 〈al〉, there exist ci, di ∈ 〈al〉 such that al+1 =

∑

ci ∗ di. By applying
Lemma 4.11 with a = al, b = il and c = ci or c = di, there exist c′i ∈ 〈il〉 and
d′i ∈ 〈il〉 such that ci − c′i ∈ J and di − d′i ∈ J . Let il+1 =

∑

c′i ∗ d
′

i ∈ 〈il〉 ∗ 〈il〉 ⊆ I.
Then π(al+1 − il+1) = 0, where π : A → A/J is the canonical map. This implies
that al+1 − il+1 ∈ J and the lemma follows. �

Lemma 4.13. Let A be a skew brace. The sum of any number of Baer radical
ideals in A is a Baer radical ideal in A.

Proof. Let I and J be two Baer radical ideals in A. Since every ideal is a normal
subgroup of the additive group of A, I + J = {i + j : i ∈ I, j ∈ J}. Consider an
n-sequence a1, a2, . . . starting with an element a1 = i + j where i ∈ I, j ∈ J . By
Lemma 4.12, am ∈ J for some m. Now, since J is Baer radical, every n-sequence
starting with am will reach zero, therefore the n-sequence am, am+1, am+2, . . . will
reach zero, as required. Similarly, the sum of any number of Baer radical ideals is
an ideal (as any element in this sum belongs to a sum of a finite number of these
ideals). �

Lemma 4.13 implies that the sum of all Baer radical ideals in A is the largest
Baer radical ideal in A. Thus a skew brace A contains largest Baer radical ideal.
This justifies the following definition:

Definition 4.14. Let A be a skew brace. The Baer radical B(A) of A is the largest
Baer radical ideal of A.
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Lemma 4.15. Let A be a skew brace and let I be a Baer radical ideal in A. If I
and A/I are Baer radical skew braces, then A is a Baer radical skew brace.

Proof. Let a1, a2, . . . be an n-sequence in A. Because A/I is Baer radical we get
that am ∈ I for some m. Now, since I is a Baer radical ideal, every n-sequence
starting with am will reach zero. Therefore the n-sequence am, am+1, am+2, . . . will
reach zero. �

Lemma 4.16. Let A be a skew brace, and J be an ideal in A, and let I be an ideal
in the skew brace A/J . Then Ī = {a ∈ A : a+ J ∈ I} is an ideal in A.

Proof. Note that a ∈ Ī if and only if a+ J ∈ I. Let a, b ∈ Ī. Since a+ J ∈ I and
b + J ∈ I, a + b + J = (a + J) + (b + J) ∈ I. Hence a + b ∈ Ī. Similarly, if a ∈ Ī
and c ∈ A, then a + J ∈ I. Therefore λc(a) + J = λc+J(a + J) ∈ I and hence
λc(a) ∈ Ī. Observe also that c′ ◦ a ◦ c+J = (c′+J) ◦ (a+J) ◦ (c+J) ∈ I, therefore
c′ ◦ a ◦ c ∈ Ī. �

Theorem 4.17. Let A be a skew brace. Then B(A/B(A)) = 0.

Proof. By Lemma 4.16, if the Baer radical B(A/B(A)) of A/B(A) is nonzero, then

I = {a ∈ A : a+B(A) ∈ B(A/B(A))}

is an ideal of A. Notice that B(A) ⊆ I and I/B(A) = B(A/B(A)) 6= 0. Since
I/B(A) and B(A) are Baer radical, by Lemma 4.15 one obtains that I is a Baer
radical ideal in A and thus I ⊆ B(A). Hence I/B(A) = 0, a contradiction. �

Lemma 4.18. If J ⊆ I are ideals in a skew brace A, then I/J is an ideal in A/J .

Proof. Let a+ J, b+ J ∈ I/J and c ∈ A. Then a ∈ I and b ∈ I. Moreover, since J
is an ideal, (a + J) + (b + J) = a + b + J ∈ I/J , λc+J(a + J) = λc(a) + J ∈ I/J
and (c+ J)′ ◦ (a+ J) ◦ (c+ J) = c′ ◦ a ◦ c+ J ∈ I/J . �

Proposition 4.19. Let A be a skew brace and I, J be ideals in A, then (I + J)/J
is an ideal in A/J .

Proof. Since I + J is an ideal, the claim follows from Lemma 4.18. �

Lemma 4.20. Let A be a skew brace such that B(A) 6= 0. Then there is a non-zero
ideal I ⊆ B(A) in A such that I ∗ I = 0.

Proof. Let a ∈ B(A). We construct an n-sequence of elements of A starting with
a. Suppose that we defined elements a1, a2, . . . , ai of our sequence and they are
all non-zero. If 〈ai〉 ∗ 〈ai〉 is nonzero, we can add a non-zero element ai+1 to this
n-sequence. Since a ∈ B(A), every n-sequence starting with a will reach zero.
Therefore there exists j such that aj 6= 0 and 〈aj〉 ∗ 〈aj〉 = 0. Now take I = 〈aj〉.
Since I 6= 0 and I ⊆ B(A), the lemma is proved. �

Theorem 4.21. Let A be a skew brace. Then A is semiprime if and only if the
Baer radical of A is zero.

Proof. If B(A) 6= 0, then the claim follows from Lemma 4.20. Conversely, assume
that B(A) = 0 and that A is not semiprime. Then there is a non-zero ideal I such
that I ∗ I = 0. Since every n-sequence starting with elements from I reaches zero
at the second place, it follows that 0 6= I ⊆ B(A) = 0. Since this is a contradiction,
A is semiprime. �
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Theorem 4.22. Let A be a skew brace. Then B(A) equals the intersection of all
prime ideals of A.

Proof. Let I be the intersection of all prime ideals in A. Then I is an ideal of A.
To prove that I ⊆ B(A) we need to show that every n-sequence starting with any
element of I reaches zero. Let a1 ∈ I and a1, a2, . . . be an n-sequence. Suppose
on the contrary that this n-sequence contains only non-zero elements. Let J be a
maximal ideal which does not contain any element from this n-sequence (it may
be the zero ideal) and let π : A → A/J be the canonical map. Note that every
ideal in A/J is of the form π(L) for some ideal L in A. We claim that J is a prime
ideal. Indeed, if P and Q are ideals of A properly containing J , the maximality of
J implies that there are n,m ∈ N such that an ∈ P and am ∈ Q. Hence there exists
N ≥ max{n,m} such that aN ∈ P ∩ Q. Since 0 6= aN+1 ∈ P ∗ Q and aN+1 6∈ J ,
the non-zero ideals π(P ) and π(Q) are such that π(P ) ∗ π(Q) 6= 0. Therefore J is
prime and hence I ⊆ J , a contradiction.

It remains to show that the Baer radical of A is contained in every prime ideal
in A. Suppose on the contrary, let P be a prime ideal in A such that P does not
contain B(A). Then the factor brace A/P has an element a + P 6= 0 + P such
that a ∈ B(A). We construct an n-sequence of elements of A starting with element
a ∈ B(A) \ P . Suppose that we defined elements a1, a2, . . . , ai /∈ P of our sequence
and they are all non-zero. Observe that if 〈ai〉 ∗ 〈ai〉 is not a subset of P , then we
can add a non-zero element ai+1 /∈ P to this n-sequence. Since a ∈ B(A) then every
n-sequence starting with a will reach zero, therefore every n-sequence starting with
a will reach an element in P . Therefore, there is j in our n-sequence such that
aj /∈ P and 〈aj〉 ∗ 〈aj〉 ⊆ P . Note that since a1 ∈ B(A) then a2, a3, . . . , aj ∈ B(A).
By Lemma 4.18, L = 〈aj + P 〉/P is an ideal in A/P . Note that L ∗ L = 0 hence
A/P is not a prime skew brace, a contradiction since by assumption P is a prime
ideal in A. �

Corollary 4.23. Let A be a skew brace. Then A is Baer radical if and only if A
has no prime ideals except A. In other words every n-sequence in a skew brace A
has zero element if and only if A has no prime ideals except A.

Proof. It follows from Theorem 4.22 �

Theorem 4.24. Every semiprime skew brace embeds as a skew brace in a direct
product of prime skew braces.

Proof. Let A be a skew brace and {Pi : i ∈ T } be the set of its prime ideals. Then
B(A) =

⋂

i∈T Pi. Consider the skew brace Q which is direct product of skew braces
A/Pi, for i ∈ T . Consider the map f : A → Q where f(a) = {a+ Pi}i∈T , then this
is a homomorphism of skew braces. Observe, that the kernel of this map f equals
the set of these elements which are in all prime ideals of A, hence it equals B(A).
It follows that the kernel of f is zero. �

Definition 4.25. Let A be a skew brace and let I be an ideal of A. We say that
an ideal I in A is a left (resp. right) nilpotent ideal if I is a left nilpotent (resp.
right nilpotent) skew brace.

Definition 4.26. Let A be a skew brace. The Wedderburn radical W (A) of A is
defined as the sum of all the ideals of A that are left nilpotent and right nilpotent.

Lemma 4.27. Let A be a two-sided brace. Then W (A) ⊆ B(A).
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Proof. If I is a nilpotent ideal, then I ⊆ B(A) since every n-sequence reaches zero.
The result now follows from Lemma 4.13. It also follows from noncommutative ring
theory since every two-sided brace is a ring. �

Theorem 4.28. Let A be a two-sided brace. Then B(A) = 0 if and only if W (A) =
0.

Proof. By Lemma 4.27, if B(A) = 0 then W (A) = 0. Suppose that B(A) 6= 0 then
W (A) 6= 0 by Lemma 4.20. It also follows from noncommutative ring theory since
every two-sided brace is a ring. �

Corollary 4.29. A two-sided brace with a non-zero Baer radical is not prime and
not semiprime. In particular, a finite skew brace which is either left nilpotent or
right nilpotent is not prime and not semiprime.

Proof. The first assertion follows from Lemma 4.20. The second assertion follows
from the fact that if a two-sided brace A is either left or right nilpotent, A ⊆
B(A). �

It is known that in finite rings the Wedderburn and the Baer radical are equal.
This does not happen for infinite rings. Therefore, for infinite skew braces, the
Baer and the Wedderburn radical are not in general equal. This follows from the
following lemma:

Lemma 4.30. Let (A,+, ·) be a Jacobson radical ring and (A,+, ◦) be the associ-
ated two-sided brace (this means that a ◦ b = a+ b+ a · b for all a, b ∈ A). Then the
Baer radical of the brace (A,+, ◦) equals the Baer radical of the ring (A,+, ·).

Proof. It follows from the fact that the intersection of prime ideals in any ring
equals the Baer radical of this ring. So the Baer radical of the Jacobson radical
ring (A,+, ·) will be equal to the intersection of all its prime ideals. This equals
the intersection of all prime ideals in the corresponding brace (A,+, ◦). By The-
orem 4.22, this is equal to the Baer radical of the brace (A,+, ◦). To finish the
argument, one uses a result of Cedó, Jespers and Okniński [18, Proposition 1] stat-
ing that every ideal I in a two-sided brace A comes from the associated Jacobson
radical ring and gives a two-sided factor brace A/I. �

The Baer and the Wedderburn radical might be different even in the case of
finite skew braces:

Example 4.31. Let A = S6,2 be the unique non-trivial skew brace with additive
and multiplicative group isomorphic to S3. Then W (A) ≃ B3,1 and B(A) = A.

5. Solvable ideals

Motivated by the theory of groups, Bachiller, Cedó, Jespers and Okniński in-
troduced solvable braces [9]. The definition not only works in the case of classical
braces. For a skew brace A we define A1 = A and inductively Ai+1 = Ai ∗ Ai for
i ≥ 1. Recall that A is said to be solvable if An = 0 for some n. By induction one
proves that Ai+1 ⊆ Ai for all i. An ideal I in a skew brace A is solvable, if I is a
solvable skew brace. Clearly every finite solvable two-sided brace is Baer radical as
every n-sequence will reach zero.

Lemma 5.1. Let A be a skew brace. For each j, Aj+1 is an ideal of Aj . In
particular, each Aj is a sub skew brace of A.
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Proof. It follows since Aj+1 = Aj ∗Aj = (Aj)
(2) for all j. �

Example 5.2. Let A = B48,396. Then A1 = A, A2 ≃ B24,58, A3 ≃ B6,1, A4 ≃ B3,1

and A5 = 0. The sub skew brace A3 is not an ideal.

The aim of this section is to show that for finite skew braces the Baer radical
equals the largest solvable ideal. For that purpose, we need some preliminary
results. Some of these results were proved by Cedó, Jespers and Okniński in [9] for
classical braces.

Lemma 5.3. A sum of a finite number of solvable ideals in a skew brace is solvable.

Proof. Let I and J be solvable ideals in A, T = I + J , T1 = T and Tn+1 = Tn ∗ Tn

for n ≥ 1. Similarly, let I1 = I and In+1 = In∗In for n ≥ 1. Notice that Im = 0 and
Jm′ = 0 for some m,m′ since I and J are solvable. It can be proved by induction
that for every i, Ti ⊆ Ji + I (by showing that Ti/I ⊆ (Ji + I)/I in the skew brace
A/I). It follows that Tm′ ⊆ I, and therefore Tm+m′ = 0. Therefore a sum of two
solvable ideals is solvable. By using induction on the number of ideals we can show
that sum of any finite number of solvable ideals is solvable. �

Lemma 5.4. Let A be a skew brace and let I be a solvable ideal in A. If A/I is a
solvable skew brace, then A is a solvable skew brace.

Proof. Denote inductively T = A/I, T1 = T, Tn+1 = Tn ∗Tn, I1 = I, In+1 = In ∗In.
Notice that Im = 0 and Tm′ = 0 for some m,m′ since I and T are solvable. It can
be proved by induction that, for every i, Ai + I = Ti in A/I. Therefore Am′ ⊆ I.
Consequently Am+m′ ⊆ Im = 0. �

Lemma 5.5. Let A be a finite skew brace. Then the Wedderburn radical of A is a
solvable ideal in A.

Proof. Let I be a left and right nilpotent ideal of A, it can be shown by induction
that In ⊆ In and In ⊆ I(n), therefore I is solvable. Our result now follows from
Lemma 5.3. �

Now we are ready to prove the main result of the section:

Theorem 5.6. Let A be a finite two-sided brace. Then A is Baer radical if and
only if A is solvable.

Proof. Clearly every finite solvable two-sided brace is a Baer radical skew brace
(by induction on cardinality and Lemmas 5.4 and 4.15 with I = A ∗ A). Suppose
now that A is a Baer radical skew brace, so A ⊆ B(A). We will prove that A is
solvable by induction on the number of elements in A. If A has only one element
then A is a trivial brace and the result holds. Suppose the result holds for all skew
braces of cardinality smaller than i, and suppose that A has cardinality i+1. Since
B(A) 6= 0 we get W (A) 6= 0 (by Theorem 4.28). By Lemma 5.5, W (A) is a solvable
ideal in A. Since A is Baer radical it follows that A/W (A) is Baer radical. By the
inductive assumption A/W (A) is solvable. By Lemma 5.4 applied for I = W (A)
we get that A is solvable. �

Corollary 5.7. Let A be a finite two-sided brace and I be an ideal in A. Then I is
solvable if and only if I is Baer radical. In particular, the Baer radical of A equals
the largest solvable ideal. Moreover, if A has a nonzero solvable ideal then A has a
non-zero ideal I such that I ∗ I = 0.
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Proof. Every Baer radical ideal in A is solvable, hence B(A) is solvable. On the
other hand every solvable ideal is Baer radical by Theorem 5.6. The rest follows
from Lemma 4.20. �

Corollary 5.8. There exists an infinite brace such that its Baer radical is not
solvable.

Proof. It follows from the fact that there are Baer radical rings which are not
nilpotent. �

Remark 5.9. Question 4.5 asks for two-sided braces that are prime. Note that there
exists an infinite prime and not simple Jacobson radical ring. Thus, by Lemma 4.30,
there exists a prime and not simple infinite two-sided brace.

The results in this section allow us to answer the following question: Is it true
that a product of any number of non-zero ideals in A (in any order) is nonzero?

Lemma 5.10. Let A be a prime skew brace and let I and J be non-zero ideals in
A. Then I ∩ J is a non-zero ideal in A. Moreover, the intersection of any finite
number of non-zero ideals in A is a non-zero ideal in A.

Proof. The intersection of any two ideals is an ideal. Notice that I ∗ J ⊆ I ∩ J ,
therefore I ∩ J 6= 0. The last assertion can be proved by induction on the number
of ideals. �

Lemma 5.11. Let A be a semiprime skew brace with no non-zero solvable ideals
and I be a non-zero ideal in A. Then the product of any number of copies of I,
multiplied in any order, is non-zero. Moreover, any product of copies of I contains
some In.

Proof. We use an induction on i, the number of copies of I used in our product. If
i = 1 then our product equals I = I1 6= 0. Suppose now that any product of any
number of at most i copies of I contains In for some n. Let P be a product of i+1
copies of I, for some i > 0. Then P = P1 ∗ P2 where P1 and P2 are products of at
most i copies of I. By the inductive assumption, In ∗ In = In+1 ⊆ P1 ∗ P2 = P for
some n. Notice that In 6= 0 for every n. Indeed if In = 0 then I is solvable. �

Theorem 5.12. If A is a prime skew brace with no non-zero solvable ideals, then a
product of any number of non-zero ideals, multiplied in any order, in A is non-zero.

Proof. Denote our product of ideals as P . Let I1, . . . , Im be ideals used in the
product P . By Lemma 5.10, T =

⋂m
k=1 Ik is a nonzero ideal in A. Let Q be a

product of copies of ideal T obtained by exchanging any ideal among I1, . . . , Im
appearing in the product P by ideal T . Clearly Q ⊆ P . Note that A is semiprime
since it is prime. By Lemma 5.11, Q 6= 0. �
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[18] F. Cedó, E. Jespers, and J. Okniński. Braces and the Yang-Baxter equation. Comm. Math.

Phys., 327(1):101–116, 2014.
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