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Abstract

In this note, we extend work of Farkas and Rimányi on applying quadric rank loci

to finding divisors of small slope on the moduli space of curves by instead considering

all divisorial conditions on the hypersurfaces of a fixed degree containing a projective

curve. This gives rise to a large family of virtual divisors on Mg. We determine

explicitly which of these divisors are candidate counterexamples to the Slope Conjec-

ture. The potential counterexamples exist on Mg, where the set of possible values of

g ∈ {1, . . . , N} has density Ω(log(N)−0.087) for N >> 0. Furthermore, no divisorial

condition defined using hypersurfaces of degree greater than 2 give counterexamples to

the Slope Conjecture, and every divisor in our family has slope at least 6 + 8
g+1 .

1 Introduction

Given an effective divisor D on the moduli space of curves Mg, there is an associated number

s(D) called the slope of the divisor. There has been significant interest in finding effective

divisors on Mg of small slope in order to give an upper bound for the slope

s(Mg) = inf{s(D) : D is effective}
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of Mg. The slope s(Mg) gives information about the effective cone of Mg and upper

bounds on s(Mg) have been applied to show Mg is general type for sufficiently large g

[HM82, Har84, EH87, Far09a, LOiBZ18, JP18, FJP20].

To tell whether our computed slope s(D) is small, the standard is to compare it with the

Slope Conjecture [HM90, Conjecture 0.1] stated by Harris and Morrison

Conjecture 1.1. The slope s(Mg) is always at least 6 +
12
g+1

.

If g + 1 is composite, then the Brill-Noether divisors achieve a slope of 6 + 12
g+1

. Since

then, there have been counterexamples discovered for the Slope Conjecture for some values

of g [FP05, Far06, Far09b, FR18, Kho07]. Given the difficulty in constructing the examples,

there is value in understanding what sorts of divisors should give rise to small slopes.

In this note, we focus on extending the methods of Farkas and Rimányi [FR18], which

affords a large class of divisors on Mg, given by divisorial conditions on the hypersurfaces

containing a projective embedding of genus g curves. In [FR18], the authors fixed g, r, d so

the Brill Noether number ρ = g− (r+1)(r− d+ g) is 0 and asked for nondegenerate curves

C → Pr of degree d and genus g to either lie on a quadric of low rank or be contained in a

degenerate pencil of quadrics. When either of these two conditions is a divisorial condition on

the space of quadrics containing C, one gets a (virtual) divisor onMg. The authors exhibited

infinitely many examples of potential counterexamples to the Slope Conjecture and verified

the potential counterexamples were actual divisors in small cases using Macaulay [FR18,

Section 7].

Our contribution is twofold. First, we show their argument can both be easily simplified

and generalized to apply to any divisorial condition on the hypersurfaces of degree m ≥ 2

containing a curve (see Section 2). Second, we use the formulas to deduce three results (see

Theorem 1.2):

1. We show the slopes of all our divisors are all bounded below by 6 + 8
g+1

. This gives

evidence that s(Mg) approaches 6 as g → ∞ in the context of [CFM13, Problem 0.1].
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2. Only divisors defined using quadrics (instead of hypersurfaces of higher degree) can

give counterexamples to the Slope Conjecture.

3. We give virtual divisors that are candidate counterexamples to the Slope Conjecture

on Mg for all g = (r + 1)s with r2+1
3r−1

< s ≤ r
2
.

As intuition, from our calculations it appears that simpler is better for small slope. This is

supported by the second point above regarding divisors defined using hypersurfaces of higher

degree. Furthermore, it also appears that among conditions on quadrics, the condition of

simply being contained in a single quadric gives the best slope (see Example 1.8).

Perhaps another source of intuition can be gained by looking at K3 surfaces. Namely,

it is known that any divisor violating the Slope Conjecture must contain all genus g curves

occurring as a hyperplane section of a K3 surface in Pg of degree 2g − 2 [FP05, Proposition

2.2]. While [FP05, Theorem 1.7] gives such a condition involving quadrics when g = 10, it

seems more difficult to produce conditions of higher degree that are always satisfied by such

curves.

1.1 Statement of results

1.1.1 Definition of slope

We recall for g ≥ 3 [AC87, Theorem 1],

A•(Mg)⊗Q = Qλ⊕

⌊ g
2
⌋⊕

i=0

Qδi.

Given an effective divisor D = aλ−
∑⌊ g

2
⌋

i=0 biδi on Mg with a, bi > 0, define the slope

s(D) =
a

min{bi : 0 ≤ i ≤ ⌊g

2
⌋}
.
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If a, bi are not all positive, then we define s(D) = ∞. Define s(Mg) to be the infimum of

s(D) as D varies over all effective divisors.

Even though this is not standard, we will similarly define

s0(D) =





a
b0

if a, b0 > 0

∞ otherwise

s0(Mg) = inf{s0(D) : D is effective}.

Clearly, s0(D) ≤ s(D) and s0(Mg) ≤ s(Mg). Conjecturally, s0(Mg) = s(Mg) [FP05,

Conjecture 1.5], and this has been verified for g ≤ 23 [FP05, Theorem 1.4]. For technical

reasons (see Section 3.1), we will work with s0(D) instead of s(D), which means our candidate

counterexamples to the Slope Conjecture have only been checked with the coefficients of λ

and δ0. The slopes computed in [FR18] also are only computed with s0(D) instead of s(D),

and it would be interesting to find a way to compute the other coefficients.

1.1.2 Definition of the divisors

We will work with Mg as a Deligne-Mumford stack instead of a coarse moduli space, but

the distinction does not matter for the statement of Theorem 1.2. We will work over C,

but see Section 1.3 for more on characteristic assumptions on the base field. Fix r, g, d such

that the Brill-Noether number ρ := g − (r + 1)(g − d + r) is zero. Equivalently, we have

s ≥ 1, r ≥ 1 such that g = (r+1)s, d = (s+1)r. Since we are interested in the hypersurfaces

containing a curve C → Pr, we also assume r ≥ 3. Given an integer m ≥ 2 such that
(
r+m

m

)
≥ md−g+1, fix a divisor D ⊂ Hom(SymmCr+1,Cmd−g+1) invariant under the action

of GL(Cr+1)×GL(Cmd−g+1). We give examples of such invariant divisors in Section 1.2 and

give more about the general classification in Appendix B.

Let Mirr
g ⊂ Mg denote the open substack parameterizing irreducible curves of genus g.

In Mirr
g , consider the locus Zm,r,s

g consisting of curves C for which there exists a line bundle
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L of degree d mapping C → Pr such that the induced map

H0(Pr,OPr(m)) → H0(C,L⊗m)

is given by a map in D after choosing bases for H0(L) and H0(C,L⊗m). Since D is invariant

under GL(Cr+1)×GL(Cmd−g+1), this definition is independent of choice of bases.

Now, take the closure of Zm,r,s in Mg to get Dm,r,s ⊂ Mg. If Zm,r,s is not dense, then

Dm,r,s is a divisor and we can compute its slope. Otherwise, we only know its slope as a

virtual divisor. In either case, we can define s(Dm,r,s) and s0(Dm,r,s) as above.

1.1.3 Main results

Now, we state our main theorem

Theorem 1.2. The slope s0(Dm,r,s) is independent of the choice of theGL(C
r+1)×GL(Cmd−g+1)-

invariant divisor D ⊂ Hom(Symm Cr+1,Cmd−g+1) given m ≥ 2, r ≥ 3, s ≥ 1. Furthermore

1. If m ≥ 3, s0(Dm,r,s) ≥ 6 + 12
g+1

, so considering hypersurfaces other than quadrics

will not yield counterexamples to the Slope Conjecture. Equality holds if and only if

(m, r, s) = (3, 3, 2).

2. We have s0(D2,r,s) > 6 + 8
g+1

.

3. We have s0(D2,r,s) < 6 + 12
g+1

if and only if r2+1
3r−1

< s ≤ r
2
.

For N >> 0, the values of g in {1, . . . , N} for which Theorem 1.2 produces a potential coun-

terexample has density Θ( 1

log(g)δ log(log(x))
3

2

) by [For08, Corollary 2], where δ = 1− 1+log(log(2))
log(2)

≈

.086071.

The main ingredient in the proof of Theorem 1.2 is Theorem 1.3 given below. Our proof

also involves straightforward, but tedious, formula manipulation using Mathematica, given

in Appendix A.
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Theorem 1.3. LetD ⊂ Hom(SymmCe,Cf) be a divisor, preserved under the natural actions

of GL(Ce) and GL(Cf ). Given vector bundles E and F of ranks e and f respectively over a

scheme B together with a map φ : Symm E → F , the class of the virtual divisor supported

on points of B over which φ fiberwise restricts to maps in D is a positive rational multiple

of

ec1(F)−mfc1(E).

Theorem 1.3 generalizes [FR18, Theorems 1.1 and 1.2] in the setting of divisors, and

follows from standard methods of equivariant intersection theory. We note that [FR18,

Theorems 1.1 and 1.2] are more precise in that their formulas are exact, instead of up to

a scalar multiple like Theorem 1.3, and that [FR18, Theorems 1.1] applies to quadric rank

loci, which includes settings where the codimension is greater than 1.

We will be applying Theorem 1.3 in the case where B is the Deligne-Mumford stack of

the moduli space of curves. To do so, one can pull back to enough test curves, for example

the test curves given in [HM98, Table 3.141]. Alternatively, one can pull back to a finite

cover of Mg, given in [HM98, Lemma 3.89] or [Vis89, Proposition 2.6].

1.2 Example cases and comparison to literature

Example 1.4. If
(
r+m

m

)
= md − g + 1, then the unique choice of invariant divisor D ⊂

Hom(SymmCr+1,Cmd−g+1) consists of linear maps that are not of full rank. This is the

locus of curves contained in a degree m hypersurface. In the case (r, g, d,m) = (4, 10, 12, 2)

this is the first known counterexample to the Slope Conjecture [FP05, Theorem 1.7(4)] and

this was considered in general by Khosla [Kho07, Section 3-B]. For the case of m = 2, it

has been checked that the coefficient of each δi for i > 0 does not contribute to the slope

[Far09b, Theorem 1.4].

Example 1.5. The case (r, g, d,m) = (5, 12, 15, 2) was considered in [FR18, Section 8].
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Given a general genus 12 curve C together with one of its finitely many degree 15 embed-

dings C ⊂ P5, there is a pencil of quadrics containing it. Pulling back the discriminant

hypersurface of singular quadrics yields 6 points (possible non-distinct) on P1. To illus-

trate the independence of the slope on the choice of divisor D ⊂ Hom(Sym2C6,C19) in the

statement of Theorem 1.2, the following divisorial conditions on those 6 points yield virtual

divisors on M12 with the same slopes, each contradicting the Slope Conjecture. To bound

the coefficients of δi for i > 0, one can use [FP05, Corollary 1.2].

1. 6 points on P1, where at least two points coincide. This was considered in [FR18,

Section 8] and shown to be an actual divisor using Macaulay.

2. 6 points on P1 with an involution.

3. 6 points on P1 such that 4 of them have a fixed choice of moduli.

4. 6 points on P1 that arise as the image of 6 points on P2 under a linear map P2
99K P1.

It is not necessary for the 6 points to be general. For example, it suffices for 5 of them

to be in general linear position.

Example 1.6. Let m = 2. If r = 9ℓ− 2 and s = 4ℓ− 1, this recovers [FR18, Theorem 7.1],

and similarly if r = 8ℓ + 3 and s = 3ℓ + 1, this recovers [FR18, Theorem 7.2]. The authors

state the result in terms of s(D2,9ℓ−2,4ℓ−1) and s(D2,8ℓ+3,3ℓ+1), but they also only computed

s0(D2,9ℓ−2,4ℓ−1) and s0(D2,8ℓ+3,3ℓ+1).

Example 1.7. The smallest case of Theorem 1.2 that is new to our knowledge is when

(g, r, d) is (27, 8, 32). Given a line bundle L of degree 32 mapping a genus 27 curve C → P8,

we expect dim(Sym2H0(C,L)) = 45 andH0(C,L⊗2) = 38, so we expect a P6 of quadrics con-

taining C, and there to be
(9
3
)(10

2
)(11

1
)

(1
0
)(3

1
)(5

2
)

= 1386 quadrics of corank at least 3 [HT84, Proposition

12(b)]. We can choose D to be the divisor where at least two of these points coincide.

Example 1.8. If g = 10 + 6i for i ≥ 0, then [Far06, Theorem A] gives a virtual counterex-

ample to the Slope Conjecture, where the coefficients of δi for i > 0 are also checked. There
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are cases where Theorem 1.2 and [Far06, Theorem A] overlap, and computing the slopes

with Mathematica in small cases suggests that the divisor computed in [Far06, Theorem A]

will always have smaller slope unless r = 12ℓ, s = 6ℓ, and
(
r+2
2

)
= 2d− g + 1. In this case,

D corresponds to curves lying on a quadric hypersurface. This has been tested for all values

of r < 1000.

Example 1.9. In the equality case of Part 1 of Theorem 1.2, we are looking at genus 8

curves with a degree 9 map C → P3 contained in a cubic surface. This set-theortically

contains the Brill-Noether divisor of curves with a g
2
7. Suppose we have f : C → P2 whose

image is a septic plane curve with 7 nodes. The canonical divisor on the image is 4L, where

L is the class of a line in P2. The canonical divisor of C is then 4f ∗L −
∑7

i=1 (pi + qi),

where pi, qi are the preimages of the 7 nodes. Pick one of the nodes, for example the node

corresponding to p7, q7. The lines through that node give a g15 on C. Subtracting this g15 from

the canonical on C gives 3f ∗L −
∑6

i=1 (pi + qi), which is the cubics in P2 passing through

the other 6 nodes of the image of C. This gives C → P2
99K P3 which yields a degree 9

embedding of C into P3 contained in a cubic surface. The class of C on the cubic surface

is 7L − 2(E1 + · · · + E6). It is not immediately clear to us, for example, whether curves

corresponding to 9L − 3(E1 + · · · + E6) or 11L − 4(E1 + · · · + E6) could also contribute

additional components to D3,3,2.

In light of these examples, it is natural to ask for a classification of the divisors D ⊂

Hom(Symm(V ),W ), which are invariant under the action of GL(V )×GL(W ). In particular,

if one wants to show that we can choose D so that Dm,r,s in Theorem 1.2 is not a virtual

divisor, then it makes sense to consider the intersection of all such invariant divisors D. In

Appendix B, we observe that the intersection of all invariant divisors D coincides with a

locus of GIT unstable points.
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1.3 A note on characteristic assumptions

We will work over C for notational convenience, but our proofs are algebraic, so everything

automatically extends to when our base field is an algebraically closed field of characteristic

zero.

Section 2 holds independent of characteristic. To extend Theorem 1.2 to positive char-

acteristic, one would need to check that the setup in [Kho07] or [Far09b, Section 2] to

pushforward classes from the stack parameterizing curves with a linear series to the moduli

space of curves can be adapted to positive characteristic. The Picard group Pic(Mg,n)⊗Q

is unchanged in positive characteristic [Mor01]. More seriously, when applying limit linear

series arguments in positive characteristic, we want to restrict ourselves to cases where ram-

ification is imposed at at most two points on each component [Oss14, Oss18]. For example,

since we only compute the coefficients of λ and δ0, [Kho07, Lemma 4.5] suffices for our use,

but Khosla degenerates further to a comb of elliptic curves with a rational backbone in the

proof.

2 Divisors from hypersurfaces

The goal of this section is to prove Theorem 1.3. For completeness, we also state the dual

version of Theorem 1.3 in Theorem 2.1 below.

Theorem 2.1. LetD ⊂ Hom(Ce, SymmCf) be a divisor, preserved under the natural actions

of GL(Ce) and GL(Cf ). Given vector bundles E and F of ranks e and f respectively over a

scheme B together with a map φ : E → SymmF , the class of the virtual divisor supported

on points of B over which φ fiberwise restricts to maps in D is a positive rational multiple

of

mec1(F)− fc1(E).
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Theorem 2.1 is perhaps more natural to state, but we will not need to apply it in this

note. Therefore, we will only prove Theorem 1.3 while noting the proof of Theorem 2.1 is

completely analogous.

2.1 Equivariant intersection theory

The first step of the proof of Theorem 1.3 is to identify the answer in terms of the corre-

sponding equivariant class, which is given in Lemma 2.3 below. While the argument might

be standard to experts, we attempt to review the relevant background and give more details.

In particular, all our equivariant arguments can in principle be reduced to usual intersection

theory.

2.1.1 Basic properties and construction of equivariant intersection theory

Given a smooth scheme X with an action of an algebraic group G, the equivariant Chow

ring A•
G(X) is the integral Chow ring of the quotient stack [X/G] in the sense of operational

Chow rings [EG98, Proposition 19]. More precisely, a class α ∈ Ak([X/G]) defines a map

A•(B)
αf
−→ A•−k(B) for each map f : B → [X/G] from a scheme into [X/G]. As in [Ful98,

Definition 17.1] and the text right before [EG98, Proposition 19], these maps αf need to

satisfy certain compatibility properties with respect to proper pushforward, flat pullback

and intersection products. For the purposes of brevity, we will work with this definition of

the equivariant Chow ring when possible. However, we will occasionally have to refer to

the construction of the equivariant Chow groups in [EG98], which gives a more concrete

description more amenable to computation. The construction roughly goes as follows.

Given a principal G-bundle P → B, we can form the quotient X ×G P, which is an

X-bundle over B. The construction in [EG98] defines the equivariant Chow group AG
k (X)

as Ak+dim(B)−dim(G)(X ×G P), where we choose P → B to be a quotient U → U/G where

U ⊂ AN is an open subset in a representation of G whose complement has large codimension

and G acts freely on U . In our specific situation, X is an affine space and G is a product

10



of general linear groups, so AG
k (X) ∼= AG

k (pt) turns out to be the Chow group of a vector

bundle over a product of Grassmannians. The operational Chow ring A•
G(X) defined in

[EG98, Section 2.6], is isomorphic to the AG
• (X) by Poincaré duality since X is smooth

[EG98, Proposition 4].

A good exposition of this point of view of equivariant intersection theory in terms of

approximating BG is given in [And12]. In particular, we can always reduce statements

about equivariant intersection theory to usual intersection theory.1

2.1.2 Relevant equivariant Chow rings

We are interested in the following equivariant Chow rings.

Proposition 2.2. The ring A•
GL(Ce)(pt) is isomorphic to Z[c1, . . . , ce], generated by the

chern classes of the universal vector bundle [Ce/GL(Ce)] → [pt /GL(Ce)]. Furthermore,

pulling back the chern classes under the maps of [Hom(Symm Ce,Cf)/GL(Ce)×GL(Cf )] to

[pt /GL(Ce)] and [pt /GL(Ce)] yields an isomorphism

A•
GL(Ce)×GL(Cf )(Hom(Symm Ce,Cf)) ∼= A•

GL(Ce)(pt)⊗Z A
•
GL(Cf )(pt)

∼= Z[ce1, . . . , c
e
e]⊗Z Z[cf1 , . . . , c

f
f ].

Proof. For the first statement, A•([pt /GL(Ce)]) is a polynomial ring over Z, generated by

the chern classes of the universal bundle [Ce/GL(Ce)] → [pt /GL(Ce)] [Tot99, Section 15].

Put another way, A•([pt /GL(Ce)]) is approximated by the Chow ring of the Grassmannian

A•(Gr(e,N)) for N >> 0 from [EG98, Section 3.1] and [EG98, Theorem 2].

The Chow ring of the product

A•([pt /GL(Ce)]× [pt /GL(Cf)]) = A•([pt /GL(Ce)])⊗Z A
•([pt /GL(Cf)])

= Z[ce1, . . . , c
e
e]⊗Z Z[cf1 , . . . , c

f
f ]

1There are some mild conditions required for X ×G P to be a scheme, given in [EG98, Proposition 23].
Since products of general linear groups are special, they are always satisfied in our case.
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satisfies the Künneth formula. To see this, we use the fact stated above that A•([pt /GL(Ce)])

andA•([pt /GL(Cf )]) are approximated by the Chow rings of the Grassmannians A•(Gr(e,N))

and A•(Gr(f,N)) for N >> 0. Since Grassmannians are unions of affine spaces, the Künneth

formula holds in Chow for a product of Grassmannians [Tot14, Proposition 1].

Since [Hom(SymmCe,Cf)/GL(Ce) × GL(Cf)] is a vector bundle over [pt /GL(Ce) ×

GL(Cf )], we obtain the presentation

A•([Hom(SymmCe,Cf)/GL(Ce)×GL(Cf )]) ∼= A•([pt /GL(Ce)×GL(Cf)])

∼= A•([pt /GL(Ce)]× [pt /GL(Cf)])

∼= Z[ce1, . . . , c
e
e]⊗Z Z[cf1 , . . . , c

f
f ].

In the second isomorphism, we used the isomorphism [pt /GL(Ce)×GL(Cf )] ∼= [pt /GL(Ce)]×

[pt /GL(Cf)] as stacks.

Now that we have the presentation of A•
GL(Ce)×GL(Cf )(Hom(SymmCe,Cf)) given in Propo-

sition 2.2, we can now precisely state how to translate from Theorem 1.3 to an equivariant

Chow class.

Lemma 2.3. Let D ⊂ Hom(Symm Ce,Cf) be a divisor, preserved under the natural actions

of GL(Ce) and GL(Cf ). Given vector bundles E and F of ranks e and f respectively over a

scheme B, let D be the divisor D ⊂ Hom(Symm E ,F) that restricts fiberwise to D.

If [D] ∈ A•
GLe×GLf

(Hom(SymmCe,Cf)) is given by ace1 + bcf1 , then the class of D is given

by ac1(E) + bc1(F ).

Proof of Lemma 2.3. The vector bundles E and F define a map

B
f
−→ [pt /GL(Ce)]× [pt /GL(Cf)] ∼= [pt /GL(Ce)×GL(Cf )].

Under the map f , the vector bundle [Ce/GL(Ce)×GL(Cf )] →
[
pt /GL(Ce)×GL(Cf )

]
pulls

back to E and the vector bundle [Cf/GL(Ce) × GL(Cf)] →
[
pt /GL(Ce)×GL(Cf )

]
pulls

12



back to F .

Pulling back under f , we also get the following commutative diagram, where both squares

are fiber products.

D
[
D/GL(Ce)×GL(Cf )

]

Hom(Symm E ,F)
[
Hom(SymmCe,Cf)/GL(Ce)×GL(Cf )

]

B
[
pt /GL(Ce)×GL(Cf )

]f

Thus, the class of D is the pullback of the class of the substack
[
D/GL(Ce)×GL(Cf )

]
. Since

the class of the substack is ace1 + bcf1 pulled back from
[
pt /GL(Ce)×GL(Cf )

]
, functorality

of chern classes under pullback yields the class of D is ac1(E) + bc1(F ).

Remark 2.4. We chose to phrase the proof of Lemma 2.3 in terms of stacks so the orga-

nization is clearer at a high level. However, one could also phrase everything in terms of

schemes using the construction of equivariant Chow rings.

For the benefit of the readers who are interested in how the proof operates at an elemen-

tary level, we briefly describe it here. By construction, the class [D] ∈ A•
GLe×GLf

(Hom(Symm Ce,Cf))

is given by the class of D in the case E and F are the pullbacks of the tautological subbundles

of Gr(e,N) and Gr(f,N) to Gr(e,N)×Gr(f,N) for N >> 0.

More generally, if E and F are subbundles of a trivial bundle, we have an induced map

B → Gr(e,N) × Gr(f,N). Pulling back reduces to the case above. However, if E or F are

not subbundles of a trivial bundle, then it seems less obvious how to proceed. The key step

is to pull back to a larger variety B′ → B, where B′ is an open subset of an affine bundle

over B. This larger variety will have the same Chow ring in low codimension and will also

map to Gr(e,N)×Gr(f,N). This is carried out in the proof of [EG98, Proposition 19] and

spelled out in [ST18, Section 2.1].
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2.2 Proof of Theorem 1.3 up to sign

Given Lemma 2.3, one can apply localization in equivariant intersection theory to compute

the class of [D] ∈ A•
GLe×GLf

(Hom(SymmCe,Cf)). We will do this in Section 2.3.

In this section, we present a simple, elementary argument suggested by Anand Patel

that gives Theorem 1.3 up to sign, when combined with Lemma 2.3. This argument is

independent of Section 2.3, strong enough for the applications to slope in Theorem 1.2, and

we feel it is useful for those unfamiliar with localization.

Theorem 2.5. LetD ⊂ Hom(SymmCe,Cf) be a divisor, preserved under the natural actions

of GL(Ce) and GL(Cf ). Given vector bundles E and F of ranks e and f respectively over a

scheme B together with a map φ : Symm E → F , the class of the virtual divisor supported

on points of B over which φ fiberwise restricts to maps in D is a rational multiple of

ec1(F)−mfc1(E).

Theorem 2.5 is weaker than Theorem 1.3 since it only says the class is a multiple of

ec1(F) − mfc1(E) instead of a positive multiple. Positivity can also be proven directly in

this setting but we feel the proof is cleaner when viewed equivariantly.

Proof. In the context of Theorem 2.5, letD ⊂ Hom(SymmCe,Cf) be the divisor that restricts

fiberwise to D. The map φ induces a section φ : B → Hom(Symm E ,F), and the virtual

divisor given in Theorem 2.5 is the pullback of D to B. Thus, it suffices to compute the

class of D.

By Lemma 2.3, the class of D can be written as ac1(E) + bc1(F) for some integers a and

b. It suffices to compute the ratio of a and b. Now, let L be a line bundle on B. Then,

Hom(Symm E ,F) ∼= Hom(Symm(E ⊗ L),F ⊗ L⊗m),
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and the divisor D respects this isomorphism. Therefore, we must have

ac1(E) + bc1(F) = ac1(E ⊗ L) + bc1(F ⊗ L⊗m),

meaning aec1(L) + bfmc1(L) = 0. Now, choosing for example, L to be O(1) and B = P1

shows ae + bmf = 0. Thus, there is some constant c such that a = −cmf and b = ce,

finishing the proof.

2.3 Proof of Theorem 1.3 via localization

Given Lemma 2.3, Theorem 1.3 follows from Lemma 2.7 below.

Lemma 2.6. Let T be a torus acting on an affine space AN . Then, the equivariant Chow

ring A•
T (A

N) ∼= Z[t1, . . . , tn], where t1, . . . , tn Z-linearly span the character lattice of T .

If D ⊂ AN is a T -invariant divisor, then it is defined by a polynomial F (x1, . . . , xN)

whose monomials have the same weight χ under the action of T . The equivariant class

[D] ∈ A•
T (A

N) is χ.

Proof. The statement on A•
T (A

N) ∼= Z[t1, . . . , tn] is standard [EG98, Section 3.1]. The

statement on the class of [D] is used in [FR18, Theorem 5.1] and can be proven for example

by scaling the coordinates of AN to degenerate to the case where D is defined by a monomial.

Then, we reduce to the case where F is simply a coordinate function of AN .

Lemma 2.7. If D ⊂ Hom(SymmCe,Cf) is a divisor, preserved under the natural actions of

GL(Ce) and GL(Cf ), then the equivariant class

[D] ∈ A1
GL(Ce)×GL(Cf )(Hom(SymmCe,Cf))

is a positive multiple of

e
∑

βi −mf
∑

αi,
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where {αi} and {βi} are the standard characters of the standard maximal tori of GL(Ce)

and GL(Cf) respectively.

The proof of Lemma 2.7 follows from Lemma 2.6.

Proof of Lemma 2.7. Let Te and Tf be the standard maximal tori of GL(Ce) and GL(Cf )

respectively. The restriction map

A1
GL(Ce)×GL(Cf )(Hom(Symm Ce,Cf)) → A1

Te×Tf
(Hom(SymmCe,Cf))

is injective [EG98, Proposition 6].

To determine [D] we apply Lemma 2.6. Let α1, . . . , αe be the standard characters of Te

and let β1, . . . , βf be the standard characters of Tf . Viewing Hom(SymmCe,Cf) as the space

of
(
e+1
m

)
× f matrices, Te and Tf act by the characters {βi −

∑
j∈S αj} on the entries, where

i ranges from 1 to f and S ranges over multisets of {1, . . . , e} with size m. Each monomial

term of the hypersurface F defining D in Hom(SymmCe,Cf) has a certain weight χ.

Now, we use the fact that χ has to be invariant under permutation of the characters αi

and the characters βi, which means that it must be

e
∑

βi −mf
∑

αi

up to a positive power.

Now, we can prove Theorem 1.3.

Proof of Theorem 1.3. By Lemma 2.7, the equivariant class

[D] ∈ A1
GL(Ce)×GL(Cf )(Hom(SymmCe,Cf)) ∼= Z[ce1, . . . , c

e
e]⊗Z Z[cf1 , . . . , c

f
f ]

is a positive rational multiple of ecf1 − mfce1. Let D be the divisor D ⊂ Hom(Symm E ,F)

that restricts fiberwise to D. Lemma 2.3 says the class of D is a positive rational multiple
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of ec1(F)−mfc1(E). Pulling back [D] under the section φ : B → Hom(Symm E ,F) in the

statement of Theorem 1.3 finishes the proof.

3 Application to Slopes of Mg

3.1 Setup

In addition to Theorem 1.3, we will need to pushforward classes from the moduli stack

parameterizing a genus g curve together with a g
r
d. The key ingredients were first written

in [Kho07] and [Far09b, Section 2]. The details of the setup will not be used, and the same

setup as already been utilized for computations in [FR18, Kho07, Far09b, Cot12]. We will

follow [Cot12, Section 5.1].

As a first approximation, we want a stack G̃r
d parameterizing curves with a choice of grd

together with a proper map G̃r
d → Mg. In order to be able to define the universal line

bundle and vector bundle corresponding to choice of sections over G̃r
d, we will work instead

with Mg,1. (This is not strictly necessary, also see the second page of [Far09b, Section 2].)

Recall for g ≥ 3 [AC87, Theorem 2],

A•(Mg,1)⊗Q = Qλ⊕

g−1⊕

i=0

Qδi ⊕Qψ,

where δ0 is the class of the irreducible nodal curves ∆0 ⊂ Mg,1, and δi for i ≥ 1 is the class

of the closure of the reducible nodal curves ∆i ⊂ Mg,1 where the component containing the

marked point is genus i. Also, λ is the first chern class of the Hodge bundle and ψ is the

relative dualizing sheaf of Mg,1 → Mg.

We restrict to an open substack M̃g,1 ⊂ Mg,1 whose compliment is codimension 2, so this

step does not affect divisor calculations. Specifically, we first let M̃g,1 be the complement of

the closure of the locus of two smooth curves intersecting transversely at two points.

There is a Deligne-Mumford stack Gr
d → M̃g,1 parameterizing the choice of a curve C,
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a rank 1 torsion free sheaf L, and an r + 1-dimensional subspace of the global sections of

the sheaf. The torsion free sheaf L is restricted to have degree d on the component of C

containing the marked point and zero on the unmarked components. Let π : Cr
d → Gr

d be the

universal (quasi-stable) curve. Equivalently, Cr
d → Gr

d is the pullback of the universal curve

over M̃g under Gr
d → M̃g,1 → M̃g.

On Cr
d, there is a universal sheaf L whose restriction to each fiber of π is a torsion-free

sheaf with degree d on the component with the marked point and degree zero on the other

components. Furthermore, L is normalized to be trivial along the marked section of π. In

addition, there is a subbundle V → π∗L that restricts to the marked aspect of the (limit)

linear series in each fiber.

We want to apply Theorem 1.3 in the case where E = V and F = π∗L
⊗m. To do, we

need c1(π∗L
⊗m) and we need to know π∗L

⊗m is locally free away from a set of codimension

2.

Unfortunately, π∗L
⊗m jumps in rank over ∆i for i > 0. Therefore, we restrict Gr

d → M̃g,1

to Gr,irr
d → Mirr

g,1, where Mirr
g,1 ⊂ M̃g,1 is the complement of ∆i for i > 0 and Gr,irr

d is the

inverse image of Mirr
g,1 in Gr

d.

Then, A•(Mirr
g,1)⊗Q = Qλ⊕Qδ0⊕Qψ, which means we cannot compute the coefficients

of δi for i > 0. Conjecturally this does not matter for computing the slope of Mg [FP05,

Conjecture 1.5].

3.2 Computation

By an abuse of notation, let us also refer to the restriction Cr,irr
d → Gr,irr

d of Cr
d → Gr

d as π and

let ω be the dualizing sheaf of π. Then, following [Kho07, Far09b], we define

α = π∗(c1(L)
2) β = π∗(c1(L) ∩ c1(ω)) γ = c1(V),

where L and V are restricted to Cr,irr
d and Gr,irr

d respectively. Let η be the map Gr,irr
d → Mirr

g,1.
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In order to have ρ = g − (r + 1)(g − d + r) = 0, g needs to be s(r + 1) for some

s > 1. Solving for d, we have d = r(s + 1). Finally, for (C,L) ∈ Gr,irr
d general, we need

dim(SymmH0(L)) ≥ dim(H0(L⊗m)). If C is general, then the Geiseker-Petri theorem implies

h1(L⊗2) = 0, so we must require

(
r +m

m

)
≥ md− g + 1. (1)

The following lemma is already contained in [Kho07, Section 3A], but we include it for

completeness and to correct a typo in the proof.

Lemma 3.1. We have π∗L
⊗m is a vector bundle away from a set of codimension at least 2

and c1(π∗L
⊗m) = m2

2
α− m

2
β + η∗(λ).

Proof. We first claim that for (C,L) ∈ Gr,irr
d , then h1(L⊗m) = 0 for degree reasons away from

a set of codimension at least 2. This implies R1π∗L
⊗m = 0 and π∗L

⊗m is a vector bundle

away from a set of codimension at least 2 by Grauert’s theorem. First, suppose C is smooth.

If m = 2, then 2d − 2g + 2 = 2(r − s + 1). This is greater than zero as s ≤ r
2
(which is

equivalent to (1) when m = 2). If m ≥ 3, we note

md− 2g − 2 ≥ 3rs+ 3r − 2rs− 2s+ 2 = rs+ 3r − 2s+ 2 = (r − 2)(s+ 3) + 8 ≥ 0.

Now, if C is a general irreducible nodal curve, then [Far09b, proof of Proposition 2.3 (2)],

together with our assumption that the Brill-Noether number is zero, says that L is locally

free, and we can repeat the same argument above to see h1(L⊗m) = 0.

To apply Grothendieck Riemann-Roch, we need the Todd class of π. This is pulled back

from the Todd class of Mg,1 → Mg, which is computed in [HM98, page 158]. Applying
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Grothendieck Riemann-Roch yields

c1(π∗L
⊗m) = π∗

[
(1 +mc1(L) +

m2

2
c1(L)

2)(1−
1

2
c1(ω) +

c1(ω)
2 + [Z]

12

]

2

=
m2

2
α−

m

2
β + η∗

π∗c1(ω)
2 + δ

12

where Z ⊂ Cr,irr
d is the singular locus of π : Cr,irr

d → Gr,irr
d . At this point, we use the fact that

the universal curve π : Cr,irr
d → Gr,irr

d is pulled back from Gr
d → M̃g,1 → M̃g. This means

π∗c1(ω)
2 is the pullback of the κ divisor class on M̃g under Gr

d → M̃g,1 → M̃g. Using the

relation κ+δ
12

= λ [HM98, page 158], we have η∗ π∗c1(ω)2+δ

12
= η∗λ, resulting in the claimed

formula in Lemma 3.1.

Theorem 3.2 ([Kho07, Theorem 2.11]). Choose g, r, d ≥ 1 integers such that ρ = g − (r +

1)(g − d+ r) = 0. Then, pushing forward under η : Gr,irr
d → Mirr

g,1, we have

6(g − 1)(g − 2)

dN
η∗α =6(gd− 2g2 + 8d− 8g + 4)λ+ (2g2 − gd+ 3g − 4d− 2)δ0

− 6d(g − 2)ψ

2(g − 1)

Nd
η∗β =12λ− δ0 − 2(g − 1)ψ

2(g − 1)(g − 2)

N
η∗γ =((−(g + 3)ξ + 5r(r + 2))λ− d(r + 1)(g − 2)ψ+

1

6
((g + 1)ξ − 3r(r + 2))δ0),

where

N =
g!
∏r

i=1 i!∏r

i=0(g − d+ r + i)
(= deg(η))

ξ = 3(g − 1) +
(r − 1)(g + r + 1)(3g − 2d+ r − 3)

g − d+ 2r + 1
.

Proof of Theorem 1.2. Following the notation of Section 3.1, apply Theorem 1.3 in the case
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where E = V and F = π∗L
⊗k and π : Cr,irr

d → Gr,irr
d . This yields a positive multiple of

(r + 1)(
m2

2
α−

m

2
β + σ∗λ)−m(md− g + 1)γ (2)

on Gr,irr
d . Since we only care about the slope, we can scale by a constant factor and work with

(2). We push forward (2) via η : Gr,irr
d → Mirr

g,1 using Theorem 3.2 to get a class aλ+b0δ0+cψ.

This yields c = 0 (as expected) and rather complicated formulas for a and b0. Checking these

formulas using Mathematica yields the three statements of Theorem 1.2. For more details,

the interested reader can refer to Appendix A.
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A Mathematica computation

Proof of Theorem 1.2 continued. Continuing the proof of Theorem 1.2, we find

a =
N

2(r + s+ 1)(rs+ s− 2)(rs+ s− 1)
(m2r5s4 − m2r5s2 + 3m2r4s4 + 5m2r4s3 +

m2r4s2 − m2r4s + m2r3s4 + 12m2r3s3 + 13m2r3s2 − 2m2r3s − 4m2r3 − 3m2r2s4 −

5m2r2s3+m2r2s2+3m2r2s−2m2rs4−12m2rs3−14m2rs2+4m2r−mr5s4+mr5s2−

5mr4s4− 5mr4s3−mr4s2+mr4s− 9mr3s4− 26mr3s3− 13mr3s2+22mr3s+4mr3−

7mr2s4 − 37mr2s3 − 5mr2s2 + 57mr2s− 2mrs4 − 16mrs3 + 6mrs2 + 40mrs− 4mr +

2r4s2 +2r3s3+8r3s2 − 6r3s+6r2s3+6r2s2 − 18r2s+4r2+6rs3− 4rs2− 14rs+8r+

2s3 − 4s2 − 2s+ 4)
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b0 = −
N

12(r + s+ 1)(rs+ s− 2)(rs+ s− 1)
mr(r+1)(s+1)(mr3s3−mr3s2+2mr2s3+

mr2s2−mrs3+5mrs2+mrs−2mr−2ms3−5ms2−ms+2m− r3s3+ r3s2−4r2s3+

r2s2 − 5rs3 − 7rs2 + 7rs+ 2r − 2s3 − 7s2 + 17s− 2)

This yields − a
b0

as a complicated rational function F (m, r, s) for the slope s0(Dm,r,s). We

now prove each case individually. Recall in each case g = (r + 1)s and d = r(s+ 1).

Proof of Part 1 of Theorem 1.2. Consider F (m, r, s)−(6+ 12
g+1

). This again is a complicated

rational function G(m, r, s) in m, r, s. To see G(m, r, s) ≥ 0 if m ≥ 3, r ≥ 3, s ≥ 1 subject

to the constraint
(
r+m

m

)
− (dm− g + 1) ≥ 0, we first note that

G(m+ 4, r+ 4, s+ 1) = (6(6 + r+ s)(3 + r+ 5s+ rs)(4 + r+ 5s+ rs)(156+ 120m+

24m2 +110r+78mr+14m2r+18r2+12mr2+2m2r2+2s+36ms+12m2s+24rs+

29mrs+ 7m2rs+ 6r2s+ 5mr2s+m2r2s))/((4 +m)(4 + r)(5 + r)(2 + s)(6 + r + 5s+

rs)(162+54m+81r+27mr+9r2+3mr2+513s+207ms+330rs+120mrs+58r2s+

20mr2s + 3r3s +mr3s + 543s2 + 237ms2 + 410rs2 + 154mrs2 + 89r2s2 + 31mr2s2 +

6r3s2 + 2mr3s2 + 210s3 + 90ms3 + 167rs3 + 63mrs3 + 40r2s3 + 14mr2s3 + 3r3s3 +

mr3s3))

is clearly positive. To deal with the edge cases when m = 3 or r = 3, we first find

G(3, r + 3, s+ 1) = (2(5 + r + s)(2 + r + 4s + rs)(3 + r + 4s + rs)(11 + 15r + 4r2 −

11s− rs+ r2s))/((3 + r)(4 + r)(2 + s)(5 + r+ 4s+ rs)(30 + 21r+ 3r2 + 66s+ 70rs+

16r2s+ r3s+ 52s2 + 76rs2 + 23r2s2 + 2r3s2 + 20s3 + 29rs3 + 10r2s3 + r3s3)).

The only factor of G(3, r + 3, s + 1) that can be negative is (11 + 15r + 4r2 − 11s −

rs + r2s). Now, we use the constraint
(
r+m

m

)
− (dm − g + 1) ≥ 0. Substituting m → 3

yields r3

6
+ r2 − 2rs− 7r

6
+ s ≥ 0, so s ≤ r3+6r2−7r

6(2r−1)
. Plugging in s = (r+3)3+6(r+3)2−7(r+3)

6(2(r+3)−1)
− 1

into (11 + 15r + 4r2 − 11s − rs + r2s) yields
r(r+1)(r+4)(r2+9r+17)

6(2r+5)
, which is nonnegative.

Furthermore, this is zero only when r = 0. Therefore, we have G(3, r, s) ≥ 0 for r ≥ 3, s ≥ 1
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and equality can hold only if r = 3. In this case, s ≤ r3+6r2−7r
6(2r−1)

= 2. Plugging in s = 1, 2

yields G(3, 3, 1) > 0 and G(3, 3, 2) = 0.

Now, we are left with the case r = 3, m ≥ 4 and s ≥ 1. Note

G(m+5, 3, s+1) = ((5+s)(1+2s)(3+4s)(65+39m+6m2+s+12ms+3m2s))/((5+

m)(2 + s)(5 + 4s)(60 + 15m+ 172s+ 53ms+ 164s2 + 56ms2 + 60s3 + 20ms3))

is clearly positive, so we are left with the case r = 3, m = 4 and s ≥ 1. Since

(
3 + 4

4

)
− (4d− g + 1) ≥ 0 ⇔ 22− 8s ≥ 0,

so our remaining candidates are (m, r, s) = (4, 3, 1) or (4, 3, 2). We evaluate

G(4, 3, s+ 1) = −
2(s− 5)(s+ 4)(2s− 1)(4s− 1)

(s+ 1)(4s+ 1) (40s3 − 12s2 + 23s− 6)

and note that it is positive for s = 1, 2. Tracing through the cases, we find G(m, r, s) ≥ 0

for m ≥ 3, r ≥ 3, s ≥ 1 subject to the constraint
(
r+m

m

)
− (dm − g + 1) ≥ 0, and equality

holds when (m, r, s) = (3, 3, 2).

Proof of Part 2 of Theorem 1.2. Define G(m, r, s) = F (m, r, s)− (6 + 8
g+1

). We want to see

G(m, r, s) > 0 if m ≥ 2, r ≥ 3, s ≥ 1 subject to the constraint
(
r+m

m

)
− (dm − g + 1) ≥ 0.

First note

G(m + 2, r + 5, s + 1) = (2(30240 + 51240m + 26880m2 + 27168r + 48018mr +

25176m2r+9774r2+17994mr2+9390m2r2+1770r3+3378mr3+1746m2r3+162r4+

318mr4 + 162m2r4 + 6r5 + 12mr5 + 6m2r5 + 76896s + 179100ms + 102960m2s +

79264rs+171950mrs+94152m2rs+31166r2s+64661mr2s+34067m2r2s+5928r3s+

11947mr3s+6101m2r3s+550r4s+1087mr4s+541m2r4s+20r5s+39mr5s+19m2r5s+

61560s2+213960ms2+132360m2s2+79312rs2+211992mrs2+119522m2rs2+35270r2s2+

81050mr2s2+42560m2r2s2+7224r3s2+15042mr3s2+7470m2r3s2+700r4s2+1360mr4s2+
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646m2r4s2 + 26r5s2 + 48mr5s2 + 22m2r5s2 + 21048s3 + 109500ms3 + 68280m2s3 +

36976rs3 + 112180mrs3 + 61426m2rs3 + 18634r2s3 + 43891mr2s3 + 21769m2r2s3 +

4096r3s3 + 8282mr3s3 + 3798m2r3s3 + 416r4s3 + 758mr4s3 + 326m2r4s3 + 16r5s3 +

27mr5s3 + 11m2r5s3 + 7056s4 + 24120ms4 + 12240m2s4 + 10200rs4 + 24564mrs4 +

11028m2rs4+4828r2s4+9598mr2s4+3916m2r2s4+1034r3s4+1815mr3s4+685m2r3s4+

104r4s4 + 167mr4s4 + 59m2r4s4 + 4r5s4 + 6mr5s4 + 2m2r5s4))/((2 + m)(5 + r)(6 +

r)(2 + s)(7 + r + 6s + rs)(84 + 84m + 33r + 33mr + 3r2 + 3mr2 + 208s + 348ms +

129rs+163mrs+21r2s+23mr2s+r3s+mr3s+200s2+424ms2+162rs2+222mrs2+

33r2s2 + 37mr2s2 + 2r3s2 + 2mr3s2 + 84s3 + 168ms3 + 68rs3 + 94mrs3 + 15r2s3 +

17mr2s3 + r3s3 +mr3s3)),

which is clearly positive. This leaves the cases when r = 3 and r = 4. To deal with the case

r = 4, we evaluate

G(m + 2, 4, s + 2) = (7560 + 31584m + 20832m2 + 7561s + 55078ms + 37970m2s +

2083s2+35878ms2+25162m2s2+335s3+10610ms3+7190m2s3+125s4+1250ms4+

750m2s4)/(5(2 +m)(3 + s)(11 + 5s)(84 + 196m + 109s + 317ms + 53s2 + 169ms2 +

10s3 + 30ms3))

G(m+ 2, 4, 1) =
2 (11m2 + 21m+ 13)

15(m+ 1)(m+ 2)
.

To deal with the case r = 3, we evaluate

G(m + 3, 3, s + 1) = (885 + 825m + 210m2 + 2362s + 2895ms + 847m2s + 2007s2 +

3410ms2+1119m2s2+642s3+1640ms3+582m2s3+152s4+320ms4+104m2s4)/((3+

m)(2 + s)(5 + 4s)(30 + 15m+ 66s+ 53ms+ 52s2 + 56ms2 + 20s3 + 20ms3)),

which reduces us to the case r = 3, m = 2. Now, we use the bound
(
3+2
2

)
− (2d− g + 1) ≥

0 ⇔ 3− 2s ≥ 0. Plugging in G(2, 3, 1) > 0 finishes this case.

Proof of Part 3 of Theorem 1.2. Define G(m, r, s) = F (m, r, s)− (6 + 12
g+1

). We want to see

when G(m, r, s) < 0 ifm = 2, r ≥ 3, s ≥ 1 subject to the constraint
(
r+m

m

)
−(dm−g+1) ≥ 0.
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First, note

(
r +m

m

)
− (dm− g + 1) ≥ 0 ⇔ s ≤

r

2
,

which is one of the constraints claimed in Part 3 of Theorem 1.2. Next, we evaluate

G(2, r, s) = (6(1 + r + s)(1 + r2 + s− 3rs)(−2 + s+ rs)(−1 + s+ rs))/(r(1 + r)(1 +

s)(1 + s+ rs)(2− 2r + 15s+ 9rs− 17s2 + 3rs2 + 3r2s2 − r3s2 − 6s3 − 7rs3 + r3s3))

G(2, 3, s+ 1) =
(s+ 5)(2s+ 1)(4s− 1)(4s+ 3)

(s+ 2)(4s+ 5) (4s2 − 13s− 15)

G(2, r + 4, s + 1) = (6(6 + r + s)(6 + 5r + r2 − 11s − 3rs)(3 + r + 5s + rs)(4 + r +

5s+ rs))/((4+ r)(5+ r)(2+ s)(6+ r+5s+ rs)(54+27r+3r2+99s+90rs+18r2s+

r3s + 69s2 + 102rs2 + 27r2s2 + 2r3s2 + 30s3 + 41rs3 + 12r2s3 + r3s3)).

Therefore, if r ≥ 4, then G(2, r, s) < 0 if and only if

1 + r2 + s− 3rs < 0 ⇔ s >
r2 + 1

3r − 1
.

If r = 3, then s ≤ 3
2
, so s = 1 and G(2, 3, 1) > 0.

B Classification of the invariant divisors

Given vector spaces V and W , it is natural to ask for a classification of divisors D ⊂

Hom(Symm(V ),W ) invariant under the action of GL(V )×GL(W ). First, let us argue that

these invariant divisors actually exist.

Proposition B.1. If V and W are vector spaces with dim(V ) ≥ 4 and dim(Symm V ) ≥

dim(W ), then there exists a divisor D ⊂ Hom(Symm(V ),W ) that is invariant under the

action of GL(V )×GL(W ).
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Proof. If dim(Symm(V )) = dim(W ), then D can be chosen to be the linear maps not of

full rank. In fact, this is the unique choice for D in this case, as the GL(W ) orbit of a

nonsingular matrix is all nonsingular matrices in the space of square matrices.

If dim(Symm(V )) = dim(W ) + 1, then we can choose D to consist of linear maps whose

kernel contains a nonzero homogenous form defining a singular hypersurface in P(V ∗).

If dim(Symm(V )) ≥ dim(W ) + 2, then a computation shows a general GL(V )×GL(W )

orbit is codimension at least 1 in Hom(Symm(V ),W ) for dimension reasons, so we can let

D be the closure of a union of a family of GL(V )×GL(W ) orbits.

More explicitly, let Λ1 be a general 1-dimensional vector subspace of Hom(Symm(V ),W ).

The codimension of (GL(V )×GL(W )) · Λ1 is at least

dim(Hom(Symm V,W ))− dim(GL(V ))− dim(GL(W )) + 1 =
((

dim(V )− 1 +m

m

)
− dim(W )

)
dim(W )− dim(V )2 + 1 ≥

((
dim(V ) + 1

2

)
− 2

)
2− dim(V )2 + 1 = dim(V )− 3 ≥ 1.

If the codimension of (GL(V )×GL(W ))·Λ1 is precisely 1, then we can letD be its closure and

we have produced aGL(V )×GL(W )-invariant divisor inside Hom(Symm(V ),W ). Otherwise,

we let Λ2 be the span of Λ1 together with a general point of Hom(Symm(V ),W ). Then,

(GL(V )×GL(W )) ·Λ2 has dimension precisely one greater than the dimension of (GL(V )×

GL(W )) · Λ1. Repeating this process, we eventually obtain a general linear space Λi ⊂

Hom(Symm(V ),W ) such that the closure of the union of orbits (GL(V )×GL(W )) · Λi is a

GL(V )×GL(W )-invariant divisor inside Hom(Symm(V ),W ).

Next, if one is interested in showing the divisors Dm,r,s defined in Section 1.1.2 are not

all virtual, then it would be good to understand the intersection Z ⊂ Hom(Symm(V ),W ) of

all GL(V )×GL(W ) invariant divisors. Proposition B.2 follows essentially by definition.

Proposition B.2. The intersection Z of all GL(V ) × GL(W ) invariant divisors D ⊂
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Hom(Symm(V ),W ) is the locus of GIT unstable points in Hom(Symm(V ),W ) under the

action of the subgroup SL(V )×GL(W ), where the trivial bundle is linearized by the char-

acter sending (A,B) ∈ SL(V )×GL(W ) to det(B).

Proof. A divisor on the affine space Hom(Symm(V ),W ) is given by the vanishing locus of

a polynomial F in dim(Symm(V )) dim(W ) variables, where the action of GL(V )× GL(W )

on F is by a character. Having the group GL(V ) × GL(W ) acting on F by a character is

equivalent to the subgroup SL(V )×GL(W ) acting by a character.

Let L be the trivial bundle on Hom(Symm(V ),W ), where SL(V )×GL(W ) acts on L by

the character of SL(V ) × GL(W ) sending (A,B) ∈ SL(V ) × GL(W ) to det(B). Then, all

divisors on Hom(Symm(V ),W ) are given by the SL(V )×GL(W )-invariant sections H0(L⊗m)

as m ranges over all nonnegative integers.

The common vanishing locus of all these sections is by definition the locus of GIT unstable

points in Hom(Symm(V ),W ) under the action of the subgroup SL(V )×GL(W ).

The special linear group is its own commutator subgroup (except in the case SL2(F2) ∼= S3

and SL2(F3)) [Lan02, Theorems 8.2 and 9.3] and we are working over an algebraically closed

field of characteristic zero. Thus, a character on SL(V ) × GL(W ) must send (A,B) ∈

SL(V ) × GL(W ) to an integral power of det(B), so all nontrivial choices of linearization

of the trivial bundle on Hom(Symm(V ),W ) in the context of GIT in Proposition B.2 are

equivalent.

To understand the GIT unstable points in Proposition B.2, one can first quotient by

GL(W ) to get the Grassmannian Gr(dim(W ), Symm(V )) of quotients and look at the GIT

unstable points under the action of SL(V ). The semistable locus of Gr(dim(W ), Symm(V ))

under the action of SL(V ) has appeared in the study of associated forms, for example in

[AI18, Fed17, FI19].
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