
FREE CONVOLUTION POWERS

VIA ROOTS OF POLYNOMIALS
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Abstract. Let µ be a compactly supported probability measure on the real

line. Bercovici-Voiculescu and Nica-Speicher proved the existence of a free
convolution power µ�k for any real k ≥ 1. The purpose of this short note

is to give a formal proof of an elementary description of µ�k in terms of of

polynomials and roots of their derivatives. This bridge allows us to switch back
and forth between free probability and the asymptotic behavior of polynomials.

1. Introduction

1.1. Free Convolution. The notion of free convolution µ � ν of two compactly
supported probability measures is due to Voiculescu [41]. A definition is as follows:
for any compactly supported probability measure, we can consider its Cauchy trans-
form Gµ : C \ supp(µ)→ C defined via

Gµ(z) =

∫
R

1

z − x
dµ(x).

For a compactly supported measure, Gµ(z) tends to 0 as |z| → ∞. Given Gµ, we
define the R−transform Rµ(s) for sufficiently small complex s by demanding that

1

Gµ(z)
+Rµ(Gµ(z)) = z

for all sufficiently large z. The free convolution µ� ν is then the unique compactly
supported measure for which

Rµ�ν(s) = Rµ(s) +Rν(s)

for all sufficiently small s. A fundamental result due to Voiculescu is the free central
limit theorem: if µ is a compactly supported probability measure with mean 0
and variance 1, then suitably rescaled copies of µ�k converge to the semicircular
distribution. This notion can be extended to real powers.

Theorem (Fractional Free Convolution Powers exist, [6, 25]). Let µ be a compactly
supported probability measure on R and assume k ≥ 1 is real. Then there exists a
unique compactly supported probability measure µ�k such that

Rµ�k(s) = k ·Rµ(s) for all s sufficiently small.

This was first shown for k sufficiently large by Bercovici & Voiculescu [6] and then by
Nica & Speicher [25] for all k ≥ 1. We also refer to [1, 2, 3, 4, 5, 15, 17, 24, 26, 37, 43].
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The purpose of this note is to (formally) prove an elementary description of µ�k in
terms of polynomials and the density of the roots of their derivatives.

1.2. Polynomials. Roots of polynomials are a classical subject and there are many
results we do not describe here, see [7, 8, 9, 13, 14, 17, 18, 19, 20, 21, 25, 27, 28,
29, 30, 31, 32, 33, 34, 35, 38, 39, 40]. Our problem will be as follows: let µ be a
compactly supported probability measure on the real line and suppose x1, . . . , xn are
n independent random variables sampled from µ (which we assume to be sufficiently
nice). We then associate to these numbers the random polynomial

pn(x) =

n∏
k=1

(x− xk)

having roots exactly in these points. What can we say about the behavior of the
roots of the derivative p′n? There is an interlacing phenomenon and the roots of
pn are also distributed according to µ as n→∞. The same is true for the second
derivative p′′n and any finite derivative. However, once the number of derivatives is
proportional to the degree, the distribution will necessarily change.

Question. Fix 0 < t < 1. How are the roots of p
bt·nc
n distributed?

The question was raised by the author in [39]. The answer, if it exists, should be
another measure u(t, x)dx. Note that, since this measure describes the distribution
of roots of polynomials of degree (1− t) · n, as n→∞, we have∫

R
u(t, x)dx = 1− t.

Relatively little is known about the evolution of u(t, x): [39] established, on a formal
level, a PDE for u(t, x). This PDE is given by

∂u

∂t
+

1

π

∂

∂x
arctan

(
Hu

u

)
= 0 on supp(u),

where

Hf(x) = p.v.
1

π

∫
R

f(y)

x− y
dy is the Hilbert transform.

Figure 1. The densities of two evolving measures u(t, x)dx. They
shrink and vanish at time t = 1.

It is also known that it has to satisfy the conservation laws∫
R

∫
R
u(t, x)(x− y)2u(t, y) dxdy = (1− t)3

∫
R

∫
R
u(0, x)(x− y)2u(0, y) dxdy.

Hoskins and the authors [16] established a universality result for large derivatives
of polynomials with random roots: such derivatives behave like random shifts of



3

Hermite polynomials. Hermite polynomials, in turn, have roots whose density is
given by a semicircle and this leads one to believe that u(t, x) should, for t close to
1, look roughly like a semicircle (and this has also been observed numerically).
There are two explicit closed-form solutions, derived in [39], a shrinking semicircle
and a one-parameter solution that lies in the Marchenko-Pastur family (see Fig.
1). Numerical simulations in [16] also suggested that the solution tends to become
smoother. O’Rourke and the author [30] derived an analogous transport equation
for polynomials with roots following a radial distribution in the complex plane.

2. The Result

2.1. An Equivalence. We can now state our main observation: both the free
convolution of a measure with itself, µ�k, and the density of roots of derivatives of
polynomials, u(t, x), are described by the same underlying process.

Theorem. At least formally, if µ = u(0, x)dx and {x : u(0, x) > 0} is an interval,
then for all real k ≥ 1

µ�k = u

(
1− 1

k
,
x

k

)
dx.

We first clarify the meaning of ‘formally’. In a recent paper, Shlyakhtenko & Tao
[37] derived, formally, a PDE for the evolution of the µ�k. This PDE happens to
be the same PDE (expressed in a different coordinate system) that was formally
derived by the author for the evolution of u(t, x) [39]. The derivation in [39] is via a
mean-field limit approach, the ‘microscopic’ derivation is missing. In particular, the
derivation in [39] assumed the existence of u(t, x) and a crystallization phenomenon
for the roots; such a crystallization phenomenon has been conjectured for a while,
there is recent progress by Gorin & Kleptsyn [11].

Figure 2. Evolution of u(t, x) (from [16]) starting with random
and uniformly distributed roots: the evolution smoothes and we
see a semicircle before it vanishes.
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Naturally, this has a large number of consequences since it allows us to go back
and forth between results from free probability and results regarding polynomials
and their roots. As an illustration, we recall that for the semicircle law µ�k

sc is a
another semicircle law stretched by a factor k1/2, thus

µ�k
sc =

2

π

√
1

k
− x2

k2
dx

Conversely, as was computed in [39], the evolution of densities of polynomials when
beginning with a semicircle behaves as

u(t, x) =
2

π

√
1− t− x2.

One immediate consequence of the equivalence is that it provides us with a fast
algorithm to approximate µ�k when µ = f(x)dx and f is smooth. This may be
useful in the study of the semigroup µ�k. Using the logarithmic derivative p′n/pn, it
is possible quickly differentiate real-rooted polynomials pn a large number of times,
t · n, even when the degree is as big as n ∼ 100.000: this was done in [16] using
a multipole method (a modification of an algorithm due to Gimbutas, Marshall &
Rokhlin [10]). Fig. 2 shows an example computed using 80.000 roots: we observe
the initial smoothing and the eventual convergence to a semicircle.

2.2. Some Connections. Some connections are as follows.

The Free Central Limit Theorem. Voiculescu [41] proved that µ�k (suitably rescaled)
approaches a semicircle distribution in the limit. Motivated by high-precision nu-
merics, Hoskins and the author [16] conjectured that u(t, x) starts looking like a
semicircle for t close to 1 and proved a corresponding universality result for poly-
nomials with random roots: if pn is a polynomial with random roots (from a prob-
ability measure µ whose moments are all finite), then, for fixed ` ∈ N and n→∞,
we have for x in a compact interval

n`/2
`!

n!
· p(n−`)n

(
x√
n

)
→ He`(x+ γn),

where He` is the `−th probabilists’ Hermite polynomial and γn is a random vari-
able converging to the standard N (0, 1) Gaussian as n→∞. Hermite polynomials
have roots that are asymptotically distributed like a semicircle. A result in the
deterministic setting has recently been provided by Gorin & Kleptsyn [11].

Conservation Laws. The author showed that the evolution u(t, x) satisfies the
algebraic relations∫

R
u(t, x) dx = 1− t,

∫
R
u(t, x)x dx = (1− t)

∫
R
u(0, x)x dx,∫

R

∫
R
u(t, x)(x− y)2u(t, y) dxdy = (1− t)3

∫
R

∫
R
u(0, x)(x− y)2u(0, y) dxdy.

These are derived from Vieta-type formulas that express elementary symmetric
polynomials in terms of power sums. Equivalently, we have κn(µ�k) = knκn(µ),
where κn is the n−th free cumulant providing a large number of conservation laws.
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Monotone Quantities. Voiculescu [42] introduced the free entropy

χ(µ) =

∫
R

∫
R

log |s− t|dµ(s)dµ(t) +
3

4
+

log (2π)

2

and the free Fisher information

Φ(µ) =
2π2

3

∫
R

(
dµ

dx

)3

dx.

Shlyakhtenko [36] proved that χ increases along free convolution of µ with itself
whereas Φ decreases (both suitably rescaled). Shlyakhtenko & Tao [37] showed
monotonicity along the entire flow µ�k for real k ≥ 1. Conversely, on the side of
polynomials, it is known that

|{x ∈ R : u(t, x) > 0}|
1− t

is non-decreasing in time.

Another basic result for polynomials is commonly attributed to Riesz [8, 40]: de-
noting the smallest gap of a polynomial pn having n real roots {x1, . . . , xn} by

G(pn) = min
i 6=j
|xi − xj |,

we have G(p′n) ≥ G(pn): the minimum gap grows under differentiation. A simple
proof is given by Farmer & Rhoades [8]. This would suggest that the maximal
density cannot increase over time.

The Minor Process. Shlyakhtenko & Tao [37] connect the evolution to the minor
process: trying to understand how the eigenvalues of the n × n minor of a large
random Hermitian matrix N × N behave. This answers a question numerically
verified by Hoskins and the author [16].

Related Results. There are several other papers in the literature that seem to be
connected to this circle of ideas. We mention Gorin & Marcus [12], Marcus [22],
Marcus, Spielman & Srivastava [23].

3. Proof

Proof. Shlyakhtenko & Tao [37] derive that if

dµ�k = fk(x)dx

and if we substitute k = 1/s (thus 0 < s < 1) and f := f1/s, then on a purely
formal level (

−s ∂
∂s

+ x
∂

∂x

)
f =

1

π

∂

∂x
arctan

(
f

Hf

)
.

On the other hand, the author derived [39], also on a formal level, that as long as
{x : u(t, x) > 0} is an interval

∂u

∂t
+

1

π

∂

∂x
arctan

(
Hu

u

)
= 0 on supp(u).

We note that Huang [17] showed that the number of connected components in the
support of µ�k is non-decreasing in k which shows that once the support is an
interval, this property is preserved. We want to show that the solutions of these
two PDEs are related via a change of variables: since both evolutions obey the
same PDE, they must coincide. We observe that one nonlinear term seems to be
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the reciprocal of the other, however, this compensates for the different sign. We
compute

∂

∂x
arctan

(
f

Hf

)
=

1

1 + f2

(Hf)2

∂x
f

Hf
=
fx(Hf)− f(Hf)x

f2 + (Hf)2

and compare it to

∂

∂x
arctan

(
Hf

f

)
=

1

1 + (Hf)2

f2

∂x
Hf

f
=

(Hf)xf − fx(Hf)

f2 + (Hf)2

and see that it is the same term with opposite sign. This allows us to write

∂u

∂t
=

1

π

∂

∂x
arctan

( u

Hu

)
.

We now claim that

f(s, x) = u(1− s, sx).

Note that the left-hand side transforms

(−s∂s + x∂x)f = −s
(
∂u

∂t
(−1) +

∂u

∂x
x

)
+ x

∂u

∂x
s = s

∂u

∂t
.

It remains to understand how the right-hand side transforms. The Hilbert transform
commutes with dilations and thus

arctan

(
f

Hf

)
= arctan

(
u(1− s, sx)

H [u(1− s, sx)]

)
= arctan

(
u(1− s, sx)

[Hu(1− s, ·)] (sx)

)
whose derivative scales exactly by a factor of s. �

Remarks. We see that, both derivations being purely formal, many problems re-
main. Indeed, this connection suggests many interesting further avenues to pursue.
Roots of polynomials seem to regularize under differentiation at the micro-scale: if
one were to take a polynomial with random (or just relatively evenly spaced roots),
then the roots of the (ε · n)−th derivative are conjectured to behave locally like
arithmetic progressions up to a small error. Results of this flavor date back to
Polya [33] for analytic functions, see also Farmer & Rhoades [8] and Pemantle &
Subramanian [32]. In the converse direction, it could be interesting to study the
behavior of u(t, x) when the initial conditions are close to a semi-circle: despite the
equation being both non-linear and non-local, its linearization around the semicir-
cle seems to diagonalize nicely under Chebychev polynomials – can PDE techniques
be used to get convergence rates for the free central limit theorem?

References

[1] M. Anshelevich, The linearization of the central limit operator in free probability theory.
Probability theory and related fields 115.3 (1999): 401–416.

[2] S. T. Belinschi, Some geometric properties of the subordination function associated to an
operatorvalued free convolution semigroup, Complex Anal. Oper. Theory 13 (2019), 61–84.

[3] S. T. Belinschi, H. Bercovici, Atoms and regularity for measures in a partially defined free
convolution semigroup, Mathematische Zeitschrift 248 (2004), 665–674.

[4] S. T. Belinschi, H. Bercovici, Partially defined semigroups relative to multiplicative free
convolution, International Mathematics Research Notices 2 (2005), 65–101.

[5] H. Bercovici and D. Voiculescu. Free convolution of measures with unbounded support. In-
diana Univ. Math. J. 42: p. 733–773, 1993.

[6] H. Bercovici and D. Voicolescu, Superconvergence to the central limit and failure of the

Cramer theorem for free random variables, Prob. Theo. Related Fields 103 (1995), 215–222.



7

[7] S. S. Byun, J. Lee and T. R. Reddy, Zeros of random polynomials and its higher derivatives,

arXiv:1801.08974

[8] D. Farmer and R. Rhoades, Differentiation evens out zero spacings. Trans. Amer. Math. Soc.
357 (2005), no. 9, 3789–3811.

[9] C.F. Gauss: Werke, Band 3, Göttingen 1866, S. 120:112

[10] Z. Gimbutas, N. Marshall, and V. Rokhlin, A fast simple algorithm for computing the po-
tential of charges on a line, Appl. Comp. Harm. Anal. 49 (2020), p. 815–830

[11] V. Gorin and V. Kleptsyn, Universal Objects of the Infinite Beta Random Matrix Theory,

arXiv:2009.02006
[12] V. Gorin and A. Marcus, Crystallization of Random Matrix Orbits, International Mathemat-

ics Research Notices 2020, Issue 3, p. 883–913,

[13] R. Granero-Belinchon, On a nonlocal differential equation describing roots of polynomials
under differentiation, arXiv:1812.00082

[14] B. Hanin, Pairing of zeros and critical points for random polynomials, Ann. Inst. H. Poincaré,
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