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Abstract. Let α be an algebraic integer of degree d, which is reciprocal. The house of α is the largest modulus of its
conjugates. We proved that d-th power of the house of reciprocal α has a limit point. We presented a property of
antireciprocal hexanomials. We compute the minimum of the houses of all reciprocal algebraic integers of degree d
having the minimal polynomial which is a factor of a D-th degree reciprocal or antireciprocal polynomial with at most
eight monomials, say mr(d), for d at most 180, D ≤ 1.5d and D ≤ 210. We show that it is not necessary to take into
account unprimitive polynomials. The computations suggest several conjectures.

MSC: [2010] 11C08, 11R06, 11Y40

Keywords: algebraic integer, the house of algebraic integer, maximal modulus, reciprocal polynomial, primitive

polynomial, Schinzel-Zassenhaus conjecture, Mahler measure, method of least squares, cyclotomic polynomials

1 Introduction

Let α be an algebraic integer of degree d, with conjugates α = α1, α2, . . . , αd and minimal polynomial P .
The house of α (and of P ) is defined by:

α = max
1≤i≤d

|αi|.

The Mahler measure of α is M(α) =
∏d

i=1 max(1, |αi|). Clearly, α > 1, and a theorem of Kronecker tells us
that α = 1 if and only if α is a root of unity. In 1965, Schinzel and Zassenhaus [5] have made the following
conjecture:

Conjecture 1 [SZ]. There is a constant c > 0 such that if α is not a root of unity, then α ≥ 1 + c/d.

If a polynomial has only eight non-zero coefficients then it is called an octanomial. Similarly, if the
number of non-zero coefficients is five, six and seven, such polynomial is called pentanomial, hexanomial and
heptanomial respectively. A polynomial P (x) of degree d is antireciprocal if it satisfies P (x) = −xdP (1/x).
The height of a polynomial is defined to be the maximum of the moduli of its coefficients. Let m(d) denote the
minimum of α over α of degree d which are not roots of unity. Let an α attaining m(d) be called extremal.

We say that α is reciprocal if α−1 is a conjugate of α, i.e. XdP (1/X) = P (X). Let mr(d) denote the
minimum of α over reciprocal α of degree d which are not roots of unity. Let an α attaining mr(d) be called
extremal reciprocal. In 1985, D. Boyd [2] conjectured, using a result of C.J. Smyth [6], that c should be equal
to 3/2 log θ where θ = 1.324717 . . . is the smallest Pisot number, the real root of the polynomial x3 − x− 1.
Intending to verify his conjecture that extremal α are always nonreciprocal, Boyd has computed the smallest
houses for reciprocal polynomials of even degrees ≤ 16. Wu and Zhang [8] continued the Boyd’s computation
with even degrees ≤ 42. They showed in their Table 5 that the minimal polynomial of extremal reciprocal
algebraic integer can be written as a factor of a reciprocal polynomial with at most eight monomials. The
same fact is valid for many polynomials having Mahler measure less than 1.3 and has been used for creation
of the Mossinghoff’s list of such polynomials [4]. We used here this idea to search for extremal reciprocals
of degree d having the minimal polynomial which is a factor of a D-th degree reciprocal or antireciprocal
hexanomial or octanomial, where d is at most 180 and D is at most 210.
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2 Theorems and proofs

A polynomial P (x) is primitive if it cannot be expressed as a polynomial in xk, for some k ≥ 2. Clearly, if p
is an odd prime number then any reciprocal polynomial of degree 2p with more than three monomials has to
be primitive. It is easy to verify that

P (xk) =
k

√

P (x) . (2.1)

Let mrp(d) denote the minimum of α over reciprocal algebraic integer α of degree d which are not roots of
unity and which have a primitive minimal polynomial. Let mrp(d) is attained for αd with minimal reciprocal
primitive polynomial Rd(x). Let αd be called extremal reciprocal primitive. Clearly

mr(d) ≤ mrp(d), (2.2)

and the equality is strict if and only if the α attaining mr(d) is not a root of a primitive polynomial.

Lemma 1. Let ki, kj be integers and di, dj be even integers such that kidi = kjdj = d. If mrpdi(di) <

mrpdj (dj) then the house of Rdi
(xki) is less than the house of Rdj

(xkj ).

Proof . Raising both sides of mrpdi(di) < mrpdj (dj) to the power 1/d we obtain mrp1/ki(di) < mrp1/kj (dj).

It remains to recall that the house of Rdi
(xki) is equal to mrp1/ki(di) and the house of Rdj

(xkj ) is equal to

mrp1/kj (dj). ⊓⊔
Corollary 1. Let d be an even natural number and let d0, d1, . . . , dm be all even natural divisors of d. Let
mrp(dj) is attained for a reciprocal αdj

with minimal polynomial Rdj
(x) where, Rdj

(x) is a primitive recip-
rocal polynomial, kj = d/dj , j = 0, 1, . . . ,m. If

mrpd0(d0) < mrpd1(d1) < · · · < mrpdm(dm)

then mr(d) = mrp1/k0(d0).

Proof . Straightforwardly from Lemma 1 it follows that polynomial Rd0
(xk0) has the house which is less than

the house of any other polynomial of degree d. Therefore

mr(d) = Rd0
(xk0)

= mrp1/k0(d0).

⊓⊔
The smallest limit point of the Mahler measure is believed to be 1.255433 . . . [1] which appears from the

sequence of reciprocal heptanomials (Qn(x))n≥1,

Qn(x) = x2n + x2n−1 + xn+1 + xn + xn−1 + x+ 1.

What is the smallest limit point of Pd(x)
d

where Pd(x) is a reciprocal polynomial of degree d arises as an
interesting problem.

Lemma 2. The sequence (mrd(d))d≥1 is bounded. If α = 3/2 +
√
5/2 = 2.618 . . . then α2 = 6.854 . . . is an

upper bound.

Proof . If mr(d) is attained for αd then

mr(d) = αd ≤ xd + 3xd/2 + 1 =
d/2
√
2.618 . . ..

The claim follows straightforwardly if we raise both sides of the inequality to the power d. ⊓⊔



3

It is much more difficult to prove that the sequence (mrpd(d))d≥1 is bounded. Let us introduce the follow-
ing sequence of polynomials (P2n(x))n≥2

P2n(x) = x2n − xn+1 − xn − xn−1 + 1.

They are obviously reciprocal and primitive.

Theorem 1. There is a unique real root αn ∈ ( n
√
2, n

√
3) of P2n(x) such that the house of P2n(x) is equal to

αn.

Proof . There is a real root αn ∈ ( n
√
2, n

√
3) of P2n(x) because P ( n

√
2) = 22− 2(n+1)/n − 2− 2(n−1)/n+1 <

1 − 2(n−1)/n < 0 and P ( n
√
3) = 32 − 3(n+1)/n − 3 − 3(n−1)/n + 1 > 22 − 2(n+1)/n > 0. If we divide the

equation P2n(x) = 0 with xn we get

xn − x− 1− x−1 + x−n = 0.

Afterwards we use the trigonometric form of complex x, x = r(cos(ϕ) + i sin(ϕ)) and get

rn(cosnϕ+i sin nϕ)−r(cosϕ+i sinϕ)−1−r−1(cos(−ϕ)+i sin(−ϕ))+r−n(cos(−nϕ)+i sin(−nϕ)) = 0

Separating real and imaginary part of this equation we conclude that every root has to satisfy the following
system:

(

rn +
1

rn

)

cos(nϕ)−
(

r +
1

r

)

cos(ϕ)− 1 = 0, (2.3)

(

rn − 1

rn

)

sin(nϕ)−
(

r − 1

r

)

sin(ϕ) = 0. (2.4)

If a root is unimodal i.e. r = 1 then (2.4) is clearly satisfied. Equation (2.3) then gives 2 cos(nϕ)−2 cos(ϕ)−
1 = 0, and afterwards

cos(nϕ) = cos(ϕ) + 0.5. (2.5)

Since the left side of (2.5) cos(nϕ) ∈ [−1, 1] it follows that on the right side cosϕ ∈ [−1, 0.5]) ⇔ ϕ ∈
(π/3, 5π/3). If ϕ ∈ (−π/3, π/3) then there are no unimodal roots because the left side of (2.5) can not be
equal to the right side. If r > 1 we can solve (2.3) for cos(nϕ) and (2.4) for sin(nϕ) in terms of ϕ and r.
Finally we get an implicit equation of a plane curve r = r(ϕ) which contains all roots which are not unimodal
when ϕ ∈ (−π/3, π/3):

[

(

r − 1
r

)

sin(ϕ)

rn − 1
rn

]2

+

[

(

r + 1
r

)

cos(ϕ) + 1

rn + 1
rn

]2

= 1. (2.6)

It is obvious that if r(ϕ) satisfies (2.6) then r1(ϕ) = 1/r(ϕ) also satisfies (2.6). We can calculate θ such

that r(θ) = 1. If we use that rn − 1
rn =

(

r − 1
r

)

(rn−1 + rn−3 + · · ·+ r−(n−1) and replace r = 1 in (2.6) we
obtain a quadratic equation

1− cos2(θ)

n2
+

(2 cos(θ) + 1)2

4
= 1.

and solve it for cos(θ). The solution cos(θ) =
√
4n4−7n2+4−n2

2n2−2 ∈ (0, 12) and tends to 0.5 when n tends to

infinity. It follows that π/3 < θ < π/2 and r(ϕ) > 1 on (−θ, θ) ⊃ (−π/3, π/3) (see Figure 1). The claim
will be proved if we show that r(ϕ) increase on (−π/3, 0) and decrease on (0, π/3). If we denote the left

arXiv, X(x), 20xx, April 23, 2019,Author’s Version.
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Figure 1. Roots of the reciprocal polynomial P42(x) = x42
− x22

− x21
− x20 + 1 are represented with ◦. If modulus of a root is

equal to one then its argument ∈ (π/3, 5π/3), else the root is lying on the graph of r(ϕ), the solution of the polar equation (2.6). The
root having maximum modulus is the real root denoted with •.

side of (2.6) by F (r(ϕ), ϕ) then the implicit equation becomes F (r(ϕ), ϕ) = 1. It is well known that the first
derivative of r(ϕ) is

r′(ϕ) = −
∂F
∂ϕ

∂F
∂r

.

Since

∂F

∂ϕ
=

2 sin(ϕ) cos(ϕ)(r − 1
r )

rn − 1
rn

− 2 sin(ϕ)(r + 1
r )((r +

1
r ) cos(ϕ) + 1)

(rn + 1
rn )

2
(2.7)

can be simplified

−r4n − 2r2n + 1 + r4n+2 − 2r2n+2 + r2 + 4r4n+1 cosϕ− 4r2n+3 cosϕ− 4r2n−1 cosϕ+ 4r cosϕ

(2r2n−1 sinϕ)−1(r2n − 1)2(r2n + 1)2

and factored into

−2r2n−1 sinϕ
(

(r2n − 1)2(r2 + 1) + 4r cosϕ(r2n+2 − 1)(r2n−2 − 1)
)

(r2n − 1)2(r2n + 1)2



5

it follows that

ϕ ∈ (−π/3, 0) ⇒ ∂F

∂ϕ
> 0, ϕ ∈ (0, π/3, 0) ⇒ ∂F

∂ϕ
< 0. (2.8)

so that the claim will be proved if we show that −∂F
∂r > 0 on (−π/3, π/3). We derive that

∂F

∂r
=

2 sin2 ϕ
(

nrn−1 + n
rn+1

) (

r − 1
r

)2

(

1
rn − rn

)3 − 2
[

cosϕ
(

r + 1
r

)

+ 1
]2 (

nrn−1 − n
rn+1

)

(

1
rn + rn

)3 +

+
2 sin2 ϕ

(

r − 1
r

) (

1
r2 + 1

)

(

1
rn − rn

)2 − 2 cosϕ
[

cosϕ
(

r + 1
r

)

+ 1
] (

1
r2 − 1

)

(

1
rn + rn

)2 .

can be expanded

∂F

∂r
= −2r2n−3

(

4r2A(r) cos2 ϕ+B(r) cosϕ+ C(r)
)

(r4n − 1)3

where

B(r) =(2n − 1)r8n+3 + (2n + 1)r8n+1 − (8n− 2)r6n+3 − (8n + 2)r6n+1 + 12nr4n+3+

+ 12nr4n+1 − (8n+ 2)r2n+3 − (8n − 2)r2n+1 + (2n + 1)r3 + (2n− 1)r

=r(r2n − 1)3((2n − 1)(r2n+2 − 1) + (2n + 1)r2(r2n−2 − 1))

so that we can conclude that B(r) is greater than 0 when r > 1. We intend to prove that also

A(r) = nr8n − (2n − 1)r6n+2 − (2n + 1)r6n−2 + 6nr4n − (2n+ 1)r2n+2 − (2n − 1)r2n−2 + n

and

C(r) = (n − 1)r8n+4 − nr8n+2 + (n+ 1)r8n + (4n− 2)r6n+4 − 12nr6n+2 + (4n+ 2)r6n+

+6nr4n+4 − 6nr4n+2 + 6nr4n + (4n + 2)r2n+4 − 12nr2n+2 + (4n − 2)r2n + (n+ 1)r4 − nr2 + n− 1

are greater than 0 when r > 1. If we substitute r2 in A(r) with t+ 1 then we have to prove that

D4n(t) = n(t+ 1)4n − (2n − 1)(t+ 1)3n+1 − (2n + 1)(t+ 1)3n−1+

+6n(t+ 1)2n − (2n+ 1)(t+ 1)n+1 − (2n − 1)(t+ 1)n−1 + n > 0

when t > 0. If we develop D4n(t) and denote its coefficients by ak i.e. D4n(t) = a4nt
4n+a4n−1t

4n−1+ · · ·+
a1t + a0 then it is sufficiently to prove that ak = n

(4n
k

)

− (2n − 1)
(3n+1

k

)

− (2n+ 1)
(3n−1

k

)

+ (6n)
(2n
k

)

−
(2n + 1)

(

n+1
k

)

− (2n− 1)
(

n−1
k

)

+ n
(

0
k

)

are ≥ 0 where we use the convention that

(

n

k

)

=
n(n− 1) · · · (n− k + 1)

k!
, 0 < k ≤ n,

(

n

0

)

= 1,

(

0

0

)

= 1,

(

n

k

)

= 0, k > n.

We can verify that ak = 0, k = 0, 1, 2, 3 and that a4 = n(n − 1)(n + 1)(3n2 − 1)/3 > 0. Let us denote
underlined part of ak with bk and the remainder with ck. For k ≥ 5 it is sufficient to prove that bk > 0 and

arXiv, X(x), 20xx, April 23, 2019,Author’s Version.
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ck > 0. If n ≥ k > 3n + 1 then, using the convention, bk = n
(4n
k

)

so that bk > 0. If k ≤ 3n − 1 then we

prove that bk > 0, using the principle of mathematical induction. For k = 5 and n ≥ 2 we have

b5 = n

(

4n

5

)

− (2n− 1)

(

3n+ 1

5

)

− (2n + 1)

(

3n − 1

5

)

= (n− 1)(26n5 + 366n4 − 539n3 − 39n2 + 240n − 60)/60

> 0.

Assume that the inequality is true for k = m, m < 3n − 1 and m ≥ 5 and let us prove that it is true for

k = m+ 1. For k = m we have 0 < bm i.e.

0 < n

(

4n

m

)

− (2n− 1)

(

3n + 1

m

)

− (2n + 1)

(

3n− 1

m

)

.

If we multiply both sides of this inequality by (3n + 1−m)/(m+ 1) > 0 then we have

0 < n

(

4n

m

)

3n+ 1−m

m+ 1
− (2n− 1)

(

3n + 1

m

)

3n+ 1−m

m+ 1
− (2n+ 1)

(

3n− 1

m

)

3n+ 1−m

m+ 1

< n

(

4n

m

)

4n−m

m+ 1
− (2n − 1)

(

3n+ 1

m

)

3n+ 1−m

m+ 1
− (2n + 1)

(

3n− 1

m

)

3n − 1−m

m+ 1

= n

(

4n

m+ 1

)

− (2n− 1)

(

3n+ 1

m+ 1

)

− (2n + 1)

(

3n− 1

m+ 1

)

= bm+1,

which coincides with the rewritten inequality for k = m + 1. It remains to be proved that b3n > 0 and

b3n+1 > 0. We have just proved that

0 < b3n−1 = n

(

4n

3n− 1

)

− (2n − 1)

(

3n+ 1

3n− 1

)

− (2n+ 1)

(

3n− 1

3n− 1

)

so that it follows

0 < n

(

4n

3n− 1

)

− (2n− 1)

(

3n + 1

3n − 1

)

.

If we multiply both sides of this inequality by 2/(3n) > 0 then we have

0 < n

(

4n

3n− 1

)

2

3n
− (2n − 1)

(

3n + 1

3n − 1

)

2

3n

< n

(

4n

3n− 1

)

n+ 1

3n
− (2n − 1)

(

3n+ 1

3n− 1

)

2

3n

= n

(

4n

3n

)

− (2n − 1)

(

3n+ 1

3n

)

= b3n.
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Similarly, if we multiply both sides of the inequality 0 < b3n by 1/(3n + 1) > 0 then we have

0 < n

(

4n

3n

)

1

3n+ 1
− (2n − 1)

(

3n+ 1

3n

)

1

3n+ 1

< n

(

4n

3n

)

n

3n+ 1
− (2n − 1)

(

3n+ 1

3n

)

1

3n+ 1

= b3n+1.

Finally it remains to be proved that ck > 0. Since

ck = (3n)

(

2n

k

)

− (2n + 1)

(

n+ 1

k

)

+ (3n)

(

2n

k

)

− (2n− 1)

(

n− 1

k

)

+ n

(

0

k

)

,

and it is obviously that

(3n)

(

2n

k

)

> (2n + 1)

(

n+ 1

k

)

, (3n)

(

2n

k

)

> (2n − 1)

(

n− 1

k

)

the claim follows.

If we substitute r2 in C(r) with t+ 1 then we have to prove that

E4n(t) = (n− 1)(t+1)4n+2 − n(t+1)4n+1 + (n+1)(t+1)4n + (4n− 2)(t+1)3n+2 − 12n(t+ 1)3n+1+

+(4n+2)(t+1)3n +6n(t+1)2n+2 − 6n(t+1)2n+1+6n(t+1)2n +(4n+2)(t+1)n+2 − 12n(t+1)n+1+

+(4n− 2)(t+ 1)n + (n+ 1)(t+ 1)2 − n(t+ 1) + n− 1 > 0

when t > 0. If we develop E4n(t) and denote its coefficients by dk i.e. E4n(t) = d4nt
4n + d4n−1t

4n−1 +
· · · + d1t+ d0 then it is sufficiently to prove that dk = ek + fk ≥ 0 where

ek = (n−1)

(

4n + 2

k

)

−n

(

4n+ 1

k

)

+(n+1)

(

4n

k

)

+(4n−2)

(

3n+ 2

k

)

−12n

(

3n+ 1

k

)

+(4n+2)

(

3n

k

)

fk = 6n

(

2n+ 2

k

)

− 6n

(

2n+ 1

k

)

+ 6n

(

2n

k

)

+ (4n + 2)

(

n+ 2

k

)

− 12n

(

n+ 1

k

)

+

+(4n − 2)

(

n

k

)

+ (n+ 1)

(

2

k

)

− n

(

1

k

)

+ (n − 1)

(

0

k

)

≥ 0

We can verify that dk = 0, k = 0, 1, 2, 3 and that d4 = n(2n − 1)(n + 1)(5n3 + n2 + 12n + 12)/12 > 0.
Let us prove that ek > 0, 3n ≥ k ≥ 5. Since

ek = G1[(n − 1)(4n + 2)(4n + 1)− n(4n+ 1)(4n − k + 2) + (n+ 1)(4n − k + 2)(4n − k + 1)]+
(2.9)

+G2[(4n − 2)(3n + 2)(3n + 1)− 12n(3n + 1)(3n − k + 2) + (4n + 2)(3n − k + 2)(3n − k + 1)]
(2.10)

arXiv, X(x), 20xx, April 23, 2019,Author’s Version.
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where G1 =
4n(4n−1)···(4n−k+3)

k! and G2 =
3n(3n−1)···(3n−k+3)

k! so that if we divide both sides of the inequality
ek > 0 with G1 we get the equivalent inequality

(n− 1)(4n + 2)(4n + 1)− n(4n+ 1)(4n − k + 2) + (n+ 1)(4n − k + 2)(4n − k + 1)+

+M [(4n − 2)(3n + 2)(3n + 1)− 12n(3n + 1)(3n − k + 2) + (4n+ 2)(3n − k + 2)(3n − k + 1)] > 0

where M = 3n(3n−1)···(3n−k+3)
4n(4n−1)···(4n−k+3) . The left side of the inequality is quadratic in k thus we reorder it and then

we have

(4Mn + n+ 2M + 1)k2 + (12Mn2 − 4n2 − 12Mn − 10n − 6M − 3)k+

−36Mn3 + 16n3 − 36Mn2 + 12n2 − 8Mn+ 2n > 0

so that it is fulfilled if its discriminant ∆1 < 0 where

∆1 = (720n4 + 576n3 + 416n2 + 208n + 36)M2 + (−208n4 − 176n3 + 264n2 + 208n + 36)M+

−48n4 − 32n3 + 68n2 + 52n+ 9.

Since ∆1 is quadratic in M it follows that inequality ∆1 < 0 is fulfilled if M is between roots M1, M2 of ∆1

where

M1,2 =
104n4 + 88n3 − 132n2 − 104n − 18

720n4 + 576n3 + 416n2 + 208n + 36
+

+
±4

√
2n

√
1418n6 + 2156n5 − 946n4 − 3068n3 − 1905n2 − 485n − 45

720n4 + 576n3 + 416n2 + 208n + 36

tend to

104 ± 4
√
2 · 1418

720
= −0.151, 0.440

when n tends to ∞. Since k ≥ 5 and 3n−j
4n−j < 3

4 , j > 0 it follows 0 < M < 33

43 = 0.422 so that M is really

between M1 and M2 when n is large enough. If we replace k = 3n+ 1 in ek and in G1 we get

e3n+1 = G1(13n
3 − 7n2 − 10n − 2) + 2(6n2 − 5n − 2)

which is > 0 when n ≥ 2. Since (n − 1)(4n + 2)(4n + 1) − n(4n + 1)(4n − k + 2) > 0 is equivalent
with k > 4 + 2/n, which is obviously true for n ≥ 3, it follows that ek > 0 is also fulfilled for k =
3n + 2, 3n + 3, . . . , 4n. Finally we completed the proof that ek > 0 for k ≥ 5 and n large enough.

It remains to be proved that fk > 0 when 4n ≥ k ≥ 5.

fk = 6n

(

2n+ 2

k

)

− 6n

(

2n+ 1

k

)

+ 6n

(

2n

k

)

+ (4n + 2)

(

n+ 2

k

)

− 12n

(

n+ 1

k

)

+

+(4n − 2)

(

n

k

)

+ (n+ 1)

(

2

k

)

− n

(

1

k

)

+ (n − 1)

(

0

k

)

≥ 0

Let us prove that fk > 0, n ≥ k ≥ 5. Since

fk = H1[6n(2n+ 2)(2n + 1)− 6n(2n+ 1)(2n − k + 2) + 6n(2n− k + 2)(2n − k + 1)]+ (2.11)

+H2[(4n + 2)(n + 2)(n + 1)− 12n(n+ 1)(n − k + 2) + (4n − 2)(n − k + 2)(n − k + 1)] (2.12)
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where H1 = 2n(2n−1)···(2n−k+3)
k! and H2 = n(n−1)···(n−k+3)

k! so that if we divide both sides of the inequality
fk > 0 with H1 we get the equivalent inequality

6n(2n+ 2)(2n + 1)− 6n(2n + 1)(2n − k + 2) + 6n(2n − k + 2)(2n − k + 1)+

+N [(4n+ 2)(n + 2)(n + 1)− 12n(n + 1)(n − k + 2) + (4n− 2)(n − k + 2)(n − k + 1)] > 0

where N = n(n−1)···(n−k+3)
2n(2n−1)···(2n−k+3) The left side of the inequality is quadratic in k thus we reorder it and then we

have

(4Nn + 6n− 2N)k2 + (4Nn2 − 12n2 + 4Nn− 12n + 6N)k+

−4Nn3 + 24n3 + 36n2 − 12Nn2 − 8Nn+ 12n.

so that it is fulfilled if its discriminant ∆2 < 0 where

∆2 = (20n4 + 48n3 + 24n − 4n+ 9)N2 + (12n2 − 72n3 − 96n4 − 12n)N − (108n4 + 144n3 + 36n2)

Since ∆2 is quadratic in N it follows that inequality ∆2 < 0 is fulfilled if N is between roots N1, N2 of ∆2

where

N1,2 =
48n4 + 36n3 − 6n2 + 6n ± 6

√
2n

√

(n+ 1)(62n5 + 98n4 + 54n3 + 14n2 + 10n + 5)

20n4 + 48n3 + 24n2 − 4n+ 9

tend to

48 ± 6
√
2 · 62

20
= −0.941, 5.741

when n tends to ∞. Since k ≥ 5 and n−j
2n−j < 1

2 , j > 0 it follows 0 < M < 1
23 = 0.125 so that M is really

between M1 and M2 when n is large enough. If we replace k = n+ 1 in fk and in H1 we get

fn+1 = H1(18n
3 + 24n2 + 6n) + 2(2n2 − n+ 2)

which is > 0 when n ≥ 2. Since 6n
(2n+2

k

)

− 6n
(2n+1

k

)

= 6n
(2n+1
k−1

)

> 0 for k > 0, it follows that fk > 0 is

also fulfilled for k = n + 2, n + 3, . . . , 2n + 1. Finally we completed the proof that dk = ek + fk > 0 for k
such that 4n + 2 ≥ k ≥ 4 and n large enough.

⊓⊔

Theorem 2. The house of P2n(x) = x2n−xn+1−xn−xn−1+1 raised to 2n-th power tends to α2 = 6.854 . . .
where

α =
3 +

√
5

2
= 2.618 . . .

is the greatest root of x2 − 3x+ 1.

Lemma 3. For a real number a > 1 and a natural number n ≥ 0 the inequality

−2a2n+2 + a2 < −an+1 − an + 1

is valid.

arXiv, X(x), 20xx, April 23, 2019,Author’s Version.
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Proof . We rewrite the inequality as

a2 − 1 < 2a2n+2 − an+1 − an

and prove it using the principle of mathematical induction. For n = 0 we have a2 − 1 < 2a2 − a− 1 which
is true. Assume that the inequality is true for n = k, k ≥ 0 and let us prove that it is true for n = k + 1. For
n = k we have

a2 − 1 < 2a2k+2 − ak+1 − ak.

Let us multiply both sides of this inequality by a. Then we obtain

a(a2 − 1) < 2a2k+3 − ak+2 − ak+1.

Since a2 − 1 < a(a2 − 1) we deduce the inequality

a2 − 1 < 2a2k+3 − ak+2 − ak+1

which coincides with the rewritten inequality for n = k + 1. ⊓⊔
Proof of Theorem 2 Using the Theorem 1 it is suficient to prove that the sequence

(

α2n
n

)

n≥1
tends to α2. Let

we denote Q2n(x) = x2n − 3xn + 1. Using the inequality of arithmetic and geometric means we have

Q2n(
n
√
α) =

= 0

= P2n(αn)

= α2n
n − αn+1

n − αn
n − αn−1

n + 1

< α2n
n − αn

n − 2

√

αn+1
n αn−1

n + 1

= α2n
n − 3αn

n + 1

= Q2n(αn).

If x ∈ [ n
√
α,+∞) then Q′

2n(x) = 2nx2n−1 − 3nxn−1 = nxn−1(2xn − 3) ≥ nα(n−1)/n(2 · 2.6 − 3) > 0 so
that Q2n(x) increase. Hence from Q2n( n

√
α) < Q2n(αn) we deduce that

n
√
α < αn. (2.13)

On the other hand

Q2n(αn+1) =

= α2n
n+1 − 3αn

n+1 + 1

< α2
n+1(α

2n
n+1 − 3αn

n+1 + 1)

= α2n+2
n+1 − αn+2

n+1 − 2αn+2
n+1 + α2

n+1 (by Lemma 3)

< α2n+2
n+1 − αn+2

n+1 − αn+1
n+1 − αn

n+1 + 1

= 0.

Since Q2n(x) increase on [ n
√
α,+∞) it follows that it is positive on ( n

√
α,+∞). Thus from Q2n(αn+1) < 0

we deduce that αn+1 < n
√
α. Clearly then

αn < n−1
√
α (2.14)
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is valid. Raising both sides of (2.13) and of (2.14) to the power 2n we have

α2 < α2n
n < α

2n

n−1 .

Finaly the claim follows by the squeeze (two policemen) theorem . ⊓⊔
Theorem 3. If P (x) is an antireciprocal, primitive hexanomial of degree d > 7 such that six of its non-zero
coefficients are 1 or −1 then there is a natural number p < d such that P (x)(xp−1) is a reciprocal octanomial
(having the house equal to the house of P (x)), such that eight of its non-zero coefficients are also 1 or −1.

Proof . Let a, b, d be integers such that

d− a > d− b > b > a > 0. (2.15)

Let P1(x) = xd − xd−a ± xd−b ∓ xb + xa − 1 then

P1(x)(x
d−a−1) = xd+d−a−xd−a+d−a±xd−b+d−a∓xb+d−a+xa+d−a−xd−a−(xd−xd−a±xd−b∓xb+xa−1)

i.e. P1(x)(x
d−a − 1) = x2d−a − x2d−2a ± x2d−b−a ∓ xb+d−a ∓ xd−b ± xb − xa + 1 which is written so

that exponents of its eight monomials are strictly decreasing. Therefore it is reciprocal and has exactly eight
monomials.

Let P2(x) = xd + xd−a − xd−b + xb − xa − 1 and b 6= 2a then

P2(x)(x
d−b−1) = xd+d−b+xd−a+d−b−xd−b+d−b+xb+d−b−xa+d−b−xd−b−(xd+xd−a−xd−b+xb−xa−1)

that is P2(x)(x
d−b − 1) = xd+d−b + xd−a+d−b − xd−b+d−b − xa+d−b − xd−a − xb + xa + 1. Since 2a 6= b

it follows that either a + d − b > d − a or a + d − b < d − a. In the first case P2(x)(x
d−b − 1) is written

so that exponents of its eight monomials are strictly decreasing. In the second case we get such polynomial if
we transpose middle two monomials.

If b = 2a then P (x) = xd + xd−a − xd−2a + x2a − xa − 1. Since d − b > b it follows that d > 4a then

for p = d− 3a P (x)(xd−3a − 1) =

= xd+d−3a+xd−a+d−3a−xd−2a+d−3a+x2a+d−3a−xa+d−3a−xd−3a− (xd+xd−a−xd−2a+x2a−xa−1)

is equal to xd+d−3a + xd−a+d−3a − xd−2a+d−3a − xd − xd−3a − x2a + xa + 1. Since P (x) is primitive and

d > 5 it follows that d 6= 5a. Using d > 4a we conclude that in P (x)(xd−3a − 1) none of two monomials has

exponents equal to each other so that P (x)(xd−3a − 1) is reciprocal and has exactly eight monomials.

Let P3(x) = xd + xd−a + xd−b − xb − xa − 1 then

P3(x)(x
b − 1) = xd+b + xd−a+b + xd−b+b − xb+b − xa+b − xb − (xd + xd−a + xd−b − xb − xa − 1)

is equal to xd+b + xd−a+b − x2b − xa+b − xd−a − xd−b + xa + 1. Since, using (2.15), d+ b > d− a+ b >
d− a > d− b > a > 1 and d+ b > d− a+ b > 2b > a+ b > a > 1 it follows that all pairs of eventually
equal exponents are: (2b, d − a), (2b, d − b), (a+ b, d− a), (a+ b, d− b). Finally we conclude that if

d 6= 2a+ b, d 6= a+ 2b, d 6= 3b (2.16)

then P3(x)(x
b − 1) is an octanomial.

If we take p = b− a then

P3(x)(x
b−a−1) = xd+b−a+xd−a+b−a+xd−b+b−a−xb+b−a−xa+b−a−xb−a−(xd+xd−a+xd−b−xb−xa−1)

arXiv, X(x), 20xx, April 23, 2019,Author’s Version.
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is equal to xd+b−a+xd+b−2a−xd−x2b−a−xd−b−xb−a+xa+1. Since, using (2.15), d+b−a > max(d+b−
2a, d) ≥ min(d+b−2a, d) > max(2b−a, d−b) ≥ min(2b−a, d−b) > max(b−a, a) ≥ min(b−a, a) > 1
it follows that all pairs of eventually equal exponents are: (d+ b−2a, d), (2b−a, d− b), (b−a, a). Therefore

if d 6= 3b− a, b 6= 2a then P3(x)(x
b−a − 1) is an octanomial.

If d = 3b−a and b 6= 2a then d 6= a+2b so that if d 6= b+2a then all conditions (2.16) for P3(x)(x
b−1)

to be an octanomial are fulfilled. If d = 3b − a and d = b + 2a it follows that 2b = 3a, b = 1.5a so
that P3(x) = x3.5a + x2.5a + x2a − x1.5a − xa − 1. We conclude that a is even i.e. a = 2a1 so that
P3(x) = x7a1 + x5a1 + x4a1 − x3a1 − x2a1 − 1 and it is either of degree seven for a1 = 1 or not primitive for
a1 > 1.

If d = 3b− a and b = 2a then P3(x) = x5a + x4a + x3a − x2a − xa − 1 is either of degree five or is not
primitive. ⊓⊔

We created a procedure which generate all primitive reciprocal and antireciprocal polynomials of degree
D with at most eight monomials. Then we use the standard procedures to find all roots of the polynomial,
the root rmax with maximal modulus and for factoring the polynomial. Consequently, the degree d of rmax is
determined so that we are able to decide whether rmax should be inserted in the list of d-th degree algebraic
integers with small house. Finally for all even d ≤ 180 we determine the smallest value of α for reciprocal
α having a primitive minimal polynomial Rd(x). For D ≈ 100 the computing took ten minutes while for
D ≈ 200 it spent two hours and the half on a 3.7 Ghz PC. So the whole calculation has taken about seventy
days.

3 Results

In Table 1 we present the smallest house, mrp(d), of monic, irreducible, reciprocal, primitive, noncyclotomic
polynomials with integer coefficients of even degree d, each of them is a factor of a reciprocal or antireciprocal
D-th degree polynomial with at most eight monomials, for d at most 180, D ≤ 1.5d and D ≤ 210. The
minimum mrp(d) is attained for a polynomial Rd(x) with ν conjugates outside the unit disc. A denominator
is a product of cyclotomic polynomials Φn.

Table 1: The smallest house found of irreducible, reciprocal primitive
algebraic integers

d νr mrp(d) Rd(x)

2 1 2.618033989 1 3
4 2 1.539222338 1 1 3
6 2 1.321663156 1 2 2 1
8 2 1.169283030 1 0 0 -1 1

10 2 1.125714822 (x15 + x13 − x12 − x3 + x2 + 1)/(Φ2Φ10)
12 2 1.108054854 (x18 + x11 − x9 + x7 + 1)/(Φ3Φ12)
14 4 1.093901686 (x19 + x15 − x12 − x7 + x4 + 1)/(Φ2Φ10)
16 4 1.085689416 (x20 − x19 + x13 − x10 + x7 − x+ 1)/Φ12

18 4 1.071850721 (x27 + x18 − x16 − x11 + x9 + 1)/(Φ2Φ15)
20 4 1.060442046 (x32 + x25 + x21 − x11 − x7 − 1)/(Φ1Φ2Φ3Φ5Φ8)
22 4 1.066217585 (x29 + x25 − x17 − x12 + x4 + 1)/(Φ2Φ6Φ10)
24 4 1.060034246 (x31 − x26 + x16 + x15 − x5 + 1)/(Φ2Φ6Φ10)
26 8 1.057848469 (x37 + x25 + x24 − x23 − x14 + x13 + x12 + 1)/(Φ2Φ10Φ18)
28 8 1.047786891 (x40 + x33 + x21 − x19 − x7 − 1)/(Φ1Φ2Φ8Φ18)
30 6 1.049786124 (x39 − x32 + x21 + x18 − x7 + 1)/(Φ2Φ15)
32 8 1.048455379 (x45 + x34 + x28 + x23 + x22 + x17 + x11 + 1)/(Φ2Φ4Φ8Φ18)
34 10 1.047503370 (x42 − x28 + x25 − x17 + x14 − 1)/(Φ1Φ2Φ3Φ8)
36 8 1.045445455 x43 + x35 − x24 − x19 + x8 + 1)/(Φ2Φ10)
38 12 1.043402608 (x47 − x32 + x30 + x28 + x19 + x17 − x15 + 1)/(Φ2Φ4Φ18)
40 10 1.041409418 (x47 − x39 + x24 + x23 − x8 + 1)/(Φ2Φ18)
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42 8 1.038052321 (x51 − x43 + x27 + x24 − x8 + 1)/(Φ2Φ15)
44 14 1.038300334 (x53 − x38 + x31 + x30 + x23 + x22 − x15 + 1)/(Φ2Φ4Φ18)
46 10 1.034973093 (x56 + x45 + x33 − x23 − x11 − 1)/(Φ1Φ2Φ5Φ8)
48 10 1.033839781 (x57 + x46 + x33 − x24 − x11 − 1)/(Φ1Φ30)
50 10 1.031791233 (x61 − x50 + x33 + x28 − x11 + 1)/(Φ2Φ6Φ10Φ12)
52 12 1.030630825 (x64 + x51 + x39 − x25 − x13 − 1)/(Φ1Φ2Φ8Φ12)
54 12 1.030648009 (x64 + x55 − x37 + x27 − x9 − 1)/(Φ1Φ2Φ5Φ8)
56 12 1.030259738 (x64 + x53 + x33 − x31 − x11 − 1)/(Φ1Φ2Φ3Φ8)
58 12 1.029612538 (x66 + x53 − x39 − x27 + x13 + 1)/Φ30

60 12 1.028423299 x68 + x57 − x35 + x33 − x11 − 1)/(Φ1Φ2Φ18)
62 12 1.028644239 (x67 + x55 − x36 − x31 + x12 + 1)/(Φ2Φ10)
64 18 1.026826118 (x97 + x68 − x63 − x50 − x47 − x34 + x29 + 1)/(Φ2

1
Φ2Φ3Φ5Φ7Φ9Φ21)

66 14 1.026395809 (x73 + x60 − x39 − x34 + x13 + 1)/(Φ2Φ18)
68 20 1.024213262 (x83 + x59 + x48 − x46 − x37 + x35 + x24 + 1)/(Φ2Φ15Φ18)
70 18 1.025005536 (x78 − x52 + x43 − x35 + x26 − 1)/(Φ1Φ2Φ3Φ8)
72 14 1.023289256 (x84 + x67 − x51 − x33 + x17 + 1)/(Φ8Φ30)
74 16 1.023505081 (x86 + x75 − x53 + x33 − x11 − 1)/(Φ1Φ2Φ5Φ18)
76 16 1.022682125 (x88 + x69 + x57 − x31 − x19 − 1)/(Φ1Φ2Φ8Φ18)
78 16 1.022207266 (x87 − x71 + x48 + x39 − x16 + 1)/(Φ2Φ15)
80 16 1.020969200 (x92 + x75 + x51 − x41 − x17 − 1)/(Φ1Φ2Φ5Φ18)
82 18 1.021813323 (x89 − x75 + x47 + x42 − x14 + 1)/(Φ2Φ18)
84 16 1.020986553 (x93 − x79 + x51 + x42 − x14 + 1)/(Φ2Φ15)
86 15 1.021181880 (x92 + x49 − x46 + x43 + 1)/(Φ3Φ12)
88 16 1.020725627 (x96 − x83 + x57 + x39 − x13 + 1)/(Φ15)
90 18 1.019367563 (x99 − x82 + x51 + x48 − x17 + 1)/(Φ2Φ15)
92 18 1.018537555 (x104 + x85 + x57 − x47 − x19 − 1)/(Φ1Φ2Φ3Φ5Φ8)
94 22 1.019028397 (x102 − x68 + x55 − x47 + x34 − 1)/(Φ1Φ2Φ6Φ8)
96 20 1.017826909 (x108 + x89 − x57 − x51 + x19 + 1)/(Φ8Φ30)
98 20 1.018158761 (x106 + x87 + x57 − x49 − x19 − 1)/(Φ1Φ2Φ18)

100 20 1.017325179 (x112 + x95 − x61 + x51 − x17 − 1)/(Φ1Φ2Φ3Φ5Φ8)
102 20 1.017650742 (x110 + x93 − x59 + x51 − x17 − 1)/(Φ1Φ2Φ18)
104 18 1.017330618 (x112 + x59 + x56 + x53 + 1)/(Φ5Φ12)
106 20 1.016982801 (x113 − x94 + x57 + x56 − x19 + 1)/(Φ2Φ6Φ12)
108 24 1.016504509 (x117 + x78 − x61 − x56 + x39 + 1)/(Φ2Φ15)
110 20 1.016401551 (x118 + x95 + x69 − x49 − x23 − 1)/(Φ1Φ2Φ3Φ5)
112 24 1.015669389 (x124 + x105 − x67 + x57 − x19 − 1)/(Φ1Φ2Φ5Φ18)
114 26 1.015479967 (x126 + x84 + x73 + x53 + x42 + 1)/(Φ8Φ30)
116 24 1.015625196 (x128 + x111 − x77 + x51 − x17 − 1)/(Φ1Φ2Φ8Φ18)
118 24 1.014982538 (x128 + x105 + x69 − x59 − x23 − 1)/(Φ1Φ2Φ5Φ8)
120 24 1.014911998 (x129 − x107 − x66 + x63 + x22 − 1)/(Φ1Φ30)
122 24 1.014416023 (x133 − x110 + x69 + x64 − x23 + 1)/(Φ2Φ6Φ10Φ12)
124 24 1.014722774 (x131 − x106 + x75 + x56 − x25 + 1)/(Φ2Φ6Φ12)
126 26 1.014273084 (x136 + x115 − x73 + x63 − x21 − 1)/(Φ1Φ2Φ5Φ8)
128 24 1.014122887 (x136 + x113 + x69 − x67 − x23 − 1)/(Φ1Φ2Φ3Φ8)
130 30 1.014012153 (x138 − x92 + x73 − x65 + x46 − 1)/(Φ1Φ2Φ6Φ8)
132 38 1.013640050 (x149 + x107 − x88 + x84 + x65 − x61 + x42 + 1)/(Φ2Φ4Φ15Φ18)
134 26 1.013498976 (x144 + x115 + x87 − x57 − x29 − 1)/(Φ1Φ2Φ5Φ8)
136 30 1.013428352 (x144 + x96 − x77 − x67 + x48 + 1)/(Φ15)
138 26 1.013055754 (x147 − x121 + x78 + x69 − x26 + 1)/(Φ2Φ15)
140 28 1.012795821 (x152 + x129 − x83 + x69 − x23 − 1)/(Φ1Φ2Φ8Φ18)
142 28 1.012635977 (x152 + x125 + x81 − x71 − x27 − 1)/(Φ1Φ2Φ5Φ8)
144 28 1.012523350 (x156 − x133 + x87 + x69 − x23 + 1)/(Φ8Φ15)
146 28 1.012486423 (x154 + x125 + x87 − x67 − x29 − 1)/(Φ1Φ2Φ3Φ5)
148 30 1.012389544 (x155 − x129 + x78 + x77 − x26 + 1)/(Φ2Φ18)
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150 34 1.011974270 (x162 + x108 + x91 + x71 + x54 + 1)/(Φ8Φ30)
152 30 1.012000260 (x160 + x131 + x87 − x73 − x29 − 1)/(Φ1Φ2Φ3Φ8)
154 30 1.011896494 (x162 − x131 + x93 + x69 − x31 + 1)/(Φ15)
156 30 1.011777895 (x163 − x134 + x87 + x76 − x29 + 1)/(Φ2Φ6Φ12)
158 30 1.011697187 (x164 + x135 + x87 − x77 − x29 − 1)/(Φ1Φ2Φ5)
160 30 1.011417661 (x168 + x139 − x87 − x81 + x29 + 1)/(Φ30)
162 30 1.011256404 (x171 − x143 + x87 + x84 − x28 + 1)/(Φ2Φ15)
164 32 1.010886959 (x176 + x145 + x93 − x83 − x31 − 1)/(Φ1Φ2Φ3Φ5)
166 32 1.011082816 (x173 − x142 + x93 + x80 − x31 + 1)/(Φ2Φ6Φ12)
168 32 1.010841122 (x177 − x146 + x93 + x84 − x31 + 1)/(Φ2Φ15)
170 32 1.011010457 (x178 − x141 − x111 + x67 + x37 − 1)/(Φ1Φ2Φ9)
172 34 1.010501552 (x184 + x155 − x97 + x87 − x29 − 1)/(Φ1Φ2Φ3Φ5Φ8)
174 34 1.010497511 (x183 − x149 + x102 + x81 − x34 + 1)/(Φ2Φ15)
176 34 1.010469386 (x184 + x149 + x105 − x79 − x35 − 1)/(Φ1Φ2Φ3Φ8)
178 38 1.010370370 (x186 − x124 + x97 − x89 + x62 − 1)/(Φ1Φ2Φ3Φ8)
180 34 1.010150047 (x189 − x157 + x96 + x93 − x32 + 1)/(Φ2Φ15)

Assuming that Table 1 contains mrp(d) for every d, we create Table 2 using the following algorithm based
on the corollary 1:

1. We calculate mrpd(d) and write it in the second column.

2. For every even divisor dj of d we calculate mrpdj (dj) then find their minimum and write it in the third
column. Let the minimum be attained for dj = d0.

3. For k0 = d/d0 we calculate mr(d) = k0

√

mrp(d0) and write it in the fourth column. We can also
calculate mr(d) as the d-th root of the minimum written in the third column.

4. The minimal polynomial Pd(x) of the extremal reciprocal algebraic integer α whose house is denoted by

mr(d) is equal to Rd0
(xk0). If d = d0 so that Pd(x) is primitive then we present the first half coefficients

of Pd(x) in the sixth column.

5. We calculate the number ν(d) of roots of Pd(x) outside the unit disc as ν(d)) = k0νr(d0) and write it
in the fifth column.

Table 2: The smallest values found of α for reciprocal α having a mini-
mal polynomial Pd(x) of even degree d ≤ 180.

d mrpd(d) minδ|d(mrpδ(δ)) mr(d) ν Pd(x)

2 6.854101968 6.854101968 2.618033989 1 1 3
4 5.613133701 5.613133701 1.539222338 2 1 1 3
6 5.329970273 5.329970273 1.321663156 2 1 2 2 1
8 3.494275747 3.494275747 1.169283030 2 1 0 0 −1 1

10 3.268013514 3.268013514 1.125714822 2 1 0 1 1 0 1
12 3.425587986 3.425587986 1.108054854 2 1 1 1 0 −1 −1 −1
14 3.513145071 3.513145071 1.093901686 4 1 0 0 0 1 1 0 1

16 3.726401663 3.494275747 1.081333912 4 R8(x
2)

18 3.486723207 3.486723207 1.071850720 4 1 0 1 1 1 2 1 2 2 1
20 3.233990794 3.233990794 1.060442046 4 1 2 2 1 −1 −3 −3 −2 0 2 3
22 4.098344884 4.098344884 1.066217585 4 1 −1 0 1 0 0 0 0 0 1 0 −1
24 4.052075275 3.425587986 1.052641845 4 R12(x

2)
26 4.315290210 4.315290210 1.057848469 8 1 0 0 1 0 −1 0 0 −1 −1 1 0 0 2

28 3.695242104 3.513145071 1.045897550 8 R14(x
2)
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30 4.295609952 3.268013514 1.040262145 6 R10(x
3)

32 4.545675907 3.494275747 1.039872065 8 R8(x
4)

34 4.844897357 4.844897357 1.047503370 10 1 1 1 0 −1 −1 0 1 2 1 0 −1 −1
0 0 0 0 −1

36 4.952786876 3.425587986 1.034793646 6 R12(x
3)

38 5.025425981 5.025425981 1.043402608 12 1 −1 0 1 0 −1 0 1 0 -2 1 1 −1
−1 1 0 0 0 0 1

40 5.068273424 3.233990794 1.029777668 8 R20(x
2)

42 4.799635323 3.513145071 1.030368953 12 R14(x
3)

44 5.226509253 4.098344884 1.032578125 8 R22(x
2)

46 4.861124291 4.861124291 1.034973093 10 1 −1 1 −1 0 1 −1 1 0 −1 2 −1
0 1 −2 2 0 −1 2 −2 1 1 −2 3

48 4.940324629 3.425587986 1.025983355 8 R12(x
4)

50 4.781802892 3.268013514 1.023966331 10 R10(x
5)

52 4.801341912 4.315290210 1.028517608 16 R26(x
2)

54 5.104578724 3.486723207 1.023398481 12 R18(x
3)

56 5.309049530 3.494275747 1.022592979 14 R8(x
7)

58 5.433525446 5.433525446 1.029612538 12 1 1 1 0 0 −1 −1 −1 0 0 0 0 0
−1 −1 0 1 1 1 1 0 −1 −1 0 0 0 0 1 0 0

60 5.374207407 3.233990794 1.019754537 12 R20(x
3)

62 5.760262620 5.760262620 1.028644239 12 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0
1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1

64 5.442545008 3.494275747 1.019741176 16 R8(x
8)

66 5.581891922 4.098344884 1.021602500 12 R22(x
3)

68 5.087997146 4.844897357 1.023476121 20 R34(x
2)

70 5.634232571 3.268013514 1.017060791 14 R10(x
7)

72 5.246695122 3.425587986 1.017248075 12 R12(x
6)

74 5.580334344 5.580334344 1.023505081 16 1 −1 1 0 0 1 −1 1 0 −1 2 −1
0 1 −1 2 −1 0 2 −2 2 0 −1 2 −2 2 0 −2 3 −2 1 1 −2 2 −1 0 2 −3

76 5.499086530 5.025425981 1.021470806 24 R38(x
2)

78 5.546757323 4.315290210 1.018922503 24 R26(x
3)

80 5.260309040 3.233990794 1.014779616 16 R20(x
4)

82 5.867701324 5.867701324 1.021813323 18 1 −1 1 0 0 0 0 0 0 −1 1 −1
0 0 −1 1 −1 0 1 −1 1 0 0 1 −1 1 0 −1 1 −1 0 0 −1 1 −1 0 1 −1 1 0 0 1

84 5.723765933 3.425587986 1.014765969 14 R12(x
7)

86 6.065499920 6.065499920 1.021181880 15 1 1 1 0 −1 −1 −1 0 0 0 0 0
1 1 1 0 −1 −1 −1 0 0 0 0 0 1 1 1 0 −1 −1 −1 0 0 0 0 0 1 1 1 0 −1 −1 −1 −1

88 6.081260895 3.494275747 1.014318889 22 R8(x
11)

90 5.620473341 3.268013514 1.013244523 18 R10(x
9)

92 5.418615039 4.861124291 1.017336273 20 R46(x
2)

94 5.881809242 5.881809242 1.019028397 22 1 −1 1 0 −1 1 0 −1 2 −1 0 1
−1 0 1 −1 1 0 0 0 0 0 0 0 1 −1 1 0 −1 1 0 −1 2 −1 −1 2 −2 0 2 −2 1 1 −2 1 0 −1 1 −1

96 5.453773907 3.425587986 1.012908365 16 R12(x
8)

98 5.833366397 3.513145071 1.012904096 28 R14(x
7)

100 5.571592570 3.233990794 1.011806320 20 R20(x
5)

102 5.957620928 4.844897357 1.015590141 30 R34(x
3)

104 5.971177596 3.494275747 1.012102711 26 R8(x
13)

106 5.959948109 5.959948109 1.016982801 20 1 0 1 −1 0 −1 0 0 0 0 0 0 1
0 1 −1 0 −1 0 −1 0 −1 1 0 2 0 1 −1 0 −1 0 −1 0 −1 1 0 2 0 1 −1 0 −1 0 −1 0 −1 1 0
2 0 1 −1 0 −1

108 5.858756078 3.425587986 1.011465913 18 R12(x
9)

110 5.986666989 3.268013514 1.010823448 22 R10(x
11)

112 5.705119145 3.494275747 1.011233395 28 R8(x
14)

114 5.761493367 5.025425981 1.014263132 36 R38(x
3)

116 6.040628268 5.433525446 1.014698250 24 R58(x
2)

arXiv, X(x), 20xx, April 23, 2019,Author’s Version.
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118 5.782442619 5.782442619 1.014982538 24 1 1 1 1 0 −1 −1 −1 0 1 2 2 1
0 −1 −2 −1 0 1 2 2 1 0 −2 −2 −2 −1 1 2 2 2 0 −1 −2 −2 −1 0 1 2 1 1 0 −1 −1 −1
−1 0 0 1 1 1 1 0 −1 −1 −2 −1 0 1 1

120 5.907536277 3.233990794 1.009828964 24 R20(x
6)

122 5.732766447 5.732766447 1.014416023 24 1 1 1 0 −1 −2 −2 −1 0 1 2 2
2 1 0 −2 −3 −3 −2 0 2 3 3 1 0 −2 −2 −2 −1 0 1 2 2 1 0 −2 −2 −2 0 1 2 2 1 0 −1 −2
−2 −2 0 1 3 3 2 0 −2 −3 −3 −2 0 1 3 3

124 6.124611460 5.613133701 1.014009395 62 R4(x
31)

126 5.963723281 3.486723207 1.009961690 28 R18(x
7)

128 6.019976073 3.494275747 1.009822349 32 R8(x
16)

130 6.103947784 3.268013514 1.009150709 26 R10(x
13)

132 5.979385283 3.425587986 1.009371467 22 R12(x
11)

134 6.030094351 6.030094351 1.013498976 26 1 1 1 1 0 −1 −1 −1 0 1 2 2
1 0 −1 −2 −1 0 1 2 2 1 0 −1 −1 −1 0 1 1 0 0 −1 −1 0 1 1 1 0 −1 −2 −1 0 1 2 2 0 −1
−2 −2 −1 1 2 2 1 0 −2 −2 −2 −1 0 1 1 1 0 0 −1 −1 −1

136 6.135568540 3.494275747 1.009241902 34 R8(x
17)

138 5.989657253 4.861124291 1.011524376 30 R46(x
3)

140 5.930155706 3.233990794 1.008418934 28 R20(x
7)

142 5.948070694 5.948070694 1.012635977 28 1 −1 1 −1 0 1 −1 1 0 −1 2
−2 1 0 −1 2 −1 0 1 −2 2 −1 0 1 −1 1 0 0 0 0 0 0 1 −1 1 0 −1 2 −2 1 1 −2 3 −2 0 2
−3 3 −1 −1 3 −3 2 0 −2 3 −2 1 1 −2 2 −1 0 1 −1 1 0 0 0 0 0 1

144 6.002426057 3.425587986 1.008587168 24 R12(x
12)

146 6.121028493 6.121028493 1.012486423 28 1 −2 2 −1 0 1 −1 0 1 −1 1 −1
1 −1 1 0 −1 1 0 −1 2 −2 1 0 0 0 0 0 0 1 −1 0 1 −1 1 0 −1 1 0 0 0 0 0 0 1 −1 0 1 −1 1
0 −1 1 0 0 0 0 0 0 1 −1 0 1 −1 1 0 −1 2 −2 2 −1 0 1 −1

148 6.186604634 5.580334344 1.011684279 32 R74(x
2)

150 5.962392616 3.268013514 1.007925793 30 R10(x
15)

152 6.129920758 3.494275747 1.008265062 38 R8(x
19)

154 6.179566941 3.513145071 1.008192543 44 R14(x
11)

156 6.212825396 3.425587986 1.007924007 26 R12(x
13)

158 6.280376894 6.280376894 1.011697187 30 1 1 1 1 1 0 0 0 0 0 1 1 1 1
1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 −1 0 0 0 0
1 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 1 0 0 −1 −1 −2

160 6.150143601 3.233990794 1.007362703 32 R20(x
8)

162 6.130955341 3.486723207 1.007739440 36 R18(x
9)

164 5.905074844 5.613133701 1.010574477 82 R4(x
41)

166 6.231564151 6.231564151 1.011082816 32 1 0 1 −1 0 −1 0 0 0 0 0 0 1 0
1 −1 0 −1 0 0 0 0 0 0 1 0 1 −1 0 −1 0 −1 0 −1 1 0 2 0 1 −1 0 −1 0 −1 0 −1 1 0 2 0 1
−1 0 −1 0 −1 0 −1 1 0 2 0 1 −1 0 −1 0 −1 0 −1 1 0 2 0 1 −1 0 −1 0 −1 1 −1 2 −1

168 6.119661348 3.425587986 1.007355930 28 R12(x
14)

170 6.433689353 3.268013514 1.006990096 34 R10(x
17)

172 6.030612145 5.613133701 1.010080170 86 R4(x
43)

174 6.153655414 5.329970273 1.009663320 58 R6(x
29)

176 6.252824150 3.494275747 1.007133998 44 R8(x
22)

178 6.274037304 6.274037304 1.010370370 38 1 1 1 0 −1 −1 0 1 2 1 0 −1 −1
0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 −1 −1 0 1 2 1 0 −1 −1 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 −1 −1 0
1 1 0 −1 2 −1 0 0 0 0 0 1 1 0 −1 −2 −1 1 2 2 0 −2 −2 −1 1 2 1 0 −1 −1 0 0 0 0 −1

180 6.158286769 3.233990794 1.006541955 36 R20(x
9)

4 The old and new conjectures

The first, fourth and sixth column of our Table 2 represent the continuation of the Table 1 of Wu and Zhang [8]
and these two tables definitely matches for 2 ≤ d ≤ 42. Although we can not guarantee that, for d > 42, we
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have found a reciprocal polynomial with the smallest house we certainly have made a good approximation of
mr(d). There are three reasons for our confidence. The first one is the following

Conjecture 2 [Wu, Zhang [8]]. Any extremal reciprocal algebraic integer α with degree d ≥ 6 has minimal
polynomial which is a factor of reciprocal polynomial with at most eight monomials with height 1.

This conjecture is proved for 6 ≤ d ≤ 42 so if it is not true for all d it is reasonably to expect that it is
correct for many d not too large. Although we involved antireciprocal polynomials in our research and spent
as many CPU time as for reciprocal polynomials, we did not disprove the conjecture. As for antireciprocal
hexanomials the Theorem 3 actually supports the conjecture. Using them we only succeeded to get simpler
representation of many extremals in Table 1 than by using reciprocal octanomials. Also we did not find any
antireciprocal octanomial such that the minimal polynomial of an extremal reciprocal algebraic integer is its
factor and is not a factor of any reciprocal pentanomial, hexanomial, heptanomial or octanomial.

The second reason is our extensive computation. We compute the minimum of the houses of all reciprocal
algebraic integers of degree d such that its minimal polynomial is a factor of a D-th degree reciprocal or
antireciprocal polynomial with at most eight monomials for d at most 180 and D at most 210. As the factoring
of a polynomial spends lot of processor time we reject a polynomial if its house is greater than 1 + c1/D.
Experimenting with several values of c1 we concluded that c1 = 2.5 is ideal. If c1 > 2.5 then we have too
much unnecessary calculations, but if c1 < 2.5 then an extremal reciprocal can be missed. For d ≈ 200 the
duration of computation with c1 = 2.8 was approximately five hours, which is more than double the time
spent for c1 = 2.5 on a 3.7 Ghz PC. But our attempt to find polynomials with smaller houses increasing
c1 to c1 = 2.8 failed. We discovered only few unknown polynomials with small house but no one decreased
mr(d). Actually, many reciprocalα can be found in different ways, for example 1.013333049, the subextremal
reciprocal of degree 138, as a root of the reciprocal octanomial x191−x168+x145+x115+x76+x46−x23+1,
is rejected by our program because it is greater than 1 + 2.5/191 ≈ 1.0131. But this number, as a root of
x168 − x122 + x99 + x92 + x76 + x69 − x46 + 1, is accepted because it is less than 1 + 2.5/168 ≈ 1.0149.

The third reason is statistical. If we plot

1

mrp(d)− 1

versus degree we can notice that these points appear to fall very close to a straight line. If we model the line
using the method of least squares [7] then for 12 ≤ d ≤ 40 we get that 1/(mrp(d) − 1) ≈ 0.51d + 4.3 and
for 12 ≤ d ≤ 180 we get 1/(mrp(d) − 1) ≈ 0.52d + 4.1. Since it is almost the same line we conclude that
our approximations are good. We remark that the coefficient of determination is 0.953 and 0.998 respectively,
which means that there is almost perfect correlation. Using these calculations we establish the following

Conjecture 3. Let mrp(d) be the smallest house of monic, irreducible, reciprocal, primitive, noncyclotomic
polynomials with integer coefficients of even degree d. Then points

(

d,
1

mrp(d) − 1

)

are very close to a straight line. If the least squares method is used then the line of best fit through these points
is ≈ 0.52d + 4.1, with the coefficient of determination close to 1.

If we analyse our Table 2 then we conclude that it supports the next

Conjecture 4 [Wu, Zhang [8]]. Let α be a reciprocal algebraic integer, not a root of unity, and let d =
deg(α) ≥ 2. Then

mrd(d) ≥ mr20(20),

and if 10 ∤ d then

mrd(d) ≥ mr12(12).

arXiv, X(x), 20xx, April 23, 2019,Author’s Version.
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If p is a prime number then it is obvious that the minimal polynomial of the extremal reciprocal of degree
2p is primitive or R2(x

p) = x2p + 3xp + 1. Table 2 suggests that P8(x), P12(x), P18(x) and P20(x) are
the only primitive minimal polynomials of an extremal reciprocal of a degree d such that d/2 is a composite
number.

Conjecture 5. Let d be an even natural number such that d/2 is composite. If d /∈ {8, 12, 18, 20} then Pd(x)
is not primitive, where Pd(x) is the minimal polynomial of an extremal reciprocal of degree d.

If the previous conjecture is true then we just need to determine mr(d) for d/2 > 10 is a prime number. If

d/2 is a composite number we can easily calculate mr(d) = mrp1/d(p1) using the algorithm.

Proposition 1. An extremal reciprocal primitive of degree d ≤ 180 can not be a root of an reciprocal oc-
tanomial of degree D1 such that D1 < 210, D1 < 2d and all its inner monomials have minus sign. An
extremal reciprocal primitive of degree d ≤ 180 can not be a root of an reciprocal octanomial of degree D2

such that D2 < 210, D2 < 1.5d and all its monomials have plus sign.

Proof Analysing our list of reciprocal octanomials, which are divisible by Rd(x) from Table 1, we show that
the claim is true.
The condition D1 < 2d in the previous proposition can not be omited because for degree 86 there is the
octanomial x181−x132−x95−x92−x89−x86−x49+1 whose divisorR86(x) has the house 1.021181880 which
is equal to mrp(86), see Table 1, but D1 = 181 is not less than 2d = 172. Also, the condition D2 < 1.5d can
not be omited because for degree 44 there is the octanomial x68 + x46 + x45 + x37 + x31 + x23 + x22 + 1
whose divisor R44(x) has the house 1.038300334 which is equal to mrp(44), see Table 1, but D2 = 68 is not
less than 1.5d = 66. For d = 38 there is the octanomial x62 + x45 + x43 + x34 + x28 + x19 + x17 + 1 whose
divisor R38(x) has the house 1.043402608 which is equal to mrp(38), see Table 1, but D2 = 62 is not less
than 1.5 · 38 = 57 etc.

Conjecture 6. An extremal reciprocal primitive of degree d can not be a root, neither of an reciprocal oc-
tanomial of degree D1 such that D1 < 2d and all its inner monomials have minus sign, nor of an reciprocal
octanomial of degree D2 such that D2 < 1.5d and all its monomials have plus sign.
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