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Abstract

We describe a project to formalize Galois theory using the Lean theorem prover, which is part of a
larger effort to formalize all of the standard undergraduate mathematics curriculum in Lean. We discuss
some of the challenges we faced and the decisions we made in the course of this project. The main
theorems we formalized are the primitive element theorem, the fundamental theorem of Galois theory,
and the equivalence of several characterizations of finite degree Galois extensions.

1 Introduction
The Lean theorem prover (a proof assistant developed by Leonardo de Moura and collaborators at Microsoft
research [6]) was first released in 2013. But the past couple of years have witnessed an explosion of work
on formalizing math in Lean. This explosion has included the formalization of some surprisingly advanced
topics in mathematics, including a proof of the independence of the continuum hypothesis [9], the theory of
Witt vectors [5], and the definition of perfectoid spaces [4].

These accomplishments have been supported by the formalization of a large body of more prosaic defi-
nitions and results, which the advanced topics depend on. Much of this work has been done as part of the
development of mathlib, a large open-source library of math formalized in Lean [10]. In fact, the development
of mathlib and the community around it is one of the main factors that led to the recent explosion of math
formalized in Lean. And mathlib has continued to grow rapidly. In the past year, more than 250, 000 lines of
code have been added, including proofs of the Cayley-Hamilton theorem, Carathéodory’s theorem, and the
fundamental theorem of calculus. It now contains a substantial percentage of the standard undergraduate
math curriculum.

We will report on a project to formalize Galois theory in Lean, which was undertaken as a contribution
to mathlib, filling one of the remaining holes in its coverage of undergraduate math. This paper can be seen
as a case study in what it’s currently like to formalize a significant piece of undergraduate-level mathematics
using the Lean and mathlib. We will give an overview of how we formalized the proofs of some of the theorems
of Galois theory and comment on the obstacles that we encountered, the design choices we made, and the
insights into the original mathematics that were revealed by formalization.

1.1 History of This Project
The project to formalize Galois theory in Lean was started by a group of undergraduate students at Imperial
College London. At that time, the algebra library of Lean was less developed and so much of their work
went into building up basic definitions and facts about rings, fields, and algebras. Kenny Lau, in particu-
lar, formalized many essential definitions and proved several key results needed to formalize Galois theory,
including facts about minimal polynomials, degrees of field extensions, and fixed fields of groups acting on
fields. He also went on to formalize several other fundamental theorems in field theory, such as the existence
of splitting fields and algebraic closures.
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In the summer of 2020, we organized a seminar at Berkeley to learn how to use the Lean theorem prover.
We began working on formalizing Galois theory as an extension of that seminar, building on the work by the
group at Imperial to finish the proof of the fundamental theorem of Galois theory. In doing so, we benefited
from the extensive work that has gone into mathlib’s algebra library, including many contributions by Anne
Baanen, a few of which we will mention below. In turn, the Galois theory that we formalized is now part
of mathlib and will continue to be added to and modified as part of mathlib’s ongoing development. In fact,
Baanen and others have already made use of some of our work in their formalization of Dedekind domains
and ideal class groups [2].

The history of this project demonstrates an important point about how the mathlib community functions
and how it has been able to grow so rapidly. Namely, the organization and open-source nature of mathlib
enables collaboration from hundreds of people around the world, including both professionals working on
formalization full-time, as well as undergraduates (like the Imperial group) and graduate students (like us)
who have picked up Lean out of curiosity. Our project would have taken many times longer to complete if we
had not been able to build off the work of Lau, Baanen, and many others. This feature of mathlib development
is also discussed in a paper by Baanen, Dahmen, Narayanan, and Nuccio on formalizing algebraic number
theory in Lean [2].

1.2 Other Formalizations of Field Theory and Galois Theory
This is not the first time that Galois theory, or field theory more generally, has been formalized. We will
mention a few notable examples here, though there may be others we are unaware of.

A number of results in field theory and Galois theory have been formalized in Coq as part of the Mathe-
matical Components library. Some of these results, including all of the results that we discuss in this paper,
as well as several that have not yet been formalized in Lean, were first formalized more than ten years
ago as part of the project to formalize the Feit–Thompson odd order theorem [8]. More recently, Sophie
Bernard, Cyril Cohen, Assia Mahboubi, and Pierre-Yves Strub completed a project to formalize a proof of
the Abel-Ruffini theorem on the insolvability of the quintic [3]. At the end of section 3.1, we will comment on
a couple specific implementation differences between the development of Galois theory in Coq and in Lean.

The only other attempt to formalize Galois theory that we are aware of is the GALOIS project at
Manchester University in the 1990s to formalize Galois theory in the LEGO proof assistant [1]. However,
this project was never completed and to the best of our knowledge there was never a significant amount of
Galois theory formalized in LEGO.

More generally, results in field theory have been formalized in several other proof assistants, including
Isabelle, Mizar, and HOL Light. The development of field theory in Isabelle is especially advanced—for
example, the existence of algebraic closures of fields was recently proved in Isabelle by Paulo Emílio de
Vilhena and Lawrence Paulson [7]. Also, the impossibility of trisecting an angle with a ruler and compass
has been proved in both Isabelle and HOL Light (though notably the proof in HOL Light avoids talking
about field extensions) and a number of results about fields have been formalized in Mizar, including the
construction of a field extension adjoining a root of a given polynomial [12].

1.3 What Did We Prove?
We formalized three main results in Galois theory.

Theorem 1 (Primitive Element Theorem). Let E/F be a separable field extension of finite degree. Then
E = F (α) for some α ∈ E.

Theorem 2 (Fundamental Theorem of Galois Theory). If E/F is a Galois extension of finite degree then
there is an inclusion-reversing bijection between the intermediate fields of E/F and the subgroups of the
automorphism group Aut(E/F ).

Theorem 3 (Equivalent Characterizations of Galois Extensions). Let E/F be a field extension of finite
degree. The following are equivalent:

2



1. E/F is Galois, i.e. separable and normal.

2. F is the fixed field of Aut(E/F ).

3. |Aut(E/F )| = [E : F ].

4. E is the splitting field of a separable polynomial.

As we mentioned earlier, our formalizations of these results are now part of mathlib. This means they
will continue to be maintained and built upon rather than gradually becoming incompatible with other
developments in Lean, and also that their statements can be viewed in the online mathlib documenta-
tion (the relevant pages in the documentation are galois.lean and primitive_element.lean). On the
other hand, it also means that eventually the contents of this paper may not exactly match the formal-
ized statements online. Therefore we have chosen a specific commit of the mathlib repository on Github to
use as a reference for the formalized versions of the statements we discuss in this paper. The commit we
have chosen is from January 1st, 2021 and can be found at this url: https://github.com/leanprover-
community/mathlib/tree/9535f9148b91e33d12281ef5ac99292c2fb62220/src/field_theory. This com-
mit provides a snapshot of mathlib at one point in time and is guaranteed to be compatible with the devel-
opment of Galois theory as we present it in this paper, no matter what changes occur in later versions of
mathlib. Since it is hosted by Github rather than any individual, it is also likely to remain available online
for many years.

1.4 What Did We Learn?
The process of formalizing a piece of mathematics essentially involves a translation between two mathematical
languages. The first is the language in which people usually do mathematics, which includes centuries’ worth
of conventions and heuristics and draws on the powerful inference abilities of the human brain. The second
is a language in which a computer can understand mathematics—in our case, Lean. We will sometimes refer
to the first language as “human mathematics” in contrast to “formalized mathematics.”

Many things are easier in human mathematics than in formalized mathematics and a few things are
harder. Most things are at least a bit different. In this paper we will try to explain the differences between
human mathematics and formalized mathematics that we encountered in the process of translation. Our
intent is for our explanation to be understandable by a mathematician with no experience in formalization.

Some of the differences that we encountered are inherent to the process of formalization no matter what
proof assistant is being used for formalization and some are caused by features of Lean that are not shared
in all proof assistants. The most important of these features is that Lean is built on type theory rather than
set theory (and in particular, a special kind of type theory called “dependent type theory”). Lean shares
this feature with many other proof assistants, including Coq (which also uses dependent type theory) and
Isabelle/HOL (which uses simple type theory rather than dependent type theory). The main thing to know
about type theory is that every object is of exactly one type. This means that when introducing new objects,
we have to explicitly decide what type they are.

In human mathematics, things are different: it is normal to view an object from multiple perspectives and
it is so easy that we often don’t realize we are doing it. In type theory, it is also possible to view an object in
multiple ways, but to do so we need to define a map, called a coercion, between the two types. For example,
if we want to think of a subgroup of a group G as being a subset of G then we need to explicitly define the
map from subgroups of G to subsets of G and then insert this map everywhere that we want to think of
a subgroup as a subset. Dealing with coercions may sound arduous, but fortunately Lean has automation
to help with it; we still need to explicitly define the map, but in many cases Lean can automatically infer
where it should be inserted. As we will see later on, being forced to explicitly think about these maps can
have beneficial side-effects.

Formalized math also forces us to think more explicitly about which algebraic structures can be put on a
mathematical object and how the relationships between those algebraic structures should be expressed. We
will consider the real numbers as a motivating example.
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In Lean, we can express the fact that the real numbers are a field as follows. The collection of real
numbers is a type (the elements of that type are exactly the real numbers) and for every type X, there is
a type of all field structures on X. Describing a field structure on the real numbers consists of constructing
an element of the type of field structures on the type of real numbers.

Note that the type of field structures on the type of real numbers may have many different elements—this
corresponds to the fact that we can put many different field structures on the real numbers. What we mean
in human mathematics when we say that the set of real numbers “is” a field is really that one of these choices
is canonical and should be used in almost all cases. To accommodate this type of situation, Lean provides
a way to say that one specific element of the type of field structures on a type X should be automatically
used in any situation where we need a field structure on X.

In human mathematics, the fact that the real numbers are a field implies other facts about the real
numbers. For example, that they are a division ring. Lean also has automation to help deal with this.
Essentially, we can define a function from field structures on a type X to division ring structures on X and
Lean can then automatically apply the function whenever it is needed. This ability is known as type class
inference.

Something analogous to type class inference often happens in human mathematics as well, but it can
often be done on the fly and without needing to be spelled out explicitly anywhere. For example, if you are
told that F is an intermediate field of R/Q, then it is immediately clear that R is a vector space over F .
But in Lean, we need to at some point explicitly show that this inference is possible (or at least we need
to provide Lean with other inferences which imply this one—Lean is quite good at chaining these sorts of
inferences together).

Even though type class inference is automatic in Lean, we still have to be explicit about exactly what
sorts of algebraic structure we need to have in the statements of lemmas as well as within proofs. Returning
to the scenario of the previous paragraph, if we need to know in the middle of a proof that R is a vector
space over F then we should make sure that we have already supplied Lean with the necessary facts to infer
this.

All of this means that it is important to set up a hierarchy of structures and inferences so that Lean’s
automation is able to infer as much as possible without too much manual intervention. Sometimes this
requires creating new structures that don’t have any exact analogue in human mathematics. One structure
in Lean that turned out to be particularly useful in our project is something called is_scalar_tower, which
essentially expresses the relationship between a tower of field extensions E/L/F , but in a bit more generality.
We will discuss this structure in more detail later in the paper.

Here’s one general takeaway from all of this. Working in formalized mathematics and especially in
type theory can sometimes be annoying because you are forced to pick a type for everything and explicitly
construct coercions and instances of structures that might be so obvious that they don’t need to be mentioned
in human mathematics. On the other hand, this can actually be positive because it encourages us to think
in more structural terms and notice abstract patterns that are repeated in different situations. Sometimes
this even leads to simpler and more efficient proofs. For example, after defining what it means to adjoin an
element to a field, we were able to use the theory of Galois insertions (which had already been developed in
mathlib) to immediately infer that the intermediate fields of a field extension form a complete lattice. Later
in this paper, we will explain this example in more detail and also explain why the formalization process
made the connection to Galois insertions clearer.

2 Mathematical Overview
Before we go further, we will review some concepts from Galois theory. This section is entirely in the language
of human mathematics and does not contain any comments on the formalization process.

A polynomial p over a field F is said to be separable if it is coprime with its formal derivative. This
ensures that it has no repeated roots in any field extension of F . If E/F is an algebraic field extension then
each element of E has a minimal polynomial over F . A field extension E/F is separable if the minimal
polynomial of each element of E is separable. A field extension E/F is normal if the minimal polynomial

4



of each element of E splits into linear factors over E. A field extension E/F is Galois if it is both separable
and normal. The group Aut(E/F ) is the group of automorphisms of E which fix F pointwise. When E/F
is a Galois extension, this group is called the Galois group of E over F .

The intuitive idea behind this definition of a Galois extension is that all the automorphisms of E which
fix F pointwise come from permuting the roots of polynomials over F , and the condition that E/F is a
Galois extension ensures that we are not missing any roots, and hence that we are also not missing any
automorphisms. This concept of “not missing any automorphism” can be made precise as follows. For any
field extension E/F of finite degree, we have the inequality |Aut(E/F )| ≤ [E : F ]. The condition that E/F
is Galois is equivalent to the statement that this inequality is actually an equality.

When an extension E/F is Galois, there is a close correspondence between the intermediate fields of E/F
and the subgroups of Aut(E/F ). First, we can associate any intermediate field L of E/F to the subgroup
Aut(E/L) of Aut(E/F ) consisting of those automorphisms of E which fix every element of L. Second, we
can associate any subgroup H of Aut(E/F ) to the intermediate field EH of E/F consisting of those elements
of E which are fixed by every element of H. For any extension E/F , these give inclusion-reversing maps
between intermediate fields of E/F and subgroups of Aut(E/F ). When E/F is Galois, these maps are
inverse bijections. The existence of this inclusion-reversing bijection between intermediate fields of a Galois
extension E/F and subgroups of Aut(E/F ) is referred to as the fundamental theorem of Galois theory or
the Galois correspondence.

In this paper, and in the formalization project on which it is based, we follow a slightly unconventional
route to proving the fundamental theorem of Galois theory. Namely, we make use of the primitive element
theorem (which is usually treated essentially independently from the fundamental theorem of Galois theory).
This theorem states that if E/F is a separable field extension of finite degree then E is generated over F by
a single element—i.e. there is some α ∈ E such that E = F (α), where F (α) denotes the smallest subfield
of E containing both F and α. We will explain in section 4.1 how we use the primitive element theorem in
proving the fundamental theorem of Galois theory.

3 The Primitive Element Theorem
In this section, we will explain some of the things we encountered while formalizing the proof of the primitive
element theorem. An apparently minor point is that in order to even state the primitive element theorem, we
need to first define what it means to adjoin an element to a field. In human mathematics, this is a relatively
simple definition. But to formalize it, there are several important design decisions that must be made.

These decisions took trial-and-error to get right and it turned out that making them in a good way had
significant benefits later on in our project, including in our proof of the primitive element theorem. They
also serve as helpful illustrations of some general points about the process of translating human mathematics
into formal mathematics. For these reasons, the way that we made these decisions will be the main focus of
this section.

3.1 Field Extensions
Before we discuss adjoining elements to fields, we need to briefly explain how mathlib handles fields, field
extensions, and towers of fields.

Fields in mathlib are essentially the same as in human mathematics. In human math, we say “F is a
field” and we mean that F consists of a set together with some operations on that set which satisfy the field
axioms. In Lean, we write (F : Type*) [field F], which means that F is a type and we have an element
of the type of field structures on F . Here, field F refers to the type of all field structures on F .

Field extensions in mathlib, however, are somewhat different from human mathematics, but this is partly
due to a useful ambiguity in human math. In human mathematics, the phrase “E/F is a field extension”
may mean that F is literally a subset of E or it may mean that F embeds into E (with the embedding
usually being inferred from context). In fact, it is standard to switch between these two options whenever it
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is convenient. However, when formalizing the the definition of a field extension, we must pick one of these
two meanings and which one we pick has consequences for how later definitions and proofs are formalized.

The course chosen by mathlib is to use a version of the second option. More precisely, in mathlib, the way
to express that E/F is a field extension is to say that E is a field which is also an F -algebra, which in mathlib
just means that there is a ring homomorphism1 F → E. The benefit of this definition of a field extension is
that it is more general than requiring F to be a subset of E, and it allows lemmas about algebras and vector
spaces to also be applied to field extensions. To define a field extension in Lean, we write:

(F E : Type*) [field F] [field E] [algebra F E]

which should be read as “F and E are types, there are field structures on F and E, and there is an F -algebra
structure on E”.

The downside of this approach is that it can be cumbersome to handle situations where we have multiple
different field extensions of F which are related to each other in some way. The most common situation of
this sort is when we have a tower of field extensions K/E/F . In human math, it is common to talk about
such a tower by assuming that F and E are both subsets of K. But because of the way field extensions
are defined in mathlib, we can’t do this. Instead, to keep things manageable, mathlib has the structure
is_scalar_tower.

The definition of is_scalar_tower is very general (which is part of its strength). It abstracts not just
towers of field extensions, but more general sorts of towers as well. First, if X and Y are types then a scalar
action of X on Y is just a map • : X × Y → Y . Note that an F -algebra structure on a field E is a special
case of this. Now if X, Y , and Z are types and we have scalar actions • : X × Y → Y , • : X × Z → Z, and
• : Y ×Z → Z then is_scalar_tower asserts the axiom (x • y) • z = x • (y • z) for any elements x of X, y of
Y , and z of Z. In the case of a tower of fields K/E/F , the is_scalar_tower axiom is just equivalent to the
compatibility of the ring homomorphisms F → E → K and F → K. To define a tower of field extensions in
Lean, we write

(F E K : Type*) [field F] [field E] [field K] [algebra F E] [algebra F K] [algebra E K]
[is_scalar_tower F E K]

This is a bit of a mouthful, but luckily you only have to write it once at the top of a file, and then you can
use the setup throughout the file.

We believe that handling field extensions and towers of field extensions is beneficial because it allows
lemmas to be stated and proved in more generality and to be reused in more contexts (we will see one
example of this later) and that this is especially beneficial in the context of a project like mathlib which
aims to produce a large coherent library of formalized math. However, this extra generality is sometimes
cumbersome to work with, since statements and proofs become more involved due to the need to talk about
compatibility of algebra structures. And though structures like is_scalar_tower and Lean’s automation
help, they do not completely eliminate the inconvenience.

Partly for these reasons, the authors of Coq’s Mathematical Components library (a.k.a. mathcomp) chose
to define field extensions differently. In their development of Galois theory, they first pick a large ambient
field L and most of the time only work with subfields of L. So a field extension E/F just means a pair of
subfields E and F of L such that F ⊆ E. This means there is no need to check “compatibility” of the field
extensions in a tower—they are always compatible because the embeddings are always just inclusion maps.
Getting rid of such compatibility checks also reduces the compilation time of the formalized proofs. On the
other hand, it is occasionally necessary to leave the field L and this means that the mathcomp approach
cannot totally avoid the difficulties of the mathlib approach.

It seems that overall the differences between the mathcomp and mathlib approaches to defining field
extensions are not so much consequences of differences between Coq and Lean, but rather of differences
between the goals and conventions of the two communities. The design decision of working with substructures
of a large ambient structure is common in mathcomp. For example, one of the main formalization efforts

1In general, mathlib defines an R-algebra to be a semiring A together with a ring homomorphism f : R → A such that for
all r ∈ R and x ∈ A, f(r) commutes with x. In particular, algebras are associative and unital.
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that used mathcomp (and which drove a lot of the development of mathcomp) was the formalization of the
Feit-Thompson theorem of finite group theory. That project followed a similar strategy of mostly working
with subgroups of some large ambient group. In contrast, working in the setting of structures with maps
between them (and using structures like is_scalar_tower to keep track of the complexity) is common in
mathlib.

3.2 Adjoining Elements
Mathematically, if E/F is a field extension then adjoining elements S ⊆ E to the base field F is straight-
forward. Our definition of F (S) in Lean follows the usual mathematical definition of taking the closure of
F ∪S under the field operations. However, there are some interesting structural decisions that we are forced
to make.

Since Lean uses type theory, everything we define must have a type. So what should we choose for the
type of F (S)? There are many options:

• set E, the type of subsets of E,

• subfield E, the type of subfields of E,

• subalgebra F E, the type of F -subalgebras of E,

• intermediate_field F E, the type of F -subalgebras of E which are also subfields of E.

When we started working on this project, the types intermediate_field F E and subfield E did not
exist. Instead, there was a predicate is_subfield on subsets of E. From the other two options, we initially
chose set E, which turned out to be the source of a few headaches. For example, we had to manually
show how to convert F (S) into an F -submodule of E. And often lemmas had to be stated with additional
assumptions that could have been inferred directly if we had chosen a different type. For example, the
following lemma states that an intermediate field of E/F contains F (S) if and only if it contains S, but
requires the ugly assumption HF:

lemma adjoin_le_iff {K : set E} [is_subfield K] (HF : set.range (algebra_map F E) ⊆ K) :
adjoin F S ⊆ K ↔ S ⊆ K

To alleviate some of these issues, we eventually switched to using subalgebra F E. Later, Anne Baanen
created the type intermediate_field F E, which turned out to be the best choice for the type of F (S). It
ensures that F (S) “remembers” that it is both a field extension of F and a subfield of E, which allows us to
automatically invoke lemmas and theorems that depend on these assumptions. For example, we no longer
have to explicitly show that F (S) is an F -submodule of E—this fact is simply inherited from the fact that
any intermediate_field F E is an F -submodule of E. It also allows us to simplify the statements of many
lemmas. For example, the lemma stated above can now become:

lemma adjoin_le_iff {K : intermediate_field F E} : adjoin F S ≤ K ↔ S ⊆ K

Finally, there is no real disadvantage to using intermediate_field compared to any of the alternatives; it
is always possible to turn an intermediate_field F E into a subfield E or a subalgebra F E if the need
ever arises.

What we learned is that, as a general rule of thumb, it is always best to give mathematical objects the
most specific type available and that sometimes it is necessary to create a new type if the none of the available
ones are specific enough. The reason is that this ensures that no information is lost—we can always convert
a more specific type into a less specific one, but not vice-versa. As we saw when we tried using set E as the
type of F (S), if we choose a type which is too general then we will often need to insert extra assumptions in
the statements of lemmas. This leads to unnatural looking statements which are harder to work with. When
the right type is chosen, these assumptions become implicit in the type of the object, leading to statements
that look closer to their human mathematics equivalents.
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The creation of the type intermediate_field F E illustrates a general point about formalizing math,
which will show up several more times in this paper: it is important to find abstractions which hide the
right amount of information—especially information which is normally left implicit in human mathematics.
Otherwise, it is easy for formalized statements to quickly become too complicated and hard for humans to
parse.

3.3 The Lattice Structure of Intermediate Fields
Whenever you define something new in Lean, the first thing to do is to prove lots of little lemmas about
how the definition interacts with previously defined notions. Sometimes this process leads to a new and
simpler perspective. The lemma adjoin_le_iff from the previous section provides an example of this: an
intermediate field of E/F contains F (S) if and only if it contains S. In human mathematics, this is expressed
by the following (obvious) lemma.

Lemma 4. Let E/F be a field extension, S a subset of E, and K an intermediate field of E/F . Then
F (S) ⊆ K if and only if S ⊆ K.

Earlier, we translated this statement into Lean as:

lemma adjoin_le_iff {K : intemediate_field F E} : adjoin F S ≤ K ↔ S ⊆ K

However, if we are not careful then Lean will complain about this statement. The problem is that S ⊆ K
doesn’t seem to make sense since S has type set E but K has type intermediate_field F E. When a
human reads S ⊆ K they immediately infer that an intermediate field of E/F can also be thought of as a
subset of E, but Lean needs more help. At first, this seems purely like an annoyance. But as we will see,
dealing with it actually helps make clear a pattern which occurs frequently in mathematics and which we
can exploit to automatically infer many basic facts about intermediate fields.

The solution to the problem is to realize that the conversion of an intermediate field of E/F into a subset
of E, which humans can perform effortlessly, actually consists of applying a function from intermediate fields
to subsets (in category theoretic language, this is the forgetful functor from intermediate fields to subsets).
In Lean, this function is called a coercion and it needs to be manually defined. Once the coercion has been
defined, Lean will be able to automatically apply it in appropriate situations and will no longer complain
when we write things like S ⊆ K.

Having to explicitly provide Lean with the coercion highlights the fact that Lemma 4 should really be
viewed as a relationship between the adjoining map set E → intermediate_field F E and the coercion
intermediate_field F E → set E. In fact, this relationship is very common in mathematics. The defini-
tion below is one way to capture this relationship abstractly (which some mathematicians might recognize
as a special case of adjoint functors).

Definition 5. Let P and Q be partially ordered sets. A Galois connection between P and Q consists of two
order-preserving functions f : P → Q and g : Q → P such that f(p) ≤ q if and only if p ≤ g(q). A Galois
insertion of Q into P is a Galois connection that satisfies f ◦ g = idQ.2

Thus, we see that Lemma 4 states that the adjoining map set E → intermediate_field F E and the
coercion intermediate_field F E → set E form a Galois connection. In fact, it is not hard to see that
they form a Galois insertion of intermediate_field F E into set E.

Lemma 6. Let E/F be a field extension. The map S 7→ F (S) and the forgetful functor from intermediate
fields of E/F to subsets of E form a Galois insertion of the partial order of intermediate fields of E/F into
the partial order of subsets of E.

Proving this lemma allows us to automatically import all the facts in mathlib that have already been
proved about Galois insertions. For example, the following lemma is in mathlib. Recall that a complete
lattice is a partially ordered set in which every subset has both a greatest lower bound and a least upper
bound.

2The reason that Galois’ name appears here is that the Galois correspondence is an example of a Galois insertion.
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Lemma 7. Suppose that there is a Galois insertion of Q into P . If P is a complete lattice then so is Q.

Applying this lemma shows that intermediate_field F E is a complete lattice. This in turn gives us
many notions for free. For example, it gives us the bottom intermediate field (denoted ⊥), and the top
intermediate field (denoted >), as well as intersections and compositums of intermediate fields. It also gives
us access to any fact about complete lattices that is contained in mathlib. This is amazing since all we had
to do, more or less, was provide the definition of adjoining elements to fields and prove Lemma 4—both of
which we were going to do anyways.

This trick of pulling back lattice structure along Galois insertions was not discovered by us. We learned
it from looking at Kenny Lau’s work on subalgebras in mathlib. The trick is also used in mathlib to get the
lattice structure on partitions and on a topological space.

This section has highlighted a particular example of a larger theme, which is that formalizing math
(especially in a system based on type theory, like Lean) forces you to make explicit many things that are
normally left implicit in human mathematics. Sometimes this is merely an annoyance, but at other times it
can actually be helpful because it makes you notice structural patterns which are repeated in many different
situations. These patterns can be abstracted out into highly versatile theorems which can then be invoked
in all similar situations.

3.4 An Induction Scheme for Intermediate Fields
One reason that it is useful to formalize the definition of adjoining elements to a field is that it allows results
to be proved inductively by adjoining one element at a time. Here’s how this typically works in human
mathematics: we start with a field extension E/F of finite degree. We then pick some finite sequence of
elements α1, α2, . . . , αn such that F (α1, α2, . . . , αn) = E and prove by induction on n that whatever property
we are interested in holds for F (α1, α2, . . . , αn).

It is possible to carry out this sort of proof in Lean, but it usually does not feel very natural. In particular,
it can often be a little difficult to work with arbitrary finite sequences of elements. One way to avoid having
to deal with these difficulties is to formulate an induction principle for intermediate fields. The idea is that
if we can abstract out the requirements necessary to do the kind of induction we described above, we can
avoid having to actually work with finite sequences of elements (except in the proof of the abstract induction
principle itself). This maneuver is mostly just a way to avoid having to deal with certain types of arguments
that don’t work very smoothly in Lean, but it does have the added benefit that some standard proofs become
simpler when rewritten using this new induction principle.

Here’s the induction principle.

Lemma 8. Let E/F be a field extension, S a finite subset of E, and P be a predicate on intermediate fields
of E/F . Suppose that P holds of F and that for all intermediate fields K of E/F and all α ∈ S, if P holds
of K then P holds of K(α). Then P holds of F (S).

In the next section, we will see how to use this induction principle to prove the primitive element theorem.
But first, let’s point out one issue in formalizing Lemma 8 in Lean. The lemmas depend on the following
fact.

Lemma 9. Let E/F be a field extension and let S, T ⊆ E. Then F (S)(T ) = F (S ∪ T ).

The trouble with this fact is that the field F (S ∪ T ) has type intermediate_field F E, but the field
F (S)(T ) has type intermediate_field F(S) E and in type theory you can only say that two objects are
equal if they have the same type. The solution is the same as the one described in the previous section:
we need to define a coercion from intermediate_field K E to intermediate_field F E whenever K is
an intermediate field of E/F . In fact, we also need this coercion when formalizing the statement of the
induction lemmas in order to make sense of the phrase “P holds of K(α)” (recall that P was a predicate on
intermediate fields of E/F whereas K(α) is an intermediate field of E/K).

We will note here that instead of using the induction scheme we have described in this section, it is often
possible to instead use induction on the degree of the field extension. One reason we avoided this in our work
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was that it is a bit messy in Lean (for technical reasons having to do with the way universes are handled
in Lean). However, the team that developed Galois theory in Coq did use this approach sometimes. They
did not run into the technical inconveniences we encountered with this approach in part because they were
working with subfields of a single large ambient field, rather than with arbitrary fields, as we did. Both ways
of carrying out such induction arguments seem to work fine, but as we have already mentioned, once we had
formulated the induction scheme explained here, it did seem to make a number of proofs smoother.

3.5 The Primitive Element Theorem
In this section we will explain our formalization of the proof of primitive element theorem.

Theorem 10 (Primitive Element Theorem). Let E/F be a separable field extension of finite degree. Then
E = F (α) for some α ∈ E.

Let’s first review the usual proof of this theorem, following the proof in Milne’s Fields and Galois Theory
textbook [11]. The proof splits into two cases depending on whether the fields are finite or infinite. If the
fields are finite then α can be taken to be the generator of the finite cyclic group E×. If the fields are infinite
then the theorem can be proved by induction on [E : F ]. The inductive step relies on the following key
lemma.

Lemma 11. If F is infinite and if E/F is a separable field extension then for all α, β ∈ E, there exists a
γ ∈ E such that F (α, β) = F (γ).

To apply this lemma, we first show that if [E : F ] > 1 then there is some element α ∈ E which is not in
F . If α generates E over F then we are done. If not, then we can show that [E : F (α)] < [E : F ]. Then we
can invoke the inductive hypothesis to write E = F (α)(β) for some β ∈ E, and we can apply Lemma 11 to
finish.

One problem with formalizing this proof is that if we do induction on [E : F ] then the inductive hypothesis
includes a quantifier over all field extensions of K/L of degree less than [E : F ]. In Lean, this is problematic
because we are only allowed to quantify over elements of some specific type and there is no type of all field
extensions3 (just like in set theory there is no set of all field extensions4).

There are ways around this problem, but it turns out that in this case, a cleaner solution is to replace the
induction on the degree of E/F with the induction scheme we introduced in the last section. More precisely,
let P be the predicate on intermediate fields of E/F defined by:

P (K) ⇐⇒ K = F (α) for some α ∈ E.

If we apply the induction scheme of Lemma 8 to this predicate then we see that the base case is easy to
prove (it is just asking us to show that F can be generated over F by one element) and the inductive step
is given by Lemma 11.

Switching to this induction scheme has the additional benefit of streamlining the proof in other ways. For
example, when proving the inductive step, we do not need the degree to decrease so it is no longer necessary
to break into cases depending on whether α generates E over F . Also, we no longer need to explicitly show
that E contains some element not in F—this is essentially baked into the induction scheme.

We will conclude this section by pointing out something interesting about the way that the primitive
element theorem is stated in Lean. Here’s what it looks like.

theorem exists_primitive_element [finite_dimensional F E] (F_sep : is_separable F E) :
∃ α : E, F(α) = >
3For type theory aficionados: Lean’s type theory uses an infinite (non-cumulative) hierarchy of universes. So we can form

the type of all field extensions that are in any fixed universe, but we prefer to prove the theorem without putting any restrictions
on the universes of F and E.

4In set theory, however, we are allowed to quantify over this collection even though it is not a set.
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Note that instead of asserting that F (α) = E, the theorem says that F (α) = > (read “top”). This is because
F (α) has type intermediate_field F E but E does not, and thus they cannot be equal. So instead we
prove that F (α) is equal to the largest intermediate field of E/F (which a human mathematician would
just automatically identify with E). In some other situations, it is necessary to make a similar distinction
between F and ⊥ (read “bottom”), the smallest intermediate field of E/F .

3.6 Adjoining One Element
In order to leverage the primitive element theorem in our development of Galois theory, we will need the
following two lemmas.

Lemma 12. Let E/F be a field extension. If α ∈ E is algebraic over F , with minimal polynomial m ∈ F [x],
then [F (α) : F ] = degm.

Lemma 13. Let E/F be a field extension and let α ∈ E be algebraic over F with minimal polynomial
m ∈ F [x]. For any field extension K/F , the number of F -algebra homomorphisms F (α)→ K is equal to the
number of roots of m in K.

In human mathematics, neither result is hard to prove. One approach is to first construct the isomorphism
F (α) ∼= F [x]/(m) and then prove the analogous statements for F [x]/(m) in place of F (α). To prove that the
degree of F [x]/(m) over F is equal to the degree of m, it is enough to show that {1, x, . . . , xdegm−1} forms a
basis for F [x]/(m) as an F -vector space. And one way to show that the number of F -algebra homomorphisms
F [x]/(m)→ K is equal to the number of roots of m in K is to explicitly construct the bijection between the
two sets.

In a couple places in the proofs we have just sketched, it is helpful to invoke the universal property of
F [x]/(m). Recall that this universal property is that if K/F is any field extension and β ∈ K is a root of m
then there is a unique F -algebra homomorphism F [x]/(m)→ K that sends x to β.

The formalization of most of these arguments works pretty smoothly in Lean. Working with isomorphisms
and universal properties in Lean (and in other proof assistants based on dependent type theory) feels very
natural and works well. However, proving that {1, x, . . . , xdegm−1} forms a basis for F [x]/(m) turned out to
be surprisingly difficult. In our experience, it can be tough to work directly with bases and linear combinations
in Lean (partly because it can be tough to work with finite sets and finite lists). For this reason, we opted
to show that the degree of F [x]/(m) over F is degm by constructing an isomorphism between F [x]/(m) and
the F -vector space of polynomials over F of degree less than degm.

However, it is sometimes useful to know explicit bases for F [x]/(m) and F (α) (for example, to work
with the trace of an element of an algebraic number field). For this reason, Anne Baanen put in the hard
work required to actually show that {1, x, . . . , xdegm−1} is actually a basis. Along the way, Baanen also
defined a new structure called power_basis to capture situations like F [x]/(m) and F (α) where an F -
algebra has a basis of the form {1, a, a2, . . . , an−1}. This has the advantage of allowing general lemmas that
cover all of these situations simultaneously. For example, if A and B are both F -algebras, {1, a, . . . , an−1}
is a power basis for A, and b ∈ B is a root of the minimal polynomial of a, then there is a unique F -
algebra homomorphism A → B mapping a to b. This is another example of the idea that finding the right
abstractions is very important in formalizing mathematics, and that sometimes these abstractions don’t have
any direct analogue in human mathematics.

4 Galois Theory
We are now ready to move on to Galois theory. Recall that we are using separable and normal as our
definition of a Galois extension. The advantage of this is that we can immediately apply the primitive
element theorem to Galois extensions.

When proving the Galois correspondence, we won’t work directly with the definition of a Galois extension.
Instead, we will rely on the following two lemmas. The first lemma states that a Galois extension is Galois
over any intermediate field.
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Lemma 14. Let E/K/F be a tower of field extensions. If E/F is Galois then so is E/K.

Recall that mathlib uses algebra F E to talk about field extensions, rather than require F to be of type
subfield E. In the same way, mathlib uses is_scalar_tower F K E to talk about towers of field extensions,
rather than require K to be of type intermediate_field F E. This has the same advantages discussed in
section 3.1.

Lemma 14 is formalized in terms of is_scalar_tower. This extra generality is not necessary for the
proof of the Galois correspondence. However, it will be used when proving the equivalent characterizations
of Galois extensions.

The second lemma is where we use the primitive element theorem.

Lemma 15. Let E/F be a Galois extension of finite degree. Then |Aut(E/F )| = [E : F ].

Proof. By the primitive element theorem, E = F (α) for some α ∈ E. Since E/F is of finite degree, α is
algebraic over F with minimal polynomial m ∈ F [x]. By Lemma 12, [E : F ] = degm. By Lemma 13,
|Aut(E/F )| equals the number of roots of m in E. Since E/F is separable and normal, m has degm in roots
E. Thus, both sides of the desired equality are equal to degm.

4.1 The Galois Correspondence
We will fix a field extension E/F . The Galois correspondence consists of a pair of functions. For us, this pair
of functions will be between the types intermediate_field F E and subgroup (E 'a[F] E), the type of
all subgroups of the group Aut(E/F ) of F -algebra automorphisms of E.

These maps are defined as usual. If H is a subgroup of Aut(E/F ), then EH is the fixed field of H. If K
is an intermediate field of E/F then Aut(E/K) is a subgroup of Aut(E/F ).

There are three numerical facts that we will need. The first two were already in mathlib, courtesy of
Kenny Lau. The third is a consequence of Lemmas 14 and 15 (which uses the primitive element theorem).

Lemma 16. Let E/F be a field extension of finite degree. Let H be a subgroup of Aut(E/F ) and let K be
an intermediate field of E/F .

1. [E : EH ] ≤ |H| (linear independence of characters).

2. |Aut(E/K)| ≤ [E : K].

3. If E/F is Galois then |Aut(E/K)| = [E : K].

We can now prove the Galois correspondence.

Theorem 17 (The Galois Correspondence). Let E/F be a field extension of finite degree. Let H be a
subgroup of Aut(E/F ) and let K be an intermediate field of E/F .

1. Aut(E/EH) = H and [E : EH ] = |H|.

2. If E/F is Galois then EAut(E/K) = K.

In other words, the functions H 7→ EH and K 7→ Aut(E/K) define an Galois insertion from subgroups of
Aut(E/F ), ordered by reverse inclusion, into intermediate fields of E/F . If E/F is Galois, then this Galois
insertion is actually a lattice isomorphism.

Proof. Combining the first two parts of Lemma 16 gives∣∣Aut(E/EH)
∣∣ ≤ [E : EH ] ≤ |H| .

However, H ≤ Aut(E/EH), so we must have equality. This proves part 1. Now assume that E/F is Galois.
Combining the equality [E : EH ] = |H| with the third part of Lemma 16 gives

[E : EAut(E/K)] = |Aut(E/K)| = [E : K].

However, K ≤ EAut(E/K), so we must have equality.
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Note that the second part of Lemma 16 is only needed to avoid assuming that E/F is Galois in the first
part of Theorem 17. In particular, you can deduce the Galois correspondence from just the first and third
parts of Lemma 16.

4.2 Equivalent Characterizations of Galois Extension
In order for the Galois correspondence to be useful, we will need to prove the equivalent characterizations
of Galois extensions. Let E/F be a finite extension. We will consider the following equivalent conditions:

1. E/F is Galois,

2. F is the fixed field of Aut(E/F ),

3. |Aut(E/F )| = [E : F ],

4. E is the splitting field of a separable polynomial.

When formalizing the equivalence of these statements in Lean, we both formalized specific implications as
well as a “the following are equivalent” theorem (there is a special syntax for such statements in Lean, which
allows us to directly use all 12 implications without having to prove each one directly).

Before we continue, there is one subtlety with condition (2). Here’s how it’s stated in Lean:

fixed_field (> : subgroup (E 'a[F] E)) = ⊥

This looks a bit different than our statement of (2) above. The reason why is that our formalized definition
of fixed field was as a function subgroup (E 'a[F] E) → intermediate_field F E. So in order to make
the types match up in the statement of (2), we must replace F with the smallest intermediate field of E/F
and Aut(E/F ) with the largest subgroup of Aut(E/F ). In other words, (2) should really be phrased as

2′. The fixed field of the top subgroup of Aut(E/F ) equals the bottom intermediate field of E/F .

To a human mathematician, (2) and (2′) look like two different ways of saying the same thing. But to Lean,
they are different.

With this subtlety out of the way, a few directions are easy from what we already know:

• (1) =⇒ (4): Take the minimal polynomial of a primitive element.

• (2′) ⇐⇒ (3): Let H be the top subgroup of Aut(E/F ) in the equality [E : EH ] = |H|.

It remains to prove (2′) =⇒ (1) and (4) =⇒ (3).
For the direction (2′) =⇒ (1), Kenny Lau had already proved that if G is a finite group of automorphisms

of a field E then E/EG is Galois (in the separable and normal sense). However, this only tells us that E
is Galois over the bottom intermediate field of E/F . Somehow we have to go from knowing that E/⊥5 is
Galois to knowing that E/F is Galois.

In human mathematics, this problem seems almost nonsensical: F is just equal to ⊥. But in Lean they
are not equal because they have different types. One option would be to define a notion of isomorphic field
extensions, prove that E/F is isomorphic to E/⊥, and prove that being Galois is preserved along this type
of isomorphism.

It turns out that an easier option is to invoke a structure that was useful several times: is_scalar_tower.
We can apply Lemma 14 to the tower E/F/⊥. All that’s needed is to construct instances algebra ⊥ F and
is_scalar_tower ⊥ F E. In other words, we need to construct a ring homomorphism ⊥ → F from the
bottom intermediate field of E/F to F , and show that it is compatible with the existing ring homomorphisms
F → E and ⊥ → E.

5Another technical issue is that ⊥ needs to be coerced from type intermediate_field F E to type Type, but this is handled
automatically by Lean.
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This kind of problem of transporting properties along various types of map (in particular, along isomor-
phisms) shows up a lot in formalization. It is possible that transporting properties along isomorphisms could
be automated.

Finally, the direction (4) =⇒ (3) is the trickiest, and requires induction. In the human mathematics
proof, we might consider the roots of r1, . . . , rn of the separable polynomial p ∈ F [x], and inductively prove
that the number of F -algebra homomorphisms F (r1, . . . , rk) → E equals the degree [F : F (r1, . . . , rk)].
The inductive step involves showing that each F -algebra homomorphism F (r1, . . . , rk) → E has exactly
[F (r1, . . . , rk+1) : F (r1, . . . , rk)] extensions to F (r1, . . . , rk+1).

There are several changes that we make to this proof. First, rather than enumerating the roots of p and
adjoining them one-by-one, we instead apply Lemma 8 to the set of roots of p and to the predicate

P (K) ⇐⇒ the number of F -algebra homomorphisms K → E equals [K : F ].

Then the inductive step involves counting F -algebra homomorphisms K(α) → E, where K is an arbitrary
intermediate field of F/E and α is a root of p.

In Lean, the easiest way to count something is to establish a bijection. A bijection in Lean needs to be
between two types. For our bijection, one of the types should be the type of F -algebra homomorphisms
K(α)→ E. By examining the human mathematics proof, we see that the other type should be the type of
pairs (f, g) where f is an F -algebra homomorphism K → E and g is an F -algebra homomorphism K(α)→ E
extending f . The type of pairs (f, g) is an example of a dependent type since the type of g depends on the
choice f . Not every type theory theorem prover supports dependent types, so this is one of the advantages
of Lean.

We now need to count the number of g extending each f . Ideally, we would reuse Lemma 13. This
doesn’t directly work since g is not a K-algebra homomorphism. However, let Ef be the field E with K-
algebra structure given by f . Then an F -algebra homomorphism g : K(α)→ E is the same as a K-algebra
homomorphism g : K(α)→ Ef .

Then the inductive step follows from Lemmas 12 and 13, along with the following proposition.

Proposition 18. There is a bijection between F -algebra homomorphisms K(α)→ E and pairs (f, g) where
f is an F -algebra homomorphism K → E and g is a K-algebra homomorphism K(α) → Ef . Here Ef

denotes E with K-algebra structure given by f .

Proposition 18 can be generalized considerably. In particular, K(α)/K/F can be any is_scalar_tower.

5 Future Work: The Abel-Ruffini Theorem
Though we have formalized a few of the main theorems of Galois theory, there are some important results
that we have not formalized yet. We plan to continue developing the field theory library of mathlib by
working on formalizing these remaining results. We, along with Jordan Brown, have recently formalized a
proof of the Abel-Ruffini theorem on the insolvability of polynomials of degree five by radicals. This theorem
was first formalized a few months earlier in the Coq theorem prover by Sophie Bernard, Cyril Cohen, Assia
Mahboubi, and Pierre-Yves Strub [3].
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