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Abstract. We present numerical experiments that test the predictions of a conjecture of
Gaiotto-Moore-Neitzke and Gaiotto concerning the monodromy map for opers, the non-
abelian Hodge correspondence, and the restriction of Hitchin’s hyperkähler metric to the
Hitchin section. These experiments are conducted in the setting of polynomial holomorphic
differentials on the complex plane, where the predictions take the form of conjectural formulas
for the Stokes data and the Hitchin metric tensor. Overall, the results of our experiments
support the conjecture.

1. Introduction

In this paper we present and discuss numerical experiments that compute two maps that
arise naturally in Teichmüller theory: The non-abelian Hodge correspondence (NAHC) for
the Hitchin section, and the monodromy map for opers (which is a particular case of the
Riemann-Hilbert correspondence). Both of these maps associate monodromy data to a tuple
of holomorphic differentials on a Riemann surface. Furthermore, these maps are expected to
be asymptotic in a certain sense (e.g. the conjecture of [37] and results of [46, 51, 38, 1, 14]).

The motivation for our experiments is a statement we dub the twistor Riemann-Hilbert
conjecture, which asserts that these monodromy maps can also be computed by solving a sys-
tem of coupled integral equations. Particularly in the case of the NAHC, such a description
would be remarkable in that the integral equations involve only contour integrals of holomor-
phic functions, and do not involve the solution of any partial differential equation. Moreover,
the conjectural integral equation suggests a rather simple iterative strategy for computing the
map which in the cases we study converges very rapidly and is computationally inexpensive.

The twistor Riemann-Hilbert conjecture, in the form that we investigate it here, is formu-
lated in the works [26, 29, 28, 25], originally motivated by considerations of supersymmetric
quantum field theory. Many special cases of the conjecture had been discovered earlier; in
particular, for the monodromy of SL2C-opers with potential of the form zn+c, the conjecture
appeared in the context of the ODE/IM correspondence pioneered in [10] (see e.g. [13, 9] for
reviews of the ODE/IM correspondence). More recently, statements related to the twistor
Riemann-Hilbert conjecture for the NAHC have been studied in the form of the massive
ODE/IM correspondence, beginning with [39]. The twistor Riemann-Hilbert conjecture is
also closely related to the exact WKB method (and its extension to higher rank); this is an
extensive literature which we cannot review here, but see e.g. [35] for a description close to
our point of view in this paper, and references therein. Numerical investigations of special
cases of the twistor Riemann-Hilbert conjecture (or closely related statements) for SL2C-
opers have been described in e.g. [8, 9, 25, 36, 30], and in [12] for SL3C-opers. In particular,
[36] gives results of a numerical test of a version of the conjecture for SL2C-opers in the
same examples we consider below, involving slightly different quantities than we compute in
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2 D. DUMAS AND A. NEITZKE

this paper. We are not aware of any numerical investigations of the twistor Riemann-Hilbert
conjecture for the NAHC.

To test the twistor Riemann-Hilbert conjecture, we developed software to compute the
monodromy maps directly, and using the conjecturally equivalent integral equations, and
here we compare the results. Rather than working on a compact surface, which was the
setting for the original development of the non-abelian Hodge correspondence, in this paper
we only consider the case of polynomial Higgs bundles and opers on the complex plane. This
case is more amenable to computation, though since the plane is simply-connected, there is
no monodromy in the classical sense. Instead, the monodromy-type invariants relevant to
the correspondences are the Stokes data of the connections. The bulk of this paper is thus
devoted to discussing two methods for computing Stokes data (one of them conjectural) and
comparing the results of numerical experiments with these methods.

In addition to allowing us to study the monodromy maps themselves, our implementa-
tion of the direct and integral equation approaches easily generalizes to compute Hitchin’s
hyperkähler metric on the moduli space of Higgs bundles, restricted to a Kähler metric on
the Hitchin section. While the integral equation side of this picture again gives a formula
that is only conjectural, it is particularly appealing because it implies specific asymptotics
of Hitchin’s metric which are not evident from its original definition. Indeed, the numerical
evidence supporting the conjectural formula for Hitchin’s metric reported in this paper was
part of the original inspiration for the authors’ work in [15], where an asymptotic formula
with exponentially decaying error term was established for the Hitchin section of a compact
surface in rank 2. (This exponential decay improved on the earlier asymptotic results of
Mazzeo, Swoboda, Weiss, and Witt [41] in rank 2, which had a polynomially decaying error
term; exponential decay was later established in all ranks by Fredrickson [23].)

1.1. Concrete predictions. Because a full description of the families of connections, mon-
odromy maps, and integral equations is somewhat lengthy, we defer that to the subsequent
sections. But to give an indication of what the conjectural picture looks like, here is a concrete
geometric consequence of it that is supported by our numerical experiments.

Predictions for harmonic maps. For any polynomial P (z) with complex coefficients there
exists a harmonic map h : C→ H2, unique up to isometry, with Hopf differential −4P (z)dz2

and such that the Riemannian metric |∂h|2|dz|2 on C is complete [48]. Furthermore, the
image of this map is the interior of an ideal polygon with d + 2 vertices, where d = deg(P )
[32]. Exactly which ideal polygon appears depends on the coefficients of P ; for example,
P (z) = zd gives the regular (d+ 2)-gon. Except for a few symmetric examples like this one,
no explicit formula is known which describes the polygon in terms of the polynomial P .

To consider a specific example, we might ask which isometry class of ideal pentagons in
H2 corresponds to the cubic polynomial

P (z) = z3 − 1. (1.1)

An ideal pentagon is determined up to isometry by two real-valued invariants, which can be
taken to be cross ratios of any two 4-tuples of the vertices (considered as elements of RP1).
In the case of the pentagon associated to z3−1, one can use the fact that the polynomial has
real coefficients to show that the corresponding pentagon has a reflection symmetry about a
geodesic passing through one of the ideal vertices. This reduces the problem of characterizing
the shape of the pentagon to determining a single real number; for our purposes it will be



OPERS AND NONABELIAN HODGE: NUMERICAL STUDIES 3

convenient to take this parameter as X := 1+χ(v1, v2, v3, v4), where χ(a, b, c, d) = (a−b)(c−d)
(a−d)(c−b) is

the cross ratio and v1, . . . , v5 are the ideal vertices, with v1 fixed by the reflection symmetry.
Assuming the twistor Riemann-Hilbert conjecture, this invariant X can be computed by

solving the following integral equation. First, define two exponentially decaying kernel func-
tions K± by

K±(t) = A± ·
cosh(t)

2 cosh(2t)± 1
(1.2)

where the real constants A± are chosen so that
∫∞
−∞K±(t) dt = 1. Also define the constant

M =
√

3π
Γ(4/3)

Γ(11/6)
(1.3)

and let x0 denote the function on R,

x0(t) = −2M cosh(t). (1.4)

Conjecturally, there is a unique smooth function x : R → R that grows as O(x0) and which
satisfies the integral equation

x = x0 −
(
K+ ∗ log(1 + exp(x))

)
(1.5)

where f ∗g denotes the convolution of f and g on R. In terms of this solution, the prediction
for the cross ratio invariant is that

X = exp(y(0)) where y =

√
3

2
x0 −

(
K− ∗ log(1 + exp(x))

)
. (1.6)

In our experiments, computing a numerical solution of (1.5) leads to a predicted value X ≈
0.006415703, while computing a numerical approximation of the harmonic map itself gives
X ≈ 0.006415699 with an estimated error of 1.8× 10−8. The method for solving the integral
equation is based on writing (1.5) as a fixed point equation, x = F(x), and then locating a
fixed point by taking a limit of iterates Fn(x0). This scheme converges very rapidly because x
is ultimately a very small correction to x0, with ‖x−x0‖∞ < 0.001 while inf |x0| = 2M ≈ 5.83.
In comparison, our implementation of the direct approach to computing the harmonic map
is rather expensive in computation time and memory, e.g. requiring minutes to hours of
computation time depending on the desired accuracy.

While we have described this example in terms of harmonic maps, it has an equivalent
formulation in terms of Higgs bundles in the Hitchin section. In that interpretation, which
is the one used in the body of the paper, the isometry type of the ideal polygon in H2

corresponds to the Stokes data of the flat connection corresponding to a rank-2 bundle with
Higgs field of the form

(
0 P (z)
1 0

)
dz. This construction is detailed in Section 2, and the specific

families considered in our experiments are introduced in Section 4. In the terminology of the
latter section, the harmonic maps problem phrased above corresponds to the (A1, A2) family
with parameters c = 1, Λ = 0, ϑ = 0, and R = 1. The values of X given above appear in
Figure 12 over R = 1, with markers + and × for the direct harmonic map computation and
integral equation prediction, respectively. (The close agreement between the two methods
creates the appearance of a single marker ×+.)

In addition to these rank-2 Higgs bundles, our experiments also consider their natural
generalization to rank 3 and polynomial cubic differentials; here a geometric interpretation
can be given in terms of affine spheres, and in this interpretation our experiments involve
computing the map α that is the main object of study in [18].
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Predictions for opers. A minor variation on the rank-2 example described above illustrates
the experimental study of opers in Section 4.2: Rather than considering the Hopf differential
of a harmonic map, we consider the holomorphic immersion f : C → CP1 with Schwarzian
derivative 2P (z) dz2, which is unique up to composition with a linear fractional map. Such
a map (with P (z) polynomial of degree d) distinguishes a cyclically ordered configuration of
d + 2 points on CP1 which are its asymptotic values. The conjecture of [25] then expresses
cross ratios of 4-tuples of these points in terms of the solution of an integral equation that
is a minor modification of (1.5). (This particular example of the twistor Riemann-Hilbert
conjecture was first discovered as part of the ODE/IM correspondence [10].) Again, our
discussion of this example in the body of the paper uses a bundle description, where the
map f is replaced with the equivalent data of a SL2C-oper over C. This is a certain type
of flat holomorphic connection, whose connection 1-form can be taken to have the form(

0 P (z)
1 0

)
dz, and computing the Stokes data of this connection is equivalent to computing the

asymptotic values of f . In this case, we compare the integral equation predictions to the
more direct approach of computing the Stokes data from the parallel transport operator of
the flat connection (which is obtained by solving an ordinary differential equation). Here
again, we study the natural generalization of this picture to rank 3.

1.2. Summary and interpretation of results. The main experiments we report in this
paper involve computing and comparing Stokes data for 13 one-parameter families of con-
nections. The results are summarized in Figures 5-11 for opers, and Figures 12-17 for the
Hitchin section. For one of these families we also compute Hitchin’s hyperkähler metric on
the Hitchin section, for which the results are summarized in Figure 18. In general we believe
that the results support the twistor Riemann-Hilbert conjecture. Of course, this does not
mean that we find exact agreement between the direct method and the integral equation
method; rather, it means that we believe that the difference we do find can be accounted for
by numerical error.

Each one-parameter family of connections which we study involves a positive real-valued
parameter (|~|−1 for opers, R for the Hitchin section) with the property that the expected
numerical error in the direct method grows rapidly with R or |~|−1. It must therefore be
expected that the difference between the results from the two methods may exhibit the same
type of growth, even if the twistor Riemann-Hilbert conjecture holds, and this is indeed what
we find: in general the difference is small for small values of the parameter, and grows as the
parameter is increased.

Though we do not conduct a complete numerical analysis of both methods, we do analyze
certain sources of numerical error, and ultimately conclude that our experiments do not
provide any strong candidates for counterexamples to the conjecture. Correspondingly, the
breadth and variety of examples we have studied without finding an apparent counterexample
may be seen as evidence toward the conjecture.

1.3. Code and data. All of our experiments were performed using implementations of
the direct and integral equation methods we developed in Python. The datasets resulting
from our experiments, which were used to generate the plots and figures in this paper, are
available at [16]. The source code for our program, with installation instructions and some
documentation of the interfaces, is available at [17]. The code includes scripts to reproduce
our experiments from scratch (taking ∼130 CPU-days on a fast machine in mid-2020) or to
regenerate the tables and plots using the prepared dataset (which is of course much faster).
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1.4. Outline.
Section 2 introduces the Hitchin section and the family of opers (in the meromorphic case

we consider), their associated Stokes data, and the hyperkähler metric.
Section 3 describes the conjectural integral equations for the Stokes data.
Section 4 lists the specific connection families that we study, and reports the results of our

experiments with Stokes data.
Section 5 reports the results of our experiments with Hitchin’s hyperkähler metric.
Section 6 is a small gallery of images related to the experiments of the previous sections.
Section 7 gives a more detailed description of the computational methods used to produce

the results reported in Sections 4–5, including e.g. the specific parameter values (grid sizes,
tolerances, etc.) used in the calculations.

Section 8 shows an example calculation using our code.
Section 9 discusses the results of our experiments and the outlook for extensions of this

work in the future.

1.5. Acknowledgements. The authors thank Philip Boalch, Qiongling Li, Marcos Marino,
Rafe Mazzeo, and David Nicholls for helpful conversations related to this work, and the Math-
ematical Sciences Research Institute for supporting the authors’ participation in the Fall 2019
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computer cluster managed by the Advanced Cyberinfrastructure for Education and Research
(ACER) group at the University of Illinois at Chicago. We thank the Yale Center for Re-
search Computing for guidance and use of the research computing infrastructure, specifically
the Grace cluster. The authors were supported by the U.S. National Science Foundation,
through individual grants DMS 1709877 (DD) and DMS 1711692 (AN), and their participa-
tion in the 2019 MSRI program was supported by DMS 1440140 (AN) and DMS 1107452,
1107263, 1107367, “RNMS: GEometric structures And Representation varieties” (the GEAR
Network) (DD).

2. Families of connections and monodromy data

2.1. Hitchin base. Unless otherwise indicated, all of the bundles we consider are vector
bundles equipped with a holomorphic structure. We will study certain families of connections
on bundles over C, and denote the rank of the bundle by N . Later we focus on the cases
N = 2, 3, though for the moment our discussion is general.

The connections we consider are associated to tuples of holomorphic differentials on C.
We denote the canonical line bundle of C by K, and let Qk ⊂ H0(C, Kk) denote the space of
holomorphic k-differentials on C of the form φ = P (z) dzk for P a polynomial; equivalently

Qk is the space of sections of Kk which extend meromorphically to Ĉ. Define

B =
N⊕
k=2

Qk. (2.1)

We write a typical point w ∈ B as w = (φ2, . . . , φN) and always denote by Pk the polynomial
such that φk = Pk(z) dzk.
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While B is infinite-dimensional, the following finite-dimensional affine subspaces will be
our main focus. Let Bd denote the set of w ∈ B such that

deg(PN) = d and deg(Pk) 6
k

N
d for all k. (2.2)

We call Bd the universal Hitchin base of C of degree d (and rank N). The terminology is
meant to indicate that this “universal” space is not the base space of a Lagrangian fibration
of a hyperkähler manifold (which would generalize the character variety of a compact surface
group) but is foliated by subspaces with that property.

A further subset of Bd contains all of the examples we study numerically: Let B′d denote the
subset where deg(Pk) <

k
N

for all k 6= N , i.e. where the inequality of (2.2) is strict whenever
possible. Some of the constructions we make below are simpler to state for B′d.

2.2. Higgs fields from the Hitchin base. Let E = ON denote the trivial bundle over C
of rank N . A holomorphic section of Ω1(C,End(E)) is a Higgs field on E.

A key construction we use is a map that associates to w ∈ B a Higgs field ϕw on E. While
ϕw can be defined for any N , we give the explicit formulas only for N = 2, 3. For N = 2 and
w = (P2 dz2) define

ϕw =

(
0 −P2

1 0

)
dz. (2.3)

For N = 3 and w = (P2 dz2, P3 dz3) define

ϕw =

0 −1
2
P2 −P3

1 0 −1
2
P2

0 1 0

 dz. (2.4)

2.3. Polynomial opers. In general, SLNC opers are certain holomorphic connections on
filtered vector bundles over Riemann surfaces. When the base Riemann surface is C, the
bundle and filtration can be holomorphically trivialized, allowing some simplification of the
definition in this case. Since this is the only case we will use, we present only the simplified
definition. Discussion of the general case can be found in e.g. [49, 19].

Let d denote the trivial connection on E. For w ∈ B define

∇op
w = d + ϕw (2.5)

where ϕw is as defined above. This is a flat holomorphic connection on E. The family of
connections {∇op

w | w ∈ Bd} is the set of polynomial SLNC opers on C of degree d.
It will be convenient to extend (2.5) to a 1-parameter family, parameterized by ~ ∈ C×:

∇op
w (~) = d + ~−1ϕw. (2.6)

Passing from (2.5) to (2.6) does not bring in any essentially new connections: indeed ∇op
w (~)

is equivalent to ∇op
~−1w, where we define tw ∈ Bd by

tw = (t2P2dz2, t3P3dz3). (2.7)

Nevertheless the main results below are naturally phrased in the language of the families
(2.6).
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2.4. Polynomial Hitchin sections. Over a compact Riemann surface, the SLNC Hitchin
section is a collection of Higgs bundles where the vector bundle is a certain direct sum of
powers of the canonical bundle, and where the Higgs field has the form of ϕw relative to
that splitting. We refer to the original papers [33, 34] or the recent survey [22] for further
discussion of this theory. We will consider the natural analogue of this family for the base
Riemann surface C, with a polynomial growth condition at infinity, and will take advantage
of the holomorphic triviality of the canonical bundle of C to simplify our presentation.

In this section we only consider N = 2, 3. For w ∈ B, the pair (E,ϕw) is a Higgs bundle
with wild ramification at ∞ in the sense of [2]. For such a bundle, we consider a hermitian
metric h that with respect to the splitting E = ON has the matrix form(

e−u 0

0 eu

)
if N = 2,

e−u 0 0

0 1 0

0 0 eu

 if N = 3, (2.8)

for a scalar function u on C. Fix a degree d and restrict attention to w ∈ Bd for the moment.
Also assume that φk = 0 for k 6= N (as this is the only case we investigate numerically). We
say that h is a harmonic metric if it satisfies both the self-duality equation

∆u = 4
(
eku − e−2u|PN |2

)
, k =

2

N − 1
(2.9)

and the compatibility condition

u ∼ N−1
N

log |PN | as |z| → ∞. (2.10)

In more invariant terms, the self-duality equation (2.9) is equivalent to requiring FDh +
[ϕ, ϕ†h ] = 0 where Dh is the Chern connection of h and FDh is its curvature, and the compat-
ibility condition says that the metric is compatible with a certain filtration at ∞ (see [24]).
It is known in this case [2, 42, 43] that there exists a unique harmonic metric on (E,ϕw)
for w ∈ Bd, which we denote by hw. We call the collection {(E,ϕw, hw) | w ∈ Bd} of Higgs
bundles with harmonic metrics the polynomial Hitchin section of degree d.

Associated to (E,ϕw, hw) there is the flat (non-holomorphic) connection

∇H
w = Dhw + ϕw + ϕ†hww . (2.11)

As we did in Section 2.3, we will find it convenient to extend (2.11) to a family of flat
connections. In this case we introduce two parameters: R ∈ R+ and ζ ∈ C×. Then we define

∇H
w(R, ζ) = DhRw + ζ−1ϕRw + ζϕ

†hRw
Rw . (2.12)

One sees immediately from (2.12) that the parameter R can be absorbed in a rescaling of w.
The same is true of the phase of ζ: in particular, if |ζ| = 1, then we have ζ−1ϕRw = ϕζ−1Rw,

hRw = hζ−1Rw, and ζϕ
†hRw
Rw = ϕ

†h
ζ−1Rw

ζ−1Rw , giving altogether ∇H
w(R, ζ) = ∇H

ζ−1Rw. In contrast,

when |ζ| 6= 1 it cannot be absorbed in a rescaling of w; the connections ∇H
w(R, ζ) for |ζ| 6= 1

are genuinely different from those for |ζ| = 1.

2.5. Stokes data. In the sequel we consider monodromy-like invariants of the flat connec-
tions ∇op

w (~) and ∇H
w(R, ζ). Since the base is the simply connected space C, these connections

have no monodromy in the traditional sense. Instead, their generalized monodromy is defined
using growth rates of sections at infinity.
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Suppose w ∈ B′d, and let A be the leading coefficient of ~−NPN or ζ−NPN . Then the Stokes
sectors of ∇op

w (~) or ∇H
w(R, ζ) are the sets

arg(z) ∈
[
π(2j − 1− arg(A))

d+N
,
π(2j + 1− arg(A))

d+N

]
, |z| > r (2.13)

for 1 6 j 6 d + N and r > 0; these give a collection of evenly spaced sectors about ∞. In
each such sector, there is a horizontal section of ∇op

w (~) or ∇H
w(R, ζ) that decays exponentially

as z → ∞ within the sector, and this section is unique up to multiplication by a complex
scalar. This is a subdominant section for that sector, and the line containing all subdominant
sections for a sector is the subdominant line.

All of the subdominant solutions associated to∇op
w (~) or∇H

w(R, ζ) live in theN -dimensional
space of horizontal sections over C. The relative position of the subdominant lines give mod-
uli for the connection, sometimes called Stokes data. While the traditional approach to the
Stokes phenomenon also includes a specific encoding of such data in so-called Stokes factors
and Stokes matrices, these will not be directly used in what follows. Instead, we define certain
determinantal invariants of the connection using the subdominant sections directly.

First, fix subdominant sections sj for j = 1, . . . , d + N . Now let (i1, . . . , iN) be a tuple of
distinct integers between 1 and d+N , and define

p(i1, . . . , iN) = det (si1 , . . . , siN ) . (2.14)

In the case N = 3 and for a sextuple (a, b, c, d, e, f) of integers between 1 and d+N , we also
define the “hexapod” determinant

q(a, b, c, d, e, f) = det (sa × sb, sc × sd, se × sf ) . (2.15)

Here we use any identification of the space of flat sections with C3 in order to compute the
cross product.

The quantities p and q defined above are not invariants of the connection, since for example
the replacements si 7→ λisi scale these determinants by some product of the factors λi.
However, a ratio of products of such determinants is an invariant if each si appears the same
number of times in the numerator and denominator. For example, the quantity

p(a, b)p(c, d)

p(a, d)p(c, b)
(2.16)

is an invariant in the N = 2 case; it is the cross ratio of the lines spanned by sa, sb, sc, sd.
Similar ratios of products of determinants give invariants for N = 3, as does the ratio

q(a, b, c, d, e, f)

p(a, b, c)p(d, e, f)
. (2.17)

The invariants for the family of connections ∇op
w (~) or ∇H

w(R, ζ) vary analytically with ~
or ζ respectively. When |ζ| = 1, ∇H

w(R, ζ) admits a reduction to SLNR, which implies that
the invariants are real on this locus; otherwise they are generally complex.

2.6. Direct numerical calculation of Stokes data. Given w ∈ B′d, the determinantal
invariants for the associated oper connection ∇op

w (~) are relatively easy to compute numeri-
cally. Writing the horizontal section equation ∇op

w (~)s = 0 as a system of ordinary differential
equations, we can use a numerical ODE solver to compute the parallel transport operator
Aθ(~) ∈ SLNC of ∇op

w (~) from a fixed base point z0 ∈ C to z0 + r exp(iθ). For large r and
for θ corresponding to an interior point of one of the Stokes sectors, the eigenvector of Aθ(~)
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with smallest eigenvalue is an approximation of the subdominant section (considered as an
element of the fiber of E over the basepoint z0). Solving d + N numerical ODE problems
thus gives a collection of subdominant solution vectors that can be directly substituted into
the determinantal invariants.

Invariants of the connections ∇H
w(R, ζ) for the Hitchin section can also be computed nu-

merically by this approach, but an important additional complication in this case is that
the formula (2.12) for ∇H

w(R, ζ) involves the undetermined function u. Thus we first need
to determine u, which we do by solving the PDE and conditions (2.9)-(2.10) numerically on
a region in the plane. Once this has been done, the numerical calculation of Stokes data
proceeds as in the oper case, though of course we must choose the ODE integration radius r
small enough so that the rays lie in the region on which u has been computed.

In what follows we refer to this approach to computing Stokes data using numerical
ODE/PDE solvers as the direct method or the differential equation method (abbreviated
DE), especially when contrasting it with the conjectural integral equation method described
in Section 3. The preceding overview of the direct method omits many details involved in the
actual numerical implementation used in our experiments, which are discussed in Section 7.1
(opers) and Section 7.3 (Hitchin section).

2.7. Hitchin’s hyperkähler metric. Hitchin introduced a complete hyperkähler metric
on the moduli space of Higgs bundles over a compact Riemann surface [34]. An analogous
picture holds for Higgs bundles on CP1 with irregular singularity at z = ∞ [2, 3]. We now
briefly review the main facts which we will need below.

Let Bd,0 ⊂ Bd denote the space of tuples (φ2, . . . , φN) with deg(Pk) <
k−1
N
d − 1 for all k.

Then for each h ∈ Bd/Bd,0 we consider the affine space

Bd,h = h+ Bd,0 ⊂ Bd. (2.18)

The Hitchin section described in Section 2.4 realizes each Bd,h as a subspace of a moduli
space Md,h of polynomial Higgs bundles. The space Md,h carries a complete hyperkähler
metric, and by restriction one gets a canonical Kähler metric on each Bd,h.

The only case we will use explicitly in this paper is the case N = 2. In this case, given a
polynomial h(z) of degree d, Bd,h ⊂ Bd is the affine space of polynomials P2(z) of the form

P2(z) = h(z) + l(z) (2.19)

where deg l < d
2
− 1. Thus dimBd,h = dd

2
− 1e.

In this case we can write a concrete formula for the Kähler metric on Bd,h, as follows.
Fix a polynomial P2 ∈ Bd,h. Let u be the solution of (2.9) for this P2. Next, consider a

tangent vector to Bd,h at P2; such a tangent vector is represented by a polynomial Ṗ2 with

deg Ṗ2 <
d
2
−1. Let F denote the unique bounded complex function in the plane obeying the

complex variation equation:(
∆− 8(e2u + e−2u|P2|2)

)
F + 8e−2uP2Ṗ2 = 0. (2.20)

Then the norm of the tangent vector Ṗ2 is

‖Ṗ2‖2 =

∫
C

4e−2u
(
|Ṗ2|2 − Re(FP2Ṗ2)

)
dxdy. (2.21)
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(For large |z| one has u ∼ 1
2

log|P2| and F ∼ 1
2
Ṗ2

P2
, so that the integrand I in (2.21) scales like

|Ṗ 2
2 /P2|, i.e. like |z|2d′−d if Ṗ2 has degree d′; thus the fact that we imposed d′ < d

2
− 1 is just

what is needed to ensure the integral (2.21) converges.)
The integrand in the formula (2.21) is the same as the integrand for the metric on the

Hitchin section of the SL2C-character variety of a compact surface. The computation leading
to (2.21) in that context is given in [15]; the same computation applies in the present case.

2.8. The semiflat approximation. In this section we only consider N = 2. Suppose that
the polynomial P2 has only simple zeros, and consider a rescaling

P2 → t2P2, t ∈ R+. (2.22)

Then in the limit of large t we expect a kind of “concentration” phenomenon: away from
small discs around the zeros of P2, which shrink to zero size as t → ∞, we should have

u ≈ usf := 1
2

log|P2| and F ≈ F sf := 1
2
Ṗ2

P2
. (One reason for this expectation is that an

analogous concentration phenomenon on a compact surface was established in [40, 15]; the
only difference in our case is that instead of a compact surface we are working on the plane
with a growth condition as |z| → ∞.) This leads to a scheme for approximating Hitchin’s
metric on Bd,h without solving any PDEs: we just replace u → usf and F → F sf in (2.21),
which leads to

‖Ṗ2‖2 ≈
∫
C

2
|Ṗ2|2
|P2|

dxdy. (2.23)

This is the semiflat approximation to Hitchin’s metric.
As we discuss in Section 3.6, the conjectures of [26, 29] predict that the semiflat approxima-

tion is asymptotically close to the actual metric (2.21): the difference between the two decays
exponentially in t. For the SL2C-character variety of a compact surface C, the analogous
statement is known to be true [40, 15, 21].

2.9. The conformal limit. In this section we have been discussing two different families
of connections associated to a point w ∈ B: ∇op

w (~) and ∇H
w(R, ζ). It is expected that the

family ∇H
w(R, ζ) reduces to the simpler family ∇op

w (~) in a double scaling limit known as the
“conformal limit”:

lim
R→0

[∇H
w(R, ζ = R~)] = [∇op

w (~)]. (2.24)

Here [∇] means the equivalence class of the connection; so (2.24) does not say the actual
connections have a limit, but that their equivalence classes do (and thus their Stokes data
do, since the Stokes data depend on the connection only up to equivalence). This relation
was proposed in [25]; in our context of polynomial Higgs bundles it has not been proven, but
in the case of Higgs bundles on a compact surface it was proven in [19, 6].

3. Integral equations for Stokes data

In this section we recall the twistor Riemann-Hilbert conjecture, a conjectural method
for computing the Stokes data of the families of connections ∇op

w (~) and ∇H
w(R, ζ). This

method computes spectral coordinates for the connections, which are invariants related to
the determinants considered earlier.
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3.1. Spectral coordinates for N = 2. We first consider the case N = 2, so that w = φ2 =
P2(z)dz2. We will treat the cases of opers and the Hitchin section in parallel. For opers
∇op
w (~) we let ϑ = arg ~; for the connections ∇H

w(R, ζ) we let ϑ = arg ζ.
We define the ϑ-foliation to consist of the integral curves of the line field ker Im e−iϑ

√−φ2.
This “foliation” has singularities at the zeros of φ2; specifically, each simple zero of φ2 is a
3-pronged singularity. Thus a leaf can be bi-infinite, may end at a singularity, or may be a
segment between singularities. A segment of the latter type, occurring in the ϑ-foliation, is
known as a saddle connection with angle ϑ. When we refer simply to a “saddle connection”
we mean a saddle connection with any angle.

We assume from now on (as happens in the examples we study) that φ2 has only simple
zeros. For such φ2, an angle ϑ is BPS-free if there are no saddle connections with angle ϑ;
otherwise ϑ is BPS-ful.

The union of the leaves of the ϑ-foliation emanating from the zeros of φ2 is the ϑ-critical
graph. For BPS-free ϑ, the critical graph is simply a union of 3 degP2 half-infinite leaves.
Each of these leaves goes to infinity in an asymptotic direction lying in the middle of one of
the 2 + degP2 Stokes sectors for the connection ∇op

w (~) or ∇H
w(R, ζ). (Several leaves may go

to a single Stokes sector.)
The critical graph divides the plane into a collection of foliated strips and half-planes. The

configuration of these strips and half-planes is naturally encoded in a triangulated polygon
T , depending on ϑ, that is defined as follows: The vertex set is the collection of Stokes
sectors of ∇op

w at infinity, and there is an edge from sector i to sector j if there is a bi-infinite
ϑ-leaf (and hence strip or half-plane) of φ2 asymptotic to both i and j. In this triangulated
polygon, each triangle naturally corresponds to a simple zero of φ2, such that the vertices
of the triangle are the sectors to which the leaves emanating from that zero are asymptotic.
Figures 1 and 2 show examples of critical graphs and corresponding triangulations.

The spectral curve Y is the holomorphic curve in C2 defined by

Y = {(y, z) | y2 + P2(z) = 0}. (3.1)

The 1-form λ = y dz on Y satisfies π∗(φ2) = −λ2 where π(y, z) = z. Let Γ = H1(Y,Z), which
is the charge lattice.

Provided that ϑ is BPS-free, each saddle connection e gives rise to an element of Γ as
follows. Let ~e1, ~e2 denote the two segments in Y that project isomorphically to e, each
oriented so that Im(λϑ) is negative when applied to the tangent vector. Then ~e1 + ~e2 is a
cycle on Y , and its homology class [~e1 + ~e2] ∈ Γ is called the ϑ-lift of e. It is not hard to
see from the explicit form of the spectral curve that the resulting map from the set of saddle
connections to Γ is injective.

As a particular case of this construction, if d is an internal edge of the triangulated polygon
for a BPS-free angle ϑ, then there is a saddle connection ed naturally dual to d, in the sense
that the two triangles adjacent to d correspond to the two zeros joined by ed. Let γ ∈ Γ be
the ϑ-lift of ed. We define the associated spectral coordinate as

Xγ = −p(q, r)p(s, t)
p(q, t)p(s, r)

, (3.2)

where q, r, s, t are the vertices of the quadrilateral of which d is the diagonal, with d joining
q to s. That is, Xγ is a certain cross ratio of the four subdominant solutions associated
to triangles that have d as an edge. (This association of a cross ratio to a triangulation of
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the polygon was introduced in [20], where it was used to define a cluster structure on an
appropriate moduli space of PSL2C-local systems.)

There is an extension of this construction, described in [29], whereby a spectral coordinate
Xγ can be associated to every element of Γ, and so that the resulting coordinates satisfy

XαXβ = Xα+β (3.3)

for any α, β ∈ Γ. As special cases we have that X0 = 1 and X−γ = X−1
γ . In the examples we

study, a basis of Γ is obtained from internal edges of T , hence the equation above actually
determines a formula for any spectral coordinate in terms of the ones arising from internal
edges.

3.2. Integral equation for opers. Consider a fixed w ∈ B′ and varying ~ ∈ C×. This gives
a 1-parameter family of spectral coordinates Xγ(~) associated to the connections∇op

w (~). The
twistor Riemann-Hilbert conjecture says that Xγ(~) can be computed by another method,
which we now describe. We will give a description of a family of functions Xγ(~), which a
priori has nothing to do with flat connections; the conjecture is that

Xγ(~) = Xγ(~). (3.4)

The functions Xγ are characterized in terms of a system of integral equations. To state
these we will need to define periods and BPS counts. A class γ ∈ Γ has a period Zγ ∈ C
defined by

Zγ =

∫
γ

λ. (3.5)

The theory of [28] associates to γ ∈ Γ an integer Ω(w, γ), the BPS count. In these N = 2
examples Ω(w, γ) is simply given by

Ω(w, γ) =

{
1 if ± γ is associated to a saddle connection,

0 otherwise.
(3.6)

Note that Ω(w, γ) = Ω(w,−γ). Let Γ′ ⊂ Γ denote the set of homology classes γ for which
Ω(w, γ) 6= 0. In the examples we consider, Γ′ is a finite set.

Part of the twistor Riemann-Hilbert conjecture is the statement that a set of functions
{Xγ | γ ∈ Γ} can be uniquely determined by the system of integral equations

Xγ(~) = exp

(
~−1Zγ +

1

4πi

∑
µ∈Γ

Ω(w, µ)〈γ, µ〉
∫
R−Zµ

dξ

ξ

ξ + ~
ξ − ~

log (1 + Xµ(ξ))

)
(3.7)

where 〈γ, µ〉 denotes the intersection pairing on Γ = H1(Y,Z). Note that the formally infinite
sum in (3.7) has only finitely many nonzero terms, because it includes a coefficient Ω(w, µ)
and so can be reduced to a sum over µ ∈ Γ′. Thus by considering only γ ∈ Γ′ we obtain from
(3.7) a finite collection of coupled integral equations.

Assuming this conjecture holds, it suggests a method to compute the collection X• =
{Xγ | γ ∈ Γ′}: Let F denote the right hand side of (3.7), considered as a self-map of the set
of tuples of functions of ~ indexed by γ ∈ Γ′. In terms of this function, the conjecture is that
X• is a fixed point of F , i.e. that X• = F(X•). We can further optimistically conjecture that
this fixed point is unique, and then attempt to find it by iteration, starting with the initial

guess X (0)
γ (~) = exp(~−1Zγ) and inductively defining X (k)

• = F(X (k−1)
• ) for any k > 0 — or

some similar iteration with the same fixed points (see Section 7.5 for the precise iteration we



OPERS AND NONABELIAN HODGE: NUMERICAL STUDIES 13

use in practice). Finally, once X• has been determined, we can easily compute Xγ for any
γ ∈ Γ if desired, using (3.3).

We refer to this iterative process as the integral equation method, which we sometimes
abbreviate IEQ in tables and plots.

3.3. Integral equation for the Hitchin section. In the previous subsection we discussed
a conjectural integral equation method for computing the Stokes data of the family ∇op

w (~),
for a fixed w. There is a very similar conjecture for the Stokes data of the family ∇H

w(R, ζ),
for a fixed w and R. Instead of (3.7) we consider

Xγ(R, ζ) = exp

(
Rζ−1Zγ +RζZγ +

1

4πi

∑
µ∈Γ

Ω(w, µ)〈γ, µ〉
∫
R−Zµ

dξ

ξ

ξ + ζ

ξ − ζ log (1 + Xµ(R, ξ))

)
.

(3.8)
The data Γ, Z, Ω entering (3.8) are exactly as they were for (3.7), so all of the discussion
from Section 3.2 carries over intact to this case. Indeed, the only differences between (3.7)
and (3.8) are:

• in (3.8) the variable is called ζ ∈ C× instead of ~ ∈ C×, and is rescaled by a factor R in
some places,

• (3.8) includes the extra term RζZγ which is not present in (3.7).

Also in parallel to Section 3.2, we can attempt to produce functions Xγ(R, ζ) obeying (3.8)

by iteration, starting from the initial functions X (0)
γ (R, ζ) = exp

(
Rζ−1Zγ +RζZγ

)
. Then

the twistor Riemann-Hilbert conjecture is that this iteration converges and the spectral co-
ordinates of ∇H

w(R, ζ) are given by

Xγ(R, ζ) = Xγ(R, ζ). (3.9)

Incidentally, as observed in [25], one can obtain (3.7) from (3.8) by performing the con-
formal limit ζ = R~, R → 0, as in Section 2.9. In this sense the three conjectures we have
discussed — the integral equation for opers, the integral equation for the Hitchin section,
and the conformal limit — are compatible.

3.4. Spectral coordinates and integral equations for N = 3. Compared to the N = 2
case outlined above, there are just a few differences in the predictions for N = 3. Since the
predictions for N = 3 are developed carefully in [44], we omit some details here and refer to
that paper for additional discussion.

In this case the spectral curve is the 3-fold branched cover of C defined by

Y = {(y, z) | y3 + yP2(z) + P3(z) = 0}. (3.10)

As before, the charge lattice Γ = H1(Y,Z). Any γ ∈ Γ has a period Zγ which is the integral
of λ = y dz over that cycle. Our experimental studies focus primarily on the cyclic case
w = (0, φ3) ∈ Bd (i.e. vanishing quadratic differential) in which case π∗(φ3) = −λ3.

The rank-3 analogue of the critical graph is the WKB ϑ-spectral network, a graph embedded
in the plane with edges labeled by certain topological data. We describe it in detail only in
the cyclic case, and when P3 has only simple zeros. First, a ϑ-trajectory of φ3 (or w) is an
oriented curve z(t) in C equipped with a pair of continuous sections y(z), ŷ(z) of π over the
curve satisfying

(y(t)− ŷ(t))
dz(t)

dt
= eiϑ. (3.11)
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Of course, if a local labeling of the sheets of the spectral curve as y1, y2, y3 has been given,
then in this region and for some i, j the functions y and ŷ are restrictions of yi and yj,
respectively, and we can label the trajectory according to its type (i, j). As a global labeling
of this type is generally not possible, it is necessary to introduce branch cuts that divide
the plane into simply connected regions and indicate labels in each region, as well as the
permutation of labels when crossing the branch cut. Also note that reversing orientation of
a trajectory of type (i, j) gives a trajectory of type (j, i).

A simple zero of P3 has eight ϑ-trajectories emerging from it, and the ϑ-spectral network is
defined to include the maximal extensions of these trajectories. We also add additional curves
to the spectral network: If trajectories with local labels (i, j) and (j, k) meet (at p), then they
do so at angle π

3
or 2π

3
. In the latter case, there is a trajectory of type (i, j) bisecting the angle

between their tangent vectors at p, and we add the maximal extension of this trajectory to
the network as well. This may result in new intersections, and then we repeat the rule above
to possibly add additional trajectories from the intersection points. The ϑ-spectral network
is the union of all trajectories that arise from iterating this procedure. In the examples we
consider, it is a finite union of trajectories.

We say that ϑ is BPS-free if no trajectory of the ϑ-spectral network meets a zero of P3,
except possibly at its origin point; otherwise ϑ is BPS-ful.

As in rank 2 there is a procedure which associates to γ ∈ Γ a spectral coordinateXγ which is
given by some combination of determinants of subdominant solutions. The general procedure
to construct this mapping from homology classes to coordinate functions is significantly more
complicated than for N = 2, and we will not describe it. Instead, we will indicate the result
of that procedure in the examples we study (referring to [44] for both the general procedure
and the detailed calculations in these examples).

The functions Xγ and the conjectural integral equation are defined exactly the same as
before (i.e. (3.7) or (3.8)), though to make sense of this equation in rank 3 we must describe
the meaning of Ω(w, µ). Recall that in rank 2 we defined Ω(w, µ) to be 1 or 0 depending on
whether ±µ is represented by a saddle connection. In the cyclic rank 3 case, there are cycles
in Γ associated to trajectories joining zeros (essentially, rank-3 saddle connections) and to
tripods consisting of three trajectories joining three zeros to a common point (with labels
(i, j), (j, k), (k, i)). In the examples we study1, the BPS count Ω(w, µ) is the total number
of such saddle connections and tripods whose associated cycle is ±µ. As in rank 2 we will
only study examples where Ω(w, µ) = 0 for all but finitely many µ ∈ Γ, allowing the same
integral iteration strategy sketched above to extend naturally to rank 3.

Finally, we allow parameterized deformations of a cyclic example, i.e. w = (φ2(Λ), φ3) with
Λ a complex parameter and φ2(Λ = 0) = 0. For sufficiently small |Λ| it is not necessary to
fully generalize the spectral network and spectral coordinate constructions to this case, as
all of the relevant choices are locally constant: a homology basis for Λ = 0 extends to the
spectral curves over a neighborhood of Λ = 0 using the Gauss-Manin connection, and the
associated determinantal invariants also remain unchanged.

3.5. Spectral coordinates and the Hitchin metric. In this section we specialize to
N = 2 and revisit the Kähler metric gd,h on the space Bd,h introduced in Section 2.7.

In parallel to the usual case of Higgs bundles over a compact surface, the metric gd,h is
the restriction of the hyperkähler metric onMd,h. On a hyperkähler manifold one has three

1In more general rank 3 cases it would be necessary to consider other types of “degenerations” of the
spectral network; an algorithm for defining and computing Ω(w, µ) in general is given in [28].
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distinguished complex structures I1, I2, I3, and corresponding Kähler forms ω1, ω2, ω3. In
our case, Bd,h is an I3-complex subspace ofMd,h, and thus the restriction of ω3 to Bd,h is the
Kähler form for the metric gd,h.

On any hyperkähler manifold, the Kähler forms for any two of the distinguished complex
structures can be organized into a holomorphic-symplectic form for the third; in particular,
the I2-holomorphic-symplectic form is

Ω2 = ω3 + iω1. (3.12)

The key reason why the spectral coordinates can be used to understand the hyperkähler
metric on Md,h is that the functions

yγ := Xγ(R = 1, ζ = 1) (3.13)

are Darboux coordinates for the holomorphic-symplectic form Ω2 [20, 29, 28]. More precisely,
choosing a basis {γi} for Γ and setting εij := 〈γi, γj〉, yi := yγi , we have

Ω2 =
1

2

n∑
i,j=1

εij d log yi ∧ d log yj. (3.14)

When restricted to Bd,h the functions yγ are real, so combining (3.14) with (3.12) gives on
Bd,h

ω3 =
1

2

n∑
i,j=1

εij d log yi ∧ d log yj. (3.15)

Finally, we have g(·, ·) = ω3(·, I3·), and thus

g =
n∑

i,j=1

εij d log yi ⊗ dc log yj, (3.16)

where dcf ∈ Ω1(Bd,h) is defined by dcf · v = df · I3v.
Using (3.16), any method of computing the functions yγ on Bd,h gives a method of comput-

ing the metric gd,h. In particular, we can use the integral equation method from Section 3.3
to compute yγ, and thus obtain an integral equation computation of gd,h.

3.6. Leading-order approximations. In this section we have been discussing a method of
computing spectral coordinates Xγ for the connections ∇op

w (~) or ∇H
w(R, ζ), which involves

solving either (3.7) or (3.8) respectively. Although the full solutions Xγ(~) or Xγ(R, ζ) are
complicated and do not seem to admit explicit exact formulas, we can nevertheless derive
explicit asymptotic formulas. The details are slightly different in the two cases:

• In the case of opers, if we take ~ ∈ R−Zγ, the sum of integrals appearing in (3.7)
is real and negative; this implies that, for ~ ∈ R−Zγ, |Xγ(~)| is bounded above by
exp(−|~−1Zγ|). This in turn implies that the integral term in (3.7) goes to zero as
~→ 0. We conclude that

Xγ(~) ∼ exp(~−1Zγ) as ~→ 0. (3.17)

• In the case of the Hitchin section, if we take ζ ∈ R−Zγ, the sum of integrals in (3.8) is
again real and negative; this implies that, for ζ ∈ R−Zγ, |Xγ(ζ)| is bounded above by
exp(−2R|Zγ|). This in turn implies that the integral term in (3.8) is O(e−2RM) where
M = min{|Zµ| : µ ∈ Γ′}. We conclude that

Xγ(R, ζ) = exp
(
Rζ−1Zγ +RζZγ +O(e−2RM)

)
as R→∞. (3.18)
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In particular, at ζ = 1 we have

Xγ(R, ζ = 1) = exp
(
2RReZγ +O(e−2RM)

)
as R→∞. (3.19)

The asymptotic formula (3.19) also leads to an asymptotic formula for the Hitchin metric
on Bd,h, as follows. We consider a ray on Bd,h given by w = tw0, in the sense of (2.7), and the
Hitchin metric along this ray, gt = g(w = tw0). gt is determined by the Darboux coordinates
xγ(tw0) = Xγ(tw0, R = 1, ζ = 1) = Xγ(w0, R = t, ζ = 1). Then

yγ(tw0) = exp
(
2tReZγ(w0) +O(e−2tM)

)
as t→∞. (3.20)

Using the relation Zγ(tw0) = tZγ(w0), we can also write this

yγ(tw0) = exp
(
2 ReZγ(tw0) +O(e−2tM)

)
as t→∞. (3.21)

Finally, substituting this in (3.16) gives the approximate formula

gt = gsf +O(e−2tM) as t→∞, (3.22)

where we define

gsf =
n∑

i,j=1

εij d ReZi ⊗ dc ReZj. (3.23)

We remark that the metric gsf defined here is actually equal to the semiflat approximation
to g which we described in Section 2.7. Indeed (3.23) expresses gsf in terms of a bilinear form

in periods Żγ =
∮
γ
λ̇ and their complex conjugates, which by Riemann bilinear identity can be

related to the integral
∫
Y
λ̇∧ ˙̄λ; likewise (2.23) can be related to the same integral. Thus the

twistor Riemann-Hilbert conjecture leads to the prediction that the semiflat approximation
is exponentially good: it holds up to corrections of order e−2tM . With this connection in
mind we refer to the asymptotic formula (3.18) as the semiflat approximation to Xγ(ζ).

3.7. Exact coordinates for pure flavor charges. In general it is difficult to write explicit
exact formulas for the functions Xγ obeying (3.7) or (3.8). There is one exception, however:
this is the case when γ lies in the radical of the intersection pairing 〈·, ·〉. (Such γ are called
“pure flavor charges” in the physics literature; geometrically, in our examples, they arise from
cycles on Σ which are peripheral, i.e. they lie in a small neighborhood of ∞.)

When γ is pure flavor, the integral terms in (3.7), (3.8) vanish, leaving simply

Xγ(~) = exp(~−1Zγ), (3.24)

and

Xγ(R, ζ) = exp(Rζ−1Zγ +RζZγ). (3.25)

In other words, when γ is pure flavor, the asymptotic formulas (3.17), (3.18) simplify to exact
formulas. Combining these with the twistor Riemann-Hilbert conjecture gives exact formulas
for Xγ(~) and Xγ(R, ζ). These formulas are also conjectural, but should be much simpler to
establish than the conjecture for general γ, and in at least one case they are already known:
when N = 2, the formula Xγ(R = 1, ζ = 1) = exp(2 ReZγ) is proven in [31].

4. Experimental studies of Stokes data

4.1. Examples.
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Theory Family Basepoint ϑ0 Γ-basis Periods at basepoint

(A1, A2) P2 = z3 − Λz − c Λ = 0 0 γ1 = −[1, ω] Zγ1 = e5πi/6M, M =
√

3π Γ(4/3)
Γ(11/6)

c = 1 ≈ −2.52393 + 1.45719i

γ2 = [ω, ω2] Zγ2 = −iM

≈ −2.91438i

(A1, A3) P2 = z4 − 1 — 0.4 γ1 = [−1, 1] Zγ1 = 2
√
π Γ(5/4)

Γ(7/4)

≈ 3.49608

γ2 = −[−1, i] Zγ2 = 1
2
(1 + i)Zγ1

≈ 1.74804(1 + i)

γ3 = −[1,−i] Zγ3 = Zγ2

Table 1. Summary of data for the N = 2 examples we study.

Theory 〈·, ·〉 Γ′

(A1, A2)

(
0 1

−1 0

)
(1, 0), (0, 1), (1, 1)

(A1, A3)

 0 1 1

−1 0 0

−1 0 0

 (1, 0, 0), (0, 1, 0), (0, 0, 1),
(1, 0,−1), (1,−1, 0), (1,−1,−1)

Table 2. Intersection form and classes with nonzero BPS counts in the N = 2
examples, with respect to the bases in Table 1. Since Γ′ = −Γ′, we list only
one from each pair ±γ.

4.1.1. The N = 2 examples. In general we will refer to the examples for given N and d using
the theory name (AN−1, Ad−1), following the notation of [4] for the associated generalized
Argyres-Douglas quantum field theory. For N = 2 we consider the cases d = 2 and d = 3,
i.e. the (A1, A2) and (A1, A3) theories.

In each case we choose a base point in Bd and a BPS-free angle ϑ0, and introduce a basis
B = {γ1, . . . , γd+2} of Γ. The homology calculations for these base points naturally extend
to all polynomials in a small neighborhood of the base point (which we also parameterize
explicitly, in the cases we study) and for all ϑ near ϑ0. Fixing a homology basis allows us
to limit our calculations to the spectral coordinates Xk := Xγk , which determine all others
using (3.3).

In describing our homology bases use the shorthand notation [x, y] to refer to the element
of Γ that is the ϑ0-lift of the saddle connection from x to y, and −[x, y] for its opposite. The
data describing these examples are summarized in Tables 1–2, and the homology calculations
are detailed below.
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Figure 1. Spectral network (left) and triangulated polygon T (right) for
(A1, A2) (P2(z) = z3 − 1) at ϑ = 0. The same triangulation arises for all
|ϑ| < π

6
. The labeled saddle connections correspond to −γ1 (red) and −γ3

(blue), and the dual edges in T are correspondingly colored.

Example (A1, A2). We take as base point the polynomial P2(z) = z3 − 1 and the BPS-free
angle ϑ0 = 0. Here the spectral curve is the double cover of C branched over the third roots
of unity {1, ω, ω2} (where ω = exp(2πi/3)), which as a Riemann surface is the hexagonal
punctured torus. For each pair of roots of unity there is a unique saddle connection joining
them, and for j = 1, 2, 3 we define γj = (−1)j[ωj−1, ωj]. These cycles satisfy γ1 +γ2 +γ3 = 0,
with any two of them forming a basis for Γ ' Z2. We fix the basis B = {γ1, γ2} for our
calculations, which has intersection form 〈γ1, γ2〉 = 1. The set Γ′ (i.e. the µ with Ω(w, µ) = 1)
consists of ±γ1,±γ2,±γ3 = ∓(γ1+γ2). The periods of the basis elements are listed in Table 1.

The spectral network and triangulated polygon in this case are shown in Figure 1. The
cycles −γ1 and −γ3 are associated to internal edges of T , and so the procedure described in
the previous section determines their associated spectral coordinates, X−γ1 and X−γ3 . The
relation (3.3) then determines Xγ2 = X−γ1X−γ3 . Explicitly, for the basis elements this gives

X1 =
p(2, 3)p(1, 5)

p(1, 2)p(3, 5)
, X2 =

p(2, 3)p(4, 5)p(1, 3)

p(1, 2)p(3, 4)p(3, 5)
. (4.1)

In this example we also study a parameterized family within B3 containing the base point
by taking P2(z) = z3 − Λz − c where Λ and c are complex parameters.

Example (A1, A3). We use P2(z) = z4 − 1 as a base point. Here ϑ = 0 is BPS-ful, but angles
in the range (0, π/4) are all BPS-free and give the same triangulation; for concreteness we
choose ϑ0 = 0.4.

The spectral curve is the twice-punctured square torus, with Γ ' Z3. The spectral network
and triangulated polygon are shown in Figure 2. As in the previous example, for any pair
of zeros there is a unique BPS-ful angle giving a saddle connection joining them. Let γ1 =
[−1, 1], γ2 = −[−1, i] and γ3 = −[−i, 1], which give a basis of Γ. Their periods are shown in
Table 1.
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Figure 2. Spectral network (left) and triangulated polygon (right) for
(A1, A3) (P2(z) = z4 − 1) at ϑ = 0.4. The same triangulation arises for all
0 < ϑ < π

4
. At left, the colored segments are the saddle connections corre-

sponding to γ1 (red), −γ2 (green), and −γ3 (blue), and the dual edges in T are
correspondingly colored.

For each of these basis cycles, one of ±γk is associated to an internal edge of T , and the
associated spectral coordinates are the cross ratios:

X1 =
p(1, 3)p(4, 6)

p(1, 6)p(3, 4)
, X2 =

p(2, 3)p(1, 4)

p(1, 2)p(3, 4)
, X3 =

p(1, 4)p(5, 6)

p(4, 5)p(1, 6)
. (4.2)

In this example we restrict our study to the base point, and do not consider any parametric
family in B4.

In this example the cycle γf := γ2 − γ3 lies in the kernel of the intersection pairing, i.e. it
is a pure flavor charge. Moreover, this cycle has Zγf = 0. Thus from (3.24), (3.25) we see
that Xγf (~) = 1 and Xγf (R, ζ) = 1 identically. The corresponding spectral coordinate is

Xγf = X2X
−1
3 =

p(2, 3)p(4, 5)p(1, 6)

p(1, 2)p(3, 4)p(5, 6)
. (4.3)

Thus the twistor Riemann-Hilbert conjecture Xγ = Xγ would imply that this combination is
identically equal to 1, i.e. that X2 = X3.

For the particular basepoint we consider, P2(z) = z4 − 1, we actually have an extra
symmetry under the holomorphic automorphism z 7→ −z, which implies that indeed X2 = X3

in this case. Because of the fact that X2 = X3, we omit X3 when showing experimental results
in this example. (More generally, we could have considered say P2(z) = z4 + az + b; in this
case we do not have the extra symmetry anymore, but we do still have Zγf = 0, and thus
the conjecture would imply that X2 = X3 even in this case.)

4.1.2. The N = 3 examples. Recall that we refer to examples by theory name (AN−1, Ad−1).
For N = 3 we consider the (A2, A1) and (A2, A2) theories, and in this section we recall the
choices of base points, homology bases, and associated spectral coordinates as computed in
[44]. The results of this discussion are summarized in Tables 3–4.
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Theory Family Basepoint ϑ0 Γ-basis Periods

(A2, A1) P3 = 1
2
(1− z2) c = 0 0 (Fig. 3) Zγ1 = e5πi/6 12×22/3×π3/2

5Γ(−1/6)Γ(2/3)

P2 = c ≈ −2.00324 + 1.15657i

Zγ2 = e2πi/3Zγ1
≈ −2.31315i

(A2, A2) P3 = 1
2
(z3 − 3z2 − 2) — 0 (Fig. 4) Zγ1 ≈ 2.30298

P2 = 0 Zγ2 ≈ 5.47033 + 4.48792i

Zγ3 ≈ −4.31884 + 2.49348i

Zγ4 ≈ −4.98697i

Table 3. Summary of data defining the N = 3 examples.

Theory 〈·, ·〉 Γ′

(A2, A1)

(
0 1

−1 0

)
(1, 0), (0, 1), (1, 1)

(A2, A2)


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0


(1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0),
(0, 1, 1, 0), (0, 1, 1, 1), (1, 0,−1, 0),
(1, 0,−1,−1), (1,−1,−1, 0), (1,−1,−1,−1),
(1,−1,−2,−1), (1,−2,−2,−1), (2,−1,−2,−1)

Table 4. Intersection form and classes with nonzero BPS counts in the N = 3
examples, with respect to the bases in Table 3. As before we list only one from
each pair ±γ in Γ′.

Example (A2, A1). We take as base point the polynomial P3(z) = 1
2
(1− z2) and the BPS-free

angle ϑ = 0. Here Y is a 3-fold cover of C branched over ±1, which as a Riemann surface
is the hexagonal punctured torus, i.e. the Riemann surface obtained by gluing opposite pairs
of sides of a regular hexagon, and then removing a point that corresponds to three of the
original vertices. Its homology has rank two, i.e. Γ ' Z2,

To construct a homology basis for the spectral curve, we consider an oriented figure-
eight curve around ±1 as shown in Figure 3. This curve has three lifts to simple loops
on the spectral curve, distinguished by their periods which have arguments π

6
, 5π

6
, 3π

2
; these

correspond to three segments joining opposite pairs of sides in the hexagon model of the
spectral curve. The set Γ′ consists of these three cycles and their inverses. We fix the basis
γ1, γ2 corresponding to the lifts with period arguments 5π

6
and 3π

2
, respectively.

Using a correspondence between homology classes and “abelianization trees” described in
[44], this basis gives rise to a pair of spectral coordinates, which for ϑ = 0 (or more generally
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Figure 3. Spectral network (left) and projected homology basis (right) for
(A2, A1), with P3(z) = 1
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Figure 4. Spectral network (left) and projected homology basis (right) for
(A2, A2), with P3(z) = 1

2
(z3− 3z2− 2). The cycles γ1 and γ2 intersect over the

indicated point.

any |ϑ| < π
6
) are:

X1 =
p(2, 3, 4)p(1, 4, 5)

p(1, 2, 4)p(3, 4, 5)
, X2 =

p(2, 4, 5)p(1, 2, 3)p(1, 4, 5)

p(1, 2, 5)p(1, 2, 4)p(3, 4, 5)
. (4.4)

Example (A2, A2). We take as base point P3(z) = 1
2
(z3 − 3z2 − 2) and BPS-free angle ϑ = 0.

We denote the zeros by z0, z1, z2 with z1, z2 complex conjugates and Im(z1) > 0. Here the
spectral curve is a three-punctured torus, so Γ ' Z4. We use a basis γ1, . . . , γ4 that, as in the
previous case, can be described in terms of lifts of loops around the zeros of P3. Specifically,
for γ1 and γ2 we choose lifts of figure eight loops around z0, z2 and z1, z2, respectively, while
γ3 and γ4 are each lifts of a large counter-clockwise circle enclosing all of the roots. Thus,
on the spectral curve, {γ1, γ2} gives a basis of the homology of the torus obtained by filling
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in the punctures, while γ3 and γ4 are represented by small loops around punctures (thus γ3

and γ4 are examples of pure flavor charges.) These are shown in Figure 4. As before the
ambiguity in choice of a lift of each curve is resolved by specifying the periods, and numerical
approximations of these appear in Table 3. In this case the set Γ′ has 24 elements, which are
indicated in Table 4.

As explained in [44], the associated spectral coordinates are

X1 =
q(1, 2, 3, 4, 5, 6)

p(1, 2, 3)p(4, 5, 6)
, X2 =

p(1, 2, 5)p(3, 5, 6)p(4, 5, 6)

p(1, 5, 6)p(2, 5, 6)p(3, 4, 5)
,

X3 =
p(1, 2, 6)p(3, 4, 5)

p(1, 2, 3)p(4, 5, 6)
, X4 =

p(1, 5, 6)p(2, 3, 4)

p(1, 2, 6)p(3, 4, 5)
,

where the function q in X1 is the hexapod invariant discussed in Section 2.5.

4.2. Results of numerical studies of opers. We now turn to reporting results of cal-
culating spectral coordinates for the opers, comparing the differential equation (DE) and
conjectural integral equation (IEQ) methods. In tabulating and plotting the results for a
given w, we fix the argument ϑ = arg ~ and then take |~|−1 as the independent variable
rather than |~| itself. This is convenient since |~|−1 → ∞ corresponds to divergence in the
moduli space, and is analogous to R→∞ in the Hitchin section results presented in the next
section, thus giving the same expected behavior in the plots and tables of these two sections.

We begin with explicit numerical results in one example. Consider the (A1, A2) theory
with Λ = 0.8i, c = 1, which corresponds to taking

w = φ2 = (z3 − (0.8i)z − 1) dz2. (4.5)

There are two spectral coordinates (X1,X2), and we denote the results of calculating the

spectral coordinates by the two methods by XDE
i (~) and X IEQ

i (~). Table 5 and Table 6
shows numerical results for this example for several values of ~ with ϑ = 0, as well as the
relative difference between the DE and IEQ results,2 and an estimate of the relative error in
the DE results arising from numerical solution of the parallel transport ODE. Each calculation
method involves a number of internal parameters, and the calculation details and parameters
used here are given in Section 7.

A pattern seen in these tables is present in all of the computations we report: For suffi-
ciently small |~|−1 the two methods are in close agreement, but for larger |~|−1 the relative
difference grows quickly. This is to be expected, since the relative numerical error in the
results of the DE computation is expected to grow with |~|−1.

Plots of the spectral coordinates and relative errors for all of the examples discussed in
Section 4.1.1 and Section 4.1.2 are shown on the next several pages (Figures 5–11). Each of
these “four-pane” plots has the following structure: The top row of plots shows results for
|~|−1 < 0.1 (“small parameter”) and the bottom show results for |~|−1 > 0.1 (“large parame-
ter”). In each case, the left plot shows the spectral coordinates themselves (as computed by
both methods), and the right shows the relative difference between the two methods, as well
as the relative difference in the DE result corresponding to an estimate of the error in that
calculation. The error model used in this estimate is described in Section 7.2. The upper
limit of |~|−1 in each set of experiments is chosen as a point where the error estimate for
the direct method becomes comparable to the spectral coordinate itself; beyond that point,

2Here we define the relative difference between real or complex quantities a and b to be reldiff(a, b) = 2|a−b|
|a|+|b| ,

that is, reldiff(a, b) describes the difference as a fraction of the average of |a|, |b|.
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Rel. ODE

|~|−1 XDE
1 X IEQ

1 reldiff(XDE
1 , X IEQ

1 ) err. est.

exp(−6) 6.197 565 467 441× 10−1 6.197 565 467 441× 10−1 2.5× 10−15 1.2× 10−13

−3.078 848 587 097× 10−3i −3.078 848 587 098× 10−3i

exp(−3) 6.098 896 929 797× 10−1 6.098 896 929 797× 10−1 6.2× 10−14 1.2× 10−13

−1.502 048 140 005× 10−2i −1.502 048 140 001× 10−2i

exp(0) 1.241 494 034 799× 10−1 1.241 494 034 799× 10−1 6.0× 10−13 1.8× 10−13

4.675 580 545 520× 10−2i 4.675 580 545 526× 10−2i

exp(1.5) −4.541 501 969 871× 10−5 −4.541 501 970 009× 10−5 8.9× 10−12 2.4× 10−11

1.652 861 158 678× 10−4i 1.652 861 158 672× 10−4i

exp(2.25) −7.867 354 971 295× 10−9 −7.867 355 151 333× 10−9 2.0× 10−8 6.4× 10−8

−7.713 362 317 977× 10−9i −7.713 362 195 515× 10−9i

exp(3) −6.050 397 949 632× 10−18 −6.288 168 615 191× 10−18 3.2× 10−2 2.0

1.341 932 452 591× 10−17i 1.301 568 577 212× 10−17i

Table 5. Calculated spectral coordinate X1 for (A1, A2) at Λ = 0.8i, c = 1,
ϑ = 0.

Rel. ODE

|~|−1 XDE
2 X IEQ

2 reldiff(XDE
2 , X IEQ

2 ) err. est.

exp(−6) 9.910 196 824 725× 10−1 9.910 196 824 725× 10−1 1.7× 10−14 1.8× 10−13

−2.459 625 969 598× 10−3i −2.459 625 969 583× 10−3i

exp(−3) 9.017 178 663 077× 10−1 9.017 178 663 078× 10−1 7.7× 10−14 1.8× 10−13

−8.117 380 424 180× 10−2i −8.117 380 424 181× 10−2i

exp(0) −2.797 839 029 129× 10−1 −2.797 839 029 132× 10−1 1.1× 10−12 2.1× 10−13

−1.019 844 898 950× 10−1i −1.019 844 898 951× 10−1i

exp(1.5) 4.437 252 973 127× 10−3 4.437 252 973 159× 10−3 6.6× 10−12 2.1× 10−11

−2.267 783 957 724× 10−3i −2.267 783 957 721× 10−3i

exp(2.25) −1.086 698 308 145× 10−5 −1.086 698 331 057× 10−5 2.0× 10−8 4.7× 10−8

−7.680 370 178 260× 10−6i −7.680 370 312 705× 10−6i

exp(3) −2.017 168 705 958× 10−11 −2.112 193 509 873× 10−11 4.1× 10−2 8.1× 10−1

−4.428 933 036 588× 10−11i −4.255 436 289 723× 10−11i

Table 6. Calculated spectral coordinates X2 for (A1, A2) at Λ = 0.8i, c = 1,
ϑ = 0.
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the DE results are dominated by numerical error and comparison with IEQ is meaningless.
The relative differences are always shown on a logarithmic y-axis scale, and all relative error
plots use the same y-axis limits (5 × 10−14 to 5). The scales for the other axes are adapted
to the different regions: For small |~|−1, the |~|−1 axis uses a logarithmic scale, as is suited
to the exponential spacing of the sample points. For large |~|−1, the |~|−1 axis uses a linear
scale and the |Xi| axis is logarithmic; this has the effect of making the leading-order WKB
asymptotic (3.17) a linear function, which is shown as a dashed line. For small |~|−1, the
WKB asymptotic is not expected to be accurate and is not shown, except for the pure flavor
coordinates X3 and X4 of the (A2, A2) example where it is expected to give an exact formula.
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Figure 5. Oper comparison: (A1, A2) family at base point (Λ = 0, c = 1)
with ϑ = 0.
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Figure 6. Oper comparison: (A1, A2) family at base point (Λ = 0, c = 1)
with ϑ = 0.1.
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Figure 7. Oper comparison: (A1, A2) family at Λ = 0.8i, c = 1 with ϑ = 0.
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Figure 8. Oper comparison: (A1, A3) example with ϑ = 0.1.
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Figure 9. Oper comparison: (A2, A1) family at base point (Λ = 0) with ϑ = 0.
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Figure 10. Oper comparison: (A2, A1) family at c = 1
2

with ϑ = 0.
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Figure 11. Oper comparison: (A2, A2) example with ϑ = 0.1. The coordi-
nates X3 and X4 are associated to pure flavor charges, so the WKB asymptotic
is conjecturally an exact formula in those cases.
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Rel. PDE

R XDE
1 X IEQ

1 reldiff(XDE
1 , X IEQ

1 ) error est.

exp(−6) 6.161 191 878× 10−1 6.161 191 872× 10−1 1.0× 10−9 4.7× 10−10

exp(−3) 5.511 806 552× 10−1 5.511 806 344× 10−1 3.8× 10−8 1.7× 10−8

exp(0) 8.800 765 041× 10−3 8.800 772 243× 10−3 8.2× 10−7 –

exp(1.5) 6.111 579 918× 10−10 6.171 310 177× 10−10 9.7× 10−3 2.0× 10−2

exp(1.875) 1.418 541 282× 10−13 3.981 788 142× 10−14 1.1 2.0

Rel. PDE

R XDE
2 X IEQ

2 reldiff(XDE
2 , X IEQ

2 ) error est.

exp(−6) 9.994 046 408× 10−1 9.994 046 406× 10−1 2.0× 10−10 9.5× 10−11

exp(−3) 9.787 121 061× 10−1 9.787 120 991× 10−1 7.1× 10−9 3.4× 10−9

exp(0) 5.589 112 961× 10−1 5.589 110 919× 10−1 3.7× 10−7 1.1× 10−6

exp(1.5) 7.369 086 545× 10−2 7.368 779 561× 10−2 4.2× 10−5 8.6× 10−5

exp(1.875) 2.252 230 986× 10−2 2.249 418 541× 10−2 1.2× 10−3 2.5× 10−3

Table 7. Calculated spectral coordinates for (A1, A2) Hitchin section, Λ = 0,
c = 1, ϑ = 0.1.

4.3. Results of numerical studies for the Hitchin section. Now we turn to the case of
the flat connections ∇H

w(R, ζ) discussed in Section 2.4, and reporting the results of computing
the associated spectral coordinates by the DE and IEQ methods. As with our numerical
results for opers, we begin by presenting a table of computed values in the theory (A1, A2).
In this case we tabulate results for the basepoint P2(z) = z3 − 1 (i.e. parameters Λ = 0,
c = 1) and ζ = exp(iϑ) where ϑ = 0.1. Spectral coordinates calculated for several values of
R are shown in Table 7. Recall that the parameter R in this case is analogous to |~|−1 for
opers. Analogously to the results in the oper case, we see that the relative difference of the
DE and IEQ methods grows as R increases.

The rightmost column of Table 7 shows an error estimate for some of the DE calculations,
which is also included in all of the plots to follow. This estimate is not based on a theoretical
error analysis, but rather on testing the dependence of the DE results on the grid spacing ∆x
in the discretization of the PDE and applying Richardson extrapolation to predict a limit
value as ∆x → 0. When the dependence on the spacing is approximately quadratic in ∆x
(the expected form), the difference between the extrapolated value and the one calculated
with the finest grid is taken as an estimate of PDE discretization error. In other cases the
dependence on ∆x does not exhibit the expected form, and no error estimate is obtained;
this would be expected to happen when, for example, discretization error is not the dominant
source of error in the DE calculation. This error estimation technique is described in more
detail in Section 7.4.

Plots of the spectral coordinates and relative errors for this example and the others intro-
duced above are shown on the next several (Figures Figures 12–17). Each of these “four-pane”
plots has the same structure described in Section 4.2, with the additional complication that
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error estimates are only shown for values of R where the Richardson extrapolation is success-
ful. Generally, the extrapolation succeeds for most large R and yields an error estimate that
increases with R. The upper limit of R in each experiment is chosen to be a point where the
resulting error estimate first becomes comparable in size to the spectral coordinates them-
selves, i.e. the largest R for which this error estimate suggests the DE results are meaningful.
Analogously to the WKB asymptotic in the opers results, the semiflat approximation to Xi is
shown as a dashed line in the large-R plots (where it is expected to be a good approximation)
and in all R for the pure flavor coordinates X3 and X4 of the (A2, A2) example (where it is
expected to be exact).
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Figure 12. Hitchin section comparison: (A1, A2) family at base point (Λ = 0,
c = 1) with ϑ = 0.
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Figure 13. Hitchin section comparison: (A1, A2) family at base point (Λ = 0,
c = 1) with ϑ = 0.1.
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Figure 14. Hitchin section comparison: (A1, A2) family at Λ = 0.8i, c = 1
with ϑ = 0.



OPERS AND NONABELIAN HODGE: NUMERICAL STUDIES 37

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

R

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

(A1, A3) at ϑ = 0.1: Results for small R

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

R

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

(A1, A3) at ϑ = 0.1: Relative difference for small R

0 1 2 3 4 5 6 7
R

102

105

108

1011

1014

1017

1020

(A1, A3) at ϑ = 0.1: Results for large R

0 1 2 3 4 5 6 7
R

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

(A1, A3) at ϑ = 0.1: Relative difference for large R

semiflat approximation

Data types: Spectral coordinates:DE method result

IEQ method result 

DE-IEQ relative difference

Relative error estimate (PDE)

Figure 15. Hitchin section comparison: (A1, A3) example with ϑ = 0.1.
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Figure 16. Hitchin section comparison: (A2, A1) family at base point (c = 0)
with ϑ = 0.
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Figure 17. Hitchin section comparison: (A2, A2) example with ϑ = 0.1. The
coordinates X3 and X4 are associated to pure flavor charges, so the semiflat
asymptotic is conjecturally an exact formula in those cases.
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5. Experimental studies of the Hitchin metric

We consider the Hitchin metric discussed in Section 2.7 and Section 3.5, in the (A1, A2)
example. Take

h(z) = z3 − Λz (Λ ∈ C), l(z) = −c (c ∈ C). (5.1)

This gives a 1-parameter family of Kähler manifolds BΛ := Bd,h, indexed by Λ ∈ C; each BΛ

is 1-dimensional (coordinatized by c ∈ C) and carries a Kähler metric

g = g(c)|dc|2. (5.2)

5.1. Direct PDE computation. Our first approach to computing the metric g is to use
the definition as an L2 norm directly. Thus, given the polynomial

P2(z) = z3 − Λz − c, (5.3)

and the tangent vector corresponding to ∂/∂c,

Ṗ2(z) = −1, (5.4)

we first solve the nonlinear PDE (2.9) for u, then solve the linear PDE (2.20) for F , then
compute the integral (2.21) to get the desired metric coefficient g(c).

5.2. Integral equation computation. Our second method of computing the metric g is
the integral equation method discussed in Section 3.5. In the (A1, A2) example there are just
two independent spectral coordinates X1, X2, and the formula (3.16) specializes to

g(c) = d log y1 ⊗ dc log y2 − d log y2 ⊗ dc log y1. (5.5)

Even more concretely, if we write c = a+ ib, then

g(c) = g(∂a, ∂a) = (∂a log y1)(∂b log y2)− (∂a log y2)(∂b log y1). (5.6)

We use the integral equation method from Section 3.3 to compute y1 and y2 at various values
of c, thus compute the derivatives appearing (5.6) by finite differences, and finally use (5.6)
to compute g(c).

5.3. Experimental comparison. We have described two methods of computing Hitchin’s
metric on BΛ. We applied both of these methods to compute g(c) in the case Λ = 0 and
c ∈ R+. When Λ = 0 there is a rotational symmetry, so that g(c) depends only on |c|; thus
the values of g(c) for c ∈ R+ determine the full g. The result is shown in Figure 18; the
observed difference |gDE − gIEQ| < 1.2× 10−4 over the range of c we studied.

Figure 18 also shows the semiflat approximation gsf(c) discussed in Section 2.8 and Sec-
tion 3.6. In this example we can compute gsf in closed form, using (3.23) and the fact that

Zγ(c) = Zγ(c = 1)c
5
6 , with Zγ(c = 1) tabulated in Table 1; the result is

gsf(c) =
25M2

6
√

3
|c|− 1

3 ≈ 20.4325|c|− 1
3 , M =

√
3π

Γ
(

4
3

)
Γ
(

11
6

) . (5.7)

The figure shows that the semiflat approximation is increasingly accurate for large |c| and
not at all accurate for small |c|, as expected: It could hardly be accurate near c = 0 since
gsf(c) has a singularity at that point while g(c) is smooth.
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Figure 18. Left: The metric coefficient g(c) for Λ = 0 and c ∈ R+. The
blue marks show values of g(c) computed using two methods: the direct PDE
approach and the integral equations. The dashed line shows the semiflat ap-
proximation. Right: The absolute difference gDE − gIEQ.

6. Gallery

6.1. The Hitchin metric integrand. In Figure 19 we illustrate some features of the numer-
ical computation of the Hitchin metric (2.21) in the simple case N = 2, d = 3, P2(z) = z3−c,
Ṗ2(z) = −1. The theoretical expectation based on [29, 40, 15] is that

• the pointwise difference I − Isf decays exponentially as a function of the distance from
the zeros of P2(z) (measured in the metric |P2 dz2|),
• the integral of I −Isf over a disc in the metric |P2 dz2|, centered on a zero of P2 and not

containing any other zero, decays exponentially as a function of the radius of the disc.

In other words, I − Isf can be large near the zeros, but there is a local cancellation around
each zero which makes its integral nevertheless small; see [15] for the precise statement. We
see this phenomenon in the figure: near each zero we have I − Isf large and negative, but
there is a halo a bit further out, where I − Isf is positive.

We also observe that as |c| increases the error I−Isf becomes more concentrated around the
zeros, as expected since the distances in the metric |P2dz2| grow as |c| increases. Moreover,
in the limit of large |c| the individual zeros effectively decouple from one another; indeed
the solution in a neighborhood of each zero approaches a standard “fiducial” solution [5, 29]
when written in the coordinate w =

∫ √
P2dz.

6.2. The functions Xγ. We consider the (A1, A2) example. Let xinst
γ denote the integral

term in (3.7) (for opers) or (3.8) (for the Hitchin section).
In this case the integral equations (3.7), (3.8) coincide with ones which have been studied

extensively in the literature on the thermodynamic Bethe ansatz, beginning with [52], and
also in the context of the ODE/IM correspondence beginning with [11]. All of the main
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Figure 19. The integrand in the computation of the Hitchin metric as an
L2 norm, when P2(z) = z3 − c, Ṗ2(z) = −1. Left: the integrand I of the L2

metric (2.21), plotted in the z-plane. Middle: the integrand Isf of the semiflat
approximation to the L2 metric. Right: the difference I − Isf .

features of the xinst
γ which we discuss in this section are also noted in [52]; we present them

here for completeness and for readers not familiar with that reference.
In Figure 20 we show the function xinst

γ1
(~), evaluated along the ray ~ ∈ R−Zγ1 . A few

features are worthy of comment:

• As ~→ 0, xinst
γ1

(~) approaches 0. This confirms our expectation from Section 3.6, and the

consequence that in this limit the full xγ1(~) = ~−1Zγ1 + xinst
γ1

is asymptotic to ~−1Zγ1 .

• As ~→∞, xinst
γ1

(~) approaches a nonzero finite limit, and hence so does the full xγ1(~) =

~−1Zγ1 + xinst
γ1

. This limit corresponds to the polynomial P2(z) = z3, for which the oper
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Figure 20. xinst
γ1

(~) in the (A1, A2) example, evaluated at the values ~ =
− exp(t+ i argZγ), for t ∈ [−20, 20] (horizontal axis).
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Figure 21. xinst
γ1

(R, ζ) in the (A1, A2) example, evaluated at the values ζ =
− exp(t+i argZγ), for t ∈ [−20, 20] (horizontal axis). The 20 curves correspond
to the values R = exp(−k/2) for k = 0, 1, . . . , 19.

has a Z/5Z symmetry which determines its Stokes data as

lim
~→∞

xγ1(~) = x∗ := log

(√
5− 1

2

)
≈ −0.4812, (6.1)

matching the asymptotic value in the figure.

In Figure 21 we show the function xinst
γ1

(R, ζ), evaluated along the ray ζ ∈ R−Zγ1 , for
various values of R. Some features apparent from Figure 21 are:

• For all R, xinst
γ1

(R, ζ)→ 0 as ζ → 0 or ζ →∞.

• For small R, xinst
γ1

(R, ζ) has an approximate plateau at the value x∗, in a neighbor-
hood of |ζ| = 1; the length of this plateau grows as R → 0, so that for any fixed ζ,
limR→0 x

inst
γ1

(R, ζ) = x∗ (but not uniformly in ζ).

• For small R, the crossover region between x ≈ 0 and x ≈ x∗ has a universal shape, which
moreover looks like the graph of xinst

γ1
(~) in Figure 20, where we make the substitution

ζ = ~R.
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Name Value Description

ode method dopri5 ODE Solver from scipy.ode

ode thresh 10−14 Relative error goal for ODE solver

ode rstep 10−4 Initial ODE step size

Table 8. Parameters used for the direct method for opers (ODE solver) in
the calculations presented in Section 4.2.

This last feature is a manifestation of the “conformal limit” which we discussed in Sec-
tion 2.9; indeed the Stokes data of ∇H

w(R, ζ) should converge to those of ∇op
w (~) in that limit,

which would imply

lim
R→0

xinst
γ1

(R, ζ = ~R) = xinst
γ1

(~), (6.2)

and this is what we observe in the figures.

7. Implementation details

In this section we discuss the implementation of the experiments presented in sections 4–6
in more detail. The source code is available at [17].

7.1. Direct method for opers. The parameter values used in computing Stokes data for
opers by the direct method (as reported in Section 4.2) are shown in Table 8. The meanings
of these parameters are described below. In our Python implementation, direct method
calculations for opers are performed by the framedata module.

Recall that the direct method computes parallel transport matrices for ∇op
w from a base-

point z0 to d + N points on a circle of radius r, and then uses the eigenvectors of these
matrices of smallest eigenvalue to approximate the subdominant solutions.

More precisely, given the tuple of differentials w (as coefficient vectors of the associated
polynomials) and the parameter ~, we first compute the scaled tuple ~−1w = (~−2φ2) or
~−1w = (~−2φ2, ~−3φ3) and then apply a holomorphic change of coordinates to make the
connection behave as much like the one associated to zddzN as possible. Specifically, we find
a ∈ R+ and b ∈ C so that pulling back by the coordinate change f(z) = az+ b has the effect
of making the leading coefficient of ~−NPN have unit modulus and so that the coefficient
of zd−1 vanishes (properties we call “quasi-monic” and “centered”, respectively). After this
change, it is natural to take z0 = 0 as the basepoint for parallel transport, and we use the
bisectors of the Stokes sectors as the directions for the d + N rays. We select the radius r
by finding a disk |z| < r0 containing the roots of all of the nonzero polynomials Pk and then
setting r = max(8, 8r0). In practice only PN is considered here, as the examples we consider
have Pk constant for k < N . This choice for r is based on the heuristic that deviation of
the connection from its asymptotic behavior is concentrated near the zeros of PN , and so we
select a radius significantly larger than those of the zeros.

With the entries of the connection form ϕ~−1w given explicitly by (2.3) or (2.4), the com-
putation of the parallel transport along a segment (which we parameterize by [0, 1]) now
reduces to solving an explicit ODE; for this we use the scipy.ode module with the dopri5

integration method (an implementation of the Dormand-Prince method of order 4(5)). This
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ODE solver is applied with a fixed relative precision goal ode thresh, an initial step size
ode step, and a maximum step size 2∗ode step. Such a solution is computed for a segment
[0, reiη] bisecting each Stokes sector, resulting in d+N frame matrices Fi. The eigenvectors
of Fi are then computed and the normalized eigenvector with minimum eigenvalue is selected,
giving the subdominant vectors vi. These vectors represent the values in the fiber over 0 of
horizontal sections that approximate the subdominant solutions for ∇op

w . Finally, the spectral
coordinates XDE

i are computed by taking ratios of products of determinants formed from the
subdominant vectors.

While this method of calculation is simple to implement, it suffers from significant loss of
relative precision when the determinants involved in Xi are close to zero, as these determi-
nants are sums of floating-point numbers of approximately unit norm. Unfortunately this is
the generic case for large |~|−1: The asymptotic behavior of the coordinates Xi is exponential
in |~|−1, and the individual determinants are bounded, so the generic situation of Xi → 0 or
Xi → ∞ requires at least one determinant to approach zero. Thus it is expected that this
method of calculation will be accurate only for sufficiently small |~|−1.

7.2. ODE error estimate. We now explain the error estimate that is included in Figures
5–11 (results of calculations for opers). Recall that this estimate concerns the effect on the
spectral coordinates of the limited accuracy of the numerical solution of the parallel transport
ODE. We expect this to be the dominant source of error for large |~|−1.

We first consider the calculations that apply to a single Stokes sector, which involve a frame
matrix (numerical approximation of parallel transport) F and its eigenvectors v1, . . . , vN . Let

F̂ denote the corresponding exact parallel transport matrix for the same points. More gen-
erally in this section we use a hat decoration to indicate exact quantities, in contrast to com-
puted approximations. The ODE solver is given a requested relative tolerance ode thresh

and absolute tolerance 0. Assuming that the solver produces an approximate solution satis-
fying this request, the result is that the error in the frame matrix δF := F − F̂ satisfies

|(δF )ij| 6 ode thresh · |Fij|. (7.1)

To analyze the propagation of this error to subsequent calculations, we will freely use lin-
earizations of the functions applied to the frame matrices, and will then derive upper bounds
on the resulting expressions. The results are therefore estimates for an upper bound on the
error, but they do not constitute rigorous upper bounds on the error due to the use of lin-
earization. For brevity we will use the term estimated error bound to refer to such an upper
bound on the linearized error, and write δA . B to mean that B is such an estimated error
bound for δA.

Let v1, . . . , vN denote the normalized eigenvectors of F , ordered so that the eigenvectors
λ1, . . . , λN increase in magnitude. The subsequent calculations involve only the lowest eigen-
vector v1 (the subdominant vector), the error in which can be estimated in terms of δF using
the first-order variation formula for eigenvectors [50, Section 2.10]:

δv := v − v̂ ≈
N∑
j=2

v∗j (δF )v1

λ1 − λj
(7.2)
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Here v∗1, . . . , v
∗
N denotes the dual basis. Using (7.1), the right hand side of (7.2) is a vector

that is componentwise bounded by

ode thresh ·
N∑
j=2

|v∗j ||F ||v1|
|λ1 − λj|

(7.3)

where in this expression, |A| denotes the componentwise absolute value of a vector or matrix.
The expression above is thus used as the estimated error bound for the components of each
subdominant vector.

Turning now to the calculation of the determinantal invariants and spectral coordinates,
it is convenient to change notation slightly and denote by v1, . . . , vd+N the collection of
subdominant vectors of the frame matrices for all of the Stokes sectors. Having estimated
the componentwise error in each of the vectors vi, we now promote this to an estimated error
bound for the relevant invariants p(i, j, k) and q(i, j, k, l,m, n). To do this we compute the
partial derivative of the invariant at (v1, . . . , vd+N) with respect to each vector component and
contract this with (7.3). In our implementation, the partial derivatives of the determinantal
invariants are numerically approximated by finite differences with a fixed step size of 10−12.

Finally, the spectral coordinates have the form Xi = A1···Ak
Ak+1···Ar

where each quantity Ai is one

of the determinental invariants discussed above. Using logarithmic differentiation we arrive
at an estimated error bound for Xi in terms of those of Ai,

|δXi| . |Xi|
∑
j

|δAj|
|Aj|

(7.4)

Our final linearized estimate for δXi is obtained by substituting the error estimate for each
invariant Ai obtained above. Working under the hypothesis that ODE error is a dominant
source of error in the direct method for opers, and that our linearized estimates may neglect
other, smaller sources of error as well as higher-order contributions to the ODE error itself,
the error estimates in Figures 5–11 show the relative errors that would result from a change
in Xi of magnitude twice as large as the estimated error bound derived above.

7.3. Direct method for the Hitchin section. The parameter values used in computing
Stokes data for the Hitchin section by the direct method (as reported in Section 4.3) are
shown in Table 9, and the meanings of these parameters are described below. In our Python
implementation, direct method calculations for the Hitchin section are performed by the
framedata module.

Recall (from Section 2.6) that the direct method for the Hitchin section builds on the same
ODE integration technique applied to opers, and hence it involves all of the same parameters
and solution steps used there, as well as an important additional step: For the Hitchin
section, the connection matrix involves the density function u of the harmonic metric, which
is computed by numerically solving the self-duality equation (Equation 2.9).

To do this, we first discretize the problem by introducing a uniform rectangular grid in
{Re(z) 6 r, Im(z) 6 r} of size pde nmesh×pde nmesh. The same radius r is used for the
subsequent ODE solution step, and as in the case of opers we choose r to exceed the mag-
nitude of the roots of PN by a significant margin. In this case the precise algorithm to
select the radius is slightly more complicated, incorporating a heuristic to balance two po-
tential sources of error in the final results; the algorithm itself is documented in the source
(approx best rmax() in [17, polynomial utils.py]).
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Name Value Description

method fourier PDE solver strategy (euler or fourier)

pde nmesh 8191 PDE mesh size for presented results

2047, 4095, 8191 PDE mesh sizes for Richardson extrapolation error estimate

pde thresh 1× 10−9 Absolute error goal for PDE solver

& ODE parameters from Table 8

Table 9. Parameters used for the direct method for Hitchin section (PDE
solver) in the calculations presented in Section 4.3.

Next, we compute an approximation to the harmonic metric u as a function on the grid.
Rather than working with u directly, we introduce a smooth function u0 (the model) that
is computed directly from PN in closed form, and which has the same asymptotic behavior
as u. We then consider the difference v = u − u0 and the PDE equivalent to (2.9) that it
satisfies. In our implementation the model is given by

u0(z) =
1

N + 2
log
(
|PN(z)|2 + σ(z) exp(−|PN(z)|4)

)
(7.5)

where σ is a smooth function that is positive on a disk |z| < 0.9r and vanishes elsewhere.
(For N = 2 this model should be compared to the function usf approximating u that was
discussed in Section 2.8; indeed we have u0(z) = usf(z) for all large |z|, and in general these
functions are close except near the zeros of P2 where u0 is smooth while usf has logarithmic
singularities.)

We then solve for v on the grid with Dirichlet boundary conditions, which is a reasonable
approximation as v is expected to decay exponentially in some power of |z|. As Equation 2.9
is nonlinear, we use Newton’s method, i.e. iteratively solving the linearization of the equation
to improve an initial guess. The iteration terminates when the size of the residual ∆u−4(eku−
e−2u|PN |2) is less than a parameter pde thresh, in terms of a specific norm (which depends
on the method, as described below).

For the core step of solving the linearization of (2.9) at a given point, our implementation
offers two methods, named euler and fourier, which can be selected at runtime. Both
methods are rather elementary and were selected for simplicity of implementation. Though
most results in Section 4.1 use the fourier method, it is helpful to first explain the simpler
euler method since fourier can be understood as a more complicated analogue of it with
different trade-offs.

The euler solver uses the a finite-difference Laplacian based on the standard five-point
stencil (see e.g. [47, Section 4.2]). The linearized equation thus becomes a linear system of
rank (pde nmesh)2 which is solved using scipy.linalg.lstsq. In this method we measure
the size of the residual in the Newton iteration using the C0 norm. This method stores
several dense (pde nmesh)2 × (pde nmesh)2 matrices and hence suffers from high memory
consumption (approximately 12 GiB for pde nmesh = 2000). Since we have found that
increasing pde nmesh significantly improves the accuracy of these calculations, this limitation
of the euler solver prompted development of a less memory-intensive alternative.
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The fourier solver uses a simple spectral method, based on the 2D discrete Fourier
transform, to avoid storing any dense (pde nmesh)2 × (pde nmesh)2 matrices or solving any
linear systems in the iterative step. However, to make this possible, the fourier solver
does not solve the linearization of (2.9) itself, which has the form (∆ − κ)u = f for a
scalar function κ. Rather, following Concus-Golub [7] we replace the linearization with an
approximating Helmholtz equation (∆ − C)v = f (for a constant C) which therefore has a
closed-form solution in frequency space. Here the constant C is chosen to approximate the
(non-constant) function κ in the true linearization. As in [7] we use the “minimax” value
C = 1

2
(supκ− inf κ) where both sup and inf are taken over the grid points.

To implement the desired Dirichlet boundary conditions on v in the fourier solver we use
the 2D discrete sine transform (DST), which is equivalent to extending v as a doubly-periodic
function which is odd with respect to reflections in the grid boundaries. Also, in this method
we measure the size of the residual in the Newton iteration using the L2 norm, since this can
be computed directly in frequency space, thus avoiding an additional Fourier transform step
in the iteration. The fact that the Helmholtz equation is a poor approximation of the true
linearization has the effect of requiring many more iterations of Newton’s method to reach a
desired accuracy (in comparison to the euler solver). However, in practice the high iteration
count is more than compensated by the high speed of the Fast Fourier Transform when
pde nmesh > 1000 and when the size has the optimal form for DST, i.e. pde nmesh = 2j − 1.

After solving the discretized self-duality equation, the result is a vector of values for u at
the grid points. Since the next step of solving the ODE for parallel transport of the flat
connection (Equation 2.11) requires evaluation of the self-dual metric density u at arbitrary
points, the interpolation scheme from scipy.RectBivariateSpline is used with order 3 in
x and y to produce an approximation to the function u on the bounding rectangle of the
grid. The same interpolation is applied to the finite difference approximations of the partial
derivatives ux and uy, which also appear in the connection form. Finally, with a means of
evaluating the connection form in hand, the process of solving the parallel transport ODE
and computing Stokes data proceeds by the same process described in Section 7.1.

7.4. PDE error estimate. We now explain the error estimates that are included in Figures
12–17 (results of calculations for the Hitchin section), which concern the discretization error
introduced by solving an analogue of the self duality equation on a grid, using finite differences
or discrete Fourier transforms instead of differential operators. While in general this error is
expected to be bounded by a multiple of (∆x)2, where ∆x = 2r/pde nmesh is the spacing
of the grid points (along both the x- and y-axes), it would require a more subtle theoretical
analysis of the method to derive the constant of proportionality. Rather than conducting
such a theoretical analysis, as mentioned in Section 4.3 we derive an empirical error estimate
using Richardson extrapolation. The general theory of Richardson extrapolation is discussed
in more detail in e.g. [45, Section 8.3]).

We recall the basic principle of this method: First, we assume that the final quantity Xi

is subject to error that is approximately proportional to (∆x)p for some real p (rather than
being merely bounded by a quantity of this form). Then, using results of calculations for
three values of ∆x (equivalently, of pde nmesh), it is possible to both recover the value of
p that best fits the observed results, and to extrapolate to obtain a refined estimate XRich

i

for the limit as ∆x→ 0. In presenting our results we do not use this extrapolated value for
the spectral coordinates directly, and instead we show the value computed with the largest
pde nmesh. However, the difference |XDE

i − XRich
i | is taken as the approximation of the
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Name Value Description

L 200 Interval size: t = log|~| runs over [−L,L]

steps 217 Number of sampling points

tolerance 2× 10−15 Target L∞ norm of difference between iterations

method fourier Method for numerical integration (fourier or simps)

damping 0.3 Damping factor in the iteration step

Table 10. Parameters used for the integral equation method for opers and
the Hitchin section in the calculations presented in Section 4.2 and Section 4.3.

discretization error in XDE
i . In addition, this method of empirical error estimation also

allows a test for a fit between the error model and the observed results; we expect the best
fit exponent p to be approximately 2, and significantly different values indicate that the
hypothesis of discretization error being dominant and proportional to (∆x)2 is not consistent
with the results. For this reason, PDE error estimates are only shown in Figures 12–17 in
cases where the best fit exponent lies in the interval [1.6, 2.4].

7.5. Integral equation method for opers. Here we describe some implementation details
of our integral equation computation of spectral coordinates for the opers ∇op

w . In our Python
implementation, these calculations are performed by the integralequations module.

As explained in Section 3.2 the problem is to find a solution X• of the system of inte-
gral equations (3.7). Since (3.7) represents the desired functions Xγ as exponentials, it is
convenient to write Xγ = expxγ and study xγ directly.

We begin with the initial guess

x(0)
γ (~) = ~−1Zγ (7.6)

and then, defining

(F(x))γ(~) = ~−1Zγ +
1

4πi

∑
µ∈Γ′

Ω(µ)〈γ, µ〉
∫
R−Zµ

dξ

ξ

ξ + ~
ξ − ~

log (1 + exp(xµ(ξ))) , (7.7)

our iteration step is

x(n+1)
γ = (1− p)F(x(n))γ + px(n)

γ (7.8)

where p = damping is a damping parameter. Note that for any p ∈ [0, 1) the fixed points of
the iteration are the same as the fixed points of F ; nevertheless the rate of convergence can
depend on p. Importantly, in the iteration process we do not need to use the values of xγ(~)
for arbitrary γ and ~: all we need is the values of xγ(~) when γ lies in the finite set Γ′ and ~
lies on the ray R−Zγ.

We approximate the iteration numerically as follows. For each charge γ ∈ Γ′ we parame-
terize the ray ~ ∈ R−Zγ by a parameter t ∈ R, related to ~ by ~ = −ei arg(Zγ)+t. We work with

discrete approximations to functions x
(n)
γ (t), sampled at M = steps evenly spaced points

t ∈ [−L,L], where L = L is a cutoff parameter. We first construct x
(0)
γ (t) by sampling the

function ~−1Zγ = −|Zγ|et. Then, to construct x
(n+1)
γ , we numerically evaluate the right side

of (7.8) at each sampling point t.
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To do the numerical integrations by Simpson’s rule requires ∼M2 work at each iteration,
because we need to evaluate ∼ M different integrals each of which involves summing over
∼ M sampling points. We reduce this work to ∼ M logM as follows. First, the map F
preserves the property xγ(t) = x−γ(t) (to see this we use the fact that Ω(γ) = Ω(−γ)). Using
this symmetry we can reduce our work in several ways. First, we only need to compute xγ
for half of the γ ∈ Γ′, say all the ones where Zγ lies in some chosen half-plane. Second, using
the symmetry to average the term for µ with the term for −µ, we can rewrite (7.7) as

F(x)γ(t) = −|Zγ|et+
1

4πi

∑
µ∈Γ′

Ω(µ)〈µ, γ〉
∫ ∞
−∞

dt′
log(1 + expxµ(t′))

sinh((t− t′) + iδγµ)
, δγµ = argZγ−argZµ,

(7.9)
and the integral on the RHS is a convolution F ? G where F (t) = log(1 + expxγ(t)) and
G(t) = 1

sinh(t+iδγµ)
. Such a convolution can be evaluated approximately, at all sampling points

t at once, by the device of transforming F and G to Fourier space (with a periodic boundary
condition at the ends of the interval [−L,L]), multiplying them, and then transforming back.
Using the Fast Fourier Transform this takes work ∼ M logM . (Our implementation offers
this method as well as the slower, more direct method by Simpson’s rule.)

We repeat the iterative process until the maximum value of |x(n+1)
γ (t) − x

(n)
γ (t)| over all

sampling points and all γ ∈ Γ′ is smaller than the constant tolerance for 5 consecutive
iterations, and then stop. The final xγ(t) so obtained give a discrete approximation to a
solution of the integral equation (3.7), with each xγ computed along the ray ~ ∈ R−Zγ.
Finally, in order to evaluate the desired Xγ(~) for more general ~ (as we must do in order
to test the conjecture), we just numerically evaluate the RHS of (3.7) once more (this time
using Simpson’s rule instead of Fourier transforms, since we only need to evaluate one integral
instead of M of them.)

7.6. Integral equation method for the Hitchin section. The methods we use for the
integral equation computation for the Hitchin section are essentially identical to those we
use for opers (and are implemented in the same module, integralequations). The same
parameter values (from Table 10) are used as well. There are just a few slight changes in
the formulas, since we now need to solve (3.8) rather than (3.7). The initial guess (7.6) is
replaced by

x(0)
γ (ζ) = Rζ−1Zγ +RζZγ, (7.10)

(7.7) is replaced by

(F(x))γ(ζ) = Rζ−1Zγ +RζZγ +
1

4πi

∑
µ∈Γ′

Ω(µ)〈γ, µ〉
∫
R−Zµ

dξ

ξ

ξ + ζ

ξ − ζ log (1 + exp(xµ(ξ))) ,

(7.11)
and (7.9) is replaced by

F(x)γ(t) = −2R|Zγ| cosh t+
1

4πi

∑
µ∈Γ′

Ω(µ)〈µ, γ〉
∫ ∞
−∞

dt′
log(1 + expxµ(t′))

sinh((t− t′) + iδγµ)
. (7.12)

7.7. Direct method for the Hitchin metric. The direct PDE computations of the Hitchin
metric, as reported in Section 5.1, are handled by the module hkmetric (in particular, the
function fdcomputeG). Here, we first need to solve the PDE (2.9) for (a discrete approximation
of) u, then solve the linear PDE (2.20) for (a discrete approximation of) F . The computation
of u is done using the same routines described in Section 7.3; this time we use the euler
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Name Value Description

method euler PDE solver strategy (euler or fourier)

rmax 10 Size of region for PDE solver

pde nmesh 1400 PDE mesh size

pde thresh 5× 10−11 Absolute error goal for PDE solver

Table 11. Parameters used for the direct method for the Hitchin metric in
the calculations presented in Section 5.

solver instead of fourier. The computation of F uses the same code, but runs for only one
iteration since the equation is linear. The parameters we use are listed in Table 11.

Once F and u have been computed, the last remaining step is to evaluate the integral
(2.21). For this we divide the plane into the regions |z| < r and |z| > r, where r =
rmax. In the region |z| < r we just approximate the integral by a Riemann sum, using our
pde nmesh × pde nmesh grid of sampling points; call this sum Iin. In the region |z| > r we
do not have a numerical solution of the PDEs available, so we have to make do with the

asymptotic formulas u ∼ 1
2

log|P2| and F ∼ 1
2
Ṗ2

P2
; when P2 has leading term zn and Ṗ2 = 1,

this gives for the integrand I ∼ 2|z|−n+1. Using this we estimate the integral over the region
|z| > r to be Iout = 4π

(n−2)rn−2 . (In Section 5.1 we have n = 3, so Iout = 4π
r

.) Our final result

for the integral is then
I = Iin + Iout. (7.13)

7.8. Integral equation method for the Hitchin metric. Here we describe some details
of the integral equation computation of the Hitchin metric reported in Section 5.2. These cal-
culations are performed by the module hkmetric (in particular, the function ieqcomputeG).

Using (5.6) we see that what we need is to to compute the first derivatives of the quantities
yi = logXi(R = 1, ζ = 1) with respect to the real and imaginary parts of the parameter c, at
various values of c.

The first step is to use the integral equation method (as described in Section 7.6) to compute
yi itself at various values of c. For this purpose we need to know the periods Zγ as functions of

c; fortunately, in this particular example the periods are of the simple form Zγ = const× c 5
6 .

Next we approximate the desired derivatives by the method of finite differences, choosing a
small ε = eps and computing ε−1(yi(c+ ε)−yi(c)) and ε−1(yi(c+ iε)−yi(c)). Finally we plug
into (5.6) to get our estimate of g(c).

The parameters we use are listed in Table 12.

8. Sample numerical calculation

Here is a sample session using our code to compute the cross-ratio invariants quoted in the
introduction, and which can be run on a laptop:

$ ipython3 harmonic.py

[ ... ]

In [1]: xar = integralequations.computeXar(theoryname="A1A2")

[ ... ]
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Name Value Description

L 200 Interval size: t = log|ζ| runs over [−L,L]

steps 217 Number of sampling points

tolerance 10−15 Target L∞ norm of difference between iterations

method fourier Method for numerical integration (fourier or simps)

damping 0.3 Damping factor in the iteration step

eps 10−6 Step size in finite difference estimate of derivatives

Table 12. Parameters used for the integral equation computation of the
Hitchin metric in the calculations presented in Section 5.

[MainProcess] [integralequations] [INFO] Finished in 13.5 s

In [2]: xar.getCluster()

Out[2]: [-0.006415703123337184, -1.0]

In [3]: fd = framedata.computeFrames(theoryname="A1A2", pde_nmesh = 1023)

[ ... ]

[MainProcess] [framedata] [INFO] Finished in 192.6 s

In [4]: fd.getCluster()

Out[4]: [-0.006415963850395493, -0.9999999999999987]

The result from the PDE calculation (the last line of the output above) differs a bit from
the result quoted in the introduction; the result in the introduction is obtained if one sets
pde nmesh = 8191, which however requires more RAM than is available on a typical laptop
in 2020.

A note about signs: the code uses a different convention in defining the Xγ than this paper
does. For charges γ ∈ Γ′ the relation is simply

X code
γ = −X paper

γ . (8.1)

For more general charges γ the relation is X code
γ = σ(γ)X paper

γ where σ(γ) = ±1 is a certain

quadratic refinement of the pairing (−1)〈,〉.

9. Discussion

9.1. Interpretation of results. The quantities XDE
i and X IEQ

i reported in Section 4 are
numerical approximations of two quantities that the main conjecture asserts to be equal.
Therefore, assuming the conjecture, the difference between XDE

i and X IEQ
i would reflect

only the numerical error in the two computations. We have analyzed one source of error
in XDE

i for each class of experiments (ODE error for opers, PDE discretization error for
Hitchin section) and obtained an estimate that in practice grows rapidly with the relevant
parameter (R or |~|−1). Broadly, our experiments show that the relative difference ofXDE

i and

X IEQ
i is either small (for small parameter values), or else is comparable to the single-source

error estimate (for large parameter values). This is consistent with the hypothesis that the
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conjecture holds, and that the source of error considered in our estimates is the dominant
one for large parameter values, while other sources of error become dominant for small
parameters. Notably absent from our results are any strong candidates for counterexamples
to the conjecture, such as examples where a large relative difference between XDE

i and X IEQ
i

is stable under variation of the parameter and in excess of the single-source error estimate.
In our experiments computing spectral coordinates for opers, the relative difference be-

tween XDE
i and X IEQ

i is less than the ODE error estimate whenever |~|−1 > 2, and is less
than 10−9 (1 PPB) for |~|−1 6 2. For the Hitchin section, an additional complication is that
the error estimate is not always available; recall that the empirical PDE error estimate is
applied to each spectral coordinate separately, and it requires the results for varying mesh
sizes to match a theoretical model. Nevertheless the results exhibit similar behavior to the
case of opers, though with relative error that is roughly 1000 times larger: For R less than
an example-dependent threshold (approximately 0.5 for (A2, A2) or 1 for the other examples)
the relative difference remains below 10−6 (1 PPM), and the error estimate often does not
apply in this region. This is consistent with the hypothesis that other sources of error domi-
nate here, preventing the Richardson extrapolation from seeing the expected dependence on
the mesh size. For R above the threshold, the error estimate succeeds in most cases, and
gives a result that closely tracks (and often exceeds) the observed difference. The (A1, A3)
experiment is the least consistent with this overall pattern, as the error estimate fails for
a significant number of large-R data points. In general the (A1, A3) Hitchin section com-
putations were also the most computationally expensive for the direct method, requiring
significantly more iterations than other examples at comparable parameter values (e.g. those

which ultimately give similar relative difference with X IEQ
i ), and we expect this is related to

this example having the highest-degree polynomial differential among all those considered.
Our experiments with Hitchin’s metric for the (A1, A2) case show that using the integral

equation method to calculate Hitchin’s metric through Equation 3.16 has reasonably close
agreement with the results of a direct calculation of the metric by solving the relevant PDE.
The agreement between the two hyperkähler metric calculation methods is not as close (in
terms of relative difference) as that of the spectral coordinates themselves, however this is
to be expected. Both methods of calculating Hitchin’s metric involve an additional layer of
approximation that builds on the spectral coordinate computations: For the direct method,
the numerical approximation of the self-dual metric u is used as input to another PDE
solver which computes the complex variation F , allowing error in u itself to propagate to a
larger error in F . In the integral equation method, we take finite differences of the spectral
coordinates, amplifying the error in the individual coordinate calculations and introducing
additional truncation error.

9.2. Limitations. Our experimental approach initially prioritized simplicity of implementa-
tion, and was incrementally improved to explore additional aspects of the twistor Riemann-
Hilbert conjecture. If a substantial revision or full redesign were considered, it would be
natural to attempt to address the following limitations of our approach.

• Numerical instability of the direct method. This significant limitation of our
approach was already mentioned in Section 7.1: As |~|−1 → ∞ or R → ∞, a typi-
cal spectral coordinate approaches 0 or ∞, and hence one of the determinants p(i, j)
or p(i, j, k) involved in its calculation must approach 0. For large parameters we are
therefore computing the determinant of a nearly-singular matrix whose entries are of
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size ∼ 1 and which are known to fixed relative precision, resulting in a significant loss of
precision. This phenomenon is the reason our current implementation is unable to test
the twistor Riemann-Hilbert conjecture for larger parameter values.

• High memory usage of the direct method (Hitchin section). While the fourier
method requires much less memory than the euler method, memory was still the main
factor constraining the values of pde nmesh we were able to study. This is significant
since discretization error is expected to be the dominant source of numerical error in the
direct method calculations for large R or |~|−1, and in our current approach, discretiza-
tion error is roughly proportional to (pde nmesh)−2. However, rather than attempting
to reduce the memory requirements of the current method, we believe a better approach
would be to use a PDE solver that can achieve higher accuracy at a given pde nmesh.

• Lack of error bounds. As noted earlier, our study of the numerical error in our
calculations is limited: We do not consider the error in the integral equation method
at all, and our analysis of error in the direct method is an estimate, not a rigorous
bound. While working out precise error bounds for these methods would be a substantial
undertaking, it would be necessary in order to make rigorous positive statements about
the bearing of the results on the main conjecture, e.g. to say that the predictions of the
conjecture in a given case hold to within numerical error.

9.3. Future directions. Our work suggests several directions that could be pursued in
future experiments, though each brings its own challenges.

• Changing the base Riemann surface. All of our experiments involve Higgs bundles
or opers on the complex plane. The use of a single global coordinate chart and the
expression of the holomorphic differentials as polynomials are deeply embedded in our
implementation, and so a change of this type would require substantial revision. The
cylinder C∗ is the case accessible by the least modification of our code; there it would be
possible to work on the universal cover, imposing suitable mixed boundary conditions
on a rectangular region projecting to an annulus ε 6 |z| 6 1/ε.

• Changing the rank. We have considered Higgs bundles of rank N 6 3, because these
are exactly the cases where the self-duality equation reduces to a single scalar equation.
It would be relatively straightforward to generalize our study of opers to higher rank,
but it would require major changes to study the Hitchin section in higher rank due to
the need to handle systems of PDE.

• Moving off the Hitchin section. It would also require considerable changes to our
implementation to study Higgs bundles that are not in the Hitchin section (even for
rank N = 2). However, generalizing the code in this direction would be especially
appealing; the full hyperkähler metric on Md,h is a considerably richer object than the
Kähler metric on Bd,h, and while the twistor Riemann-Hilbert conjecture does extend
to the whole Md,h, we are not aware of any numerical studies in this direction. The
asymptotics of the full metric onMd,h have been the subject of extensive study recently
(see e.g. [41, 23] and the survey [22]); the results support the twistor Riemann-Hilbert
conjecture.

• Integral equation prediction for self-dual metric. While we have focused on
the conjecture’s predictions for spectral coordinates (and Hitchin’s metric, as computed
from derivatives of spectral coordinates), in the case of Higgs bundles it is also possible
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to refine the twistor Riemann-Hilbert conjecture to give a conjectural formula for the
self-dual metric itself in terms of integral equations described in [27]. If this extension
of the integral equation approach were implemented, it would be very convenient to
compare the results to the direct methods already implemented in our code. Indeed,
such a comparison would avoid all of the complexity of computing parallel transports
and determinantal invariants, and quite possibly be easier to analyze rigorously to obtain
bounds on numerical error.

We hope to pursue some of these directions in the future.
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