
ar
X

iv
:2

10
4.

07
89

5v
2 

 [
m

at
h.

C
O

] 
 1

6 
D

ec
 2

02
1

ON COMBINATORICS OF VORONOI POLYTOPES FOR

PERTUBATIONS OF THE DUAL ROOT LATTICES

ALEXEY GARBER

Abstract. The Voronoi conjecture on parallelohedra claims that for every convex
polytope P that tiles Euclidean d-dimensional space with translations there exists a
d-dimensional lattice such that P and the Voronoi polytope of this lattice are affinely
equivalent. The Voronoi conjecture is still open for the general case but it is known
that some combinatorial restriction for the face structure of P ensure that the Voronoi
conjecture holds for P .

In this paper we prove that if P is the Voronoi polytope of one of the dual root
lattices D∗

d
, E∗

6
, E∗

7
or E∗

8
= E8 or their small perturbations, then every parallelohedron

combinatorially equivalent to P in strong sense satisfies the Voronoi conjecture.

1. Introduction

Root systems appear in many mathematical fields. The associated root lattices and
their dual play a prominent role in many geometric questions for lattices including
sphere packing and covering problems especially in low dimensions.

In this paper we turn our attention to the properties of the Delone decompositions for
dual root lattices and how the combinatorics of the corresponding tilings in their subdi-
visions can enforce the Voronoi conjecture on parallelohedra that establishes connection
between convex polytopes that tile space with translations, parallelohedra, and Voronoi
polytopes for lattices. The Voronoi conjecture [21] claims that every convex polytope
that tiles d-dimensional Euclidean space with translations only can be obtained as an
affine image of a Voronoi polytope for d-dimensional lattice.

The Voronoi conjecture is proved for d ≤ 5 and for several families of parallelohedra
with local or global combinatorial restrictions; we refer to [11] for more details and
references. Particularly, the Voronoi conjecture in R

5 was proved only recently in [11],
and this proof relied on the reduction of the Voronoi conjecture to its combinatorial
version from [6] as well as on a detailed combinatorial analysis of local structure of
possible five-dimensional parallelohedra tilings.

In this paper we study further avenues where a similar combinatoial reduction can
be used. Our main result shows that it can be used for many parallelohedra associated
with dual root lattices or their small perturbations. In the concluding sections we
discuss more general appoaches for such reduction.

Before stating our main results we introduce two main notions that are needed. More
detailed introduction is given in Section 2.
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2 ALEXEY GARBER

Given two d-dimensional lattices Λ and Λ′, let D and D′ be the associated Delone
decompositions. We will say that D′ is a Delone subdivision of D if there is an affine
transformation A such that A(Λ′) = Λ and for every polytope P of D′, A(P ) is con-
tained in some polytope of D.

In other words, we can find two affine transformations of D and D′ such that the
images share the vertex set and the image of D′ is a subdivision of the image of D.

Now let P be a parallelohedron. It is known that P is centrally symmetric and that
there exists unique facet-to-face tiling of the ambient space with translated copies of P
assuming P is centered at the origin, see [12]; let TP denote this face-to-face tiling. For
every face F of this tiling we can construct the dual cell D(F ) that consists of centers
of all copies of P that are incident to F .

The set of all dual cells form the dual cell complex for P with the face lattice which
is dual to the face lattice of TP . In case P is the Voronoi polytope for some lattice, the
dual cell complex geometrically coincides with the Delone decomposition of that lattice.
For an arbitrary parallelohedron it only carries local combinatorics of the corresponding
parallelohedral tiling.

Our main result claims that combinatorics of any Delone subdivision for some dual
root lattice except Z

d is enough to enforce the Voronoi conjecture for any associated
parallelohedron. In terms of dual complexes this can be formulated as follows.

Theorem 1.1. Suppose P is a parallelohedron such that the dual cell complex of P is

strongly combinatorially equivalent to a Delone subdivision of one of the lattices D∗

d, E
∗

6,

E
∗

7, or E
∗

8, then P satisfies the Voronoi conjecture.

More direct formulation that requires more involved operations for the lattices is the
following.

Theorem 1.2. Let P be a parallelohedron. If there exists a lattice Λ, such that

(1) the Dirichlet-Voronoi polytope of Λ is strongly combinatorially equivalent to P ,

and

(2) the Delone decomposition of Λ is strongly combinatorially equivalent to a Delone

subdivision of one of the lattices D∗

d, E
∗

6, E
∗

7, or E
∗

8,

then P satisfies the Voronoi conjecture.

Here strong equivalence means that not only the polytopes (or decompositions) are
equivalent, but that this equivalence is respected by lattice translations. We refer to
[6, Def. 1.1] for the precise definition in case of parallelohedra.

Another point of view is the following. If Λ is a small perturbation of one of the
lattices D∗

d, E
∗

6, E
∗

7, or E
∗

8, then every parallelohedron strongly combinatorially equivalent
to the Voronoi polytope of Λ satisfies the Voronoi conjecture. However the bounds
for “small” perturbation of each lattice basis in this description should be specified
separately.

Note that we do not mention the dual lattice A∗

d. The Delone decomposition for A∗

d is
a triangulation and therefore there is no non-trivial subdivision. For parallelohedra with
dual complexes represented by triangulations the Voronoi conjecture was established
by Voronoi [21] so this case is trivial.

The paper is organized as follows. In Section 2 we introduce the main notions for
parallelohedra tilings and for the associated dual cell complexes as well as give a short
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overview of the results related to the Voronoi conjecture that we use. In Sections 3 and 4
we briefly explain how perturbations of lattices are connected with Delone subdivisions
and introduce the notations needed for subsequent sections. In Sections 5 through 7 we
describe the Delone decompositions of dual root lattices, mostly utilizing the approach
by Conway and Sloane [3], and establish the properties of these decompositions needed
for the main results.

In Section 8 we prove main results. In Section 9 we give concluding remarks on
similar approach to root lattices and general lattices.

2. Lattices, parallelohedra, and the Voronoi conjecture

In this section we introduce the definitions and provide necessary background for
lattices, parallelohedra, and the Voronoi conjecture.

Definition 2.1. Let e1, . . . , ed be a basis in R
d. The set of all integer linear combina-

tions of these vectors is called a lattice Λ, i.e.

Λ := {x1e1 + . . . xded|xi ∈ Z}.

For given lattice Λ, the Voronoi polytope of Λ is the polytope that consists of the
points that are closer to the origin than to any other point of Λ. Copies of this polytope
centered at all points of Λ form the Voronoi tiling of Λ.

The Delone decomposition of Λ is the tiling which is geometrically dual to the Voronoi
tiling of Λ. A polytope P is a full-dimensional polytope of the Delone decomposition
of Λ if and only if all vertices of P are in Λ, P is inscribed in a sphere, and the sphere
circumscribed around P does not contain other points of Λ inside or on the boundary.

Definition 2.2. Convex d-polytope is called a parallelohedron if it tiles Rd with trans-
lations.

The following Minkowski-Venkov conditions [17, 20] are necessary and sufficient for
convex polytope P to be a parallelohedron.

(1) P is centrally symmetric;
(2) Every facet of P is centrally symmetric;
(3) For every codimension 2 face F of P , the projection of P along F is either

parallelogram or centrally symmetric hexagon.

Moreover, if a convex polytope P satisfies these conditions, then there is a face-to-
face tiling with translated copies of P , see [20, 15, 16]. This face-to-face tiling is unique
assuming that one copy is centered at the origin and in this case the centers of all tiles
form a d-dimensional lattice. For a given parallelohedron P we will denote this tiling
TP .

The following conjecture was formulated by Voronoi in [21].

Conjecture 2.3. For every d-dimensional parallelohedron P there exists a d-
dimensional lattice Λ such that the Voronoi polytope of Λ and P are affinely equivalent.

While there are several families of parallelohedra that are known to satisfy the
Voronoi conjecture, and we again refer to [11] for more detailed survey of results, here
we will concentrate on the cases that are related to the following notion of dual cells.
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Definition 2.4. Let F be a face of the tiling TP . The dual cell D(F ) of F is the
collection of centers of copies of P incident to F .

If F is a face of codimension k, then D(F ) is called dual k-cell.

If P is the Voronoi polytope of a lattice, then the associated dual cells are the vertex
sets of the faces of Delone polytopes of that lattice. However, for general parallelohedra
such geometric description is not known. Nevertheless, the set of all dual cells carries
the structure of a cell complex, the dual cell complex, with the face lattice dual to the
face lattice of the tiling TP .

In the view of Voronoi conjecture, the possible dual k-cells are expected to coincide
with k-dimensional Delone polytopes for various lattices. This property is established
only for k ≤ 3 and is not known general. We will consider only dual 2- and 3-cells and
we will refer to such cells as to 2- and 3-dimensional polytopes. Particularly, each dual
2-cell is either triangle or a parallelogram and this follows from the Minkowski-Venkov
conditions.

The classification of dual 3-cell was obtained by Delone [4], see also [14]. Each dual
3-cell belongs to one of the following geometric types.

• Tetrahedron;
• Octahedron;
• Pyramid over parallelogram;
• Triangular prism;
• Parallelepiped.

The following cases of the Voronoi conjecture are known for various restrictions on
dual cells.

Theorem 2.5 (Voronoi [21]). If all dual d-cells of a d-dimensional parallelohedron P
are simplices, then P satisfies the Voronoi conjecture.

Theorem 2.6 (Zhitomirski, [22]). If all dual 2-cells of a parallelohedron P are triangles,

then P satisfies the Voronoi conjecture.

Theorem 2.7 (Ordine, [18]). If each dual 3-cell of a parallelohedron P is either a

tetrahedron, octahedron, or pyramid, then P satisfies the Voronoi conjecture.

The three theorems above state that if certain faces of parallelohedron satisfy some
local combinatorial condition, then this parallelohedron satisfies the Voronoi conjecture.
In paper [10], it was shown that a certain global combinatorial condition implies the
Voronoi conjecture as well. We will introduce this condition in terms of the red Venkov
graph as described in [9] and [6].

Definition 2.8. For a fixed parallelohedron P we define the following graph G(P ), the
red Venkov graph for P .

The vertices of G(P ) are identified with equivalence classes of dual 1-cells for P ; two
1-cells are equivalent if they differ by translation on a vector from the lattice associated
with P .

Two distinct vertices x and y of G(P ) are connected with an edge if and only if there
is a triangular dual 2-cell of P that is incident to two dual 1-cells equivalent to (1-cells
associated with) x and y.

If Λ is a lattice and P is the Voronoi parallelohedron for Λ, then we also refer to
G(P ) as the red Venkov graph for Λ and denote it as G(Λ).
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A

B

C

D

Figure 1. Some of possible basic cycles. The black polytopes represent
possible dual 3-cells except the cubic cell. The colored dots correspond
to dual 1-cells and therefore the edges of the red Venkov graph. The
red cycles show trivially contractible cycles around vertices A, B, and C
of the corresponding dual 3-cells. These cycles need to be understood
as cycles of the corresponding dual 1-cells. Particularly, all dual 2-cells
incident to A, B, and C in these dual 3-cells are triangles. The blue cycles
show selected half-belt cycles; each of these cycles include three dual 1-
cells within one triangular dual 2-cell. The green cycle around vertex D
is not a trivially contractible cycle because one of the dual 2-cells incident
to D in the given pyramid is a parallelogram1.

The graphG(P ) encodes which pairs facets of P share a primitive face of codimension
2, i.e. a face with triangular dual cell. A similar approach can be used to construct the
full Venkov graph that tracks both types of possible shared faces of codimension 2, see
[18]. However, for our purposes the red Venkov graph is more useful as the structure
of cycles of this graph can be used to guarantee the Voronoi conjecture using only
combinatorics of P .

Definition 2.9. Suppose vertices x, y, and z of G(P ) correspond to edges of one
triangular dual 2-cell of P . Then the cycle xyzx of G(P ) is called half-belt cycle.

Let D be a dual 3-cell of P . Suppose that the origin belongs to D and that all
dual 2-cells of D that contain the origin are triangles. This means that D is either a
tetrahedron, octahedron, or pyramid and in the latter case the origin is the apex of the
pyramid. Let C be the cycle of G(P ) that consists of vertices and edges corresponding
to the sequence of dual 1-cells of D around the origin. Then C is called trivially

contractible cycle.
All together these families of cycles are called the basic cycles of G(P ). We also refer

to Figure 1 for a visualized description of both types of cycles.

We will use the following adaptation of [10, Thm. 4.6]. It was also reformulated in
a similar way in [9] and [6].

1Actually, there will be no edge associated with the dashed green edge in the corresponding Venkov
graph because the two green vertices in the base of the pyramid do not correspond to dual 1-cell within
one triangular dual 2-cell.
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Theorem 2.10. Let G be the group of cycles of G(P ) with rational coefficients2. If G
is generated by the set of basic cycles, then the Voronoi conjecture is true for P .

Theorems 2.10 and 2.7 both generalize Theorems 2.5 and 2.6. That is, if the con-
ditions of Theorem 2.5 or Theorem 2.6 can be applied to parallelohedron P , then
conditions of Theorem 2.10 and Theorem 2.7 can be applied to P as well. While there
is no similar direct dependence between Theorems 2.10 and 2.7, there is a generalization
of both. This generalization is given in [6, Thm. 5.1]. It also uses the combinatorics
of P to construct another simplicial complex, the Venkov complex of P , and its coho-
mologies.

In this paper we will not use the Venkov complex, but our proof of Theorem 1.1 will
use that the corresponding parallelohedra satisfy conditions of either Theorem 2.7 or
Theorem 2.10. Consequently, the analogue of [6, Thm. 5.1] holds for such parallelohedra
as well.

3. Perturbations of lattices

In this section we show how Delone subdivisions defined in the introduction are
connected with perturbations of lattices. While this observation does not participate in
the proof of any results and serves only for more perceptible reformulation of Theorem
1.1, we think it should be presented here for completeness. The approach is largely
based on [19, Sect. 2.6].

Let Λ be a d-dimensional lattice and let G be the Gram matrix of some basis A of Λ.
Then the Delone decomposition of Λ is affinely equivalent to the Delone decomposition
of the integer lattice Zd with respect to the metric defined by the quadratic form xtGx.
This is easy to see once we consider the affine transformation from A to the standard
basis of Zd.

In this representation, we consider the ellipsoids of the form

(x− a)tG(x− a) = r2

that do not contain integer points inside. Then the integer points on such ellipsoids cor-
respond to integer combinations of the vectors from A that constitute Delone polytopes
for Λ.

Now if Λ′ is another lattice such that the Delone decomposition of Λ′ is a Delone
subdivision of Λ, then we can choose a basis A′ of Λ′ such that the linear transformation
from A′ to A gives the required subdivision. Let G′ be the Gram matrix of A′. In that
case, for empty ellipsoid of Zd with respect to G′, the induced set of integer points is
contained in some empty ellipsoid for G.

Let P ′ and P be some polytopes with integer vertices such that P ′ ⊆ P and suppose
that P ′ and P correspond to Delone polytopes of Λ′ and Λ respectively. Then there
are ellipsoids

(x− a′)tG′(x− a′) = r′2 and (x− a)tG(x− a) = r2

that correspond to P ′ and P . That is every vertex of P ′ satisfies the first equality while
every other point of Zd satisfies the inequality

(x− a′)tG′(x− a′) > r′2.

2That is G is the group of one-dimensional rational homologies if we treat G(P ) as simplicial
complex.
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A similar property holds for P and the second ellipsoid.
For small ε > 0, the lattice with the Gram matrix G+εG′ can be seen as a perturba-

tion of Λ as its basis is a perturbation of A. On the other hand, if we add two equations
of ellipsoids above taking the first one with coefficient ε, we will get an ellipsoid with
the quadratic part defined by G+ εG′. The new ellipsoid defines the same polytope P ′.

Repeating the same arguments for all polytopes of the Delone decomposition for Λ′,
we get that the Delone decomposition of the new lattice coincides with the one for Λ′.
Thus every Delone subdivision of Λ can be seen as a Delone decomposition for a small
perturbation of Λ.

The converse statement is also true and every small enough perturbation of the Gram
matrix G gives a lattice that defines some Delone subdivision of Λ.

4. Some operations on polytopes

In the following sections we use the following notations for standard constructions
for convex polytopes. We refer to [13] for more details.

Let P and Q be two convex polytopes in complementary subspaces of Rd such that
P and Q both contain the origin 0 in their (relative) interiors. The origin is the only
point of intersection of the ambient subspaces for P and Q as these subspaces are
complementary. Then the polytope P ⊕ Q := conv(P ∪ Q) is called the free sum of
P and Q. Another term which is used for this construction is “join”, see [3], but we
reserve it for the next construction.

The faces of P ⊕ Q (except the free sum itself) are all convex hulls of the form
conv(FP ∪FQ) where FP and FQ are faces of P and Q respectively; note that the faces
can be empty but cannot coincide with P or Q. In a similar way we define the free sum
of three or more convex polytopes.

For the second construction, let P and Q be two convex polytopes in skewed sub-
spaces. That is, the ambient subspaces do not intersect and the associated linear
subspaces have trivial intersection. Then the polytope P ∗Q := conv(P ∪Q) is called
the join of P and Q. In [3], the term “separated join” is used.

The faces of P ∗Q are all possible convex hulls conv(FP ∪FQ) including empty faces
and faces that are equal to either P or Q.

5. Lattices E
∗

6, E
∗

7, and E8

For the lattices E
∗

6, E
∗

7, and E
∗

8 = E8, our main result follows from the structure of
the associated Delone decompositions. We refer to [3] and [2] for more details on the
lattices itself.

5.1. The lattice E
∗

6.

Lemma 5.1. If P is a polytope in some Delone subdivision of E
∗

6, then all two-

dimensional faces of P are triangles.

Proof. Let Q be a six-dimensional polytope of the Delone decomposition of E∗

6. Then
Q is a free sum of three equilateral triangles, see [3]. The polytope Q is a 2-neighborly
polytope, that is every pair of vertices of Q is connected by an edge.

If the vertex set of P is a subset of the vertex set of Q, then P is also a 2-neighborly
polytope. Hence all two-dimensional faces of P are triangles. �
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5.2. The lattice E
∗

7.

Lemma 5.2. If P is a polytope in some Delone subdivision of E
∗

7, then no three-

dimensional face of P is a triangular prism or a parallelepiped.

Proof. Let Q be a seven-dimensional polytope of the Delone decomposition of E∗

7. Then
Q is a seven-dimensional diplo-simplex, i.e. the convex hull of a seven-dimensional
simplex and its symmetric copy; see [3]. The polytope Q has 16 vertices and each
vertex of Q is incident to 14 edges corresponding to each other vertex of Q except the
opposite one.

Suppose the vertex set of P is a subset of the vertex set of Q and let P ′ be a three-
dimensional face of P . Then every vertex of P ′ is not connected by an edge with at most
one other vertex of P ′, thus P ′ cannot be a triangular prism or a parallelepiped. �

5.3. The lattice E8.

Lemma 5.3. If P is a polytope in some Delone subdivision of E8, then no three-

dimensional face of P is a triangular prism or a parallelepiped.

Proof. Let Q be an eight-dimensional polytope of the Delone decomposition of E8. Then
Q is either an eight-dimensional cross-polytope or an eight-dimensional simplex; see [3].
In the first case, the polytope Q has 16 vertices and each vertex of Q is incident to 14
edges corresponding to each other vertex of Q except the opposite one. In the second
case, the polytope Q is a 2-neighborly polytopes. In both cases we can use the same
arguments as in Lemma 5.2 for the three-dimensional faces of P . �

6. Lattice D
∗

2m

Our next goal is to give a description for the red Venkov graph of D∗

d. We start from
the even case d = 2m.

For the lattice D∗

2m (and the lattice D∗

2m+1 below) we will need more detailed structure
of the Delone decomposition and associated red Venkov graph. We assume that m ≥ 3
as the case of D∗

4 = D4 can be viewed as part of the four-dimensional case which was
studied in [9].

Geometrically, the lattice D
∗

d can be constructed as the set of integer or half-integer
points where all coordintates are not integers. That is

D
∗

d = Z
d ∪ (

(

1

2
, . . . ,

1

2

)

+ Z
d)

It can also be seen as a high-dimension analogue of the three-dimensional BCC lattice.
For two lattice points x and y we will use notation x⊕y for the parity class represented

by x+ y, i.e.
x⊕ y := (x+ y) + D

∗

d/2D
∗

d.

6.1. The Delone decomposition of D∗

2m.

Every polytope of the Delone decomposition of D∗

2m is a free sum of twom-dimensional
cubes; see [3]. More precisely, If u is a point in R

2m with m integer coordinates and

m half-integer coordinates, then the sphere of radius

√

m

4
centered at u contains 2m+1
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points of D∗

2m and no points of D∗

2m inside. These 2m+1 points can be obtained by
either changing the m integer coordinates of u by ±1

2
(the first cube with half-integer

vertices), or by changing the m half-integer coordinates of u by ±1

2
(the second cube

with integer vertices). There are

(

2m− 1

m− 1

)

=
1

2

(

2m

m

)

translational classes of such

polytopes in the Delone decomposition of D∗

2m corresponding to all possible choices of
m half-integer coordinates of u; complementary choices define the same translational
class as the corresponding points differ by a vector from D

∗

2m.
In the sequel, we will denote as Pu the Delone polytope of the Delone decomposition

of D∗

2m centered at an appropriate point u. Particularly, coordinates of u will be 0s and
1

2
s in most of the cases; these points represent all different classes of Delone polytopes

incident to the origin.

6.2. The red Venkov graph of D∗

2m.

The vertices of the red Venkov graph correspond to the edges of the Delone decompo-
sition. Hence, the graph G(D∗

2m) has 2m+22m−1 vertices. First 2m vertices correspond
to edges between vertices of one cube in Pu for all relevant u; each such edge connects
two points that differ by a vector e with exactly one non-zero coordinate which is 1.
We call these vertices the integer vertices of G(D∗

2m) and denote each vertex as e for
appropriate e.

The remaining 22m−1 vertices correspond to edges between two different cubes in
the free sums of cubes. These edges connect vertices that differ by vectors t with
all coordinates ±1

2
; opposite vectors t and −t define translationally equivalent edges

and therefore the same vertex of G(D∗

2m). We say that these vertices are half-integer

vertices of G(D∗

2m) and denote them t for appropriate t. We can associate the half-

integer vertices of G(D∗

2m) with the vertices of 22m-dimensional cube C2m :=
[

−1

2
, 1
2

]2m

after identification of pairs of opposite vertices.
The edges of the graph G(D∗

2m) come from triangular faces of the Delone decompo-
sition of D∗

2m. Two vertices of G(D∗

2m) are connected with an edge if and only if there
is a traingular face of the Delone decomposition of D∗

2m whose two edges correspond to
these vertices.

Each triangular face of a free sum of two cubes has two vertices in one cube and
one vertex in the other cube. Hence no edge of G(D∗

2m) connects two integer vertices.
Additionally, two half-integer vertices of G(D∗

2m) (the vertices corresponding to edges
between two different cubes) may be connected with an edge only if the corresponding
vectors differ in exactly one coordinate; the vector of difference corresponds to the
remaining edge of the triangular face of the free sum between two vertices of one cube.

On the other hand, for every integer vertex e and every half-integer vertex t, a repre-
sentative of the class t⊕ e corresponds to a half-integer vertex of G(D∗

2m). These three
vertices of the graph correspond to edges of one triangle of the Delone decomposition
of D∗

2m.
In order to justify that, we may assume that e = (1, 0, . . . , 0). Let x be the point

in R
2m such that its first coordinate is 1

2
, coordinates from 2 to m coincide with the

corresponding coordinates of t (or t ± e), and the rest of coordinates are zeros. Then
x has exactly m nonzero coordinates that are equal to ±1

2
and the polytope of the

Delone decomposition of D∗

2m centered at x contains the origin, the point e, and a
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Figure 2. The graph G(D∗

2m). The top level vertices are the 2m integer
vertices. The other vertices are the 22m−1 half-integer vertices. The blue
edges connect every integer vertex with every half-integer vertex. The
black edges (including dashed and dotted edges) give the structure of
the 1-skeleton of the cube C2m with opposite vertices identified on the
half-integer vertices.

point from one of two classes t or t⊕ e. Moreover, these three points form a triangular
face of this Delone polytope because there is an edge connecting the origin and e in the
corresponding cube of the free sum.

Thus every integer vertex of G(D∗

2m) is connected with every half-integer vertex. And
two half-integer vertices are connected if and only if the corresponding vectors differ in
exactly one coordinate. Therefore the subgraph induced by the half-integer vertices can
be viewed as one-dimensional skeleton of the cube C2m with opposite vertices identified.
This subgraph can also be seen as the one-dimensional skeleton of (2m−1)-dimensional
cube with additional edges connecting opposite vertices, but the first description will
be more visual for our proof.

The structure of the graph G(D∗

2m) is summarized in Figure 2.

6.3. The red Venkov graph associated with a Delone subdivision of D∗

2m.

Suppose D is a Delone subdivision of D∗

2m. That is, there is a lattice Λ such that
D is a Delone decomposition of Λ and there exists an affine bijection from Λ to D

∗

2m

that maps every polytope of D inside some free sum of two cubes within the Delone
decomposition of D∗

2m. In this section we describe some properties of the Venkov graph
G(Λ) associated with this Delone decomposition.

Similarly to the graph G(D∗

2m), we can split the vertices of G(D) into integer and
half-integer vertices depending on whether corresponding edge connects two vertices
within one cube of some free sum or two vertices from two cubes. When constructing
the red Venkov graph of a subdivision, vertices and edges of the initial red Venkov
graph do not disappear because edges and triangles of the initial Delone decomposition
do not disappear. Hence the graph G(D) has 22m−1 half-integer vertices.
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Lemma 6.1. Let v be an integer vertex of G(D) with k non-zero coordinates. Suppose

k 6= m. Then v is connected by edges with exactly 22m−k half-integer vertices that can

be obtained from 1

2
v by changing zero coordinates to ±1

2
.

Proof. First we notice that 1 ≤ k ≤ m because exactly such vertices appear in Delone
polytopes of D∗

2m incident to the origin. Moreover, without loss of generality we may
assume that v = (1k, 02m−k), that is first k coordinates of v are 1s and all other are 0s.

Let t be some half-integer vertex of G(D) connected with v. There is a Delone
triangle in D with vertices z, z+v, and z± t for some point z. We may assume that z
is the origin and in that case these three points must be in one of the free sums from the
Delone decomposition of D∗

2m. The center of this free sum must have first k coordinates
equal to 1

2
. This implies that t (or −t) is a half-integer vertex of the form described in

the statement of the lemma.
It remains to show that all such half-integers vertices are connected with v. If k = 1,

then the statement follows from Subsection 6.2. We use similar approach for other k.

Suppose 1 < k < m. Let t be any half-integer vertex of G(D) of the form t = (1
2

k
, ∗)

where ∗ is placeholder for any sequence of 2m − k coordinates equal to ±1

2
. Let x be

the point with first m coordinates equal to the first m coordinates of t and with all
other coordinates being zeros. Then the free sum Px contains the origin and the points
v and t.

Let F be the minimal face of the integer cube of Px that contains the origin and v.
The convex hull of F and t is a face of Px. In D, this convex hull is also subdivided into
smaller faces, and since there is an edge connecting v with the origin, there is a face
F ′ of subdivision that contains this edge and t. In this case the triangle with vertices
v, t, and the origin is a face of F ′ and hence a Delone triangle of D. This means that
the vertices v, t, and v ⊕ t, the edges of this triangle, are connected with edges in
G(D). �

7. Lattice D
∗

2m+1

We assume that m ≥ 2. It is worth noting that the case m = 2 and the lattice D
∗

5

with its Delone subdivisions was consider in [6] as part of the five-dimensional analysis.

7.1. The Delone decomposition of D∗

2m+1.

Every polytope of the Delone decomposition of D∗

2m+1 is a join of two m-dimensional
cubes; see [3]. More precisely, If u is a point in R

2m+1 with m integer coordinates, m
half-integer coordinates, and one unique coordinate in 1

4
+ 1

2
Z, then the sphere of radius

√

4m+ 1

16
centered at u contains 2m+1 points of D∗

2m+1 and no points of D∗

2m+1 inside.

These 2m+1 points can be obtained be either changing the m integer coordinates of
u by ±1

2
and setting the unique coordinate to the closest half-integer (the first cube

with half-integer vertices), or by changing the m half-integer coordinates of u by ±1

2

and setting the unique coordinate to the closest integer (the second cube with integer
vertices).
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There are (2m + 1)

(

2m

m

)

=
1

2

(

2m

m

)

translational classes of such polytopes in the

Delone decomposition of D
∗

2m+1 corresponding to all possible choices of the unique
coordinate in 1

4
+ Z and then m half-integer coordinates of u.

In the sequel, we will denote as Pu the Delone polytope of the Delone decomposition
of D∗

2m+1 centered at an appropriate point u. Particularly, coordinates of u will be 0s,
1

2
s and ±1

4
in most of the cases; these points represent all different classes of Delone

polytopes incident to the origin.

7.2. The red Venkov graph of D∗

2m+1.

The structure of the red Venkov graph G(D∗

2m+1) is similar to the one described in
Subsection 6.2.

The graph G(D∗

2m+1) has 2m+ 1+ 22m vertices. First 2m+ 1 vertices correspond to
edges between vertices of a single cube in Pu for all relevant u; each such edge connects
two points that differ by a vector e with exactly one non-zero coordinate which is 1.
We call these vertices the integer vertices of G(D∗

2m+1) and denote each vertex as e for
appropriate e.

The remaining 22m vertices correspond to edges between two different cubes in the
joins of cubes. These edges connect vertices that differ by vectors t with all entries equal
to ±1

2
; opposite vectors t and −t define translationally equivalent edges and therefore

the same vertex of G(D∗

2m+1). We say that these vertices are half-integer vertices of
G(D∗

2m+!) and denote them t for appropriate t. We can associate the half-integer vertices

of G(D∗

2m+1) with the vertices of 22m+1-dimensional cube C2m+1 :=
[

−1

2
, 1
2

]2m+1
after

identification of pairs of opposite vertices.
The edges of the graph G(D∗

2m+1) come from triangular faces of the Delone decom-
position. Two vertices of G(D∗

2m+1) are connected with an edge if and only if, there is
a traingular face of the Delone decomposition of D∗

2m+1 whose two edges correspond to
these vertices.

Each triangular face of a join of two cubes has two vertices in one cube and one
vertex in the other cube. Hence no edge of G(D∗

2m+1) connects two integer vertices.
Additionally, two half-integer vertices of G(D∗

2m+1) (the vertices corresponding to edges
between two different cubes) may be connected with an edge only if the corresponding
vectors differ in exactly one coordinate.

On the other hand, for every integer vertex e and every half-integer vertex t, a
representative of the class t ⊕ e corresponds to a half-integer vertex of G(D∗

2m+1).
These three vertices of the graph correspond to edges of one triangle of the Delone
decomposition of D∗

2m+1 in the same way we established for the graph G(D∗

2m).
Thus, every integer vertex of G(D∗

2m+1) is connected with every half-integer vertex.
And two half-integer vertices are connected if and only if the corresponding vectors
differ in exactly one coordinate. Therefore the subgraph induced by the half-integer
vertices can be viewed as one-dimensional skeleton of the cube C2m+1 with opposite
vertices identified.

7.3. The red Venkov graph associated with a Delone subdivision of D∗

2m+1.

Similarly to Delone subdivisions of D∗

2m, if D is a Delone subdivision of D∗

2m+1, then
we can split the vertices of G(D) into integer and half-integer vertices depending on
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whether corresponding edge connects two vertices within one cube of some join or two
vertices from two cubes. When constructing the red Venkov graph of a subdivision,
vertices and edges of the initial red Venkov graph do not disappear because edges and
triangles of the initial Delone decomposition do not disappear. Hence the graph G(D)
has 22m−1 half-integer vertices.

We also can formulate the following lemma; it is an analogue of Lemma 6.1. The
proof is also similar.

Lemma 7.1. Let v be an integer vertex of G(D) with k non-zero coordinates. We may

assume k ≤ m. Then v is connected by edges with exactly 22m+1−k half-integer vertices

that can be obtained from 1

2
v by changing zero coordinates to ±1

2
.

8. Proof of the main results

In this section we prove the main theorem of this paper, Theorem 1.1. We split it in
several lemmas.

Lemma 8.1. Theorem 1.1 holds for lattices E
∗

6, E
∗

7, and E
∗

8.

Proof. Lemma 5.1 ensures that every two-dimensional face of every Delone subdivi-
sion of E∗

6 is a triangle. Therefore the corresponding paralleloheda satisfy the Voronoi
conjecture due to result of Zhitomirski [22].

Lemmas 5.2 and 5.3 ensure that no three-dimensional face of any Delone subdivi-
sion of E∗

7 and E
∗

8 is a triangular prism or a parallelepiped. Thus, the corresponding
parallelohedra satisfy the Voronoi conjecture due to result of Ordine [18]. �

Lemma 8.2. Let m ≥ 3 be an integer. Theorem 1.1 holds for the lattice D
∗

2m.

Proof. We first proof the statement for the case when the dual cell complex of P is
equivalent to the Delone decomposition of D∗

2m. After that we give a sketch of the
proof for the Delone subdivisions of D∗

2m and the complete proof of this case with all
the details is given in Appendix A.

We need to show that the set of basic cycles (half-belt and trivially contractible
cycles) generate the group of cycles of G(D∗

2m). Let G be the group of cycles of G(D∗

2m),
and let C be the subgroup generated by the basic cycles. We will show that for every
cycle x of G, the coset x+ C contains a combination of trivially contractible cycles and
therefore x is an element of C.

Suppose x passes through an integer vertex e of G(D∗

2m). According to the results
of Subsection 6.2 there are two half-integer vertices a and b such that x = . . .aeb . . ..
The vertices a and b can be connected by a path of edges through half-integer vertices
only. We will show that changing two edges aeb to this path does not change the coset
of x.

Since e is connected by edges with every half-integer vertex, it is enough to show
this property if there is an edge between a and b, that is if a ⊕ b corresponds to an
integer vertex of G(D∗

2m). If a ⊕ b = e, then there is a triangular face in the Delone
decomposition of D∗

2m with edges corresponding to a, b, and e = a⊕b (see Subsection
6.2). Thus the cycle aeba is a half-belt cycle and swapping two edges aeb to ab does
not change the coset.

Now suppose f := a ⊕ b 6= e; then f is also an integer vector with one non-zero
coordinate. In that case we can find a free sum of two cubes such that e represents
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0

a

b

0

Figure 3. The left part of the figure shows the tetrahedral face 0aeb of
the free sum of two cubes. The red cycle shows the trivially contractible
cycle aeba used in removing integer vertices from the cycle x. The right
shows a pyramidal face of the free sum. The red cycle is the trivially
contractible cycle within this pyramid used to generate the boundary of
a face of C2m. The black points correspond to integer vertices of the free
sum and the blue points correspond to half-integer vertices of the free
sum.

a side of one cube, f represents a side of the other cube, and a and b represent two
vectors between the cubes.

Without loss of generality we may assume that e has one coordinate 1 and that a and
b have coordinates 1

2
in that position. Let y be any point that satisfies the following

properties

• y has coordinate 1

2
in the place where e has nonzero coordinate,

• y matches with both a and b in m− 1 common coordinates, and
• the remaining m coordinates of y are zeros.

Then Py is the desired free sum, see the left part of Figure 3.

The four vertices of Py representing classes of the origin, e, a, and b form a tetrahedral
face of Py and the cycle aeba is a trivially contractible cycle in this tetrahedron.
Swapping two edges aeb to ab does not change the coset of x.

Repeating these steps we find a cycle x′ ∈ x + C that contains only edges between
half-integer vertices of G(D∗

2m), i.e. x
′ can be represented as a path in the 1-skeleton of

the cube C2m that is either a cycle or starts and ends in two opposite vertices of this
cube.

We claim that the boundary of every two-dimensional face of C2m is trivially con-
tractible cycle. Indeed, suppose the free sum of two cubes P ⊕ Q is incident to the
origin and origin is a vertex of P . Then the origin together with one square face of Q
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form a pyramidal face of the free sum. The trivially contractible cycle of this pyramid
is exactly the boundary of a two-dimensional face of C2m, see the right part of Figure
3. It is easy to see that we can get boundary of every face of C2m by choosing an
appropriate free sum.

The boundaries of all two-dimensional faces of C2m together with a path between
two opposite vertices generate all cycles in G if we use integer coefficients. However a
multiple of this path is generated by boundaries as well so all cycles of G are generated
by the boundaries with rational coefficients. Thus x′ belong to the trivial coset, so is
the initial cycle x.

Now let D be some Delone subdivision of D∗

2m. For D we use a similar approach
reducing every cycle of the red Venkov graph to cycle on 1-skeleton of the cube C2m.
However, since the red Venkov graph G(D) may have additional vertices we first apply
another reduction approach to deal with additional vertices and edges.

Recall that we split all vertices of G(D) in integer and half-integer vertices. We
identify the following additional classes of edges and vertices.

• D-vertices (or diagonal vertices). These are the integer vertices of G(D) that
correspond to some diagonal of a cube in some free sum. They correspond to
vectors of the form (±1m, 0m) where exactly m coordinates are zeros.

• I-vertices (or non-diagonal integer vertices). These are all other integer vertices.
• IH-edges (or integer-to-half-integer edges). These are the edges between one
integer vertex and one half-integer vertex.

• II-edges. These are the edges of G(D) that connect two integer vertices.
• D-edges (or diagonal edges between half-integer vertices). These edges are be-
tween two half-integer vertices that differ in exactly m coordinates.

• S-edges (or edges of the 1-skeleton). These are the edges between two half-
integer vertices that belong to 1-skeleton of the cube C2m.

• H-edges (or non-diagonal and non-skeletal edges between half-integer vertices).
These are all other edges between half-integer vertices.

In these terms, the idea of the proof for the lattice D
∗

2m above can be reformulated
as follows. If our cycle x contains a pair of IH-edges with common I-vertex, then we
substitute it with a sequence of S-edges and get another cycle from the coset x + S.
Similar steps for subdivisions of D∗

2m are the following.
Suppose x is a cycle in the red Venkov graph G(D) of some Delone subdivision D of

D
∗

2m. We will use the following modifications of x without changing the corresponding
coset x+ S where S the subgroup generated by the basic cycles. For each step we will
use the same notation x for the old/new cycle.

(1) If x passes through a D-vertex, then we can change a pair of consecutive edges
through such a vertex with a sequence of edges that are not incident to any
D-vertex.

(2) If x contains II-edges, then we can change every II-edge with a pair of IH-edges
without adding new integer vertices. Note that the resulting cycle will not
contain D-vertices after such changes.

(3) If x contains D-edges, then we can swap each D-edge into two H- or S- edges, or
two IH-edges. Note that after this step all edges of x will be IH-, S- or H-edges,
and there will be only I-vertices among integer vertices of x.
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(4) If x contain H-edges, then every such edge can be swapped by a pair of IH-
edges incident to only I-vertices among integer vertices. Note that at this point
x will contain only I-vertices and half-integer vertices and all edges of x will be
S-edges or IH-edges. This resembles the situation for the lattice D

∗

2m with only
exception that we may have more integer vertices but not D-vertices.

(5) If x contains I-vertices, then we can swap a pair of edges incident to one such
vertex with a sequence of S-edges similarly to the approach for D∗

2m above.

After performing these steps we get a cycle x′ ∈ x + S that consists of S-edges
only. Using a small modification of the proof for D

∗

2m we can show that x′ is also
generated by basic cycles. The details of the proof and the separate steps are given in
Appendix A. �

Lemma 8.3. Let m ≥ 2 be an integer. Theorem 1.1 holds for the lattice D
∗

2m+1.

Proof. The proof is similar to the proof of Lemma 8.2. We highlight the main steps
and only emphasize the differences in two proofs.

We use the structure of the graph G(D∗

2m+1) described in Section 7 and show that
every pair of edges incident to one integer vertex can be changed into a sequence of edges
between half-integer vertices. After that we can show that every cycle on half-integer
vertices is generated by the basic cycles of G(D∗

2m+1).
The situation with Delone subdivisions is even slightly simpler for D

∗

2m+1 than for
D

∗

2m. There is no need to consider D-vertices or D-edges separately as they can be
treated as general I-vertices or H-edges respectively. This is because the case k = m is
not special for Lemma 7.1 while it is special for Lemma 6.1. Another point of view is
the following, the cubes of the joins in the Delone decomposition of D∗

2m+1 are faces of
these joins (and hence their diagonals define faces), while this is not true in free sums
of the Delone decomposition of D∗

2m.
Thus the proof follows the same framework as described in Appendix A but with some

steps being redundant. The justification for separate steps is similar for D∗

2m+1. �

Combining Lemmas 8.1, 8.2, and 8.3 we get a proof for Theorem 1.1 as well as for
its reformulation as Theorem 1.2.

9. Concluding remarks

In this paper we study the dual root lattices and combinatorics of the Delone decom-
positions of their perturbations. Similar question whether all perturbations of a given
lattice Λ carry enough combinatorics to ensure the Voronoi conjecture can be asked for
any Λ. In this section we briefly discuss this question for some other families of lattices.

9.1. Root lattices. One of the most natural examples to consider probably even before
dual root lattices is the root lattices themselves. However, this case appears to be more
involved than the dual root lattices despite sharing the same symmetries.

We will use the lattice Dd and its dual to illustrate the case. For the dual lattice,
the Delone polytopes are either free sums or joins of two cubes of dimension ⌊d

2
⌋. On

the other hand, for Dd, the Delone polytopes are either cross-polytopes or half-cubes
[3]. In the latter case the polytopes have 2d−1 vertices or about the quadratic number
of the number of vertices for Delone polytopes of D∗

d.
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Thus, we expect that there are considerably more ways to subdivide d-dimensional
half-cubes than d-dimensional free sums of joins. While it does not mean that com-
binatorics of the perturbed lattice will not be enough for the Voronoi conjecture, the
associated Venkov graph could change a lot compared to the graph G(Dd).

Nevertheless we believe that the analogue of Theorem 1.1 holds for all root lattices
too; however, we do not have a justification at the moment.

9.2. Rigid lattices. Another family of lattices that worth considering for similar ques-
tion is the class of rigid lattices. A lattice Λ is called rigid if every perturbation of Λ
other than scaling has an affinely different Delone decomposition, see [5]. Among the
root lattices and their dual in dimensions at least 2, the lattices Dd, D

∗

2m, E6, E
∗

6, E7,
E
∗

7, and E8 = E
∗

8 are rigid.
Every d-dimensional lattice can be represented as a combination of rigid lattice but

possibly of smaller dimensions, see [7] and references therein for an approach to enumer-
ation of Voronoi parallelohedra that uses rigid lattices (or extreme rays). For example,
there are seven five-dimensional rigid lattices, see [1] and [7].

For 3 out of 7 of the five-dimensional rigid lattices, the approach that we used for
lattices E∗

6, E
∗

7, and E8 can be used. For these three rigid lattices, every Delone polytope
is either 2-neighborly or “almost” 2-neighborly meaning that every vertex is connected
by edges with all other vertices but possibly one.

This observation does not prove any new result because the analogue of Theorem
1.1 was proved in [6] for all five-dimensional lattices. However, this observation could
make the computations in [6] considerably faster as it shows that for some sizeable
amount of lattices, the main result of [6] can be established without computations of
the associated Venkov graphs (or Venkov complexes).

Speaking about higher dimensions, a complete list of six-dimensional rigid lattices is
not known. However, there is list of more than 25,000 rigid six-dimensional lattices [8]
that appear “close” to the lattice E

∗

6. These six-dimensional lattices can serve as first
candidates to check a similar approach in R

6.

9.3. Experimental avenues. Particularly, the lattices mentioned above open several
experimental avenues to approach the Voronoi conjecture and a theoretical counterex-
ample. If there is a way to construct a lattice (or the corresponding Voronoi polytope)
that does not satisfy Theorem 2.10 or its strengthening in [6, Thm 5.1], then it could
possibly mean that combinatorics of parallelohedra is not enough to enforce the Voronoi
conjecture and further geometric arguments are needed.

Alternatively, the combinatorics of such a theoretical lattice or parallelohedron can
be used to construct a counterexample to the Voronoi conjecture.

At this point, all examples that were considered do satisfy Theorem 2.10.
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Appendix A. Delone subdivisions of D
∗

2m

Here we provide the complete proof for the approach described in the proof of
Lemma 8.2 for all Delone subdivisions of D∗

2m; similar approach can be used for Lemma
8.2 and some steps of our proof are redundant. We fix one such subdivision D of D∗

2m

corresponding to some lattice Λ. Recall that G and S are the group of cycles of G(D)
and its subgroup generated by the basic cycles.

We also fix one cycle x in the associated red Venkov graph G(D). We will show that
we can choose a representative from x+S in G which is generated by basic cycles itself.
This is enough to complete the proof of Lemma 8.2.

A.1. The cycle x passes through a D-vertex. Suppose a is a D-vertex of x and
let ℓ be the corresponfing edge of the decomposition D. Note that ℓ belongs only to
triangular faces of D because each free sum of the Delone subdivision of D∗

2m contains
at most one pair of vertices differ by ℓ.

We may assume that if bac are two consecutive edges of x, then b and c correspond
to two edges within one three-dimensional polytope P of D. Moreover, P is either
tetrahedron, octahedron, or quadrangular pyramid.

In all cases, all cycles within the subgraph of G(D) induced by the vertices corre-
sponding to the edges of P are generated by basic cycles, and we can find a path between
b and c within this subgraph that does not go through a. We can swap the pair of
edges bac by this path in x and this path will not contain another D-vertex. Indeed, if
there is another D-vertex in the new path, then there are two edges corresponding to
D-vertices in one free sum of cubes and these edges intersect in the center of the free
sum which is impossible for Delone decomposition of Λ.

After performing such swaps for every D-vertex in x we get a new cycle in the same
coset x+ S (which we will also refer as x) without D-vertices.

A.2. The cycle x contains II-edges. Suppose ab is an II-edge of x. Then there is a
triangle of D with edges represented by integer vectors a, b, and a ⊕ b. After proper
translation we may assume that one vertex of this triangle is at the origin 0, and two
others are at a and b. We claim that there exists a half-integer vertex c such that 0abc
is a tetrahedron of D.

Note that neither a nor b correspond to D-vertex. If a ⊕ b is not a D-vertex, then
the triangle 0ab is part of one face F of one integer cube of some free sum within the
Delone decomposition of D∗

2m. Adding any half-integer vertex of this free sum to F we
get another face. The subdivision D induces a subdivision of this face and hence this
additional vertex, which we denote c, gives the desired tetrahedron.

If a ⊕ b is a D-vertex, then let P be any full-dimensional polytope of D incident to
0ab and let F be any three-dimensional face of P that contains 0ab and at least one
non-integer vertex. Similarly to the previous step, F is either tetrahedron, octahedron,
or pyramid.

https://doi.org/10.1515/crll.1908.134.198
https://doi.org/10.1515/crll.1909.136.67
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If F is an octahedron, then there are two edges of F equivalent to a ⊕ b, but this
is impossible within one free sum. If F is a pyramid, then 0ab is one of its faces and
one more vertex of F is a half-integer point. This means that among two parallel sides
of the base of F , one connects two integer points and the other one connects two half-
integer points. This is again impossible within one free sum of cubes. This leaves us
with the only option that F is a tetrahedron 0abc.

Now in 0abc, we can swap the edge ab with the path acb because the cycle abca is
trivially contractible. After this change we swap II-edge with two IH-edges. After doing
this for all II-edges we get a representative of x + S without D-vertices and without
II-edges as we don’t add any integer vertex to x.

A.3. The cycle x contains D-edges. Suppose ab is a D-edge of G(D). Then a⊕ b

represents a D-vertex of G(D) and there is a triangle of D with edges equivalent to a,
b, and a⊕ b. Let F be any three-dimensional face of D incident to this triangle. We
claim that F is a tetrahedron.

Similarly to the previous step, F is either a tetrahedron or a quadrangular pyramid
because one edge of F corresponds to the D-vertex a ⊕ b of the red Venkov graph.
However, if F is a pyramid, then a ⊕ b corresponds to its side edge and two base
vertices of F belong to different cubes of some free sum P . The other two base vertices
must belong to different cubes of the free sum as well.

If pairs of vertices of the base from each cube of P form the sides of the base, then
the two cubes of the free sum have parallel sides which is impossible. If these pairs
form the diagonals, then the center of the base is the center of the free sum too as this
is the only common point of two cubes. However, a⊕ b corresponds to a D-vertex, so
its midpoint must be the center of the free sum which gives a contradiction. Thus F
must be a tetrahedron.

We can assume that two vertices connected with the edge a⊕b are integer vertices of
the free sum that contains F , and the third vertex of the initial triangle is a half-integer
vertex. The fourth vertex can be either integer or half-integer, but in both cases we can
use the cycle shown in Figure 4 to change the D-edge ab into either two S- or H-edges
(left part) or two IH-edges (right part). Note, that we do not create II-edges and we
do not add D-vertices or D-edges in the process.

After performing these steps, the new representative of x+S contains only S-, H- or
IH-edges, and does not contain D-vertices.

A.4. The cycle x contain H-edges. Suppose ab is an H-edge of x. Then c := a⊕b

is an integer vertex of G(D) and abca is a half-belt cycle. Moreover, since ab is not a
D-edge, then a⊕ b is not a D-vertex.

Swapping the edge ab with the pair of edges acb does not change the coset x + S
and changes an H-edge to two IH-edges. After that our cycle x will contain only IH-
and S-edges and all integer vertices of x are I-vertices.

A.5. The cycle x contains I-vertices. Suppose a is an I-vertex of x. Since there are
no II-edges in x, there are half-integer vertices b and c such that x contains the pair
of edges bac.
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d

Figure 4. Two possible ways to swap the D-edge ab in the cycle x. In
both cases the red cycle is trivially contractible within the highlighted
tetrahedral dual 3-cell. If the fourth vertex of the corresponding tetrahe-
dron is an integer vertex (the left part), then ab can be swapped with two
edges acb and the new edges are S- or H-edges because all a, b, and c

correspond to half-integer vertices of the red Venkov graph. If the fourth
vertex of the corresponding tetrahedron is a half-integer vertex (the right
part), then ab can be swapped with two edges adb and the new edges
are IH-edges because a and b correspond to half-integer vertices and d

corresponds to an I-vertex of the red Venkov graph.

According to Lemma 6.1, b and c coincide with 1

2
a in all non-zero coordinates of a.

We can connect b and c with a path of S-edges such that every vertex of this path is
connected with a. We claim that we can change the pair of edges bac with this path
without changing the coset.

If a has only one non-zero coordinate, then the proof is given in the proof of Lemma
8.2. Otherwise, similarly to the proof of Lemma 8.2, it is enough to to treat only the
case when b and c are connected with an S-edge.

Let f := b ⊕ c. The vertex f of G(D) is an integer vertex and the corresponding
vector has exactly one non-zero coordinate. In that case we can find a free sum P of
two cubes in the Delone decomposition of D∗

2m such that a represents a diagonal of
some face of one cube, f represents a side of the other cube, and b and c represent two
vectors between the cubes. This is true because the non-zero coordinate of f is on the
position where a has zero coordinate.

Moreover, we may choose P in such a way that the it contains the origin 0 and two
points b and c. Let F be the smallest face of P that contains diagonal corresponding
to a and the origin 0 is one of the vertices of this diagonal. Then the convex hull
of F ∪ {b} ∪ {c} is a face of P and must be subdivided in D. This subdivision will
contain the tetrahedron 0abc and the cycle bacb is a trivially contractible cycle in this
tetrahedron. Thus we can swap two edges bac with the edge bc.
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Repeating this approach while x has at least one I-vertex, we get a cycle from coset
x+ S with only S-edges.

A.6. Concluding steps for the cycle x with only S-edges. Similarly to Lemma 8.2,
we can represent x (or its rational multiple) as a combination of cycles comprising two-
dimensional faces of the cube C2m. However, for the Delone subdivision D, not all
such cycles will be trivially contractible because some of the pyramids described in
the proof of Lemma 8.2 could be subdivided into pairs of tetrahedra. Nevertheless,
the cycle composed of edges of such subdivided pyramid incident to its apex will be a
combination of two trivially contractible cycles around the same vertex in the two new
tetrahedra. Thus, every cycle in the one-dimensional skeleton of C2m belongs to S and
the group G is generated by basic cycles in this case as well.
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