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ON THE SPECIAL IDENTITIES OF GELFAND–DORFMAN

ALGEBRAS

P.S. KOLESNIKOV1), B.K. SARTAYEV1,2)

Abstract. A Gelfand–Dorfman algebra (GD-algebra) is said to be special if it
can be embedded into a differential Poisson algebra. In this paper, we prove that
the class of all special GD-algebras is closed with respect to homomorphisms and
thus forms a variety. We describe a technique for finding potentially all special
identities of GD-algebras and derive two known special identities of degree 4 in
this way. By computing the Gröbner basis for the corresponding shuffle operad,
we show that these two identities imply all special ones up to degree 5.

Introduction

A linear space V with two bilinear operations ◦ and [·, ·] is called a Gelfand–
Dorfman algebra (or simply GD-algebra) if (V, ◦) is a Novikov algebra, (V, [·, ·]) is a
Lie algebra, and the following additional identity holds:

b ◦ [a, c] = [a, b ◦ c]− [c, b ◦ a] + [b, a] ◦ c− [b, c] ◦ a. (1)

Recall that the variety of Novikov algebras is defined by the following identities:

(a ◦ b) ◦ c− a ◦ (b ◦ c) = (b ◦ a) ◦ c− b ◦ (a ◦ c), (2)

(a ◦ b) ◦ c = (a ◦ c) ◦ b. (3)

The axioms above emerged in the paper [7] as a tool for constructing Hamiltonian
operators in formal calculus of variations. Later it was shown [19] that GD-algebras
are in one-to-one correspondence with quadratic Lie conformal algebras playing
an important role in the theory of vertex operators. The class of GD-algebras is
governed by a binary quadratic operad ([9], see also [11] for the definition) denoted
GD. As it was shown in [10], the Koszul dual operad GD! corresponds to the class of
differential Novikov–Poisson algebras introduced in [4]. The latter algebras play an
important role in the combinatorics of derived operations on non-associative algebras
[10].

In the present paper, we study special GD-algebras, i.e., those embeddable into
Poisson algebras with a derivation. We prove in section 1 that the class of special
GD-algebras is closed under homomorphic images and thus forms a variety. Non-
special GD-algebras exist: the examples were found implicitly in [10] and explicitly
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in [17]. Note that all these examples are of dimension three. We apply the Gröbner–
Shirshov bases technique for Poisson algebras to prove that all 2-dimensional GD-
algebras are special.

In section 2, we give a technical method to find all special identities of GD-
algebras and explicitly find all special identities of GD-algebras up to degree 5. In
section 3, we prove that all special identities up to degree 5 are consequences of two
independent special identities of degree 4 found in [10]. For that purpose, we convert
the symmetric operad GD with special identities of degree 4 into a shuffle operad
[11] and compute the first five components of its Gröbner basis [13] by means of the
computer algebra package [14]. In the same way, we calculate the dimensions of GD
operad up to degree 6.

1. Special GD-algerbas

Suppose (P, ·, {·, ·}) is a Poisson algebra with a derivation d. Hereinafter, we will
denote d(x) by x′ for simplicity. Hence, (P, ·) is an associative and commutative
algebra, (P, {·, ·}) is a Lie algebra and the Leibniz identity holds:

{x, yz} = y{x, z}+ z{x, y}, x, y, z ∈ P.

The linear map d : P → P acts as a derivation relative to both operations:

(xy)′ = xy′ + x′y, {x, y}′ = {x′, y}+ {x, y′}, x, y ∈ P.

Then the same space P equipped with operations

x ◦ y = xy′, [x, y] = {x, y},

is a GD-algebra denoted P (d) [20]. A GD-algebra V is said to be special if it can be
embedded into a GD-algebra P (d) for an appropriate differential Poisson algebra P .

It is clear that the class of special GD-algebras is closed with respect to subalgebras
and Cartesian products, so the class of all homomorphic images of special GD-
algebras is a variety denoted SGD.

The relation between differential Poisson algebras and GD-algebras described
above is similar to the well-known relation between associative and Jordan alge-
bras [1] (see also [8, Chapter 3]). However, in contrast to the Jordan algebra case,
the class of special GD-algebras turns to be closed with respect to homomorphisms.

Theorem 1. Let V be a special GD-algebra. Then every homomorphic image of V
is special.

Proof. As V is a special GD-algebra, it is a homomorphic image of the free special
GD-algebra SGD〈X〉 generated by an appropriate set X. Therefore, it is enough to
show that for every set X all homomorphic images of SGD〈X〉 are special.

Let us recall the structure of SGD〈X〉 [10]. Consider the free differential Poisson
algebra PoisDer〈X, d〉 generated by the set X. The operation set of this system
consists of a commutative multiplication, Poisson bracket {·, ·}, and a unary opera-
tion d which acts as a derivation with respect to both binary operations. As above,
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we will write u′ for d(u). Define the weight of a monomial from PoisDer〈X, d〉 by
induction as follows:

wt(x) = −1, x ∈ X ; wt(u′) = wt(u) + 1;

wt({u, v}) = wt(u) + wt(v) + 1; wt(uv) = wt(u) + wt(v).

For a weight-homogeneous polynomial f ∈ PoisDer〈X, d〉 we denote by wt(f) the
weight of its monomials.

As shown in [10], SGD〈X〉 is isomorphic to the subspace of PoisDer〈X, d〉(d) span-
ned by all monomials of weight −1.

Suppose I is an ideal of the GD-algebra SGD〈X〉, the latter is immersed into

PoisDer〈X, d〉. Consider the ideal Î of PoisDer〈X, d〉 generated by I. It is enough

to show Î ∩ SGD〈X〉 = I. If the latter holds, then PoisDer〈X, d〉/Î is a differential
Poisson envelope of the GD-algebra V = SGD〈X〉/I.

An arbitrary element in f ∈ Î may be obtained as

f =
∑

i

Fi(X, t)|t=ui
,

where Fi(X, t) ∈ PoisDer〈X ∪ {t}, d〉, ui ∈ I ⊂ SGD〈X〉 ⊂ PoisDer〈X, d〉. Note
that wt(f) = wt(ui) = −1, so we may assume wt(Fi) = −1 for all i (otherwise, it is
enough to choose the homogeneous components of weight −1 for each Fi). Therefore,

Fi(X, t) ∈ SGD〈X ∪ {t}〉,

and Fi(X, ui) ∈ I. Hence, f ∈ I. �

Corollary 1. The class of special Gelfand–Dorfman algebras forms a variety.

Remark 1. Novikov algebras are particular cases of GD-algebras (with [x, y] = 0).
It was shown in [15] that the free Novikov algebra embeds into the free differential
commutative algebra. Hence, restricting the proof of Theorem 1 to Novikov algebras
we obtain another proof of speciality of all Novikov algebras [3].

The examples of non-special GD-algebras were constructed in [10], [17]. It is worth
mentioning that all these examples are of dimension 3. In the next statement we
show that dimension 3 is a minimal one: all 2-dimensional GD-algebras are special.

Theorem 2. Let V be a 2-dimensional GD-algebra. Then V is special.

Proof. Let X = {u, v} be a basis of a 2-dimensional GD-algebra V . If [u, v] = 0 then
V is a pure Novikov algebra and by [3] V embeds into the commutative differential
algebra ComDer〈X〉/(xy′ − x ◦ y) which may be considered as a Poisson one with
respect to the trivial bracket.

If V is not abelian as a Lie algebra then we may assume [u, v] = v. It is straight-
forward do deduce from (1), (2), and (3) that the multiplication table for ◦ on V
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has the following form:
u ◦ u = αu+ δv,

v ◦ v = 0,

u ◦ v = γv,

v ◦ u = αv,

for α, γ, δ ∈ k. It is enough to show that V can be embedded into a differential
Poisson algebra. We consider three cases: (1) α 6= γ, (2) α = γ 6= 0, (3) α = γ = 0.

Case 1: α 6= γ. Note that u ◦ v − v ◦ u = (γ − α)v = (γ − α)[u, v], i.e.,

[u, v] =
1

γ − α
(u ◦ v − v ◦ u).

Therefore, the structure of a GD-algebra on V is almost completely similar to the
commutator GD-algebra on a Novikov algebra considered in [17]. The only differ-
ence is the multiplicative constant 1

γ−α
which does not affect the construction of

a differential Poisson envelope. Namely, consider the free differential commutative
algebra F = ComDer〈{u, v}, d〉 = Com〈u, v, u′, v′, u′′, v′′, . . . 〉, and define a bracket
{·, ·} on F as follows. On the generators, let

{u(m), v(n)} =
1

γ − α
((n− 1)u(m+1)v(n) − (m− 1)u(m)v(n+1)), n,m ≥ 0. (4)

Then apply the Leibniz rule to expand the bracket on the entire F . The bracket
obtained is proportional to the one considered in [17]. Therefore, the operation
(4) satisfies the Jacobi identity, and the operation d is a derivation with respect to
this bracket. Consider the ideal IV of the free differential commutative algebra F
generated by xy′−x◦y, x, y ∈ {u, v}. The ideal IV is invariant under all operations
{f, ·}, f ∈ F . Hence, the universal differential commutative envelope F/IV of the
Novikov algebra V is also a differential Poisson envelope of V as of a GD-algebra.

Case 2: α = γ 6= 0. An obvious change of variables 1
α
u − δ

α2 v → u (v → v) leads
to the following multiplication table in V :

[u, v] =
1

α
v, u ◦ u = u, u ◦ v = v, v ◦ u = v, v ◦ v = 0. (5)

Consider the polynomial algebra k[x, e] equipped with two commuting derivations

d1 =
∂

∂x
, d2 =

e

α

∂

∂e
.

Then {f, g} = d1(f)d2(g)− d2(f)d1(g), f, g ∈ k[x, e], is a Poisson bracket on k[x, e],
and d1 is a derivation on the Poisson algebra obtained. In particular,

{x, e} =
1

α
e. (6)

Denote by A the quotient of k[x, e] modulo the ideal I generated by e2. As d1(I), d2(I) ⊆
I, the commutative algebra A is a differential Poisson algebra generated by x and e
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with a bracket defined via (6) and with a derivation

d(x) = 1, d(e) = 0.

Now, the initial GD-algebra V embeds into A(d) by

u 7→ x, v 7→ ex.

Indeed, it is straightforward to check that this map preserves the multiplication
table (5).

Case 3: α = γ = 0. If δ = 0 then V is a pure Lie algebra and thus embeds into
the associated graded Poisson algebra P (V ) = grU(V ) of the universal associative
envelope of V with zero derivation.

If δ 6= 0 then, up to a change of variables, we may assume

[u, v] = v, u ◦ u = v, v ◦ v = u ◦ v = v ◦ u = 0.

Consider the polynomial algebra F = k[u, v, u′, v′] in four formal variables. Define
a skew-symmetric bracket {·, ·} on F by the Leibniz rule starting from

{u, v} = v, {u, u′} = u′, {u, v′} = 2v′,

{v, u′} = v′, {v, v′} = {u′, v′} = 0.
(7)

This is a Poisson bracket since it is straightforward to check the Jacobi identity on
the generators.

Let I be the ideal of F generated by

uu′ − v, uv′, vu′, vv′, vv, u′u′ − v′, u′v′, v′v′.

These polynomials form a Gröbner basis in F = k[u, v, u′, v′], so the quotient A =
F/I contains V as a subspace. The ideal I is closed under applying the bracket
{x, ·} for x = u, v, u′, v′. Hence, A = F/I is a Poisson algebra.

The ideal I is closed under the derivation d of F (as of commutative algebra)
defined by

d(u) = u′, d(v) = v′, d(u′) = 0, d(v′) = 0.

Therefore, d induces a derivation on A.
It remains to check that d is a derivation relative to the Poisson bracket on A,

i.e., d{f, g} = {d(f), g} + {f, d(g)} for f, g ∈ A. Note that the linear basis of A
consists of reduced monomials relative to the Gröbner basis (7): 1, u′, v′, un, umv,
for n,m ≥ 0. By definition,

d(un) =











0, n = 0,

u′, n = 1,

nun−2v, n ≥ 2,

d(umv) =

{

v′, m = 0,

0, m ≥ 1.

If f = u, g = v then

{d(f), g}+ {f, d(g)} = {u′, v}+ {u, v′} = −v′ + 2v′ = v′ = d{f, g}.
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If f = un, n > 1, g = v then

{d(f), g}+ {f, d(g)} = {nun−2v, v}+ {unv′, v′}

= n(n− 2)un−3vv + 2nun−1v′v′ = 0 = d{f, g}.

For the remaining pairs of basic elements f , g, the derivation property for d may be
checked in a similar way.

Hence, A is a differential Poisson algebra. It follows from the definition of d and
A that V as a GD-algebra embeds into A(d). �

2. Special identities of GD-algebras

Since both classes GD and SGD are varieties and thus defined by some sets of
identities, the interesting problem is to determine a list of those identities that hold
in SGD but do not hold in GD. As in the case of Jordan algebras, let us call such
identities special.

In [10], the following description of SGD was proposed: the operad of special
GD-algebras is a sub-operad in the Manin white product GD! ◦Pois. Here Pois is
the operad of Poisson algebras and GD! is Koszul dual to GD. However, finding
special identities in this way is technically hard since the entire operad GD! ◦Pois is
pretty large.

In this section, we develop another approach which allows us to show that the
two identities found in [10] exhaust all special identities of degree 4 and find the
complete list of special identities of degree 5. In the next section, we apply Gröbner
basis technique for operads to show that the identities of degree 5 found in this
section follow from the identities of degree 4.

Let X = {x1, x2, . . . } be a countable set, and let GD〈X〉 be the free GD-algebra
generated by X. Suppose B is a linear basis of GD〈X〉, X ⊂ B, equipped with a
linear order ≤. Note that finding the explicit form of B, or at least of the multilinear
part of B, is a separate interesting problem. Let us construct U = PoisDer〈B, d〉/I,
where I is the differential ideal generated by

ad(b)− a ◦ b, a, b ∈ B,

{a, b} − [a, b], a, b ∈ B, a > b.

The algebra U constructed is the universal Poisson differential envelope of GD〈X〉.
The kernel of the natural homomorphism τ : GD〈X〉 → U , τ(b) = b+ I, is exactly
the set of special identities of GD-algebras.

Denote B(ω) = {b(n) | b ∈ B, n ≥ 0} and expand the order ≤ to B(ω) by the
following rule:

b(n) < a(m) ⇐⇒ (b,−n) < (a,−m) lexicographically. (8)

The ordering is motivated by the Shirshov’s argument [18] concerning the standard
bracketing on Lyndon–Shirshov words.
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Let us identify PoisDer〈B, d〉 with Pois〈B(ω)〉 assuming dn(b) = b(n), then I coin-
cides with the ideal in Pois〈B(ω)〉 generated by

ab(n) − (a ◦ b)(n−1) +

n−1
∑

i=1

(

n− 1

i

)

a(i)b(n−i), n ≥ 1, (9)

{a, b(n)} − [a, b](n) +
n

∑

i=1

(

n

i

)

{a(i), b(n−i)}, a > b, n ≥ 0. (10)

In order to find the kernel of τ it is enough to calculate the intersection of I with
kB(0). The latter can be done if we know the Gröbner–Shirshov basis (GSB) of I in
the free Poisson algebra Pois〈B(ω)〉 [5].

Let us proceed as follows. Consider the Lie algebra L = Lie〈B(ω)〉/J , where J is
the ideal generated by (10). Then Pois〈B(ω)〉/I is the same as the quotient of the
symmetric algebra S(L) modulo the ideal generated by all elements of the form

{a
(n1)
1 , {a

(n2)
2 , . . . , {a

(nk)
k , f} . . . }}, (11)

for all f in (9), ai ∈ B, ni ≥ 0. Thus it is enough to calculate the intersection of
L with the Gröbner basis of an ideal in S(L) generated by relations (11). Let us
first find the Gröbner–Shirshov basis of the Lie algebra L in a slightly more general
context.

Lemma 1. Let g be a Lie algebra with a linearly ordered basis B. Then (10) is a
Gröbner–Shirshov basis in Lie〈B(ω)〉 relative to the deg-lex ordering based on (8).

Remark 2. Given a Lie algebra g with a linear basis B as above, the Lie algebra
generated by B(ω) with defining relations (10) is the universal differential envelope
of g.

Proof. One may simply check that all compositions of intersection of the relations
(10) are trivial in the sense of [18] (see also [2]). Note that a specific technique for
calculating Gröbner–Shirshov bases in differential Lie algebras was proposed in [6],
but we have a different ordering.

A more conceptual way is based on the following observation. Denote by L the
quotient of Lie〈B(ω)〉 by the Lie ideal generated by (10). The multiplication table
on g corresponds to n = 0. Add a new letter t to the alphabet B (assuming t < B)
and construct

U = Lie〈B, t | {a, b} − [a, b], a > b〉.

Since the multiplication table is always a Gröbner–Shirshov basis, the linear basis
of U consists of all Lyndon–Shirshov words [u] in B ∪{t} such that their associative
images u do not contain subwords ab for a > b. Such a word u is either equal to t
or may be written as

u = u1a1t
k1 . . . u2a2t

k2 . . . umamt
km,
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for ui ∈ B∗, ai ∈ B, ki ≥ 1. As shown in [18], the standard bracketing [u] on u is
constructed in the same way as on

u1a
(k1)
1 . . . u2a

(k2)
2 . . . uma

(km)
m ,

where a(k) = {{. . . {a, t}, . . . , t}, t} and the order is defined by (8). Hence, the
linear basis of U consists of t and of all those Lyndon–Shirshov words that are
reduced modulo (10). Therefore, the latter relations form a Gröbner–Shirshov basis
in Lie〈B(ω)〉, and, in particular, U ≃ kt⋉ L, where {f, t} = f ′ for f ∈ L. �

Corollary 2. The linear basis of L consists of all nonassociative Lyndon–Shirshov
words of the form

[x11 . . . x1l1a
(k1)
1 . . . xm1 . . . xmlma

(km)
m ], ki ≥ 1, xi1 ≤ · · · ≤ xili ≤ ai.

In order to find the intersection of L with the ideal in S(L) generated by (11)
let us define a rewriting system in S(Lie〈B(ω)〉) based on the relations (10) with
principal parts {a, b(n)}, a > b, and on the relations (11) by choosing the principal
parts as

aLS({a
(n1)
1 , {a

(n2)
2 , . . . , {a

(nk)
k , b(n)} . . . }}), ni ≥ 0, n ≥ 1,

where LS(u) stands for the principal Lyndon–Shirshov word in the expansion of
u ∈ Lie〈B(ω)〉.

For example, if f = ac′−a◦ c, b > c, then the relation {b, f} = {b, ac′}−{b, a◦ c}
from (11) gives rise to the following rewriting rule:

a{b, c′} → [a, b] ◦ c+ [b, a ◦ c].

Similarly, {c, ab′ − a ◦ b} gives us

a{c, b′} → [a, c] ◦ b+ [c, a ◦ b].

On the other hand, we have a rule

{b, c′} → {c, b′}+ [b, c]′.

from (10).
Here we have an ambiguity in a{b, c′}: there are two ways how to rewrite it. This

particular critical pair is convergent by (1):

a{b, c′} → a{c, b′}+ a[b, c]′ → [a, c] ◦ b+ [c, a ◦ b] + a ◦ [b, c] = [a, b] ◦ c+ [b, a ◦ c].

Denote by G(B) the oriented graph with vertices S(Lie〈B(ω)〉) and edges defined
by the rewriting rules based on (10) and (11). These rules preserve the weight
(wt) of differential polynomials in B(ω) as well as the degree in X. The set kB
is homogeneous of weight −1. Hence, G(B) splits into connected components Gn,w
that contain vertices of degree n in X of weight w. Denote Gn,−1 by Gn(B). This
graph has no infinite chains (i.e., it is a rewriting system): as shown in [10], these
rules applied to a differential monomial of weight −1 rewrite it to an element of kB
in a finite number of steps. This observation allows us not to define any ordering
on commutative monomials in S(Lie〈B(ω)〉).
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In order to find the special identities of degree n (with respect to X) it is enough
to find the relations in kB that make the rewriting system Gn(B) confluent.

Given a fixed integer n ≥ 3, it is enough to consider all multilinear differential
monomials of weight −1 and of degree n in X, and expand all critical pairs in the
rewriting system Gn(B). Note that all such pairs without brackets (i.e., those from
Com〈B(ω)〉) are confluent by [3] and we do not need to consider them. Similarly,
Lemma 1 shows that all “pure Lie” critical pairs f ← u → g, u ∈ Lie〈B(ω)〉, are
trivial.

For n = 3, the remaining critical pairs correspond to the ambiguities of the form
a{b, c′}, b > c. As shown above, these critical pairs are convergent.

For n = 4, there are five potential ambiguities:

(A1) a{b, {c, d′}}, c > d;
(A2) a{{b, c′}, d}, c ≤ d, b > c;
(A3) ab′{c, d′}, c ≥ d;
(A4) ab{c′, d′}, c > d;
(A5) ab{c, d′′}, c ≥ d.

In the case (A1), one may apply either {c, d′} → {c′, d}+[c, d]′ or the rule coming
from {b, {c, ad′ − a ◦ d}} in (11):

a{b, {c, d′}} → f1 = a{b, {c′, d}}+ a{b, [c, d]′}

or

a{b, {c, d′}} → f2 = {a, b}{c, d
′}+ {a, c}{b, d′} − [b, [c, a]]d′ + {b, {c, a ◦ d}}.

Then apply the rewriting rules coming from (11) to get

f2 → [c, [a, b] ◦ d]− [c, [a, b]] ◦ d+ [b, [a, c] ◦ d] + [b, [c, a ◦ d]]

and, similarly,

f1 → −[d, [a, b]◦c]+ [d, [a, b]]◦c− [b, [a, d]◦c]− [b, [d, a◦c]]+[b, a◦ [c, d]]− [b, a]◦ [c, d]

One may see that f1 = f2 due to (1), namely, f2 − f1 is zero modulo the Gel’fand–
Dorfman relations at (a, c, d) and (c, [a, b], d).

The ambiguity (A2) also gives rise to a convergent critical pair modulo (1), as one
may check in a similar way.

In the case (A3), we have three possible rewriting rules:

{c, d′} → {c′, d}+ [c, d]′, if c > d,

a{c, d′} → [c, a ◦ d] + [a, c] ◦ d,

ab′ → a ◦ b.

The first one, combined with either of other rules, leads to a convergent critical pair
due to (1). Consider the pair coming from the last two rules:

ab′{c, d′} → [c, a ◦ d] ◦ b+ ([a, c] ◦ d) ◦ b,

ab′{c, d′} → (a ◦ b){c, d′} → [c, (a ◦ b) ◦ d]− [c, a ◦ b] ◦ d.
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The relation obtained

[c, a ◦ d] ◦ b+ ([a, c] ◦ d) ◦ b = [c, (a ◦ b) ◦ d]− [c, a ◦ b] ◦ d (12)

is one of the special identities found in [10].
For (A4), it is enough to consider the following rules:

a{c′, d′} → {a, c′}d′ + {c′, a ◦ d},

b{c′, d′} → {b, c′}d′ + {c′, b ◦ d},

b{c′, d′} → −{b, d′}c′ − {d′, b ◦ c}.

For example, the second rule allows us to rewrite ab{c′, d′} as

{b, (a ◦ d) ◦ c} − {b, a ◦ d} ◦ c+ {a ◦ c, b ◦ d} − {a, b ◦ d} ◦ c.

Now use (12) to replace the first term with [b, (a◦ c)]◦d− ([b, a]◦ c)◦d+[b, a◦d]◦ c.
As a result, we obtain

ab{c′, d′} → [b, a ◦ c] ◦ d− ([b, a] ◦ c) ◦ d+ [a ◦ c, b ◦ d]− [a, b ◦ d] ◦ c (13)

The convergence of the corresponding three critical pairs starting at ab{c′, d′}
is equivalent to the conditions that the right-hand side of (13) is symmetric with
respect to the permutation (a, b) and skew-symmetric by (c, d).

Either of these two conditions (due to (3) and anti-commutativity of [·, ·]) gives
rise to the following relation:

2([a, b] ◦ c) ◦ d = [b ◦ c, a ◦ d]− [a ◦ c, b ◦ d]

+ ([a, b ◦ c]− [b, a ◦ c]) ◦ d+ ([a, b ◦ d]− [b, a ◦ d]) ◦ c. (14)

This is another special identity found in [10].
In the case (A5), we have two types of critical pairs: the first one coming from the

rules based on {c, bd′′−(b◦d)′+b′d′} and {c, ad′′−(a◦d)′+a′d′}, the second one (for
c > d) coming from either of the rules above and {c, d′′}+2{c′, d′}+ {c′′, d}− [c, d]′′

in (10).
For example,

ab{c, d′′} → f1 = a{c, (b ◦ d)′} − a{c, b′}d′ − ab′{c, d′} − a[c, b]d′′.

The polynomial f1 rewrites in G4(B) as follows:

f1 → ([c, a], b, d)− [c, (a, b, d)] + (a, [c, b], d).

Here (x, y, z) stands for (x◦y)◦z−x◦ (y ◦z). The expression obtained is symmetric
with respect to (a, b) by (2) which means the convergence of the first type critical
pair.

The second type critical pairs based on (A5) appear when we rewrite

ab[c, d′′]→ f2 = ab{d, c′′} − 2ab{c′, d′}+ ab[c, d]′′.

We already know how to rewrite all terms in the right-hand side to get an element in
kB. Comparing the result with what is obtained from f1 we obtain a relation which
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is a corollary of (1), (12), and (14). (Note that (1) and (12) allow us to rewrite both
summands in [c, (a, b, d)] via shorter terms, like those in (14).)

In [10] it was proved that (12) and (14) are independent identities on a GD-algebra.
Now we may state the following

Proposition 1. All special identities of GD-algebras of degree ≤ 4 are consequences
of (12) and (14).

In a similar way, we may find the complete list of special identities of degree
5. The list of ambiguities in G5(B) is relatively long since we have to consider all
Poisson differential monomials of degree 5 and weight −1:

[a, [b, [c, d′]]]e, [a, [b, c′′]]de, [a, [b′, c′]]de, [a′, [b, c′]]de, [a, [b, c′]]de′, [a, b′][c, d′]e,

[a, b(3)]cde, [a′, b′′]cde, [a, b′′]cde′, [a′, b′]cde′, [a, b′]cde′′, [a, b′]cd′e′.

As a result of the same computations as for n = 4, we obtain three special identities
of degree 5:

[d ◦a, [b, e◦ c]] = [e◦a, [b, d ◦ c]]+ [d, [b, e◦ c] ◦a]− [d, [b, e] ◦a] ◦ c+([d, [b, e]] ◦ c) ◦a

− [d, [b, e ◦ c]] ◦ a− [e ◦ a, [b, d] ◦ c]− [e, [b, d ◦ c]] ◦ a+ [e, [b, d] ◦ c] ◦ a+ [d ◦ a, [b, e] ◦ c]

+ [d, [b, e◦ c]] ◦a− [d, [b, e] ◦ c] ◦a− [e, [b, d ◦ c] ◦a]+ [e, [b, d] ◦a] ◦ c− ([e, [b, d]] ◦ c) ◦a

+ [e, [b, d ◦ c]] ◦ a, (15)

[c, [a, e◦ b] ◦ d] = [a, [c, e◦ d] ◦ b]− [a, [c, e◦ d]] ◦ b− [a, [c, e] ◦ b] ◦ d+([a, [c, e]] ◦ d) ◦ b

+ [c, [a, e] ◦ d] ◦ b+ [c, [a, e ◦ b]] ◦ d− ([c, [a, e]] ◦ d) ◦ b, (16)

and

[a, d◦b]◦(c◦e) = [a, c◦b]◦(d◦e)+([a, d◦b]◦c)◦e+([a, d]◦(c◦e))◦b−(([a, d]◦c)◦e)◦b

− ([a, c ◦ b] ◦ d) ◦ e− ([a, c] ◦ (d ◦ e)) ◦ b+ (([a, c] ◦ d) ◦ e) ◦ b. (17)

Other critical pairs are convergent modulo (12), (14), (15), (16), and (17). We do
not state the details here since in the next section we show that in fact all special
identities of degree ≤ 5 are corollaries of (12) and (14).

3. On the Gröbner basis of the Gelfand–Dorfman operad with

special identities

Let us recall the basic definitions related with operads following [12, Chapter 5].
A (symmetric) operad P in the category Veck of linear spaces over a field k is a
collection of spaces P(n), n ≥ 1, equipped with linear composition maps

γm
n1,...,nm

: P(m)⊗ P(n1)⊗ . . .⊗P(nm)→ P(n1 + . . .+ nm)
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for all integers m,n1, . . . , nm ≥ 1, each P(n) is a module over the symmetric group
Sn. These data have to satisfy the following conditions: the composition is associa-
tive and equivariant relative to the action of Sn; the space P(1) contains an element
1 which acts as an identity relative to the composition.

Every operad may be considered as an image of an appropriate free operad, i.e.,
a quotient modulo an operad ideal.

Namely, for every graded space V =
⊕

n≥1 V (n) there exists a uniquely defined
free operad F(V ) generated by V . An operad ideal of F(V ) may be presented as a
minimal one that contains a given series of elements from

⋃

n≥1

F(V )(n). Therefore,

an operad may be defined by generators and relations.
For example, the operad Lie governing the variety of Lie algebras is generated

by V1 = V1(2), where dim V1(2) = 1, this is a skew-symmetric S2-module. The
free operad F(V1) is exactly the operad of anti-commutative algebras. The set of
defining relations of Lie consists of the Jacobi identity:

γ2
2,1(µ, µ, 1) + γ2

2,1(µ, µ, 1)
(123) + γ2

2,1(µ, µ, 1)
(132).

The operad Nov of the variety of Novikov algebras is generated by V2 = V2(2),
dimV2 = 2, this is the regular S2-module. Namely, a basis of V2(2) consists of ν,
ν(12). The free operad F(V2) is exactly the magmatic one. The defining relations of
Nov include left symmetry and right commutativity:

γ2
2,1(ν, ν, 1)− γ2

2,1(ν, ν, 1)
(12) − γ2

1,2(ν, 1, ν) + γ2
1,2(ν, 1, ν)

(12),

γ2
1,2(ν, 1, ν)− γ2

1,2(ν, 1, ν)
(23).

There is an intermediate notion between nonsymmetric and symmetric operads,
known as a shuffle operad. By definition, a shuffle operad V is a collection of spaces
V(n), n ≥ 1, equipped with a collection of compositions

γπ : V(m)⊗ V(n1)⊗ . . .⊗ V(nm)→ V(n1 + . . .+ nm)

where π is a shuffle partition of the set {1, . . . , n}, n = m1 + · · · + mn, into m
disjoint subsets Ij , j = 1, . . . , m, such that min I1 < min I2 < · · · < min Im. Thus,
a shuffle operad has no symmetric module structure, but its composition structure
still carries some information about the order of arguments.

Shuffle operads provide a convenient framework for the computation of Gröbner
bases and normal forms in an operad defined by generators and relations [13]. There
is a forgetful functor P 7→ Pf that turns a symmetric operad P into a a shuffle one
[11, Section 5.3] such that the normal form of elements in Pf (n) allows us to recover
the normal form in P(n). In particular, we may find the dimensions of P(n) in this
way.

Following [11], we may convert the symmetric operad GD into a shuffle operad
GDf , a homomorphic image of the shuffle tree operad TX(X ) for an appropriate
language X .



GELFAND–DORFMAN ALGEBRAS 13

Let us replace the operations ν and µ with the set of three operations X =
{x, y, z}, where x and y represent ν and ν(12), z represents µ. We will use the
natural notation x(1 2) = ν(x1, x2), y(1 2) = ν(x2, x1), etc. To convert the defining
relations of the operad GD into elements of TX(X ) we may use the equivariance
property of the composition (see [11] for details). As a result, (2) and (3) turn into
the following relations for x and y:

x(x(1 2) 3)− x(1 x(2 3))− x(y(1 2) 3) + y(x(1 3) 2),

x(x(1 3) 2)− x(1 y(2 3))− x(y(1 3) 2) + y(x(1 2) 3),

y(1 x(2 3))− y(y(1 3) 2)− y(1 y(2 3)) + y(y(1 2) 3),

x(x(1 2) 3)− x(x(1 3) 2),

x(y(1 2) 3)− y(1 x(2 3)),

x(y(1 3) 2)− y(1 y(2 3)).

The Jacobi identity may be expressed in terms of z as

z(z(1 2) 3)− z(1 z(2 3))− z(z(1 3) 2).

Similarly, converting (1) (namely, all relations in the symmetric group orbit of the
defining relation), we obtain

z(1 x(2 3)) + z(y(1 2) 3)− x(z(1 2) 3)− y(1 z(2 3))− y(z(1 3) 2),

−z(x(1 3) 2) + z(x(1 2) 3) + x(z(1 2) 3)− x(z(1 3) 2)− x(1 z(2 3)),

−y(z(1 2) 3) + z(1 y(2 3)) + z(y(1 3) 2)− x(z(1 3) 2) + y(1 z(2 3)).

The elements (shuffle tree polynomials [11]) obtained generate the ideal of defining
relations for the operad GDf , a quotient of TX(X ).

Calculating the Gröbner base of GDf by means of the package [14], we get the
following result for dimGD(n) = dimGDf(n).

n 1 2 3 4 5 6
dim(GD(n)) 1 3 17 140 1524 20699

The first five terms of the sequence coincide with the number of certain planar
graphs (see OEIS A322137, A291842). However, the sixth one is different. Finding a
linear basis of the free GD-algebra, or at least the sequence GD(n) is an interesting
open problem. Note that the operad GD is not Koszul since so is Nov [16].

By Corollary 1, the class SGD is defined by identities. There should exist identities
separating SGD from GD, i.e., independent special identities of GD-algebras. Let us
consider the class of GD-algebras with additional identities (12) and (14). Denote
this class by wSGD (weak special Gelfand–Dorfman algebra).

As above, we may convert the defining relations of wSGD into shuffle tree poly-
nomials by adding the orbits of relations (12) and (14) to GDf . Namely, (12) and
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(14) give rise to the following elements of TX(X ):

z(1 x(x(2 3) 4))− x(z(1 x(2 3)) 4)− x(z(1 x(2 4)) 3) + x(x(z(1 2) 3) 4),

z(1 x(y(2 3) 4))− x(z(1 y(2 3)) 4)− x(z(1 x(3 4)) 2) + x(x(z(1 3) 2) 4),

z(1 y(2 y(3 4)))− x(z(1 y(3 4)) 2)− x(z(1 y(2 4)) 3) + x(x(z(1 4) 2) 3),

−z(x(x(1 3) 4) 2) + x(z(x(1 3) 2) 4) + x(z(x(1 4) 2) 3)− x(x(z(1 2) 3) 4),

−z(x(y(1 3) 4) 2) + x(z(y(1 3) 2) 4)− y(1 z(2 x(3 4))) + x(y(1 z(2 3)) 4),

−z(x(y(1 4) 3) 2) + x(z(y(1 4) 2) 3)− y(1 z(2 y(3 4))) + x(y(1 z(2 4)) 3),

−z(x(x(1 2) 4) 3) + x(z(x(1 2) 3) 4) + x(z(x(1 4) 3) 2)− x(x(z(1 3) 2) 4),

−z(x(y(1 2) 4) 3) + x(z(y(1 2) 3) 4) + y(1 z(x(2 4) 3))− y(1 x(z(2 3) 4)),

−z(x(y(1 4) 2) 3) + x(z(y(1 4) 3) 2) + y(1 z(y(2 4) 3)) + y(1 y(2 z(3 4))),

−z(x(x(1 2) 3) 4) + x(z(x(1 2) 4) 3) + x(z(x(1 3) 4) 2)− x(x(z(1 4) 2) 3),

−z(x(y(1 2) 3) 4) + x(z(y(1 2) 4) 3) + y(1 z(x(2 3) 4))− x(y(1 z(2 4)) 3),

−z(x(y(1 3) 2) 4) + x(z(y(1 3) 4) 2) + y(1 z(y(2 3) 4))− x(y(1 z(3 4)) 2)

and

z(x(1 2) x(3 4))− x(z(x(1 2) 3) 4)− x(z(1 x(3 4)) 2) + 2x(x(z(1 3) 2) 4)

+ z(x(1 4) y(2 3))− x(z(1 y(2 3)) 4)− x(z(x(1 4) 3) 2),

z(x(1 3) x(2 4))− x(z(1 x(2 4)) 3)− x(z(x(1 3) 2) 4) + 2x(x(z(1 2) 3) 4)

+ z(x(1 4) x(2 3))− x(z(1 x(2 3)) 4)− x(z(x(1 4) 2) 3),

z(y(1 2) y(3 4))− y(1 z(2 y(3 4)))− x(z(y(1 2) 4) 3) + 2y(1 x(z(2 4) 3))

− z(y(1 4) x(2 3)) + x(z(y(1 4) 2) 3)− y(1 z(x(2 3) 4)),

z(y(1 2) x(3 4))− y(1 z(2 x(3 4)))− x(z(y(1 2) 3) 4) + 2y(1 x(z(2 3) 4))

− z(y(1 3) x(2 4)) + x(z(y(1 3) 2) 4)− y(1 z(x(2 4) 3)),

z(y(1 3) y(2 4)) + y(1 z(y(2 4) 3))− x(z(y(1 3) 4) 2) + 2y(1 y(2 z(3 4)))

− z(y(1 4) y(2 3))− y(1 z(y(2 3) 4)) + x(z(y(1 4) 3) 2),

z(x(1 2) y(3 4))− x(z(1 y(3 4)) 2)− x(z(x(1 2) 4) 3) + 2x(x(z(1 4) 2) 3)

+ z(x(1 3) y(2 4))− x(z(x(1 3) 4) 2)− x(z(1 y(2 4)) 3).

Calculating the Gröbner base of the operad wSGDf by means of the package [14],
we get the following result:

n 1 2 3 4 5
dim(wSGD(n)) 1 3 17 130 1219
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The dimensions of SGD(n) were computed in [10, Section 4]. For n ≤ 5, we have
dimSGD(n) = dimwSGD(n). Hence, all special identities of degree ≤ 5 are corol-
laries of (12) and (14). We obtain the following result:

Corollary 3. The relations (15), (16) and (17) are consequences of (12) and (14).

It remains an open problem whether (12) and (14) exhaust all independent special
identities of GD-algebras.
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