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ILLUMINATION DEPTH

STANISLAV NAGY AND JIŘÍ DVOŘÁK

Abstract. The concept of illumination bodies studied in convex geometry is used to
amend the halfspace depth for multivariate data. The proposed notion of illumina-
tion enables finer resolution of the sample points, naturally breaks ties in the associated
depth-based ordering, and introduces a depth-like function for points outside the convex
hull of the support of the probability measure. The illumination is, in a certain sense,
dual to the halfspace depth mapping, and shares the majority of its beneficial proper-
ties. It is affine invariant, robust, uniformly consistent, and aligns well with common
probability distributions.

1. Introduction

Halfspace depth is a well known statistical tool that allows to define orders, ranks,
and quantiles for multivariate datasets. Recent discoveries of connections between the
depth and floating bodies [1, 19] uncovered a vast body of knowledge on depth-like pro-
cedures in geometry and related fields. That section of mathematics, collected over the
past 70 years, is little known in mathematical statistics. In this paper we focus on the
paradigm of illumination intimately connected to the depth, yet never studied with re-
spect to its statistical applications. In convex geometry, illumination is known to be dual
to the floating bodies (and, by extension, to the halfspace depth). We introduce it as
a tool complementary to the halfspace depth, explore its statistical properties, and out-
line applications. We show that halfspace depth in conjunction with illumination allows
to devise a nonparametric methodology similar to the depth, with many advantageous
properties: (i) conceptual and computational simplicity; (ii) full affine invariance; (iii) ex-
cellent robustness and large sample properties; (iv) the capacity of naturally breaking ties
in data orderings; (v) it can be used for the estimation of extreme quantile regions with
efficiency comparable to the state-of-the-art approaches; (vi) it is well adjusted to ellipti-
cally symmetric distributions; and (vii) is powerful in applications such as classification.

In Section 2 we introduce illumination and motivate our research by drawing connec-
tions between illumination, floating bodies, and halfspace depth. The definition of the
depth illumination and its properties are provided in Section 3. The special case of el-
liptically symmetric distributions is treated in Section 4. In Section 5 we apply the new
procedures to tie-breaking in depth-induced orderings, the estimation of extremal depth
regions and in the classification task. Additional technical details, proofs and supplemen-
tary results from the simulation studies are gathered in the appendix.
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2 ILLUMINATION DEPTH

2. Illumination of convex bodies

Since its proposal by John W. Tukey [29, 3], the concept of the halfspace depth has
occupied a prominent place in multivariate statistics. Its main idea is to rank the points
in a d-dimensional Euclidean space R

d, d ≥ 1, according to their centrality as recognized
with respect to (w.r.t.) a Borel probability measure P on R

d. The higher the depth of
x w.r.t. P is, the more centrally located x is within the probability mass of P . Points
that maximize the depth over Rd generalize medians, and the loci of points whose depth
exceeds given thresholds form equivalents of the inter-quantile regions from univariate
inference. A remarkable array of applications of the depth can be found in [13, 35, 14]
and the references therein.

Suppose that all random variables are defined on a probability space (Ω,F ,P) and
denote the set of Borel probability measures on R

d by P
(
R

d
)
. The halfspace depth of

x ∈ R
d w.r.t. X ∼ P ∈ P

(
R

d
)
is the minimum probability of a halfspace that contains

x
hD (x;P ) = inf

u∈Rd
P
(
uTX ≤ uTx

)
.

For P uniform on a convex body K (a convex compact subset of Rd with non-empty
interior) the map hD (·;P ) closely relates to the floating bodies of K, a concept used in
geometry since the 19th century; for an extensive bibliography on the topic see [19].

The (convex) floating body Kδ of a convex body K with δ ≥ 0 is defined as the
intersection of all halfspaces whose defining hyperplanes cut off a set of volume δ from K

Kδ =
⋂

vold(K∩H−)=δ

H+,

where H+ and H− are the two halfspaces with a boundary hyperplane H ⊂ R
d [25].

When P ∈ P
(
R

d
)
is uniform on K of unit volume,

Kδ =
{
x ∈ R

d : hD (x;P ) ≥ δ
}
.

For general P ∈ P
(
R

d
)
and δ ∈ [0, 1] the latter set is called the central region of P

corresponding to δ. In the sequel it will be denoted by Pδ.
In geometry, a particular collection of bodies somewhat dual to the floating bodies is

known as the illumination bodies. Floating bodiesKδ form subsets ofK and fill in K from
the inside as δ decreases to zero. In contrast, illumination bodies Kδ of K are supersets
of K and approximate K from the outside as δ → 0. Let K be a convex body in R

d and
let δ ≥ 0. The illumination body Kδ is the collection of all points whose volume of the
convex hull with K does not exceed the volume of K by more than δ

Kδ =
{
x ∈ R

d : vold (co (K ∪ {x})) ≤ vold (K) + δ
}
.

Illumination bodies were proposed by Werner [32] who found that several important
properties of the floating bodies have analogues also when recast in terms of illumination.
Just as the floating bodies, the illumination bodies are (i) convex bodies; (ii) affine
equivariant; (iii) ellipsoids if K is an ellipsoid; and (iv) they converge to K at the same
rate asKδ with δ decreasing to zero (see also the discussion in Section 2.2 below). Further
important properties of illumination bodies can be found in [31, 33, 34, 24, 26].

All these characteristics make the illumination bodies of great interest in statistics.
Convexity of the upper level sets of depths is a trait that is often recognized as desirable
[5, 27]. As argued by Donoho [3, 4], affine invariance in connection with robustness is the
most valuable characteristic of the halfspace depth. For P ∈ P

(
R

d
)
multivariate normal,
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Figure 1. Several floating bodies (left panel) and illumination bodies (right
panel) of a polygon in R

2 of unit volume with δ ∈ {0.05, 0.1, 0.2, 0.3}.

or more generally, for P elliptically symmetric with a density f , the depth central regions
Pδ are known to be ellipsoids with the same centre and orientation as the ellipsoids given
by the level sets of f .

It may appear that floating bodies and illumination bodies are inverse to each other,
i.e. that (Kδ)

δ′ = (Kδ′)δ = K for δ = δ′, or at least for δ′ chosen appropriately (see
Figure 1). The latter is true for K an ellipsoid. But, none of those identities holds true
generally, as can be seen already for K a polytope. Indeed, Kδ is always strictly convex,
but for K a polytope, Kδ is again a polytope [25]; see also Figure 2.
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Figure 2. Illumination of a floating body (Kδ)
δ′ , and a floating body of an il-

lumination body (Kδ′)δ of a polygon K with unit volume and δ = δ′ = 0.2.
In general, the floating body is not a concept inverse to the illumination body.
Nevertheless, there exist duality relations between the two constructions, see Sec-
tion 2.2.

The open problem of finding an inverse floating body is much more involved; for an
overview of some advances in this direction see [19, Section 8]. For these reasons, it
appears that at the current state of the art, illumination is the closest one can get to the
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inverse mapping of the floating body operator (or, by extension, to the inverse mapping
of the halfspace depth).

2.1. Illumination of ellipsoids. The set of ellipsoids is central to the theories of illu-
mination, floating bodies and halfspace depth. For instance, ellipsoids form an invariance
class for all three transformations. In the sequel, it will thus be important to have exact
expressions for the illumination bodies of ellipsoids. Define for a convex body K and
x ∈ R

d the illumination of x w.r.t. K as

I (x;K) = vold (co (K ∪ {x})) .
Obviously, Kδ =

{
x ∈ R

d : I (x;K) ≤ vold (K) + δ
}
.

Lemma 1. For µ ∈ R
d and a symmetric, positive definite matrix Σ ∈ R

d×d consider

the distance dΣ (x, µ) =

√
(x− µ)T Σ−1 (x− µ) and the ellipsoid given as its unit ball

Eµ,Σ =
{
x ∈ R

d : dΣ (x, µ) ≤ 1
}
. For all x /∈ Eµ,Σ we have

I (x; Eµ,Σ) = vold (Eµ,Σ)

+
√
|Σ| π

d−1
2

Γ
(
d+1
2

)
(
dΣ (x, µ)

d

(
1− 1

dΣ (x, µ)2

) d+1
2

−
∫ arccos(1/dΣ(x,µ))

0

sind(t) d t

)
.

The proof of Lemma 1 can be found in Appendix A along with Lemma 10 that states
some important properties of the function gd given by

gd (dΣ(x, µ)) =
I (x; Eµ,Σ)
vold (Eµ,Σ)

.

The function gd is continuously differentiable and its derivative takes a rather simple form

g′d(t) =
Γ
(
d
2
+ 1
)

√
π Γ
(
d+1
2

) 1
d

(
1− 1

t2

)(d−1)/2

for t ∈ (1,∞).

According to Lemma 10, there exists an inverse function g−1
d : [1,∞) → [1,∞) to gd, and

we can write

(1) dΣ(x, µ) = g−1
d

(I (x; Eµ,Σ)
vold (Eµ,Σ)

)
.

This result will be of great importance in the subsequent analysis.

2.2. Duality considerations. The main impetus for considering floating/illumination
bodies in geometry comes from the calculus of variations where many functionals over
subsets of Rd are minimized by ellipsoids. Such statements are conveniently quantified
using the affine surface area asa (K) of a convex body K. For K with a sufficiently
smooth boundary ∂K, asa (K) is given as a certain integral over ∂K [22, Section 10.5].
Interestingly, it can be written also as the limit

(2) asa (K) = cd lim
δ→0

vold (K)− vold (Kδ)

δ2/(d+1)

for cd > 0 a known constant. Thus, floating bodies can be used to extend the definition
of the affine surface area to arbitrary convex bodies [25], see also [19, Section 5.3]. In
connection with the motivation from the calculus of variations, by the important affine
isoperimetric inequality [22, Section 10.5] ellipsoids are the only maximizers of the affine
surface area among all convex bodies with fixed volume.
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As shown in [32], a definition equivalent to (2) can be stated also in terms of the
illumination bodies

asa (K) = bd lim
δ→0

vold
(
Kδ
)
− vold (K)

δ2/(d+1)

for asa (K) from (2), bd > 0 a known constant, and K a convex body. Thus, floating
bodies and illumination bodies approach K at the same rate, and in this respect they act
dually to each other.

Another duality aspect of floating and illumination bodies was recently studied in
[17, 18]. There it was shown that, under appropriate conditions, the polar of a floating
body of K is, in a proper distance, close to an illumination body of the polar of K.
Therefore, even though the exact correspondence between (Kδ)

δ and K does not hold
true, solid evidence from convex geometry suggests that illumination is a concept that
is naturally complementary to the floating body (and the halfspace depth). This pairing
will be used throughout this paper to define robust, affine invariant extensions of the
halfspace depth hD.

3. Illumination depth

Denote the depth of the halfspace median of P ∈ P
(
R

d
)
by Π(P ) = supx∈Rd hD (x;P ).

By definition, Π(P ) ≥ 1/2 if and only if P is halfspace symmetric [36]. Thus, Π(·) may
be considered a measure of symmetry of probability distributions. For distributions with
a density 1/2 ≥ Π(P ) ≥ (d+ 1)−1 [19, Section 4].

Let {Xn}∞n=1 be a sequence of independent random variables with distribution P ∈
P
(
R

d
)
. Denote by Pn ∈ P

(
R

d
)
the empirical measure of the first n variables. We

propose to amend the sample halfspace depth hD (·;Pn) by considering not only the
collection of all depth central regions

Pn,δ =
{
x ∈ R

d : hD (x;Pn) ≥ δ
}
,

but also the illuminations on these. Let {αn}∞n=1 ⊂ [0,Π(P )) be a non-increasing sequence
of constants. For a random sample of size n the halfspace-illumination depth (or simply
the illumination depth) of x ∈ R

d w.r.t. the empirical measure Pn is

(3) Dαn (x;Pn) =

(
hD (x;Pn)

I (x;Pn,αn) / vold (Pn,αn)

)
.

In Figure 3 some level sets of this depth are displayed. Several remarks are in order.

(R1) The depth Dαn has two components. The usual halfspace depth is a reliable indi-
cator of centrality if x lies inside the region Pn,αn where there are enough observa-
tions to assess its degree of centrality. For such x, Dαn(x;Pn) = (hD(x;Pn), 1)

T,
and the illumination does not affect depth-rankings. In contrast, the illumination
evaluates the position of x against the group of central points Pn,αn that represent
the main mass of Pn. Illumination thus plays a role in the ranking of extremal
points whose depth is small, or zero. In the terminology of [35], illumination is
an outlyingness function.

(R2) The illumination is undefined if Π(Pn) < αn, or if vold (Pn,αn) = 0. The first situ-

ation cannot occur for n large enough since Π(Pn)
a.s.−−−→

n→∞
Π(P ) [4, formula (6.7)].

Suppose then that n is big enough for Pn,αn to be non-empty. Because Pn,αn is
convex, its volume is zero only if that set is contained in a hyperplane. For random
samples from continuous distributions, that happens with probability zero.
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(R3) The maximum depth Π(P ) is typically unknown. In practice it can be replaced
by Π(Pn) or, if P is regular enough, by a universal lower bound on Π(P ) (i.e. 1/2
for halfspace (or elliptically) symmetric distributions, exp(−1) for log-concave
distributions, or (s + 1)−1/s for s-concave measures with −1 < s < 0 [19, Theo-
rem 3]). In any case, αn should be bounded away from Π(P ) for the sets Pn,αn to
be sufficiently large.

(R4) The illumination depth may be parametrized also in terms of probability — αn

may be chosen as the maximum δ ∈ (0, 1/2) with the property that Pn,δ contains at
least ⌈pn n⌉ sample points for {pn}∞n=1 ∈ (0, 1) given. In the theoretical treatment
of the depth we consider the simpler parametrization by α.

-4 -2 0 2 4

-4
-2

0
2

4

Figure 3. Several level sets of the halfspace depth (orange regions) and the
illumination with α = 1/20 (regions with dashed red boundaries) for a bivariate
random sample of size 1000.

The practical choice of the cut-off levels αn determines the properties of the depth and
should be selected with an application in mind. For estimation of extreme depth quantile
regions Pδ with δ extremely small, it will be advantageous to take αn to converge to 0
slowly enough. That way, one obtains estimators comparable to the approaches taken in
[7, 10]. The disadvantage of this choice of thresholding is its lack of robustness. For a
procedure with good robustness properties, a sequence of cut-offs bounded from below
is more appropriate. Here we strive for robustness in conjunction with affine invariance.
Therefore, we focus mainly on the latter situation; one example of the former scenario
will be given in Section 5.2. For tie-breaking purposes, for a particular point x the cut-off
αn may even be taken to depend on x. Then, if the halfspace depths of x any y coincide,
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illumination on some Pn,αn with αn > hD (x;Pn) may help to decide which of the two
points is deeper inside the mass of Pn, see Section 5.1. Without any substantial loss of
generality1, in our theoretical treatment we focus on the situation of a constant cut-off
sequence αn = α < Π(P ) for all n. As we will see in Section 3.2, for α = Π(P )/(1+Π(P ))
we obtain a procedure with excellent robustness properties.

The mode of the cut-offs αn affects the population version of Dαn . If αn → 0, only hD
in (3) is relevant as n → ∞. In this situation the appropriate population version of Dαn

is the usual halfspace depth hD (·;P ) and by the standard consistency result for hD for
any P ∈ P

(
R

d
)
[4]

lim
n→∞

∥∥∥Dαn (x;Pn)− (hD (x;P ) , 1)T
∥∥∥ = 0 almost surely.

The situation is different for a constant αn = α ∈ (0,Π(P )). Then we define the popula-
tion version of Dα as

(4) Dα (x;P ) =

(
D1

α (x;P )
D2

α (x;P )

)
=

(
hD (x;P )

I (x;Pα) / vold (Pα)

)
,

which is well defined as soon as vold (Pα) > 0. It is immediate that (4) reduces to (3) for
P = Pn and α = αn.

The illumination depth Dα satisfies the desirable properties of a statistical depth sug-
gested in [35, 27].

Theorem 2. Let x ∈ R
d, X ∼ PX = P ∈ P

(
R

d
)
, and α ∈ (0,Π(P )) be such that

vold (Pα) > 0.

(i) For any A ∈ R
d×d non-singular and any b ∈ R

d we have Dα (Ax+ b;PAX+b) =
Dα (x;PX), where PAX+b is the distribution of the random vector AX + b.

(ii) P is halfspace symmetric around x ∈ R
d if and only if Dα (x;P ) = (c, 1)T for

c ≥ 1/2.
(iii) For x that satisfies hD (x;P ) = Π(P ) and any u ∈ R

d, the first and the second
component of Dα (x+ u t;P ) are a non-increasing and a non-decreasing function
of t ≥ 0, respectively.

(iv) All the level sets of the form
{
x ∈ R

d : D1
α (x;P ) ≥ c1 and D2

α (x;P ) ≤ c2
}

are
convex for all c1, c2 ∈ R, and compact for all c1 > 0, c2 ∈ R.

(v) The first element of Dα (·;P ) is a function that is upper semi-continuous. Its
second element is a function that is continuous on R

d. If P has a density, Dα (·;P )
is continuous on R

d.
(vi) As ‖x‖ → ∞, the first element of Dα (x;P ) converges uniformly to zero. Its

second element increases uniformly to ∞.

3.1. Uniform consistency. Recall that P is said to have contiguous support if the
support of P cannot be separated by a slab between two parallel hyperplanes. Connected
support is contiguous.

Theorem 3. Let P ∈ P
(
R

d
)
be absolutely continuous with contiguous support, and let

α ∈ (0,Π(P )). Then the illumination is locally uniformly consistent for P , that is for
any K ⊂ R

d compact
sup
x∈K

|I (x;Pn,α)− I (x;Pα)| a.s.−−−→
n→∞

0.

1All results presented here could be extended in a straightforward way, at the cost of further
technicalities.
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If, furthermore, P satisfies Assumptions 1 and 2 from [1], and Kn is a sequence of sets
such that Kn ∪ Pα is contained in a ball of radius Rn, then

sup
x∈Kn

|I (x;Pn,α)− I (x;Pα)| = OP

(
max

{
1, Rd−1

n

}
√
n

)
,

sup
x∈Kn

∣∣∣∣
I (x;Pn,α)

vold (Pn,α)
− I (x;Pα)

vold (Pα)

∣∣∣∣ = OP

(
max

{
1, Rd−1

n

}
√
n

)
,

sup
x∈Kn

‖Dα(x;Pn)−Dα (x;P )‖ = OP

(
max

{
1, Rd−1

n

}
√
n

)
.

In particular, if d = 1 and Rn > 0, or d > 1 and Rn = o
(
n1/(2(d−1))

)
,

sup
x∈Kn

|I (x;Pn,α)− I (x;Pα)| P−−−→
n→∞

0,

sup
x∈Kn

∣∣∣∣
I (x;Pn,α)

vold (Pn,α)
− I (x;Pα)

vold (Pα)

∣∣∣∣
P−−−→

n→∞
0,

sup
x∈Kn

‖Dα (x;Pn)−Dα (x;P )‖ P−−−→
n→∞

0.

Thanks to the sharp bound on the volume difference of convex bodies devised in
Lemma 11 in the appendix, it is possible to state an explicit deviation inequality such as
that from [1, Theorem 2]. We omit this result for brevity.

Note that the technical Assumptions 1 and 2 from [1] are not restrictive at all. They are
satisfied, for instance, if P has a density that is bounded away from zero in a large enough
superset of Pα, if the density of P is continuous, positive and decreases fast enough [1,
Assumption 3], or, for the case of elliptically symmetric distributions, if the density of P
is continuous and positive at the boundary of Pα.

Neither illumination nor the illumination depth are consistent uniformly over un-
bounded sets in R

d. This is illustrated in an example in Section A.5 in the appendix.
This does not limit practical applications. For any sequence of compact sets Kn, allowed
to increase in size with n, Theorem 3 guarantees uniform consistency.

3.2. Robustness. We now turn to the robustness properties of the illumination. For a
data set that corresponds to an empirical measure Pn ∈ P

(
R

d
)
, the addition breakdown

point of an estimator T = T (Pn) is defined [3] as

(5) BP (T, Pn) = min

{
m

n+m
: sup

Y (m)

d (T (Qm+n) , T (Pn)) = ∞
}
,

where Y (m) is an m-tuple of (not necessarily distinct) points in R
d, Qm+n is the empirical

measure that assigns probability 1/(m+n) to all the data points from Pn and Y (m), and
d is an appropriate distance in the target space of T . For the usual halfspace depth, the
finite sample breakdown point of the central region Tδ(Pn) = Pn,δ for δ ∈ (0,Π(Pn)) can
be derived from [4, Section 3]. With the Hausdorff distance of compact sets K,L ⊂ R

d

(6) dH (K,L) = max

{
max
x∈K

inf
y∈L

‖x− y‖ ,max
x∈L

inf
y∈K

‖x− y‖
}
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in (5) in place of d, from the advances in [4] (for a formal proof see Section A.6 in the
appendix) it can be shown that

(7) BP (Tδ, Pn) =
⌈δ/(1− δ)n⌉

n+ ⌈δ/(1− δ)n⌉ if δ ≤ Π(Pn)/(1 + Π(Pn)).

For δ close to zero and n large, the finite sample breakdown point of Pn,δ is of order δ. This
corroborates the well known fact that the outer, extremal regions of the halfspace depth
are not robust. For instance, in any configuration of n points in R

d, to dislocate the largest
proper depth region Pn,1/n — the convex hull of the sample points — it is enough to add
a single contaminating observation. On the other hand, for any δ ≥ Π(Pn)/(1 + Π(Pn)),
the central region Pn,δ is rather stable with a positive breakdown point not smaller than
Π(Pn)/(1 + Π(Pn)). If Pn corresponds to a random sample from P ∈ P

(
R

d
)
, as n → ∞

the latter breakdown point approaches Π(P )/(1 + Π(P )) [4, Proposition 3.3]. Thus, the
more regular P is, the more robust its inner halfspace depth central regions are.

We now give expressions for the finite sample breakdown point of the illumination.

Theorem 4. For an empirical measure Pn ∈ P
(
R

d
)
, α < Π(Pn), and

(8) Tα,δ(Pn) =
{
x ∈ R

d : I(x;Pn,α)/ vold (Pn,α) ≤ δ
}

for δ ≥ 1, we have that

BP (Tα,δ, Pn) =
⌈α/(1− α)n⌉

n + ⌈α/(1− α)n⌉ if α ≤ Π(Pn)/(1 + Π(Pn)),

BP (Tα,δ, Pn) ≥
Π(Pn)

1 + Π(Pn)
otherwise.

If Pn is the empirical measure of a random sample from P ∈ P
(
R

d
)
of size n, then it

almost surely holds true that

lim
n→∞

BP (Tα,δ, Pn) =

{
α if α < Π(P )/(1 + Π(P )),
Π(P )

1+Π(P )
otherwise.

Theorem 4 asserts that the illumination is quite robust — unlike for the halfspace
depth, its breakdown point does not depend on δ. For α = Π(P )/(1+Π(P )) we have, in
view of Remark (R3), that for any configuration of n points Pn we have BP (Tα,δ, Pn) ≥
1/(d + 2), and the illumination always possesses a strictly positive breakdown point.
This simple bound is, however, rather pessimistic. If Pn is a random sample from a
log-concave distribution, limn→∞BP (Tα,δ, Pn) = 1/(1 + e) ≈ 0.27 almost surely, and
for P halfspace symmetric, limn→∞BP (Tα,δ, Pn) = 1/3 almost surely. Overall, for a
random sample of size n from P that is regular enough, it takes, with large probability,
at least almost m = n/2 points to be added to the dataset to disturb the illumination
procedure completely. This contrasts sharply with the usual halfspace depth. According
to (7), for any distribution P , Pn,δ alone will be disrupted completely already if around
m = nδ/(1−δ) contaminants are strategically added to the sample. For numerical results
see Section 5.

3.3. Computational cost. Illumination is computed in two steps. Given a dataset Pn,
firstly a single central region Pn,α is computed. This set is a convex polytope. In the
second step, illumination of x onto Pn,α is evaluated by employing algorithms for the
computation of convex hulls of points and volumes of convex polytopes.
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Computation of Pn,α is generally a demanding task. For a single level α required for
the illumination, recent advances made this feasible in dimension d up to five or ten and
moderate sample sizes n; see [15] and the references therein.

Finding the illumination of x is already quite well explored. Both problems of finding a
convex hull of a dataset and its volume are standard in computational geometry. A great
number of effective algorithms exists in this direction [2]; for a more recent contribution
see [8].

In our R implementation we combine tools from package TukeyRegion with the R

interface to the Qhull2 toolbox implemented in package geometry. This code, given in
Appendix C, handles hundreds of observations in dimensions d ≤ 5 without substantial
difficulties, see Table 1. More efficient algorithms for the computation of volumes of
convex polytopes can be used to speed up the computation. The computation of the
single halfspace depth region Pn,α is the true bottleneck of this procedure, especially in
higher dimensions.

Setup \ R package TukeyRegion geometry ddalpha

n = 50 d = 2 0.02 0.77 0.08
d = 3 0.03 1.03 0.05
d = 4 0.27 9.61 0.06

n = 200 d = 2 0.03 0.70 0.20
d = 3 0.54 1.88 0.21
d = 4 295.64 70.36 0.20

n = 500 d = 2 0.31 0.71 0.51
d = 3 9.99 2.31 0.48
d = 4 72010.61 220.21 0.50

Table 1. Computation times (in seconds) for the evaluation of a single halfspace
depth region Pn,α that is illuminated on (TukeyRegion); the illumination of 1000
randomly sampled points onto Pn,α (geometry); and the usual halfspace depth of
these 1000 points w.r.t. Pn (ddalpha). In all cases the depth is computed w.r.t.
a random sample from a standard d-variate normal distribution of size n.

4. Illumination for elliptically symmetric distributions

Now we focus our attention to elliptically symmetric distributions, or more generally,
to those distributions P whose halfspace depth central regions Pδ are close to ellipsoids.
It may appear that the latter assumption is restrictive. Nonetheless, it is known that any
sufficiently regular distribution P possesses central regions Pδ that are bound to have
almost ellipsoidal shapes. This was first observed by Milman and Pajor [16], see the
proposition in the appendix of that paper. There it is shown that for P uniform on a
symmetric convex body K every Pδ is uniformly, up to a known constant, isomorphic
to an ellipsoid. References to further extensions of that groundbreaking result to (asym-
metric) log-concave or s-concave measures with additional discussion can be found in
[19, Section 7]. Thus, even though formally the restriction to elliptical symmetry in this
section is real, at least heuristically all these results will hold true more widely.

2http://www.qhull.org/

http://www.qhull.org/
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We start by collecting some useful information about elliptically symmetric distribu-
tions. For references to these results see [28, 9]. P ∈ P

(
R

d
)
is said to be spherically

symmetric if the measure P is invariant with respect to all orthogonal transformations
on R

d. It is elliptically symmetric if it can be represented as an affine image of a spheri-
cally symmetric distribution — we say that X ∼ P ∈ P

(
R

d
)
is elliptically symmetric if

X
d
= µ+ AZ for µ ∈ R

d, A ∈ R
d×k, and Z = (Z1, . . . , Zk)

T ∼ Q ∈ P
(
R

k
)
is spherically

symmetric. The symbol
d
= stands for “is equal in distribution”. Note that Q is uniquely

characterized by the symmetric3 distribution function F (z) = P (Z1 ≤ z), z ∈ R. We also
write X ∼ P = EC (µ,Σ, F ) for Σ = AAT ∈ R

d×d. Because µ + cAZ = µ + A(cZ) and

F̃ (z) = P (cZ1 ≤ z) = F (z/c) for any c > 0 and z ∈ R, EC (µ, c2Σ, F ) = EC
(
µ,Σ, F̃

)
.

To identify P uniquely, we therefore in this section consider mainly elliptically symmetric
distributions whose scatter matrix Σ is normalized to have a unit determinant |Σ| = 1.

For X ∼ P = EC (µ,Σ, F ) ∈ P
(
R

d
)
with Σ positive definite and Q = Σ−1/2 (X − µ)

the spherically symmetric affine image of P , affine invariance of hD gives a simple ex-
pression for the halfspace depth of any x ∈ R

d

(9) hD (x;P ) = hD
(
Σ−1/2 (x− µ) ;Q

)
= F

(
−
∥∥Σ−1/2 (x− µ)

∥∥) = F (−dΣ (x, µ)) .

It is also not hard to realise (see, e.g., [19, Theorem 34]) that P = EC(µ,Σ, F ) if and
only if all the halfspace depth central regions Pα with 0 < α < 1/2 are ellipsoids of the
form

Pα =
{
x ∈ R

d : dΣ (x, µ) ≤ −F−1 (α) = F−1 (1− α)
}
= Eµ,Σ(F−1(1−α))2 .

Thus, by the expression for the illumination of ellipsoids (1), the lower level sets of the
illumination (8) with δ ≥ 1 are also all ellipsoids

Tα,δ(P ) =
{
x ∈ R

d : dΣ(F−1(1−α))2 (x, µ) ≤ g−1
d (δ)

}

=
{
x ∈ R

d : dΣ(x, µ) ≤ F−1 (1− α) g−1
d (δ)

}
.

In particular, for x /∈ Pα,

(10) g−1
d

(I (x;Pα)

vold (Pα)

)
= dΣ(F−1(1−α))2(x, µ) =

dΣ(x, µ)

F−1 (1− α)
,

and both the halfspace depth upper level sets and the illumination lower level sets are
ellipsoids centred at µ with the same orientation as the Mahalanobis ellipsoid Eµ,Σ, or
equivalently, the density contours of P . A first application of this property is straightfor-
ward. For P with a unimodal elliptically symmetric density, the depth-induced centre-
outward ordering of the points x ∈ R

d is a function of their Mahalanobis distance dΣ(x, µ)
from the mode µ — the smaller dΣ (x, µ), the more central x is. To get a robust, affine
invariant depth-based estimator of dΣ (x, µ), employ (9) and (10) to see that

(11) dΣ(x, µ) =

{
F−1 (1− hD (x;P )) if hD (x;P ) ≥ α,

F−1 (1− α) g−1
d

(
I(x;Pα)
vold(Pα)

)
otherwise.

Because F is non-decreasing and g−1
d strictly increases on its domain by Lemma 10,

dΣ(x1, µ) ≤ dΣ(x2, µ) is equivalent with one of the three possible situations: (i) either
hD (x1;P ) ≥ α > hD (x2;P ); or (ii) if both depths are high, hD (x1;P ) ≥ hD (x2;P ) ≥ α;

3By symmetry of the distribution function we mean that F (z) = 1−F (−z) at all points of continuity
of F .
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or (iii) if both depths are low, α > max {hD (x1;P ) , hD (x2;P )}, and at the same time
I (x1;Pα) ≤ I (x2;Pα). This yields the following centre-outwards ranking procedure for
points x1, . . . , xm ∈ R

d (the lowest rank is for the most central position):

(i) compute the depth Dα of all points x1, . . . , xm;
(ii) the k points whose halfspace depth is at least α are ranked as the k most central

points x(1) � · · · � x(k) according to their decreasing halfspace depth, i.e. xi � xj

if hD (xi;P ) ≥ hD (xj ;P );
(iii) them−k remaining points are ranked as the less central points x(k+1) � · · · � x(m)

according to their increasing illumination, i.e. xi � xj if I (xi;Pα) ≤ I (xj ;Pα).

This robust ranking can produce ties. However, they are easy to break. If hD (xi;P ) =
hD (xj ;P ) ≥ α, use the illumination and set xi ≺ xj if I (xi;Pα′) < I (xj ;Pα′) for
some α′ > hD (xi;P ). If the original tied ranks of xi and xj were decided from the
illumination, set xi ≺ xj if hD (xi;P ) > hD (xj ;P ). For x1, . . . , xm sampled randomly
from a continuous distribution, we identify the ranks uniquely, with no ties, almost surely.
The performance of these ranking procedures is demonstrated in Section 5.1.

Suppose now that we have an estimator Fn of F from P = EC (µ,Σ, F ) at hand. It
could be obtained, for instance, by first performing a robust whitening transformation

of the random sample X1, . . . , Xn from P , i.e. considering Zi = Σ̂−1/2 (Xi − µ̂), i =

1, . . . , n, for some robust location and scatter estimators µ̂ and Σ̂ (in accordance with

our parametrization,
∣∣∣Σ̂
∣∣∣ = 1). The estimators µ̂ and Σ̂ could be, for instance, the

halfspace median (the barycentre of the points that maximize hD (·;Pn)), and the matrix
of unit determinant proportional to the halfspace scatter median matrix (the matrix that
maximizes the scatter extension of the halfspace depth, see [20]). In the second step, F
is estimated simply by the empirical distribution function Fn of any univariate marginal
distribution of Z1, . . . , Zn. Since Fn estimates a univariate distribution function, it does
not suffer from the curse of dimensionality, and can be expected to have decent theoretical
properties. More involved estimators of F such as that from [12] can be employed as well.

Because F is symmetric, we can assume that also Fn possesses the symmetry property.

From a possibly non-symmetric estimator F̃n of F this can be achieved by symmetrization:

set Fn to be the right continuous version of the function t 7→
(
F̃n(t) + 1− F̃n(−t)

)
/2.

This procedure improves the properties of the basic estimator F̃n if F is symmetric [23].
Finally, assume that Fn is non-decreasing and affine invariant, the latter meaning that

Fn based on X1, . . . , Xn is the same as Fn constructed from AX1+ b, . . . , AXn+ b for any
A ∈ R

d×d non-singular and b ∈ R
d. These conditions are natural in our setting and are

all satisfied by most reasonable estimators.

4.1. Estimation of the Mahalanobis distance. From (11) we see that the Maha-
lanobis distance dΣ (x, µ) can be estimated directly from the illumination depth, given
that an estimator of F is at hand. Consider the estimator

Mα (x;Pn) =

{
F−1
n (1− hD (x;Pn)) if hD (x;Pn) ≥ α,

F−1
n (1− α) g−1

d

(
I(x;Pn,α)
vold(Pn,α)

)
otherwise.

Note that Fn needs to be known only in the central part of the distribution; in the more
extreme regions, Mα is proportional to a known function of the illumination only. Several
desirable properties of Mα (·;Pn) are summarized in the following theorem.
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Theorem 5. Let Pn ∈ P
(
R

d
)
be the empirical measure of a random sample X1, . . . , Xn

from P ∈ P
(
R

d
)
that is not concentrated in a singleton, let F−1

n (1 − α) > 0 with 0 <

α < 1/2, and let x ∈ R
d.

(i) If P = EC (µ,Σ, F ) and Fn is a Fisher consistent estimator of F , then Mα (x;Pn)
is a Fisher consistent estimator of the Mahalanobis distance dΣ(x, µ).

(ii) Mα is affine invariant, i.e. Mα (Ax+ b;PAX+b,n) = Mα (x;Pn) for any non-
singular matrix A ∈ R

d×d and b ∈ R
d, where PAX+b,n is the empirical measure of

the transformed random sample AX1 + b, . . . , AXn + b.
(iii) For any δ ≥ F−1

n (1−Π(Pn)), the lower level set

(12)
{
x ∈ R

d : Mα (x;Pn) ≤ δ
}

is either the unique halfspace median of Pn, or a convex body.
(iv) As n → ∞, let the limiting addition breakdown point (5) of the estimator T (Pn) =

F−1
n (1− α) with the metric d(s, t) = |log(s)− log(t)| for s, t > 0 be at least

min {α, 1/3} almost surely. Then for any δ > limn→∞ F−1
n (1− Π (Pn)), the lim-

iting addition breakdown point of the level set (12) with respect to the Hausdorff
distance is min {α, 1/3} almost surely.

The choice of the metric in the breakdown point from part (iv) is natural. For a
non-degenerate symmetric distribution function F and its symmetric estimator Fn, the
quantile F−1 (1− α) with 0 < α < 1/2 lies in the positive halfline, and a sequence
of estimated quantiles that converges to zero is just as undesirable as that escaping to
infinity. Note also that the condition on the breakdown point of the sample quantile
is naturally satisfied for any reasonable estimator of F — already the (symmetrized)
empirical distribution function of any univariate random sample obeys it. The additional
condition on δ in part (iv) guarantees that the level set (12) is non-empty. If, for instance,
P = EC (µ,Σ, F ) is such that F strictly increases in a neighbourhood of 0, and Fn is
an estimator that is strongly uniformly consistent on this neighbourhood, this condition
reduces to δ > 0.

In the following theorem we study the uniform consistency of our robust estimator of
the Mahalanobis distance.

Theorem 6. Let P = EC (µ,Σ, F ) ∈ P
(
R

d
)
be such that Σ is positive definite, 0 < α <

1/2, F is continuous at 0 and strictly increasing on [0, F−1 (1− α)], it has a density that
is bounded from below in a neighbourhood of F−1 (1− α), and let Fn satisfy

(13) sup
t∈R

|Fn(t)− F (t)| a.s.−−−→
n→∞

0.

and

(14) F−1
n (1− α)− F−1 (1− α) = oP (1/Rn) ,

where Rn = o
(
n1/(2(d−1))

)
. Let Kn be a sequence of sets with Kn ⊂ Bd (µ,Rn). Then

sup
x∈Kn

|Mα(x;Pn)− dΣ(x, µ)| P−−−→
n→∞

0.

The proof of Theorem 6 is technical and can be found in the appendix.
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4.2. Estimation of the halfspace depth. The close relation of the illumination depth
with the Mahalanobis distance will now be used in a robustified definition of the sample
halfspace depth based on the idea of illumination. Recall the connections of the halfspace
depth with the Mahalanobis distance from (9). For α ∈ [0, 1/2) we propose the following
estimator of the depth hD (·;P ) of P = EC(µ,Σ, F )

(15) RhDα (x;Pn) =

{
hD (x;Pn) if hD (x;Pn) ≥ α,

Fn

(
g−1
d

(
I(x;Pn,α)

vold(Pn,α)

)
F−1
n (α)

)
otherwise.

As for the illumination, there are several natural choices of the cut-off α. Our main focus
is in the robust estimation of the halfspace depth. Thus, we consider mainly constant α.
In spaces of lower dimensions, α = 1/3 guarantees decent stability in combination with
affine invariance, and superb robustness properties; details analogous to Theorem 5 are
omitted.

Theorem 7. Under the assumptions of Theorem 6

sup
x∈Kn

|RhDα(x;Pn)− hD (x;P )| P−−−→
n→∞

0.

Theorem 7 asserts that the robustified depth is a uniformly consistent estimator of the
true halfspace depth. Following [7, 10], for an estimator of Fn that performs well also in
the tails of the distribution, we are able to derive a multiplicative version of the uniform
consistency result. By [7, Remark 1], this result is much stronger than Theorem 7, and
is valuable especially when extreme depth-regions are to be estimated.

Theorem 8. Suppose that the assumptions of Theorem 6 are satisfied. In addition, let

(16) F−1
n (1− α)− F−1 (1− α) = OP (ξn) = oP (1/Rn) ,

for a sequence ξn, and let

(17) sup
|t|<2Rn/

√
λ

∣∣∣∣
Fn(t)

F (t)
− 1

∣∣∣∣
P−−−→

n→∞
0

hold true for λ the smallest eigenvalue of Σ. For b = F−1 (1− α) and any c > 0 let

(18) lim
n→∞

sup
b/2<|s|<Rn/

√
λ

|s−t|<c max{Rnξn,ωn}

∣∣∣∣
F (s)

F (t)
− 1

∣∣∣∣ = 0

with ωn =
(
Rd−1

n /
√
n
)2/(d+1)

. Then

sup
x∈Kn

∣∣∣∣
RhDα (x;Pn)

hD (x;P )
− 1

∣∣∣∣
P−−−→

n→∞
0.

We conclude this section by giving several remarks on the assumptions of Theorems 6,
7, and 8.

(R5) The conditions on the convergence rates of the estimator of the quantile (14) and
(16) are not restrictive at all. Suppose, for instance, that the parametric conver-
gence rate F−1

n (1− α)−F−1 (1− α) = OP

(
n−1/2

)
is true. Then, for d > 1, both

conditions (14) and (16) are satisfied provided already that Rn = o
(
n1/(2(d−1))

)
,

as required for the consistency of the illumination.
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(R6) Condition (17) is also not too stringent. It is satisfied by the refined estimator of
the univariate distribution function F studied in [7, Section 2.1]. There, based on
the extreme value theory, an estimator Fn is constructed that, under appropriate
assumptions, obeys

sup
|t|<F−1(1−δn)

∣∣∣∣
Fn(t)

F (t)
− 1

∣∣∣∣
P−−−→

n→∞
0

for an adequate sequence δn → 0 as n → ∞. Given that the sequence Rn in
(17) does not grow too fast, i.e. that Rn ≤

√
λF−1 (1− δn) /2, we have that{

t ∈ R : |t| < 2Rn/
√
λ
}

⊂ {t ∈ R : |t| < F−1 (1− δn)}, and (17) is valid for the

estimator of F from [7].
(R7) Condition (18) is valid for Rn that increases slowly enough. Suppose, for instance,

as in Remark (R5) that ξn = n−1/2 in (16). Then max {Rnξn, ωn} from (18)
reduces to ωn, and we may bound, with wF the minimal modulus of continuity of
F ,

sup
b/2<|s|<Rn/

√
λ

|s−t|<cωn

∣∣∣∣
F (s)

F (t)
− 1

∣∣∣∣ ≤ sup
|s|<Rn/

√
λ

|s−t|<cωn

|F (s)− F (t)|
F (t)

≤ wF (c ωn)

F
(
−Rn/

√
λ
) .

If F has a density bounded from above by a constant M > 0, the mean value
theorem gives wF (h) = sup|s−t|<h |F (s)− F (t)| ≤ Mh. Therefore, for d > 1, for

(18) to be true it is enough that ωn =
(
Rd−1

n /
√
n
)2/(d+1)

= o
(
F
(
−Rn/

√
λ
))

. If

F (t) does not decrease with t → −∞ at a rate faster than |t|γ for some γ < 0,

it is not difficult to see that Rn = o
(
n(2(d−1)−γ(d+1))−1

)
guarantees (18). For F

with a lighter tail, polynomial rates of Rn may not be sufficiently slow. For F (t)
not decreasing with t → −∞ at a rate faster than e−|t|γ for γ > 0, we need to

take Rn increasing slower than
((

1
d+1

− ε
)
log(n)

)1/γ √
λ for some ε > 0 to get

(18). Likewise, for F (t) not decreasing faster than exp
(
−e|t|

γ)
with t → −∞ and

γ > 0, we take Rn slower than
(
log
(

1
d+1

− ε
)
+ log log n

)1/γ √
λ for any ε > 0

small enough. Note, however, that these estimates are rough, and for particular
distribution functions F finer rates of Rn can be deduced directly from (18).
Detailed proofs of these results can be found in Appendix A.

5. Applications

5.1. Tie-breaking. For an illustration of the tie-breaking capability of the illumination
we consider a sample of n = 1000 observations from the spherically symmetric standard
five-dimensional normal distribution P (d = 5). The correct ranking Rc of the observa-
tions from the most central to the most extreme is given by the decreasing values of the
(population) density of P . We compare it to the ranking RhD based on the decreasing
values of the sample halfspace depth of the observations, where many ties occur, and
the improved ranking RI where the ties are resolved based on the value of I(x;Pn,αn(x)),
larger values corresponding to more extreme observations, see Section 4. The cut-off
αn(x) is chosen so that Pn,αn(x) contains one half of observations whose halfspace depth
is not smaller than that of x.
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In Table 2 we report the means and standard deviations of the estimated (Spearman)
correlation coefficient between RhD, Rc and RI , Rc, respectively, for observations with
hD(x;Pn) ≤ δ for several values of δ. The reported results are based on 100 replications
of the experiment.

From the 1000 observations, on average 107 lies on the boundary of the convex hull of
the data and the halfspace depth alone cannot rank them properly. The refined ranking
based on illumination is quite successful in this case, see the last row of Table 2 and
Figure 4.

observations corS(RhD, Rc) corS(RI , Rc)
δ = 0.5 1000 (0.) 0.989 (0.002) 0.991 (0.002)

δ = 0.05 733 (11.) 0.975 (0.004) 0.981 (0.004)

δ = 0.01 363 (12.) 0.895 (0.016) 0.933 (0.012)

δ = 0.005 253 (11.) 0.806 (0.029) 0.905 (0.017)

δ = 0.001 107 (10.) — 0.923 (0.023)

Table 2. For different values of δ the table shows the mean and standard devia-
tion (in brackets) of the number of observations (out of 1000) with hD(x;Pn) ≤ δ,
and for these observations the mean and standard deviation (in brackets) of the
estimated (Spearman) correlation coefficient between their correct ranking Rc and
the rankings based on the halfspace depth RhD and the improved ranking RI based
on the illumination, respectively. The last row corresponds to the observations
lying on the boundary of the convex hull of the data — these all have the same
halfspace depth, the same RhD rank, and hence corS(RhD, Rc) is not defined.
Based on 100 replications of the experiment.

9
0
0

9
5
0

1
0
0
0

850 900 950 1000

Figure 4. Tie-breaking capability of illumination: improved ranks RI, based on
illumination, of the observations lying on the boundary of the convex hull of the
data (vertical axis) plotted against their correct ranks Rc, based on the values
of the probability density function (horizontal axis). The halfspace depth of all
these observations is zero.

5.2. Estimation of extreme central regions. Consider the problem of estimation of
the region Pδ for very small values of δ, based on the sample of size n from distribution
P . The approach described in [7] is based on the so-called refined halfspace depth and
finding the set S = Pn,k/n for an appropriate value of k ∈ N. The region Pδ is then
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estimated by the inflated set ER = c S = {c x : x ∈ S}, where c =
(

k
nδ

)1/α̂
, and α̂ is

the estimated tail index of P . Note the implicit assumptions of homothety of the depth
contours, and that of the halfspace median of P being the origin.

Assume now that S = Pn,k/n is an ellipsoid given by
{
x ∈ R

d : dΣ (x, 0) ≤ 1
}
(which is

a relevant approximation for elliptical distributions). Let x be a point on the boundary
of S and x∗ = c x a point on the boundary of c S. It holds that dΣ(x

∗, 0) = c dΣ(x, 0) = c
and using (1) we get gd(c) = gd(dΣ(x

∗, 0)) = I(x∗;S)/ vold (S).
Instead of the inflation of the set S, our approach is based on finding the set EI =

{x ∈ R
d : I(x;S) ≤ gd(c)}. This is related to the approach from [7] but more robust in

the sense that our procedure is less sensitive to errors in estimation of S = Pn,k/n and the
tail index α. Figure 5 shows the estimates of the central region P1/n based on a sample
of size n = 500 from the spherically symmetric bivariate Cauchy distribution where, in
agreement with [7], we take k = 75 for finding S = Pn,k/n and the tail index α.

We repeated the experiment 100 times and computed the two Hausdorff distances
dH(EI , P1/n) and dH(ER, P1/n), respectively. The boxplots of these distances are given
in Figure 6. We remark that in all 100 replications of the experiment we observed
dH(EI , P1/n) < dH(ER, P1/n), making the illumination-based approach more successful
in the estimation of P1/n. This appears to be justified by a more spherical shape of EI ,
obtained by the illumination of S, compared to ER, obtained by the inflation of S.

-200 0 200 400 600

-3
0
0

-1
0
0

1
0
0

3
0
0

Figure 5. Estimation of an extreme central region. Based on a sample of size
n = 500 from the spherically symmetric bivariate Cauchy distribution (note that
a single observation with coordinates (−1677,−1691)T is not plotted). Black
circle: boundary of the true region P1/n; light blue region: estimate ER of P1/n

based on the refined depth [7]; light orange region: estimate EI of P1/n based on
the illumination.

5.3. Robust classification. Illumination can be used to devise a robust and affine in-
variant version of the quadratic discriminant analysis (QDA) classification rule, whose
population version is optimal. Suppose, for simplicity, that we have two independent
d-variate random samples from normal distributions P (j) with unknown mean vectors µj

and unknown variance matrices Σj for j = 1, 2, respectively. A new observation x is
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Illumination Refined depth

0
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0

1
5

0
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0

Figure 6. Estimation of the extreme central region. Hausdorff distances of the
estimates EI (based on illumination) and ER (based on the refined depth [7])
from P1/n.

sampled from P (j) with a known probability πj , π1 + π2 = 1. Our task is to determine
from which distribution x was sampled. For the illumination-based QDA, let 0 < δ < 1/2
be a fixed parameter. We suggest to assign x into P (1) if and only if

(19) 2 log


 π1

vold

(
P

(1)
δ

)


− dΣ1 (x, µ1)

2 > 2 log


 π2

vold

(
P

(2)
δ

)


− dΣ2 (x, µ2)

2 .

In the population case, this simple classification rule is equivalent with the QDA, i.e.
it is optimal in our setting. At the same time, it is affine invariant, highly robust for
δ large enough, and entirely depth-based, as we saw in Section 4.1 that dΣj

(x, µj) can

be consistently estimated by Mδ

(
x;P

(j)
n

)
with Fn = Φ the distribution function of the

univariate standard normal variable, and vold

(
P

(j)
n,δ

)
almost surely approaches vold

(
P

(j)
δ

)

as n → ∞. The proof of the following result can be found in Appendix A.

Theorem 9. For P (j) as above the illumination-based QDA classification rule (19) is
optimal, i.e. for any δ ∈ (0, 1/2) it coincides with the classical quadratic discriminant
rule. Furthermore, for any K ⊂ R

d bounded and j = 1, 2

sup
x∈K

∣∣∣∣∣∣
2 log


 πj

vold

(
P

(j)
n,δ

)


−Mδ

(
x;P (j)

n

)2 −


2 log


 πj

vold

(
P

(j)
δ

)


− dΣj

(x, µj)
2



∣∣∣∣∣∣

P−−−→
n→∞

0,

where Φ is used in place of Fn in Mδ

(
x;P

(j)
n

)
.

Note that in Theorem 9 we deal with normal distributions. For other elliptically
symmetric distributions EC (µj,Σj , F ) analogous results are straightforward to derive;
for details see Appendix A.12.
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To illustrate the performance of the robust QDA classification approach we consider
two simulation experiments. Another two scenarios are given in Appendix B.

5.3.1. Bivariate normal distribution, location and scale difference. Let PX be the stan-
dard bivariate normal distribution and denote P (1) = PX , P

(2) = P2X+(4,4)T . The training

sets consist of 500 observations from P (1) and P (2), respectively; the testing sets consist
of 1000 points sampled from P (1) and P (2), respectively. We consider the illumination-
based QDA procedure given above and compare it to the classical QDA method and the
method based on the refined halfspace depth [7].

For the illumination we choose δ so that the probability content of PX,δ is 0.5. This
results in δ = 1 − Φ(

√
2 log 2). For computing the refined depth we take k = 75 in

agreement with [7].
The experiment was repeated 100 times. Figure 7 (left panel) shows boxplots of the

misclassification rates for different methods. The illumination-based approach and the
classical QDA on average achieve the optimal (Bayes) error rate while the misclassification
rates of the method based on the refined depth tend to be slightly higher.

Illumination QDA Refined depth

0
.0

0
0
.0

2
0
.0

4
0
.0

6

All points

Illumination QDA Refined depth

0
.0

0
.2

0
.4

0
.6

Outsiders

Figure 7. Misclassification rates, based on 100 replications of the experiment
with two bivariate normal distributions with different location and different scale.
Based on all testing points (left panel) or the outsiders (right panel). Dashed
horizontal line in the left panel corresponds to the theoretical Bayes error rate.

To assess the performance of the classification methods in the extremes we consider
another experiment where first 2500 testing points are generated from each distribution,
but only those outside the convex hull of both training sets are used for classification.
This setup corresponds to the so-called outsider problem studied, among others, in [11].
The outsiders have all zero empirical halfspace depth w.r.t. both training sets, and hence
cannot be classified based on hD only. Figure 7 (right panel) shows boxplots of the
misclassification rates of the considered methods for the outsiders. Both illumination-
based approach and QDA still perform well. The method based on the refined depth
suffers from much higher misclassification rates because of the incorrect estimation of the
tail index.

To study the robustness properties of the classification methods we consider contami-
nation of the first training set by observations from P (3) = PX+(40,40)T . We set the extent
of contamination to 1 %, 5 % and 10 % of the data points, respectively. Table 3 gives
the average misclassification rates in these settings. Note that in the right part of the
table different rows are not directly comparable since higher contamination implies larger
span of the training points, hence on average fewer (more outlying) test points lie outside
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All points Outsiders
Illumination QDA Ref. depth Illumination QDA Ref. depth

0 % 0.025 (0.003) 0.024 (0.003) 0.029 (0.006) 0.034 (0.023) 0.033 (0.024) 0.202 (0.148)

1 % 0.025 (0.003) 0.050 (0.005) 0.045 (0.010) 0.035 (0.029) 0.055 (0.038) 0.506 (0.155)

5 % 0.026 (0.003) 0.044 (0.005) 0.052 (0.011) 0.033 (0.026) 0.081 (0.052) 0.539 (0.146)

10 % 0.034 (0.004) 0.047 (0.008) 0.059 (0.059) 0.036 (0.029) 0.092 (0.058) 0.541 (0.139)

Table 3. Average misclassification rates and their standard deviations (in
brackets), bivariate normal distributions with different location and different
scale, level of contamination in one of the training samples ranging from 0 to
10 %. Based on 100 replications of the experiment and all testing points (left
part) and the outsiders (right part), respectively.

the convex hull of the training points. We observe that the illumination-based approach
is very robust and performs well even under rather severe contamination. In contrast,
the refined depth [7] is sensitive to the contamination through the estimation of the tail
index.

5.3.2. Bivariate elliptical distribution, location and scale difference. To study the classi-
fication performances for a heavy-tailed distribution, let PY be the elliptical distribution

from [10] with the probability density function f(x, y) = 3(x2/4+y2)2

4π(1+(x2/4+y2)3)3/2
, (x, y)T ∈ R

2.

Let P (1) = PY , P (2) = P2Y+(4,4)T , P (3) = PX+(40,40)T for X from Section 5.3.1. It is
possible to adapt our robust QDA procedure by replacing Φ with the marginal distribu-
tion function F of the first element of the spherically symmetric affine image of Y . The
function F is assumed to be known4. Here we choose δ

.
= 0.11205 so that the probability

content of PY,δ is 0.5.
The results are summarized in Figure 8 and Table 4. We observe that in the case with

no contamination, the illumination-based approach performs the best from the three
classification methods considered. Note that the very high misclassification rates for
the method based on the refined depth and the group of outsiders under contamination
(see the right part of Table 4), are caused by the poorly estimated tail index of the
distribution P (1), and because approximately three times more testing points come from
the distribution P (2) than from P (1) due to the greater spread of P (2).

Overall, our experiments demonstrate a great potential for varied illumination-based
statistical methodology. All these results will be further elaborated on in the coming
works of the authors.

Appendix A. Proofs of the theoretical results

A.1. Proof of Lemma 1. For d = 1, Σ = σ2 > 0 and |x− µ| > σ, the formula reduces
to I (x; Eµ,Σ) = |x− µ| + σ, which is the illumination of x outside Eµ,Σ = σB1 on that
ball. For d > 1, let us first compute the illumination of a unit ball. Take x /∈ Bd. The
set difference of the convex hull of x and Bd minus Bd is a cone with height ‖x‖− 1/ ‖x‖
and base a (d− 1)-dimensional ball with radius

√
1− 1/ ‖x‖2, without a spherical cap of

4To avoid lengthy numerical computations of multiple quantiles of F , here and in Section B.1.2 in the

appendix we slightly simplify the rule (19), and for x ∈ P
(1)
n,δ ∪ P

(2)
n,δ we assign x to P (1) if and only if

hD
(
x;P

(1)
n

)
> hD

(
x;P

(2)
n

)
.
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Figure 8. Misclassification rates, based on 100 replications of the experiment
with two bivariate elliptical distributions with different location and different
scale. Based on all testing points (left panel) or the outsiders (right panel).
Dashed horizontal line in the left panel corresponds to the theoretical Bayes er-
ror rate.

All points Outsiders
Illumination QDA Ref. depth Illumination QDA Ref. depth

0 % 0.055 (0.006) 0.064 (0.007) 0.060 (0.007) 0.155 (0.071) 0.184 (0.105) 0.240 (0.118)

1 % 0.056 (0.006) 0.096 (0.014) 0.066 (0.008) 0.179 (0.081) 0.238 (0.094) 0.527 (0.183)

5 % 0.057 (0.005) 0.103 (0.029) 0.093 (0.016) 0.185 (0.090) 0.239 (0.102) 0.755 (0.129)

10 % 0.068 (0.008) 0.154 (0.038) 0.108 (0.015) 0.202 (0.084) 0.266 (0.098) 0.742 (0.128)

Table 4. Misclassification rates and their standard deviations (in brackets),
bivariate elliptical distributions with different location and different scale, level
of contamination in one of the training samples ranging from 0 to 10 %. Based
on 100 replications of the experiment and all testing points (left part) and the
outsiders (right part), respectively.

Bd of height 1− 1/ ‖x‖. Because vold
(
Bd
)
= πd/2

Γ( d
2
+1)

, the volume of the cone is

(20)
1

d

π
d−1
2

Γ
(
d−1
2

+ 1
) (1− 1/ ‖x‖2

) d−1
2

(
‖x‖ − 1

‖x‖

)
,

and the volume of the cap is

(21)
π

d−1
2

Γ
(
d+1
2

)
∫ arccos(1/‖x‖)

0

sind(t) d t.

Altogether, (20) and (21) give that

I
(
x;Bd

)
=

π
d−1
2

Γ
(
d+1
2

)
(
‖x‖
d

(
1− 1/ ‖x‖2

) d+1
2 −

∫ arccos(1/‖x‖)

0

sind(t) d t

)
+ vold

(
Bd
)
.

It is not difficult to see that Eµ,Σ = Σ1/2Bd + µ =
⋃

x∈Bd

{
Σ1/2x+ µ

}
. Thus, by the

affine equivariance of the illumination bodies [34, Proposition 2] we have I (x; Eµ,Σ) =

I
(
Σ−1/2 (x− µ) ;Bd

)√
|Σ|. The general assertion then follows from

∥∥Σ−1/2 (x− µ)
∥∥ =√

(x− µ)T Σ−1 (x− µ).
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Figure 9. First five functions gd, d = 1, . . . , 5 (left panel) and their first deriva-
tives (right panel).

A.2. Lemma 10. The next lemma summarizes some analytical properties of the function
gd defined in Section 2.

Lemma 10. For all d ≥ 1

(i) function gd : [1,∞) → [1,∞) is uniformly continuous, strictly increasing, and
convex;

(ii) gd(1) = 1, limt→∞ gd(t) = ∞;
(iii) gd is differentiable on (1,∞) and

(22) g′d(t) =
Γ
(
d
2
+ 1
)

√
π Γ
(
d+1
2

) 1
d

(
1− 1

t2

)(d−1)/2

for t ∈ (1,∞);

(iv) gd(t)− 1 = O
(
(t− 1)(d+1)/2

)
as t → 1 from the right;

(v) the minimal modulus of continuity of the inverse function g−1
d takes the form

wg−1
d
(h) = sup

|s−t|<h

∣∣g−1
d (s)− g−1

d (t)
∣∣ = g−1

d (1 + h)− 1 for h ≥ 0;

(vi) as h → 0 from the right, wg−1
d
(h) = O

(
h2/(d+1)

)
;

(vii) as t → ∞, g−1
d (t) = O (t).

Proof. Using the Leibniz integral formula it is easy to see that the derivative of gd is
(22). That function is positive, increasing, and bounded from above. Hence, gd is strictly
increasing, convex, and Lipschitz continuous. Part (iv) follows by an application of
l’Hôpital’s rule

(23)

lim
t→1

gd(t)− 1

(t− 1)(d+1)/2
= lim

t→1

Γ
(
d
2
+ 1
)

√
π Γ
(
d+1
2

) 2

d(d+ 1)

((t− 1) (t+ 1))(d−1)/2

td−1(t− 1)(d−1)/2

=
Γ
(
d
2
+ 1
)

√
π Γ
(
d+1
2

) 2(d+1)/2

d(d+ 1)
.

For Part (v) first note that because gd is smooth, strictly increasing and convex, its inverse
g−1
d must be smooth, strictly increasing and concave. For such a function the mean value
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theorem asserts that the greatest difference g−1
d (s)− g−1

d (t) subject to 1 ≤ t ≤ s < t+ h
must be attained at the left endpoint of its domain, i.e. for t = 1 and s = 1 + h. To
obtain the rate of the modulus of continuity, note that by (23) there exists c > 0 such
that

gd(t)− 1 ≥ c (t− 1)(d+1)/2 for all t > 1 close enough to 1.

Apply g−1
d to both sides of this inequality and substitute h = c (t− 1)(d+1)/2 to get

g−1
d (1 + h)− 1 ≤

(
h

c

)2/(d+1)

for all h > 0 small enough,

and the conclusion follows. Finally, using substitution t = gd(s) and l’Hôpital’s rule
again,

lim
t→∞

g−1
d (t)

t
= lim

s→∞

g−1
d (gd (s))

gd (s)
= lim

s→∞

s

gd(s)
= lim

s→∞

1

g′d (s)
=

d
√
π Γ
(
d+1
2

)

Γ
(
d
2
+ 1
) .

Hence, g−1
d (t) = O (t) as t → ∞. �

A.3. Proof of Theorem 2. We only prove the first part of the theorem. The remaining
parts are straightforward, and follow directly from the essential properties of the halfspace
depth [19], and the properties of the illumination [34].

By the affine invariance of the halfspace depth [4, Lemma 2.1] we know that (PAX+b)α =
A(PX)α + b. For the illumination, it follows that

I (Ax+ b; (PAX+b)α)

vold ((PAX+b)α)
=

vold (co ((A(PX)α + b) ∪ {Ax+ b}))
vold (A(PX)α + b)

=
vold (A ((PX)α ∪ {x}) + b)

vold (A(PX)α + b)
=

I (x; (PX)α)

vold ((PX)α)
.

A.4. Proof of Theorem 3. We start with the illumination. From [6, Theorem 4.2] we
know that under the assumptions of the theorem, the central regions Pα are consistent
for P in the Hausdorff distance, i.e.

(24) dH (Pn,α, Pα)
a.s.−−−→

n→∞
0.

For any x ∈ Kn we know that almost surely for n large

(25)

|I (x;Pn,α)− I (x;Pα)| = |vold (co (Pn,α ∪ {x}))− vold (co (Pα ∪ {x}))|

≤ cd

d−1∑

j=0

dH (co (Pα ∪ {x}) , co (Pn,α ∪ {x}))d−j Rj
n

≤ cd

d−1∑

j=0

dH (Pα ∪ {x} , Pn,α ∪ {x})d−j Rj
n

≤ cd

d−1∑

j=0

dH (Pα, Pn,α)
d−j Rj

n

≤ d cd dH (Pα, Pn,α)max
{
1, Rd−1

n

}
.

In the inequalities we used Lemma 11 stated below for dH (Pn,α, Pα) < 1, and the prop-
erties of the Hausdorff distance [22, p. 64]. Since for a fixed compact set K = Kn for all
n the term Rn is constant, the first part of the theorem is verified in view of (24).
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To derive the rates of convergence, by [1, Theorem 2] we have that dH (Pn,α, Pα) =
OP

(
n−1/2

)
, and the last inequality in (25) is enough to conclude.

For the affine invariant version of the illumination, write

(26)

∣∣∣∣
I (x;Pn,α)

vold (Pn,α)
− I (x;Pα)

vold (Pα)

∣∣∣∣ ≤
|I(x;Pn,α)− I(x;Pα)|

vold (Pn,α)

+ |I(x;Pα)|
∣∣∣∣

1

vold (Pn,α)
− 1

vold (Pα)

∣∣∣∣ .

By the assumptions of the theorem we know that vold (Pα) > 0. From (24) and Lemma 11
it thus follows that for n large enough vold (Pn,α) ≥ vold (Pα) /2 almost surely, and that
for such n it also holds true that
∣∣∣∣

1

vold (Pn,α)
− 1

vold (Pα)

∣∣∣∣ ≤
2 |vold (Pn,α)− vold (Pα)|

vold (Pα)
2 ≤ 2 d cdmax

{
1, Rd−1

1

}
dH (Pα, Pn,α)

vold (Pα)
2

almost surely, for cd > 0 the constant from Lemma 11. By [1, Theorem 2] the last formula
can be written also as ∣∣∣∣

1

vold (Pn,α)
− 1

vold (Pα)

∣∣∣∣ = OP

(
n−1/2

)
.

Finally, because Pα is a fixed bounded set, a trivial upper bound for supx∈Kn
|I(x;Pα)|

is the maximum illumination of x ∈ Kn w.r.t. the smallest enclosing ball of Pα. By
Lemmas 1 and 10 this is of order O (Rn). Altogether, all the above bounds and the
consistency result for I can be plugged into (26) to obtain the desired rate of convergence

sup
x∈Kn

∣∣∣∣
I (x;Pn,α)

vold (Pn,α)
− I (x;Pα)

vold (Pα)

∣∣∣∣ = OP

(
max{1, Rd−1

n }√
n

)
+O (Rn)OP

(
1√
n

)

= OP

(
max{1, Rd−1

n }√
n

)
.

Lemma 11. Let R > 0. There exists a constant cd > 0 such that for all convex bodies
K,L ⊂ R

d with K ⊂ Bd (x,R) for some x ∈ R
d

|vold (K)− vold (L)| ≤ cd

d−1∑

j=0

dH (K,L)d−j Rj .

Proof. Write δ = dH (K,L). From the definition of the Hausdorff distance (6) we have
that

(27) K ⊂ L+ δBd and L ⊂ K + δBd.

If vold (K) ≤ vold (L), this gives vold (K) ≤ vold (L) ≤ vold
(
K + δBd

)
; in the other case

vold (L) < vold (K) we get vold (L) < vold (K) ≤ vold
(
L+ δBd

)
. This results in

|vold (K)− vold (L)| ≤ max
{
vold

(
K + δBd

)
− vold (K) , vold

(
L+ δBd

)
− vold (L)

}
,

and it is enough to bound the excess volume of the outer parallel bodyK+δBd of a convex
body K, and analogously for L. For this, use the Steiner formula [22, Formula (4.1)]

vold
(
K + δBd

)
=

d∑

j=0

δd−j vold−j

(
Bd−j

)
Vj(K),
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where Vj(K) stands for the intrinsic volume of the convex body K [22, Chapter 4]. In
particular, it holds true that Vd(K) = vold (K), Vd−1(K) is proportional to the surface
area measure of K, V1(K) is the so-called intrinsic width of K, and V0(K) = 1.

From the monotonicity of the intrinsic volumes that follows from formulas (5.25) and
(5.31) in [22], and K ⊂ Bd (x,R), we can use the expression for the intrinsic volumes of
a ball (4.64) from [22] and bound

(28)

vold
(
K + δBd

)
− vold (K) ≤

d−1∑

j=0

δd−j vold−j

(
Bd−j

)
Vj(B

d)

= vold
(
Bd
) d−1∑

j=0

δd−j

(
d

j

)
Rj.

For a bound on the excess volume of L+ δBd, first note that from (27) we have

L ⊂ K + δBd ⊂ Bd (x,R) +Bd (0, δ) = Bd (x,R + δ) .

Similarly as in (28) we can thus write

vold
(
L+ δBd

)
− vold (L) ≤ vold

(
Bd
) d−1∑

j=0

δd−j

(
d

j

)
(R + δ)j

= vold
(
Bd
) d−1∑

j=0

δd−j

(
d

j

) j∑

k=0

(
j

k

)
Rkδj−k

= vold
(
Bd
) d−1∑

k=0

δd−kRk

d−1∑

j=k

(
d

j

)(
j

k

)
.

From (28) and the last inequality we see that our claim holds true for

cd = vold
(
Bd
)

max
k=0,...,d−1

d−1∑

j=k

(
d

j

)(
j

k

)
,

the maximum of all the terms that are constant in R and δ in the sums on the right-hand
sides of the two excess volume bounds. �

A.5. Consistency of the illumination on unbounded sets. Over unbounded sub-
sets of Rd with d > 1, neither illumination, nor the illumination depth are uniformly
consistent. So see this take a convex body K in R

d, y in the distance of ε > 0 from K,
and let Ky = co (K ∪ {y}). Surely, dH (Ky, K) = ε. By the Hahn-Banach separation the-
orem [22, Theorem 1.3.7], y and K can be strongly separated by two parallel hyperplanes
H1, H2 whose distance is at least ε/2 and y ∈ H1. Take x ∈ H2 far enough from y. The
illumination I (x;Ky) and I (x;K) then differs by, at least, the illumination of x onto the
cone Ky∩H+

2 for H+
2 the halfspace whose boundary is H2 and y ∈ H+

2 . This illumination
can be bounded from both below and above by the illumination of x on any two balls B1

and B2 centred at some z ∈ Ky ∩ H+
2 such that B1 ⊂ Ky ∩ H+

2 ⊂ B2, respectively. By
Lemmas 1 and 10, the latter two illuminations both grow with increasing R = ‖z − x‖ at
a rate O (R), i.e. I (x;Ky)− I (x;K) = O (‖z − x‖) with H2 ∋ x → ∞. In other words,
for any ε > 0 one can find x far enough so that I (x;Ky)− I (x;K) ≥ 1. Consequently,
even if the distance dH (Kn, K) converges to zero (almost surely), the illumination dif-
ferences |I (x;Kn)− I (x;K)| and |I (x;Kn) / vold (Kn)− I (x;K) / vold (K)| cannot, in
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general, vanish uniformly over unbounded sets. The same example applies to the second
component of Dαn .

A.6. Proof of Theorem 4. For x fixed, the illumination of x tends to infinity if and
only if the halfspace depth central region Pn,α breaks down. Hence, it is enough to
evaluate the breakdown point of Pn,α with respect to the Hausdorff distance. We follow
the derivations in the proofs of [3, Proposition 2.2] and [4, Proposition 3.2]. Let xM ∈ R

d

be (any) halfspace median of Pn, that is let hD (xM ;Pn) = Π(Pn). By the argument used
in the proof of [4, Lemma 3.1] to upset the set Pn,α =

{
y ∈ R

d : hD (y;Pn)n ≥ ⌈αn⌉
}

entirely, the smallest number of additional points that need to be added to the data
is m, the smallest integer that satisfies m ≥ ⌈α (m+ n)⌉ (compare with formula (6.19)
in [4]). This inequality is solved by m = ⌈(α/(1 − α))n⌉. The additional condition
α ≤ Π(Pn)/(1+Π(Pn)) ensures that m ≤ ⌈Π(Pn)n⌉ = Π(Pn)n. From this it follows that
the depth of xM with respect to the contaminated dataset must be at least Π(Pn)n/(n+
m) ≥ Π(Pn)/(1 + Π(Pn)) ≥ α. Hence, after the contamination procedure, the central
region of points whose depth is at least α must be non-empty.

In the situation when α > Π(Pn)/(1 + Π(Pn)), due to the nestedness of the central
regions Pn,α, by the previous part of the proof at least

m =

⌈
Π(Pn)/(1 + Π(Pn))

1− Π(Pn)/(1 + Π(Pn))
n

⌉
= ⌈Π(Pn)n⌉ = Π(Pn)n

contaminating points are needed.
The corollary with the asymptotic value of the breakdown point follows the same

argument as in the proof of [4, Propositions 3.2 and 3.3].

A.7. Proof of Theorem 5. The proofs of parts (i), (ii) and (iii) are straightforward and
analogous to the proof of Theorem 2. For part (iv) it is sufficient to realise that according
to the non-degeneracy of P , and symmetry conditions imposed on the estimator Fn, the
lower level set of Mα (·;Pn) is large if and only if either (i) the central region Pn,α is
extremely large; or (ii) F−1

n (1− α) is extremely small. By Theorem 4, for the former
case, asymptotically at least m ≈ nmin{α, 1/3}/(1−min{α, 1/3}) contaminating points
have to be added to the random sample to disrupt the central region entirely. In the latter
case, unless there exists a configuration of m points that make F−1

n (1− α) arbitrarily
small, the set Pn,α cannot be made arbitrarily large. By extension, no fixed lower level
set (12) can then be made too big. By the assumption on the breakdown point of
F−1
n (1− α), in the second scenario it is even more difficult to break down the estimator

(12) than in the first one. Another option when the lower level set (12) breaks down is
when it is an empty set. But, that can happen only if for some δ > 0 small enough,
F−1
n (1− Π (Pn)) > δ. This is ruled out by the additional condition imposed on δ. Thus,

the resulting limiting breakdown point of the level set is the same as that of Pn,α.

A.8. Proof of Theorem 6. By (9) and (10), the Mahalanobis distance dΣ(x, µ) can be
written either as F−1 (1− hD (x;P )) for any x ∈ R

d, or, in case when x /∈ Pα, also as
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F−1 (1− α) g−1
d (I (x;Pα) / vold (Pα)). It is thus sufficient to bound

sup
x∈Kn

|Mα (x;Pn)− dΣ(x, µ)|

≤ sup
x∈Kn∩Pn,α

|Mα (x;Pn)− dΣ(x, µ)|+ sup
x∈Kn\Pn,α

|Mα (x;Pn)− dΣ(x, µ)|

≤ sup
x∈Kn∩Pn,α

∣∣F−1
n (1− hD (x;Pn))− F−1 (1− hD (x;P ))

∣∣

+ sup
x∈Kn\(Pn,α∪Pα)

∣∣∣∣F
−1
n (1− α) g−1

d

(I (x;Pn,α)

vold (Pn,α)

)
− F−1 (1− α) g−1

d

(I (x;Pα)

vold (Pα)

)∣∣∣∣

+ sup
x∈Kn∩(Pα\Pn,α)

|Mα (x;Pn)− dΣ(x, µ)| .

The three suprema on the right hand side will be treated separately. Denote them by I,
II, and III, respectively.

A.8.1. Supremum I. The sample halfspace depth hD (·;Pn) is known [4, formula (6.6)]
to be a uniformly consistent estimator of its population version

(29) sup
x∈Rd

|hD (x;Pn)− hD (x;P )| a.s.−−−→
n→∞

0.

Because P is halfspace symmetric, yet its centre of symmetry has zero probability mass,
for any x ∈ Kn ∩ Pn,α we have α ≤ hD (x;Pn) ≤ 1/2, with the second inequality almost
surely for all n large enough due to (29). We may use the consistency (29) again to get
that for any ε > 0 small, α − ε ≤ hD (x;P ) ≤ 1/2 for all x ∈ Kn ∩ Pn,α and n large
enough.

Function F is strictly increasing in a neighbourhood of [0, F−1 (1− α)]. Thus, F−1

is (uniformly) continuous on I = [1/2, 1 − α]. Its approximating sequence {F−1
n }∞n=1 is

a sequence of functions that are non-decreasing, and converge to F−1 at each t ∈ I by
the uniform consistency of Fn from (13), and [30, Lemma 21.2]. A lemma of Pólya [21,
Problem 127, part II] gives that this convergence is uniform on I. We can thus write for
n large enough

I ≤ sup
x∈Kn∩Pn,α

∣∣F−1
n (1− hD (x;Pn))− F−1 (1− hD (x;Pn))

∣∣

+ sup
x∈Kn∩Pn,α

∣∣F−1 (1− hD (x;Pn))− F−1 (1− hD (x;P ))
∣∣

≤ sup
t∈I

∣∣F−1
n (t)− F−1 (t)

∣∣ + wF−1

(
sup
x∈Rd

|hD (x;Pn)− hD (x;P )|
)
,

where wF−1 is the minimal modulus of continuity of F−1 restricted to the interval I.
The first supremum on the right hand is small almost surely for n large by the uniform
convergence of the quantile functions established above. The second will vanish almost
surely because of (29) and the uniform continuity of F−1 on I.

A.8.2. Supremum II. Let us first introduce the notation

(30)

ax = −g−1
d

(I (x;Pα)

vold (Pα)

)
,

an,x = −g−1
d

(I (x;Pn,α)

vold (Pn,α)

)
,

b = F−1 (1− α) ,

bn = F−1
n (1− α) .
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In supremum II we bound for LII
n = Kn \ (Pn,α ∪ Pα)

(31) sup
x∈LII

n

|an,xbn − axb| ≤ |bn − b| sup
x∈LII

n

|ax|+ |bn| sup
x∈LII

n

|an,x − ax| .

For the supremum in the first summand in (31) we know from (10) that

(32)

sup
x∈LII

n

|ax| ≤ sup
x∈Bd(µ,Rn)

dΣ(x, µ)

F−1 (1− α)
=

Rn

F−1 (1− α)
sup

x∈Bd(µ,1)

dΣ(x, µ)

=
Rn

F−1 (1− α)

√
sup
‖x‖=1

xTΣ−1x =
Rn

F−1 (1− α)

√
1/λ = O (Rn) ,

where λ > 0 is the smallest eigenvalue of Σ. Using the assumption (14) we see that
the first summand on the right hand side of (31) vanishes in probability as n → ∞.
Furthermore, by (14) we also have that |bn| = OP(1), and by Lemma 10 together with
Theorem 3
(33)

sup
x∈LII

n

|an,x − ax| ≤ wg−1
d

(
sup
x∈LII

n

∣∣∣∣
I (x;Pn,α)

vold (Pn,α)
− I (x;Pα)

vold (Pα)

∣∣∣∣

)
= wg−1

d

(
OP

(
max

{
1, Rd−1

n

}
√
n

))

= OP



(
max

{
1, Rd−1

n

}
√
n

)2/(d+1)

 = oP(1),

where wg−1
d

is the minimal modulus of continuity of g−1
d from Lemma 10. Together, we

have verified that
(34)

sup
x∈LII

n

|an,xbn − axb| = O (Rn) oP (1/Rn)+OP(1)OP



(
max

{
1, Rd−1

n

}
√
n

)2/(d+1)

 = oP (1) .

A.8.3. Supremum III. Here it will be crucial that under the conditions of the theorem,
the set Pα\Pn,α is negligible as n → ∞ by the consistency of the halfspace depth contours
(24). First, without loss of generality, suppose that both Pα and Pn,α are contained in
Kn. This is possible, because Pα is a fixed set, and the sequence Pn,α is convergent almost
surely by (24). Thus, possible enlargement of Kn by a fixed set does not affect any results
in this proof. Take x ∈ LIII

n = Kn ∩ (Pα \ Pn,α). As x /∈ Pn,α,

Mα (x;Pn) = F−1
n (1− α) g−1

d

(I (x;Pn,α)

vold (Pn,α)

)
.

In terms of x, this expression varies monotonically with I (x;Pn,α). Note that for K a
convex body, the illumination I (·;K) strictly increases on any straight halfline L that
starts from x ∈ ∂K (the boundary of K) and does not intersect K elsewhere, i.e. K∩L =
{x}. Thus, in our situation, if one considers any halfline that starts at a boundary point
of Pn,α and passes through x,

inf
y∈∂Pn,α

Mα (y;Pn) ≤ Mα (x;Pn) ≤ sup
y∈∂Pα

Mα (y;Pn) .

On the boundary of Pn,α we are in the situation dealt with in supremum I, and by that
part of the proof we know that for ε > 0 given, almost surely for any n large enough,

inf
y∈∂Pn,α

dΣ(y, µ)− ε ≤ inf
y∈∂Pn,α

Mα (y;Pn) .
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Likewise, for the upper bound, by part II of this proof, and the continuity of dΣ(x, µ),
we have an analogous restriction, and with high probability, for n large enough,

sup
y∈∂Pα

Mα (y;Pn) ≤ sup
y∈∂Pα

dΣ(y, µ) + ε = F−1 (1− α) + ε.

Finally, we use (24) and the fact that the Hausdorff distances of convex bodies, and of their
boundaries, are the same [22, Lemma 1.8.1]. This gets that almost surely, for any δ > 0,
for all n large enough, and any y ∈ ∂Pn,α, there exists z ∈ ∂Pα such that ‖y − z‖ < δ.
Now, because dΣ(x, µ) is in x (uniformly) continuous in a uniform neighbourhood of Pα,
this means that almost surely, for n large enough,

inf
y∈∂Pn,α

dΣ(y, µ) ≥ inf
y∈∂Pα

dΣ(y, µ)− ε = F−1 (1− α)− ε,

and for any x ∈ LIII
n

F−1 (1− α)− ε ≤ dΣ(x, µ) ≤ F−1 (1− α) .

Altogether, collect all the bounds in this part of the proof to get that for any ε > 0, with
high probability, for n large enough,

sup
x∈LIII

n

|Mα (x;Pn)− dΣ(x, µ)| ≤ 2ε,

which finishes the proof.

A.9. Proof of Theorem 7. In view of the uniform consistency of the halfspace depth
(29) it suffices to show that

sup
x∈Kn\Pn,α

∣∣∣∣Fn

(
−g−1

d

(I (x;Pn,α)

vold (Pn,α)

)
F−1
n (1− α)

)
− hD (x;P )

∣∣∣∣
P−−−→

n→∞
0.

Proceed analogously as in the proof of Theorem 6, and consider two situations — the
supremum above over x ∈ LII

n = Kn\(Pn,α ∪ Pα), and the the supremum over x ∈ LIII
n =

Kn ∩ (Pα \ Pn,α).
Suppose first that x ∈ LII

n . By (9) and (10), in the notation from (30) we have that

|Fn (an,xbn)− hD (x;P )| = |Fn (an,xbn)− F (−dΣ(x, µ))|
= |Fn (an,xbn)− F (axb)|
≤ |Fn(an,xbn)− F (an,xbn)|+ |F (an,xbn)− F (axb)| .

Therefore,

sup
x∈LII

n

|Fn (an,xbn)− hD (x;P )| ≤ sup
t∈R

|Fn(t)− F (t)|+ sup
x∈LII

n

|F (an,xbn)− F (axb)| .

The first summand on the right hand side above vanishes almost surely as n → ∞ by
(13). For the second summand we already have a bound from (34) from the proof of
Theorem 6. Since F has a density, it must be uniformly continuous on R. Denote by
wF : (0,∞) → R its minimal modulus of continuity. We obtain

sup
x∈LII

n

|F (an,xbn)− F (axb)| ≤ wF

(
sup
x∈LII

n

|an,xbn − axb|
)

= wF (oP(1)) = oP(1).

This completes the part of the proof with LII
n .

For the second part, consider x ∈ LIII
n . Note that thanks to (9) and the continuity of

F in a neighbourhood of F−1 (1− α), the halfspace depth hD (·;P ) must be (uniformly)
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continuous in a uniform neighbourhood of Pα. Furthermore, for x /∈ Pn,α, RhDα (x;Pn)
varies monotonically with I (x;Pn,α). Thus, derivation analogous to that from part III
in the proof of Theorem 6 gives that the convergence of the halfspace depth contours (24)
implies that with n → ∞

sup
x∈LIII

n

|RhDα (x;Pn)− hD (x;P )| = oP(1),

and the proof is finished.

A.10. Proof of Theorem 8. By the uniform consistency of the halfspace depth (29) we
can bound for n large enough

sup
x∈Rd : hD(x;Pn)≥α

∣∣∣∣
RhDα (x;Pn)

hD (x;P )
− 1

∣∣∣∣ ≤ sup
x∈Rd : hD(x;Pn)≥α

2

∣∣∣∣
RhDα (x;Pn)− hD (x;P )

hD (x;Pn)

∣∣∣∣

≤ 2

α
sup
x∈Rd

|hD (x;Pn)− hD (x;P )| ,

where the last term vanishes almost surely as n → ∞. Thus, in the notation established
in (30) in the proof of Theorem 6, it suffices to show that also the right hand size of

sup
x∈Kn\Pn,α

∣∣∣∣
Fn (an,xbn)

hD (x;P )
− 1

∣∣∣∣ ≤ sup
x∈LII

n

∣∣∣∣
Fn (an,xbn)

F (axb)
− 1

∣∣∣∣+ sup
x∈LIII

n

∣∣∣∣
Fn (an,xbn)

hD (x;P )
− 1

∣∣∣∣

is asymptotically negligible, where LII
n = Kn \ (Pn,α ∪ Pα) and LIII

n = Kn ∩ (Pα \ Pn,α).
We used (9) and (10) to obtain the expression on the right hand side. We already have
everything prepared to bound the second summand above. Indeed, by Theorem 7

sup
x∈LIII

n

∣∣∣∣
Fn (an,xbn)

hD (x;P )
− 1

∣∣∣∣ ≤ sup
x∈LIII

n

|RhDα (x;Pn)− hD (x;P )|
α

≤ 1

α
sup
x∈Kn

|RhDα (x;Pn)− hD (x;P )| = oP (1) .

Let us now focus on the supremum over LII
n . For x ∈ LII

n we can write

(35)

∣∣∣∣
Fn (an,xbn)

F (axb)
− 1

∣∣∣∣ =
∣∣∣∣
F (an,xbn)

F (axb)

∣∣∣∣
∣∣∣∣
Fn (an,xbn)

F (an,xbn)
− F (axb)

F (an,xbn)

∣∣∣∣

≤
∣∣∣∣
F (an,xbn)

F (axb)

∣∣∣∣
(∣∣∣∣

Fn (an,xbn)

F (an,xbn)
− 1

∣∣∣∣+
∣∣∣∣
F (axb)

F (an,xbn)
− 1

∣∣∣∣
)
.

In the same way as in (31), (32), (33) and (34) in the proof of Theorem 6 we have, using
(16), that

(36)

sup
x∈LII

n

|an,x − ax| = OP (ωn) ,

sup
x∈LII

n

|an,xbn − axb| = O (Rn)OP (ξn) +OP (ωn) = OP (max {Rnξn, ωn}) ,

b sup
x∈LII

n

|ax| = Rn/
√
λ = O (Rn) .

By the definition of the refined depth (15) we also see that an,x < −1 for any x ∈ LII
n .

Combine this with (36) to obtain that there exists c > 0 such that for all n ≥ 1 and
x ∈ LII

n we can write (1− c ωn) b < |axb|, which means that for n large enough b/2 <
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|axb| < Rn/
√
λ for all x ∈ LII

n . Formulas (36) therefore allow us to write for some c > 0
large enough for all ε > 0 and n large

P

(
sup
x∈LII

n

∣∣∣∣
F (axb)

F (an,xbn)
− 1

∣∣∣∣ > ε

)
≤ P

(
sup
x∈LII

n

|an,xbn − axb| > c max {Rnξn, ωn}
)

+ P

(
sup
x∈LII

n

|an,x − ax| > cωn

)
+ P


 sup

b/2<|s|<Rn/
√
λ

|s−t|<c max{Rnξn, ωn}

∣∣∣∣
F (s)

F (t)
− 1

∣∣∣∣ > ε


 .

The first two summands on the right hand side vanish with n → ∞ because of the
first two formulas in (36). The argument in the last summand is non-random, and the
probability is therefore equal to zero for n large by (18). Thus,

(37) sup
x∈LII

n

∣∣∣∣
F (axb)

F (an,xbn)
− 1

∣∣∣∣
P−−−→

n→∞
0.

Using similar argumentation we have that there is c > 0 with the property that for all
ε > 0 and n large enough

P

(
sup
x∈LII

n

∣∣∣∣
Fn (an,xbn)

F (an,xbn)
− 1

∣∣∣∣ > ε

)

≤ P

(
sup
x∈LII

n

|an,xbn − axb| > cωn

)
+ P

(
sup

|an,xbn|<Rn/
√
λ+c ωn

∣∣∣∣
Fn (an,xbn)

F (an,xbn)
− 1

∣∣∣∣ > ε

)

≤ P

(
sup
x∈LII

n

|an,xbn − axb| > cωn

)
+ P

(
sup

|t|<2Rn/
√
λ

∣∣∣∣
Fn (t)

F (t)
− 1

∣∣∣∣ > ε

)
,

and the last expression tends to zero in as n → ∞ thanks to the second rate in (36) and
(17). Thus,

(38) sup
x∈LII

n

∣∣∣∣
Fn (an,xbn)

F (an,xb)
− 1

∣∣∣∣
P−−−→

n→∞
0.

Altogether, we can start from (35) and bound

sup
x∈LII

n

∣∣∣∣
Fn (an,xbn)

F (axb)
− 1

∣∣∣∣ ≤ sup
x∈LII

n

∣∣∣∣
F (an,xbn)

F (axb)

∣∣∣∣

(
sup
x∈LII

n

∣∣∣∣
Fn (an,xbn)

F (an,xbn)
− 1

∣∣∣∣ + sup
x∈LII

n

∣∣∣∣
F (axb)

F (an,xbn)
− 1

∣∣∣∣

)
.

The first term on the right hand side is bounded in probability due to (37). The summands
vanish in probability thanks to (38) and (37), respectively. The theorem is proved.

A.11. Proof of Remark (R7). Suppose first that F (t) ≥ c |t|γ for some c > 0, t small
enough and γ < 0. Consider Rn = O(nα) for α > 0. We have

ωn

F
(
−Rn/

√
λ
) ≤

(
Rd−1

n /
√
n
)2/(d+1)

c
∣∣∣Rn/

√
λ
∣∣∣
γ = O

(
n2α(d−1)/(d+1)−1/(d+1)−αγ

)
.

For the right hand side to be o(1), it is sufficient that α < (2(d− 1)− γ(d+ 1))−1.
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If F (t) ≥ c e−|t|γ for some c > 0, γ > 0 and all t small enough, we get for Rn ≤((
1

d+1
− ε
)
log(n)

)1/γ √
λ and for ε > 0

ωn

F
(
−Rn/

√
λ
) ≤

(
Rd−1

n /
√
n
)2/(d+1)

c e−|Rn/
√
λ|γ ≤ R

2(d−1)/(d+1)
n

c nε
= o(1).

For F (t) ≥ c exp
(
−e|t|

γ)
for some c > 0, γ > 0 and all t small enough, Rn ≤(

log
(

1
d+1

− ε
)
+ log log n

)1/γ √
λ with ε > 0 gives

ωn

F
(
−Rn/

√
λ
) ≤

(
Rd−1

n /
√
n
)2/(d+1)

c exp
(
−e|Rn/

√
λ|γ
) ≤ R

2(d−1)/(d+1)
n

c nε
= o(1).

A.12. Proof of Theorem 9. The logarithm of the density of P (j) at x ∈ R
d can be

written as

log (fj(x)) = − log
(√

(2π)d
)
− log

(√
|Σj |

)
− 1

2
dΣj

(x, µj)
2 .

By (9) we know that for any 0 < δ < 1/2

vold

(
P

(j)
δ

)
= vold

({
y ∈ R

d : Φ
(
−dΣj

(y, µj)
)
≥ δ
})

= vold

({
y ∈ R

d : dΣ̃j
(y, µj) ≤ 1

})

= vold

(
Σ̃

1/2
j Bd + µj

)
=
∣∣∣Σ̃1/2

j

∣∣∣ vold
(
Bd
)
= Φ−1 (1− δ)d

√
|Σj | vold

(
Bd
)
,

where Σ̃j = Φ−1 (1− δ)2Σj . Thus,

2 log (πjfj(x)) = 2 log

(
Φ−1 (1− δ)d vold

(
Bd
)

√
(2π)d

)
+ 2 log


 πj

vold

(
P

(j)
δ

)


− dΣj

(x, µj)
2 ,

and π1f1(x) > π2f2(x) if and only if (19) is true.
The uniform consistency follows from Theorem 6, formula (24), and Lemma 11.

Appendix B. Additional simulations and results

B.1. Robust classification.

B.1.1. Bivariate normal distribution, location difference. We repeat the same classifica-
tion experiment as in Section 5.3.1, with P (1) = PX , P

(2) = PX+(2,2)T , P
(3) = PX+(20,20)T .

This accounts for classification in presence of only location difference. The results are
summarized in Figure B.10 and Table B.5. We observe similar results as in Section 5.3.1:
the optimal (Bayes) error rate is nearly achieved by the illumination-based approach and
the classical QDA. The approach based on the refined depth performs worse, especially
in the extremes, and it is very sensitive to possible contamination.

B.1.2. Bivariate elliptical distribution, location difference. Finally, consider the experi-
ment from Section 5.3.2 with P (1) = PY , P

(2) = PY+(2,2)T , P
(3) = PX+(20,20)T . Our results

are summarized in Figure B.11 and Table B.6. We observe that in the case with no
contamination, the illumination-based approach and the classical QDA, used only as a
reference method here, perform slightly better than the method based on the refined
depth. If some contamination is present, the robust QDA appears to outperform both
competitors.
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Figure B.10. Misclassification rates, based on 100 replications of the experi-
ment with two bivariate normal distributions with different location and same
scale. Based on all testing points (left panel) or the outsiders (right panel).
Dashed horizontal line in the left panel corresponds to the theoretical Bayes er-
ror rate.

All points Outsiders
Illumination QDA Ref. depth Illumination QDA Ref. depth

0 % 0.079 (0.006) 0.079 (0.006) 0.085 (0.009) 0.054 (0.030) 0.051 (0.031) 0.236 (0.165)

1 % 0.079 (0.006) 0.089 (0.007) 0.101 (0.010) 0.039 (0.032) 0.059 (0.056) 0.236 (0.235)

5 % 0.081 (0.006) 0.118 (0.010) 0.113 (0.011) 0.047 (0.038) 0.065 (0.052) 0.216 (0.109)

10 % 0.087 (0.006) 0.135 (0.012) 0.120 (0.011) 0.066 (0.045) 0.069 (0.054) 0.210 (0.117)

Table B.5. Average misclassification rates and their standard deviations (in
brackets), bivariate normal distributions with different location and same scale,
level of contamination in one of the training samples ranging from 0 to 10 %.
Based on 100 replications of the experiment and all testing points (left part) and
outsiders (right part), respectively.
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Figure B.11. Misclassification rates, based on 100 replications of the experi-
ment with two bivariate elliptical distributions with different location and same
scale. Based on all testing points (left panel) or the outsiders (right panel).
Dashed horizontal line in the left panel corresponds to the theoretical Bayes er-
ror rate.
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All points Outsiders
Illumination QDA Ref. depth Illumination QDA Ref. depth

0 % 0.135 (0.007) 0.136 (0.008) 0.140 (0.009) 0.286 (0.089) 0.296 (0.109) 0.353 (0.127)

1 % 0.134 (0.008) 0.168 (0.015) 0.142 (0.010) 0.317 (0.111) 0.374 (0.119) 0.382 (0.136)

5 % 0.140 (0.007) 0.242 (0.017) 0.162 (0.013) 0.285 (0.092) 0.354 (0.116) 0.384 (0.107)

10 % 0.165 (0.014) 0.265 (0.020) 0.175 (0.014) 0.311 (0.110) 0.336 (0.114) 0.365 (0.120)

Table B.6. Average misclassification rates and their standard deviations (in
brackets), bivariate elliptical distributions with different location and same scale,
level of contamination in one of the training samples ranging from 0 to 10 %.
Based on 100 replications of the experiment and all testing points (left part) and
the outsiders (right part), respectively.

Appendix C. R source code

library(TukeyRegion)

library(geometry)

Illumination = function(X,x,alpha){

# X: n-times-d matrix of the sample points (n points in d dimensions)

# x: vector of length d whose illumination is computed

# alpha: cut-off value for the illumination

# returns

# I: the illumination of x onto the depth central region

# (volume of the convex hull of points with hD at least alpha, and x)

# volPa: volume of the depth central region

# (volume of the region of points whose hD is at least alpha)

Pa = TukeyRegion(X,depth=alpha*nrow(X),retVertices=TRUE,retVolume=TRUE)

volPax = convhulln(rbind(Pa$vertices,x),options="FA")$vol

return(list(I=volPax,volPa=Pa$volume))

}
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[19] Nagy, S., Schütt, C., and Werner, E. M. (2019). Halfspace depth and floating body.
Stat. Surv. To appear.
[20] Paindaveine, D. and Van Bever, G. (2018). Halfspace depths for scatter, concentra-
tion and shape matrices. Ann. Statist., 46(6B):3276–3307.
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[26] Schütt, C. and Werner, E. M. (1992). The convex floating body of almost polygonal
bodies. Geom. Dedicata, 44(2):169–188.
[27] Serfling, R. (2006a). Depth functions in nonparametric multivariate inference. In
Data depth: robust multivariate analysis, computational geometry and applications, vol-
ume 72 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 1–16. Amer. Math.
Soc., Providence, RI.
[28] Serfling, R. (2006b). Multivariate symmetry and asymmetry. Encyclopedia of Sta-
tistical Sciences, Second Edition, 8:5338–5345.
[29] Tukey, J. W. (1975). Mathematics and the picturing of data. In Proceedings of
the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 2, pages
523–531. Canad. Math. Congress, Montreal, Que.
[30] van der Vaart, A. W. (1998). Asymptotic statistics, volume 3 of Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge.
[31] Werner, E. (1996). The illumination bodies of a simplex. Discrete Comput. Geom.,
15(3):297–306.
[32] Werner, E. M. (1994). Illumination bodies and affine surface area. Studia Math.,
110(3):257–269.
[33] Werner, E. M. (1997). The illumination body of almost polygonal bodies. Geom.
Dedicata, 64(3):343–354.
[34] Werner, E. M. (2006). Floating bodies and illumination bodies. In Integral geometry
and convexity, pages 129–140. World Sci. Publ., Hackensack, NJ.
[35] Zuo, Y. and Serfling, R. (2000a). General notions of statistical depth function. Ann.
Statist., 28(2):461–482.
[36] Zuo, Y. and Serfling, R. (2000b). On the performance of some robust nonparametric
location measures relative to a general notion of multivariate symmetry. J. Stat. Plan.
Inference, 84(1-2):55–79.


	1. Introduction
	2. Illumination of convex bodies
	2.1. Illumination of ellipsoids
	2.2. Duality considerations

	3. Illumination depth
	3.1. Uniform consistency
	3.2. Robustness
	3.3. Computational cost

	4. Illumination for elliptically symmetric distributions
	4.1. Estimation of the Mahalanobis distance
	4.2. Estimation of the halfspace depth

	5. Applications
	5.1. Tie-breaking
	5.2. Estimation of extreme central regions
	5.3. Robust classification

	Appendix A. Proofs of the theoretical results
	A.1. Proof of Lemma 1
	A.2. Lemma 10
	A.3. Proof of Theorem 2
	A.4. Proof of Theorem 3
	A.5. Consistency of the illumination on unbounded sets
	A.6. Proof of Theorem 4
	A.7. Proof of Theorem 5
	A.8. Proof of Theorem 6
	A.9. Proof of Theorem 7
	A.10. Proof of Theorem 8
	A.11. Proof of Remark (R7)
	A.12. Proof of Theorem 9

	Appendix B. Additional simulations and results
	B.1. Robust classification

	Appendix C. R source code
	Acknowledgements
	References

