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Abstract

Nonparametric regression models have recently surged in their power and popularity,
accompanying the trend of increasing dataset size and complexity. While these models have
proven their predictive ability in empirical settings, they are often difficult to interpret and
do not address the underlying inferential goals of the analyst or decision maker. In this
paper, we propose a modular two-stage approach for creating parsimonious, interpretable
summaries of complex models which allow freedom in the choice of modeling technique
and the inferential target. In the first stage a flexible model is fit which is believed to be as
accurate as possible. In the second stage, lower-dimensional summaries are constructed by
projecting draws from the distribution onto simpler structures. These summaries naturally
come with valid Bayesian uncertainty estimates. Further, since we use the data only once
to move from prior to posterior, these uncertainty estimates remain valid across multiple
summaries and after iteratively refining a summary. We apply our method and demonstrate
its strengths across a range of simulated and real datasets. Code to reproduce the examples
shown is avaiable at github.com/spencerwoody/ghost.
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1 Introduction

In regression modeling, there has traditionally existed a natural tension between model flexibility

and interpretability. Consider the generic regression model given by

E[y | x] = f (x). (1)

There are many models available to estimate the function f , which describes the relationship

between the covariates x and the expected outcome of the noisy observations y. On one hand,

simple models such as the linear model or a shallow regression tree are readily interpretable, but

are likely biased because they cannot capture complex relationships between the input and the

response. On the other hand, more complex nonparametric regression models can yield highly

accurate predictions but are difficult to interpret.

In particular, we often would like to answer questions such as: which covariates have the

strongest effect on prediction? Does covariate importance differ across the covariate space? Are

there interactions among the covariates, and if so, which are most important? Answering such

questions is difficult, and providing appropriate measures of uncertainty is even more so.

In this paper, we propose an approach to give interpretable model summaries designed to

answer such questions. We assume a Bayesian vantage point throughout, so that a flexible prior is

specified for the regression function f and the posterior is calculated by conditioning on observed

data. The key idea of our approach is to follow a two-stage process. First, specify a flexible model

for f and use all the available data to best estimate this relationship. Second, perform a post hoc

investigation of the fitted model using lower-dimensional surrogates which are suited to answer

relevant inferential questions and sufficiently representative of the model’s predictions. These

summaries are functions of f , so obtaining their posterior distribution is straightforward. This

investigation in the second stage is simply an exploration of the posterior for f . The result is a

set of interpretable explanations of model behavior, along with posterior distributions for these

explanations, which are valid in the sense that we condition on the data only once (in calculating

the posterior for f ).

The methods we develop are highly modular, allowing for a variety summaries to interpret
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many possible regression models. Here we demonstrate three particular uses of posterior sum-

marization which we believe to be widely advantageous and represent valuable contributions,

including (i) to efficiently and intuitively describe partial effects, (ii) to communicate the most

significant interactions detected by the first-stage regression model, and (iii) to describe how the

predictive importance of covariates changes across local areas of the covariate space. Because

we take a Bayesian approach, these summaries all come with posterior uncertainty estimates.

The remainder of the paper is structured as follows. In the rest of this section we develop

our decision theoretic approach for producing model summaries, and describe several metrics

for gauging the how well model summaries explain model predictions. In Section 2 we consider

the case of estimating and quantifying posterior uncertainty in lower-dimensional summaries

for linear models. This leads us into Section 3 where we generalize this approach to summarize

nonparametric regression models. In Section 4 we present simulation results which show how our

method of nonparametric regression summaries can accurately communicate the average partial

effects of covariates and convey significant interactions present in a fitted regression model. We

apply our method to a real data example in Section 5 by presenting an extensive case study

interpreting a predictive model for housing prices in California. We conclude with a discussion

in Section 6.

1.1 Separating modeling and interpretation

Our goal is to produce interpretable summaries of regression models. Equivalently, we wish to

understand important predictive trends in the regression function f from Eq. (1). To do so, we

consider a lower-dimensional class of functions Γ that can be used for parsimoniously character-

izing f . We can summarize f by finding a γ ∈ Γ that closely matches its predictions. Formally,

we let γ be the function minimizing an objective defined by

L( f , γ, X̃) = d( f , γ, X̃) + qλ(γ), (2)

where d(·, ·, X̃) measures discrepancy in prediction between the original high-dimensional model

f and the parsimonious summary γ over some ñ specified covariate locations of interest X̃, and
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qλ(·) is an optional penalty function measuring complexity in γ governed by one or several tuning

parameters λ. The penalty qλ(·) may be used, for instance, to enforce sparsity or smoothness in

the summary. Now the summary is the function minimizing this objective,

γ(x) = arg min
γ′∈Γ
L( f , γ′, X̃). (3)

Of course, we do not know the true regression function f , but rather have a posterior distribution

for it. Because γ here is a functional of the regression function f , it has a posterior implied by that

of f . That is, the posterior of γ is precisely the posterior distribution of the best approximation

of f in the class Γ as measured by the penalized predictive discrepancy in (2).

For example, if Γ is the set of linear functions and there is no penalty qλ(·), then we obtain

the posterior distribution of the best linear approximation to f , thereby describing the average

partial effects of covariates on the conditional expectation of the outcome. We obtain this di-

rectly, without fitting a misspecified linear model for the outcome y from the outset. We can also

simultaneously consider linear summaries in k < p variables, additive summaries, and so on, all

with valid Bayesian inference.

The summary objective (2) is flexible by design, allowing X̃ to be any set of chosen covariate

locations, possibly with different weights assigned within the discrepancy function d(·, ·, X̃). If

it is chosen to be the entire dataset, then the result is a global summary of model predictions. If

X̃ is a subset of the data confined to a restricted region, the result is a local summary of model

predictions within this region. This is particularly helpful, as nonparametric regression models

naturally adapt to local heterogeneity in covariate importance; for instance, in Section 5.2 we

illustrate how the determinants of housing prices vary geographically. If X̃ is chosen to be a set

of locations where the outcome has not been observed, then the summary explains how the model

makes predictions at these new locations.

This distribution for γ given by (3) accounts for uncertainty in the summary function, but

leaves open the question of a point estimate. Using standard Bayesian decision theory (e.g.,

Berger, 2013), if we cast the objective function (2) as a loss function then the optimal point
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estimate for the summary is that which minimizes posterior expected loss, i.e.

γ̂(x) := arg min
γ′∈Γ

E[L( f , γ′, X̃) | Y, X], (4)

with this expectation taken over f . When d(·, ·, X̃) is chosen to be squared-error, then the point

summary is equivalent to minimizing the loss function in (2) with the posterior mean f̂ taking

place of f , and so the point estimate becomes

γ̂(x) = arg min
γ′∈Γ

ñ−1
ñ∑

i=1

[ f̂ (x̃i) − γ′(x̃i)]2 + qλ(γ).

This form conveniently lends itself to the use of many standard estimation procedures, where the

summary estimate γ̂ is obtained from the fitted values of f̂ . The tuning parameter(s) λ may be

selected using usual approaches adapted for this case, e.g. using cross-validation on the values

of f̂ (x̃i).

Here we pause to emphasize the subtle distinction between the point estimate γ̂ in (4) and

the posterior for the summary given by (3). The former is the point estimate (more precisely, the

Bayes estimate) of the summary, while the latter is the entire posterior for the lower-dimensional

characterization of f . This is akin to the difference between the Bayes estimator for a scalar

parameter, and the posterior for that parameter. The posterior mean of p(γ | Y) is not necessarily

equivalent to γ̂, i.e. in general arg minγ E[L( f , γ, X̃) | X,Y] , E[arg minγL( f , γ, X̃) | X,Y].

Our work is related to that of Crawford et al. (2018, 2019) who calculate linear projections of

nonlinear regression models to produce an “effect size analog” for each covariate. Here, however,

we allow for a more general set of possible summaries, and introduce heuristics to iterative update

a summary to produce a more faithful representation of the regression model. Additionally,

we extend and generalize previous approaches which derive decision-theoretic point estimate

model summaries; for example, Hahn and Carvalho (2015) introduce posterior summarization for

communicating dominant trends in linear models. This framework has been shown to be effective

in a variety of modeling contexts (Puelz et al., 2017; Chakraborty et al., 2019; Puelz et al., 2015,

2019; Bashir et al., 2018; Kowal and Bourgeois, 2020; MacEachern and Miyawaki, 2019; Lee

and MacEachern, 2014). Related ideas in this direction can be traced back to MacEachern (2001)
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who developed linear summaries for nonparametric regression models.

1.2 Summary diagnostics

A natural concern after summarization is the adequacy of the summary function approximation to

the regression function. The summary will generally have less predictive power than f because it

sacrifices flexible predictive features in f such as nonlinearities or interactions. There are several

ways one may gauge this.

We propose two diagnostic metrics to quantify the sufficiency of summarization. The first

measures predictive variance in the original model explained by summarization,

R2
γ := 1 −

∑
i[ f (x̃i) − γ(x̃i)]2∑

i[ f (x̃i) − f̄ ]2
,

where f̄ := ñ−1 ∑
i f (x̃i). This is the “summary R2.” The second metric, which can be used for the

case of normal errors, is

φγ =

√
ñ−1

∑
i

[
ỹi − γ(x̃i)

]2/σ − 1

where ỹi is the observation corresponding to x̃i. This metric has the loose interpretation that

using the summary model increases the width of predictive intervals by (φγ × 100)%. If the

observations ỹi are not available, then we can use estimates from the posterior predictive p(ỹi |

Y, X, x̃i). Similar quantities may be calculated for non-normal errors. Both of these metrics also

come with posterior distributions, calculated by using posterior draws of f , γ, and σ.

Furthermore, one can visually inspect the “summary residuals” f̂ (x̃) − γ̂(x̃), either with a

scatter plot or fitting a single regression tree, which could reveal important interactive effects in

f driving variation in the summary residuals that should be considered.

After analyzing the summary model in this way, either quantitatively with these two metrics

or qualitatively through the summary residuals, we may be determine that the class of summaries

was too simplistic to satisfactorily explain the original model. Then it is appropriate to specify a

more nuanced class of summary, such as one which allows for interactions, or one that allows for

nonlinear rather than linear effects. This suggests an iterative approach of progressively assessing
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and updating the class of summaries until one or more summaries is deemed to be sufficiently

representative of the original model’s predictions. Critically, our summarization and posterior

projection approach still yields valid Bayesian inference after this “summary search.” We detail

this iterative approach in Section 3.

2 Lower-dimensional summaries in the linear model

We first consider the relatively simple case of summarizing a high-dimensional linear model with

a subset of the variables. We extend the work of Hahn and Carvalho (2015) by introducing

measures of uncertainty in the summary via posterior projection.

The full model is a standard multiple linear regression, (y | β, σ2) ∼ N(Xβ, σ2I), with inde-

pendent priors π(β, σ2) = π(β) · π(σ2). We wish to find a sparse set of relevant features. Denote

this set by the inclusion vector η ∈ {0, 1}p. Using the notation introduced in the previous sec-

tion, this is equivalent to replacing the original fitted function f (x) = xᵀβ with the summary

γ(x) = xᵀβ̃ for a sparse vector β̃, where β̃ j = 0 if η j = 0. If we use the squared-error function to

measure predictive discrepancy and some sparsity-enforcing penalty q(β̃) (such as the `1 penalty

of Tibshirani, 1996) then the optimal sparse summary point estimate is

βλ := arg min
β̃

N−1‖Xβ̄ − Xβ̃‖22 + λ · q(β̃) (5)

where β̄ is the posterior mean of β. Note that this matches Eq. (20) of Hahn and Carvalho (2015).

The penalty term q(β̃) is included solely for sparsity in the solution. For any such penalty, (5)

returns an entire solution path for possible sparse summaries of the original high-dimensional

model, with the level of sparsity varying with the tuning parameter λ.

After solving (5) for some fixed value of λ, we have sparse set of coefficients which is a

Bayes-optimal point estimate summary for the full model. Using our posterior projection tech-

nique, we can also quantify uncertainty in this summary. A naive approach would be to refit the

model only with the selected covariates. However, this would involve using the outcome data y

a second time—an example of “posterior hacking,” or opportunistically retraining a new model

after already conditioning on the data once in the original model.
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Instead, it is more appropriate to propagate posterior uncertainty from the original fitted

model through to the linear summary. The sensible way to do this is to take the full posterior

distribution for the fitted function of the full model using all the variables, and project it onto the

space of the fitted summary function using the restricted set of variables. We use the data exactly

once (in obtaining the posterior for the original full model) and obtain the posterior of the best

linear approximation in k < p variables.

To be more specific, for one value of λ, denote the corresponding sparse model summary

with the inclusion vector ηλ, whose jth element is 0 if (βλ) j = 0 and 1 otherwise. Given a sparse

linear summary specified by η (for notational simplicity, dropping the λ subscript), we want to

give a coherent posterior distribution to the included coefficients. This is the posterior for the

low-dimensional linear representation of the original model.

Let Xη denote the η-subset of the columns of the original covariate matrix X, and let βη be

the vector of coefficients for this restricted covariate matrix. We wish to map the posterior for

Xβ, the original fitted values, onto Xηβη, the fitted values using the restricted set of coefficients.

This is equivalent to projecting the original fitted values Xβ onto the column space of Xη. We can

approximate the posterior distribution p(βη | y) for the restricted covariates via Monte Carlo, i.e.,

for the kth draw from the original posterior, β(k) ∼ p(β | y), perform the projection

β(k)
η = (Xᵀ

ηXη)−1Xᵀ
ηXβ(k), (6)

assuming the inverse exists. For this reason, we call the p(βη | y) the “projected posterior.”

In this way we can obtain projected posteriors for all sparse summary models from the solu-

tion path given by (5), and report the summary which is sufficiently representative of the original

full model’s predictions, as measured by the summary diagnostic measures given in Section 1.2.

We emphasize that βλ in (5) is the Bayes-optimal point estimate for the summary, and the pro-

jected posterior represents posterior uncertainty around this estimate.
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2.1 Sparse linear summaries for the US crime data

Here we illustrate our approach of quantifying uncertainty in sparse linear summaries on the US

crime dataset, which has n = 47 observations with p = 15 predictors. We fit a linear model using

the horseshoe prior (Carvalho, Polson, and Scott, 2010) after log-transforming the continuous

variables, and centering and scaling all variables. Then we obtain point estimates for linear

summaries of the full model by solving the minimization problem in (5). Because the posterior

mean β̄ is already a shinkage estimator due to the influence of the prior, we use the adaptive

lasso penalty (Zou, 2006) for the penalty term, q(β̃) =
∑

j w−1
j |β̃ j| with w j = |β̄ j| to alleviate the

problem of “double shrinkage” that would result from using the usual (unweighted) `1 penalty.

These summaries were calculated using the lasso implementation from the lars package (Hastie

and Efron, 2013) in the R programming language (R Core Team, 2019). For each point estimate

summary, we calculate its projected posterior following (6).

Figure 1 shows posterior distributions for the summary diagnostics defined in Section 1.2 for

the entire solution path of sparse linear summaries. Following Hahn and Carvalho (2015), we

recommend reporting the summary model with 6 predictors included, as this summary explains

approximately 95% of predictive variation in the full model, and predictive intervals are inflated

by only about 5% on average. However, the summary diagnostics allow an analyst to pick any

reasonable tradeoff between parsimony and predictive ability, and we can get valid inference for

any summaries of interest.

We use this example to consider the effect of sparsification on the shape of projected poste-

riors. Figure 2 investigates the projected posteriors for two highly collinear variables, Po1 and

Po2, as the linear summary becomes more parsimonious. The presence of collinearity results

in both covariates having high posterior variance in the full model, and due to the nature of the

horseshoe prior which aggressively shrinks variables near zero while retaining heavy tails, both

marginal posteriors are bimodal with modes near and away from zero. However, moving from

the summary with 10 variables to the summary with 9 variables (when Po2 is “selected out” of

the summary), the projected posterior mode for Po1 near zero disappears, and all the mass in

the posterior is shifted to the right. This shows the gain in power from using our summarization

approach. Projected posteriors for all variables for all summaries shown in the supplement.
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Figure 1: Diagnostics for low-dimensional linear summaries of crime data using horseshoe prior.
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Figure 2: Point estimate summaries and projected posteriors Po1 and Po2, two highly correlated
variables in the US crime dataset. Once Po2 is “selected out” of the summary model, all the
predictive power jointly attributable to Po1 and Po2 is shifted to Po1.

Finally, in Figure 3 we compare the projected posterior for the final selected sparse summary

model to the posterior we would obtain by refitting the linear model only including these vari-
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ables, instead of projecting the posterior draws. For this case we now use a flat prior on (the

restricted vector) β as we suspect that there is less need for shrinkage since we have reduced the

dimensionality. In this second case, we are “double dipping” with the data, using it once to fit the

full model, and then using it a second time after the sparse linear summary is chosen. This infer-

ence is not strictly valid, since the data are used here to set the prior by selecting the restricted set

of variables. More importantly, this posterior entirely ignores model uncertainty. By comparison,

the projected posterior uses the response variable y only once, in calculating the posterior for the

full model. We also show the marginal posteriors from the original fitted (saturated) linear model.

●
●
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●
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Ed Ineq M M.F Po1 Prob
Variable

β j

Posterior ● ● ●Marginal (from horseshoe) Projected Refitted (flat prior)

Posterior uncertainty estimates for final selected sparse set

Figure 3: Comparing projected posteriors for variables in the selected model to the posterior from
refitting the model with the selected variables (“posterior hacking”) using a flat prior, and the
marginal posteriors from the original fitted model. The projected posteriors have wider credible
intervals compared to the refitted posteriors, demonstrating propagation of model uncertainty in
the original fitted model, and also shrink posterior means closer to zero compared to the refitted
model.

The projected posteriors are wider than the refitted posteriors, due to the propagation of model

uncertainty. The projected posteriors retain the shrinkage properties of the original posterior: the

posterior means for each variable are shrunk toward zero compared to the refitted posterior. In

most cases the projected posteriors closely match the marginal posteriors of the full model, the

biggest exception being Po1 for the reasons just discussed.
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3 Summaries for nonparametric regression

We now move to our main topic: summarization of nonparametric regression models. This

problem is more nuanced than for the linear model, where increasing summary complexity was

well defined by the dimension of the sparse linear summary. Here, however, it is less clear how

to define a collection of increasingly complex summaries from which to choose. This suggests

an iterative approach, whereby an initial summary is proposed, calculated, evaluated and updated

as necessary.

Before an presenting investigative simulation examples in Section 4 and an extensive case

study in Section 5, we describe heuristics for model summary search. This is given in detail

below, with Algorithm1 containing a brief outline of our procedure. The exposition is intention-

ally general, meant to allow for any class of regression models f with any error distribution, and

any class of lower-dimensional summaries corresponding to inferential goals of interest. We also

describe how this approach can be used to elucidate how the model predicts globally or locally.

Exact details of how to processed will be heavily context dependent, influenced by the specific

dataset, original specified model, and the inferential target.

3.1 Iterative summary search

(1) Specify and fit the full model. Assume the regression setting described by

E[y | x] = f (x)

and complete the model specification by assigning priors for the regression function p( f ) as well

as any nuisance parameters. Our approach is agnostic to the choice of p( f ), though we do assume

that it fits well by adequately modeling the response y as a function of the covariates x. Typically

this should be a nonparameteric prior, such as a Bayesian tree ensemble (Chipman et al., 2010)

or some variant of a Gaussian process (e.g. Gramacy and Lee, 2008; Gramacy and Apley, 2015).

We obtain M Monte Carlo draws targeting the posterior of f , denoted by { f (k)}Mk=1. Denote the

posterior mean for the fitted value of the function at xi by f̂ (x) := M−1 ∑
k f (k)(x).
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(2) Summarize. Choose a class of summaries Γ which matches the inferential goal at hand.

For example, if the objective is to comment on the partial linear effect of each covariate, then

Γ is chosen to be linear. If instead the goal is to simply comment on the partial effect of each

covariate, without the constraint of linearity, then one can choose Γ to be the broader class of

additive functions.

We also need to specify the predictive locations X̃ at which to summarize the model output,

a metric d(·, ·, X̃) for measuring predictive discrepancy between the summary and the full model,

and an appropriate summary complexity penalty function qλ(γ). These components collectively

define the summarization loss function

L( f , γ, X̃) = d( f , γ, X̃) + qλ(γ).

The optimal point summary is

γ̂(x) = arg min
γ∈Γ

E[L( f , γ, X̃) | Y, X],

found by minimizing the summarization loss in expectation over the posterior for f . Tuning pa-

rameters can be determined, for example, through cross-validation or use of information criteria

on the posterior mean fitted values f̂ (x̃i). Once γ̂(x) has been calculated, the posterior distribu-

tion for the summary can be found by the posterior of the functional γ(x) = arg minγ∈ΓL( f , γ, X̃).

Often this will involve projecting posterior draws of the fitted values f (k)(x̃i) onto the predictive

space of γ̂.

(3) Evaluate. Next, assess the impact of moving from the full model to the low-dimensional

summary. The summarization metrics R2
γ and φγ defined in Section 1.2 offer two readily inter-

pretable ways to quantify this loss in predictive power. One may also inspect the summarization

residuals, f̂ (x̃i) − γ̂(x̃i) directly, for example by training a regression tree to these residuals to

detect and characterize heterogeneity.

(4) If the summary is sufficient, perform inference. Based on the results from Step (3), de-

termine whether the summary model is sufficient. For example, if R2
γ is reasonably high and the
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summarization residual regression tree does not detect large amounts of residual heterogeneity,

then the calculated summary in Step (2) may be judged to be of good quality and representative of

the model’s predictions, and so this summary may be used for the inference stage. Ultimately it

is left to the end user to make a decision regarding sufficiency of the calculated model summary.

(5) Otherwise, refine and return to (2). If the summary is deemed to be of poor quality,

there are two ways to improve model summary accuracy: the class of summary models Γ can be

enriched to allow for greater flexibility, or the predictive locations X̃ can be altered to be more

localized. The choice of one or both of these options can be informed by the evidence provided

from the evaluation procedure in Step (3). For instance, if the regression tree detects high lev-

els of heterogeneity in the summarization residuals, one may allow for low-order interactions

determined by splitting rules near the root of the tree.

With these new classes of summaries, and/or designated predictive locations, return to Step

(2) to calculate the summary and iterate through all these steps until a summary is deemed suf-

ficient or it is judged that no summarization class can be specified that is representative enough

of the model’s predictions while still being interpretable. We need not constrain ourselves to

a single model summary, however; we may compute multiple summaries to interpret of model

behavior, and these will all have valid Bayesian posteriors.

4 Simulation results

4.1 Estimating and visualizing partial effects

Here we present a toy example to illustrate how our approach can be used to estimate partial

effects as a summarization of a nonparametric regression model. We simulate data from the

model

y = f (x1, x2) + ε, ε ∼ N(0, σ2)
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Input : Outcome vector Y; covariate matrix X.
(1) Specify and fit the model

• Give a prior p( f ) for f (x) = E[y | x].

• Obtain posterior samples for the model, f (k) ∼ p( f | Y)

• Choose an initial class of summaries Γ, complexity penalty qλ(·) (if desired) and predictive locations X̃,
collectively defining the summary loss L( f , γ, X̃).

(2) Summarize

• Calculate the optimal point estimate for the summary

γ̂(x) = arg min
γ∈Γ

E f [L( f , γ, X̃) | Y, X].

• Calculate the projected posterior for the summary using posterior draws of f (k) ∼ p( f | Y)

γ(k)(x) = arg min
γ∈Γ
L( f (k), γ, X̃).

(3) Evaluate

• Compute summarization metrics R2
γ and φγ

• Inspect the summarization residuals with a decision tree

(4) Iterate if necessary

• If the summary γ is deemed satisfactory by metrics in (3), use this summary for interpretation.

• Otherwise, change the class of summaries Γ and/or predictive locations X̃, and iterate through (2) and (3)

Output: Summary point estimate γ̂ and its projected posterior p(γ | Y).

Algorithm 1: Outline of iterative procedure for summarizing nonparametric regression models
in Section 3.

centered on the bivariate nonadditive function defined by

f (x1, x2) = 1/{1 + exp(−2x1 − 2x2)} + 1/{1 + exp(−x1 + 4x2)},

with σ2 = 0.25, and n = 2500 observations along a 50×50 regular 2D grid of (x1, x2) values over

the range (−2, 2). No other covariates are observed or used to generate the data. Using these

data we estimate f (x1, x2) by using a Gaussian process (GP) prior with a squared exponential

covariance kernel, and assign Jeffreys’ prior for σ2.

We consider two summaries to explain model predictions in the GP posterior for f (x1, x2)

by estimating the partial effect of each covariate. The first is a linear summary, so the class

of summaries Γ1 is the set of functions of the form γ1(x1, x2) = α1 + β1x1 + β2x2. The sec-
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ond is an additive summary, so the class of summaries Γ2 is the set of functions of the form

γ2(x1, x2) = α2 + h1(x1) + h2(x2), with h1 and h2 being univariate functions whose forms we

discuss in the proceeding paragraph. Here and throughout the paper, we use the squared error

predictive discrepancy function, so the summary loss functions are

L1( f , γ1, X) :=
n∑

i=1

[ f (xi) − γ1(xi)]2,

L2( f , γ2, X) :=
n∑

i=1

[ f (xi) − γ2(xi)]2 + [λ1 · J(h1) + λ2 · J(h2)],

with J(h j) =
∫

h′′j (t)2dt, j = 1, 2 is the complexity penalty in the additive summary, and enforces

smoothness in the univariate functions h1 and h2. The tuning parameters λ1 and λ2 control the

level of smoothness. We do not add a penalty for the linear summary. The point estimates for

these summaries are found by minimizing posterior expected loss,

γ̂1(x) = arg min
γ1∈Γ1

n∑
i=1

[ f̂ (xi) − γ1(xi)]2, (7)

γ̂2(x) = arg min
γ2∈Γ2

n∑
i=1

[ f̂ (xi) − γ2(xi)]2 + [λ1 · J(h1) + λ2 · J(h2)]. (8)

The point estimate for the linear summary can be found via an ordinary least squares fit to the

vector of fitted values f̂ = { f̂ (xi)}ni=1, i.e. [β̂1, β̂2]ᵀ = (XᵀX)−1Xᵀf̂. We find the projected posterior

for the linear summary using posterior draws of { f k}Mk=1, so that one draw from the projected

posterior is [β(k)
1 , β

(k)
2 ]ᵀ = arg minγ1∈Γ1 L1( f (k), γ1, X) = (XᵀX)−1Xᵀf(k).

The functions h1 and h2 for the additive summary are represented by thin plate regression

splines (TPRS; Wood, 2003) each with a basis dimension of 10, with the identifying constraint∑n
i=1 h j(xi j) = 0 for all j. Each function h j is represented by the linear basis expansion,

h j(x j) =

M j∑
m=1

δ jmη jm(x j) =

M j∑
m=1

δ jmz jm

where the η jm are the basis functions, and each function has M1 = M2 = 9 basis terms. The entire

vector of output from the additive model is given by γ(X) = α+Zδ, where the ith row of the matrix
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Z represents the linear basis expansion of xi, zi = ({η1m}
M1
m , {η2m}

M2
m ), and δ = ({δ1m}

M1
m , {δ2m}

M2
m )

is the concatenation of the basis weights. The point estimate for the additive summary (8) is

found by estimating δ iteratively reweighted least squares, with the tuning parameters λ1 and

λ2 selected by minimizing the generalized cross validation score on the values of f̂ (xi). In our

implementation, we use the default settings of the gam function in the mgcv package in R. For

details on the form of the basis functions and how the model is fit, see Wood (2003, 2017). The

particular choice of basis expansion is not of main concern here, and any suitable basis will do.

In the end, the vector fitted values for the point estimate additive summary (8) can be repre-

sented by a linear smoothing of the posterior mean fitted values from f , i.e. γ̂2(x) = Pf̂, with the

influence matrix calculated by P = ZVZᵀ where V being the frequentist covariance matrix of the

estimates δ̂. In fact, the fitted values evaluated for each of the additive functions are the result of

a linear smoother, i.e. ĥ j(X j) = P jf̂, where P j is the subset of rows of the projection matrix P

corresponding to the basis expansion for the jth term. This readily provides a way to approximate

the projected posterior for each smooth function in the additive summary using posterior draws

of original fitted values f(k). A single posterior draw from the projected posterior is calculated by

h(k)
j (X j) = P jf(k).

Figure 4 shows the resulting summaries. Panel (a) shows the true regression function and the

observations, and compares them to the estimated regression function from the GP model, and

to the bivariate surface resulting from the summary functions. These summaries have differing

degrees of fidelity in capturing predictive trends in the original model; for the linear summary,

R2
γ1

= 75.9% and φγ1 = 7.6% while for the additive summary, R2
γ2

= 82.4% and φγ2 = 5.7%.

Panel (b) shows the estimated partial effects of each summary, along with 95% credible bands

from the projected posterior.

These summaries estimate of the partial effect of each covariate. Equivalently, they approx-

imate the partial derivative of the true regression function, with the (incorrect) simplifying as-

sumption that the partial derivative is constant in the other covariate (or constant everywhere in

the case of the linear summary). Panel (c) shows the partial derivatives with respect to x1 and x2

of the true, estimated, and summary functions as a bivariate function of (x1, x2). From this we

can see that the summaries present distinct ways of averaging the partial derivative from the esti-
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Figure 4: Result of simulated toy example summarizing a nonparametric bivariate function.
Panel (a) shows the nonparametric estimate of the true regression function, along with the re-
gression surface resulting from the additive and linear summaries. For for the linear summary,
R2
γ1

= 75.9% and φγ1 = 7.6% while for the additive summary, R2
γ2

= 82.4% and φγ2 = 5.7%. Panel
(b) shows the estimated partial effects from the summary models. These partial effects estimate
an average of the partial derivative of each covariate, assuming that it does not depend on the
other covariate. Partial derivatives of the true and estimated functions, and from the summaries,
are shown in panel (c).

mated regression function in a way that is readily presentable and interpretable as partial effects

in Panel (b). We also quantify how representative these summaries are of the original model with

the diagnostic measures.

4.2 Interaction detection in the presence of collinearity

The previous example showed how our method of posterior summarization can communicate av-

erage partial effects. Now we present a simulated example with a more complex data structure

to show how we can detect significant interactions within a regression model, even in the pres-

ence of collinear noise covariates, by using the iterative summary search heuristics outlines in
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Section 3. We consider data arising from the following:

y = f (x) + ε, ε ∼ N(0, σ2 = 0.50)

f (x) = 1/{1 + exp(−2x1x2)} + (x3/3)3.
(9)

The true data generating process f in Eq. (9) involves 3 variables (x1, x2, x3), with one inter-

action between x1 and x2. For this simulated example, we also observe 3 noise covariates

(x4, x5, x6) which are not involved in the data generating mechanism, but are still correlated with

the other features. To induce correlation between the features, we generate the vector of covari-

ates [x1, . . . , x6]ᵀ from the multivariate Gaussian distribution:

[x1, . . . , x6]ᵀ ∼ N6(0,Σ)

Σ =



1 0 0.5 ρ ρ2 ρ3

... 1 0.5 ρ ρ2 ρ3

1 ρ ρ2 ρ3

1 ρ ρ2

1 ρ

. . . . . . 1


with ρ = 0.5. This reflects weak to moderate correlation between the signal and noise covari-

ates. The two interactive features are (x1, x2) are uncorrelated, but both are correlated with the

remaining signal feature x3. We generate n = 400 covariate vectors of [x1, . . . , x6]ᵀ from this

Gaussian distribution to create the design matrix X, and generate observations Y using the process

in Eq. (9). As in the previous example, we estimate the regression function f using a Gaussian

process with a squared exponential kernel and assign Jeffreys’ prior to σ2. We obtain 1000 draws

from the posterior for f.

To describe the predictive trends detected in the posterior for the model f , we first construct

an additive summary of the form γ1(x) = α1 +
∑6

j=1 h j(x j). This summary and its projected

posterior are calculated in the same way as in the previous example, and these are presented in

Figure 5. To see how well this summary describes the fitted model, we first we consider the

predictive variance explained by the summary, which is R2
γ1

= 61% in this case, suggesting that

19



there is considerable amount of variation in the posterior for f that is not being captured by this

summary. Second, because this summary assumes additivity in the covariates, we can detect

significant sources of unexplained variation due to interactions by constructing a single decision

tree regressing the summarization residuals f̂ (xi)− γ̂(xi) on all the observed covariates. This tree

is shown in the supplement, and the pairs of covariates in neighboring nodes of this tree suggest

prospective significant interactions detected by the model which should be accounted for.

To create a more faithful summary of the fitted function, we consider summaries which allow

for a two-way interaction between two of the covariates, leaving the summary function additive

in all the other covariates. That is, the summary class is Γkl, the set functions of the form γkl(x) =

hkl(xk, xl) +
∑

j<{k,l} h j(x j). This summary function is partially additive, allowing for a single two-

way interaction via the bivariate function hkl(xk, xl), represented as a two-dimensional thin plate

regression spline with basis dimension 30. The summary loss function in this case is

Lkl( f , γkl, X) :=
n∑

i=1

[ f (xi) − γkl(xi)]2 +

λklJkl(hkl) +
∑
j<{k,l}

λ jJ(h j)

 .
with the J j penalties defined before, and Jkl now enforcing smoothness in the bivariate function.

For details of higher-order TPRS penalty functions we again refer the reader to Wood (2003,

2017). The point estimate summary and projected posterior for γkl are found analogously to

those of the purely additive summary.

The relevant question is the choice of which interaction (xk, xl) to add, which should be the

most significant interaction present in the fitted model. We could narrow our attention to consid-

ering in interactions between the pairs of covariates detected by the suggested by the summary

residual regression tree, but for the sake of completion, we fit the summary for each possible

pair of covariates. Whichever interaction pair leads to the greatest increase in R2
γ should indicate

which interaction is most significant in the model.

The R2
γ values for these partially additive summaries are show in the bottom row of Figure 6.

The interaction between x1 and x2 gives by far the biggest gain in predictive variance explained

as measured by R2
γ compared to every other possible two-way interaction, with this metric rising

to about R2
γ12

= 96%. This confirms that the interaction for (x1, x2) is the most important one

detected by the GP model for f . The resulting partially additive model summary with an (x1, x2)
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interaction for this simulation is shown in Figure 7.

This pattern is routinely detected across multiple replications of this simulation example;

when replicating this simulation up to 1000 times, the (x1, x2) interaction gives the largest boost

in R2
γ at a rate of 98.9% (SE = 0.3%). The R2

γ values for twenty of these additional replications

are given in Figure 6, with the comprehensive set of results presented in the supplement. This

suggests that our method is able to recapitulate the interaction which is present in the true data

generating process when summarizing a Gaussian process regression, even in the presence of

correlated noise variables. Note that this results hinges on the specified regression model being

able to accurately capture the interaction between the covariates.

x4 x5 x6

x1 x2 x3

−4 −2 0 2 −4 −2 0 2 4 −2 0 2 4

−2 −1 0 1 2 −2 0 2 −4 −2 0 2

−1

0

1

−1

0

1

xj

h j
(x

j)

Figure 5: Purely additive summary of toy example in Section 4.2.

5 Application to California housing data

Here we demonstrate our approach using data from the 2011 American Community Survey on

housing prices in California at the census tract level. We regress census tract log-median house

value on log-median household income, log-population, median number of rooms per unit, lon-
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Figure 6: Variation explained by different summaries of the Gaussian process regression model
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replications of the same simulated example. Allowing for the (x1, x2) interaction in a partially
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Figure 7: Partially additive summary with a bivariate interaction for (x1, x2) for the simulation
example in Section 4.2

gitude, and latitude, using a Gaussian process regression model. The full model is given by

(yi | f , σ2) = f (xi) + εi, εi ∼ N(0, σ2)

f ∼ GP(0, k(·, ·)), p(σ2) ∝ σ−2
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where yi is the log-median house value and xi is the covariates for census tract i. We use a

combination of squared exponential kernel and the linear covariance kernel,

k(xi, xi′) = τ2 · exp

− p∑
j=1

[xi j − xi′ j]2/v j

 +

p∑
j=1

a jxi jxi′ j

for the p = 5 predictors. Empirical Bayes estimates for σ̂2, τ̂2, {v̂ j}, and {â j} were found using

maximum marginal likelihood estimation. We obtained 1000 posterior draws for σ2 and f using

MCMC after fixing the GP hyperparameters to the estimated values τ̂2, {v̂ j}, and {â j}. Denote by

f(k) the vector of fitted values at all covariate locations in the dataset X for the kth Monte Carlo

posterior draw of f , for k = 1, . . . ,M = 1000. The GP model can account for nonlinear and

interactive effects of covariates on housing prices, and because of this flexibility, we achieve a

good quality of fit as measured by the usual coefficient of determination, R2 = 83%.

However, the output of the fitted GP model alone has little utility for qualitatively under-

standing the influence of each covariate. To better understand the fit, we calculate several sum-

maries for this regression model, each representing different characterizations of the relationship

between the covariates and the output, as an illustration of the iterative approach outlined in Sec-

tion 3. We leave out most of the technical details of calculating the summaries, as they closely

mirror those of the simulation examples in Section 4.

We first consider global summaries of model behavior, showing how the class of summaries

can be refined until it is deemed a satisfactory representation of the original model’s predictions,

and also how this process can reveal important interactive effects in the housing price model.

Then we compute local summaries of model behavior, investigating how determinants of housing

prices differ geographically. We only consider linear summaries for explaining local behavior,

but demonstrate how adjusting the level of locality detects heterogeneity in covariate importance

between these local areas.
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5.1 Global summary search

5.1.1 Global linear summary

We start by creating a linear summary for the fitted model, perhaps the simplest summary one

could make of a nonparametric regression. The summary function has the form γ(x) = xᵀβ. The

vector β represents the average partial effect of each covariate. There is no penalty term used

here (imposing linearity is already a significant restriction), but one could just as easily use a

penalty term if a sparse linear summary is desired. The point estimate and projected posterior for

the linear summary are calculated in a parallel manner to those from the simulation example in

Section 4.1.

Figure 8 shows the results of the projection and, compared to the results of fitting an ordinary

least squares (OLS) regression of y on X. On average, the projected credible intervals for the

coefficients in the linear summary are about 30% narrower than the 95% confidence intervals

from OLS. Also, point estimates are generally closer to zero for the linear summary than for

OLS, likely due to a shrinkage effect from the GP prior. In a sense, this is precisely what we

would expect to see. The linear summary is the best linear approximation to the fitted function

f from the GP, without assuming that the response surface is actually linear. Furthermore, the

linear summary is a projection of the fitted values from f (xi), which have lower variance than the

observations used for creating the OLS estimates.

The diagnostics for this linear summary are shown in Figure 9, along with those from several

other fitted summaries (which will be described later). The linear summary explains about R2
γ =

66% of the variation in the predictive model, and residual standard deviation is inflated by about

φγ = 57%. This reflects a rather poor summary representation of the model, and suggests that

there is important variation in the regression model that is being unaccounted for. While this

summary is indeed the best linear approximation to the fitted regression model, we are evidently

missing out on important features of f .

5.1.2 Global additive summary

The requirement of linearity is rather limiting for summarizing the fitted GP regression, so we

remove this constraint and consider instead the larger class of additive functions. Instead of a
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Figure 8: Comparison of projected linear summary of GP regression vs OLS regression, com-
paring results of linear model regressing X on y, with coefficient estimates and 95% confidence
intervals (for OLS regression), and 95% projected credible intervals (for linear summary). For
this linear summary, R2

γ = 66% and φγ = 57%. While this suggests a poor quality of model sum-
mary, it still represents the best linear approximation to the regression surface. Projected credible
intervals are appropriately narrower than the confidence intervals from OLS, as this is a summa-
rization of the full GP model rather than being considered the “true” model. Point estimates are
generally pulled toward zero as an result from the shrinkage effect of the GP.

describing the partial effects of covariates on housing pricess linearly, we now describe partial

effects with smooth nonlinear functions. That is, the summary class Γ comprises functions of the

form

γ(x) = α +

5∑
j=1

h j(x j), (10)

and, again as in the simulation example in Section 4, each function has a thin plate regression

spline representation with basis dimension 10.

The point estimate and 95% credible bands for this additive summary are represented by the

orange lines in Figure 10. Diagnostics for this summary are shown in the second column of Fig-

ure 9. Compared to the linear summary, the additive summary (10) represents a significant gain

in predictive explainability as measured by both R2
γ, rising from 66% to 76%, and φγ, dropping

from 57% to 40%.

Still, the assumption of additivity is quite a strong one for summarizing the fitted GP re-
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Figure 9: Diagnostics for quality of model summarization for increasingly complex summaries.
We start with a linear summary, then an additive summary (GAM), and then progressively adding
two-way interactions and finally a three-way interaction to the GAM. We consider interactions
among different combinations of covariaties. Horizontal lines within violin plots indicate poste-
rior medians. We choose to report the additive model summary with one two-way interaction for
longitude and latitude, as this summary has a good degree of predictive explainability while still
being interpretable and easily communicable. This summary is presented in Figure 10. Change
x-axis to say “purely additive” and “partially additive”

gression. There may be significant underlying interactions in the original model which we are

missing here. To investigate this possibility, we fit a regression tree to the summary residuals

f̂ (x) − γ̂(x) truncated to a maximum depth of four for ease of presentation (shown in the sup-

plement). The tree detects a high degree of heterogeneity in the summary residuals, so we next

consider allowing for interactions in our summary.

Interaction search Analysis of the summary residuals from the additive summary suggests

that we should refine the summary to allow for some low-level interaction among the covariates.

Specifically, it appears that longitude and latitude have the most important interactive effect, as
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Figure 10: Additive summary of GP regression model before and after adding spatial interaction.

these covariates appear highest in the summary residual regression tree. For the sake of com-

pleteness, we will also consider interactions involving median rooms and log-median household

income, as these covariates also appear in the regression tree (even though very few data points

fall into the nodes corresponding to these covariates; we do exclude the log-population covariate

from consideration, as the node containing this variable contains a vanishingly small proportion

of data points).

We will initially consider adding a single two-way interaction to the summary, using every

possible pairing of these four covariates. Then we will move along a path of increasing summary

complexity, adding a second two-interaction, and finally considering an additive summary with a

three-way interaction.

Including a single two-way interaction, Γ is now to the set of partially additive functions

γ(x) = α + hkl(xk, xl) +
∑
j<{k,l}

h j(x j), (11)

where hkl(xk, xl) is a two-dimensional smooth function for the (xk, xl) interaction, constructed

using a two-dimensional thin plate regression spline with basis dimension 30.

Figure 9 contains the summary diagnostics for all the considered configurations of the par-
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tially additive summary (11) using the specified covariates. As suggested by the summary resid-

ual regression tree, the additive summary interacting longitude and latitude marks the best im-

provement by far in predictive explainability, marking a rise in R2
γ from 76% to 81% and a fall in

φγ from 40% to 35% as compared to the original (non-additive) summary. That this is the most

significant interactive effect is not surprising, as geography likely plays a large role in explaining

housing prices in a way that is not separable by latitude and longitude. The fitted summary, ac-

companied by 95% credible bands, is shown in Figure 10 in comparison to the previously fitted

non-interactive additive summary.

Again, we look for the possibility of an important unaccounted interactive effect by fitting

a regression tree to the summary residuals from this newly calculated summary (shown in the

supplement). Longitude and latitude seem to remain the most significant source of summary

residual heterogeneity, possibly implying that the fitted two-dimensional smooth function in the

interactive additive summary was oversmoothed. However, we turn our attention now to possible

interactions between median household income and the spatial covariates, which are implied by

this second summary residual regression tree.

We consider introducing a second two-way interaction in addition to the longitude-latitude

interaction. That is, we consider two summaries, including (i) a summary allowing for interac-

tions for longitude-latitude and longitude-income, and (ii) a summary allowing interactions for

longitude-latitude and latitude-income. However, neither of these summaries mark a significant

improvement over the summary with a single two-way interaction, demonstrated by the fact that

the posteriors for the summary diagnostics of these two models overlap with that of the partially

additive summary with only the longitude-lattitude interaction, seen in Figure 9.

The next step up in the progression of summary complexity is to accommodate a three-way

interaction for longitude-latitude-income (i.e., a three-dimensional smooth). Looking at the sum-

mary diagnostics for this fitted summary, we do now notice a significant gain in predictive ex-

plainability over the partially additive summary with a single interaction for longitude-latitude.

But choosing this summary model would require a large sacrifice in interpretability of the sum-

mary for a relatively low gain in predictive ability.

Therefore, we conclude the summary model with one interaction between latitude and longi-
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tude is most appropriate to report. It has an R2
γ value of about 81% and a φγ value of about 35%,

which is considerable given the level of complexity which the original GP regression model is

able to accommodate. Thus, we can conclude that the trend in housing prices as explained by

the covariates is somewhat close to additive, with an important interaction between longitude and

latitude, although some more complex features remain.

5.2 Local linear summaries

To draw out some of these features, we consider local behavior of the regression function f .

Previously we focused on global model summaries, capturing how the model behaves on average

across the entire dataset. However, one of the advantages of nonparametric regression is that the

model adapts to heterogeneity in the response surface. That is, covariate importance is likely

to be nonconstant across the covariate space. This applies in our example; it is likely true that

determinants of housing prices vary geographically.

Given this feature, we now investigate the geographic variation in how covariates influence

housing prices. We selected three metropolitan areas in California for comparison. These repre-

sent the southern, central, and northern regions of the state, with these areas defined by their en-

compassing counties: Greater Los Angeles (LA and Orange Counties), Fresno (Fresno County),

and the Bay Area (San Francisco and San Mateo Counties). We calculate local linear summaries

at four different resolutions: (i) one summary for each of the metropolitan areas, (ii) one for each

of the constituent counties for these metropolitan ares, (iii) for several neighborhoods within one

of these counties, and (iv) for one specific census tract. These local linear summaries explain

how the model makes predictions at these geographic levels, and describe the relative importance

of each covariate to each area.

For each of these localities, we computed linear summaries of the output of the fitted GP

regression model using the following procedure. First, generate ñ = 1000 new geographic loca-

tions to represent newly generated census tracts by sampling uniformly within these areas (in the

case of the linear summary of the single census tract, we fix the location at this one point and

simply create ñ = 1000 copies). Next, for each of these synthetic geographic locations, generate

values for the other covariates. For this step we calculated the empirical mean and covariance
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of the three non-geographic covariates at the metropolitan area level, and drew samples from

the three-dimensional Gaussian distribution with these parameters. These two pieces collectively

define the full set of predictive locations X̃ for the locality under consideration. Then, for each

of these newly created data points, we obtain M = 1000 MCMC posterior draws of the output

of the fitted regression function, and calculate the linear summary by projecting the fitted values

from the full model onto the column space of X̃, similar to the process described in Section 5.1.1

for the global linear summary.

Consider the fitted local linear summaries at the metropolitan area level, shown in Figure 11.

As expected, the relative importance of covariates does differ rather significantly between the

three areas. For instance, population seems to positively impact housing prices in the Bay

Area, whereas household income has a lower impact on housing prices there as compared to

the two other areas. Interestingly, the summary predictive explainability for these three areas

differ widely, as shown in the top panel of Figure 12 which displays the R2
γ summary diagnostics.

Fresno has the high proportion of predictive variation explained by the linear summary, while the

LA area has the lowest. As we do not have observations at these generated predictive locations

X̃ for these locations, we do not report φγ here, though this could also be calculated using draws

from the posterior predictive distribution p(ỹi | Y, X, x̃i).
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Figure 11: Local linear summaries produced for metropolitan areas in California. Metropoli-
tan areas are defined by their counties, and we selected the Bay Area (San Francisco and San
Mateo Counties), Greater Los Angeles (Los Angeles and Orange Counties), and Fresno (Fresno
County). Determinants of housing prices do vary quite notably, particularly for median income
and population.
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metropolitan areas, county, neighborhood, and tract. Generally, as the summary type becomes
more localized, R2

γ increases. The exception is moving from Greater Los Angeles to Los Angeles
County, which is so sprawling and heterogeneous that predictions of housing prices within cannot
be distilled simply into a linear summary.

We expect a greater degree of localization to lead to gains in predictive explainability in

the local linear summary. While this is true when comparing the R2
γ of the county-level linear

summary (coefficient estimates from which are not shown) for Orange, San Francisco, and San

Mateo Counties compared to those of their respective encompassing metropolitan areas, the linear

summary for Los Angeles actually has lower predictive explainability than the metropolitan-level

summary. This could potentially be due to the sprawling nature of Los Angeles County—that

trends in housing prices there may simply be too complex to distill into a single linear summary.

We also consider three separate San Francisco neighborhoods, each defined by sets of eight

to twelve neighboring tracts, for which to create local linear summaries. We also create a model

prediction summary around a single selected tract located within one of these neighborhoods.

Results for the these linear summaries, compared to those from the encompassing metropolitan

area and counties, are shown in Figure 13. Even within a relatively small-area city like San

Francisco there is marked variation in housing price determinants. Fittingly, there is greater

projected posterior variance in the smaller defined areas. The combined panels of Figure 12

confirm our initial conjecture that the predictive variation explained by summarization generally

increases for progressively local linear summaries.
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6 Discussion

When nonparametric models are used in regression analysis, there is a natural tradeoff between

model flexibility (and accuracy) and model interpretability. We attempt to bridge this gap, by

separating model specification and interpretation, using a two-stage approach that yields valid

Bayesian inference over multiple interpretable quantities. This generalizes and expands upon

previous work on posterior summarization initiated by Hahn and Carvalho (2015) by introducing

measures of uncertainty via projected posteriors. We also introduce tools for explaining local

variable importance, give metrics for checking the quality of summaries, and provide heuristics

for refining them as necessary. The approach outlined here is modular by design, allowing for

a wide array of summaries to be built for any suitably flexible regression model, with any error

distribution for the response.

The validity of these summaries is contingent upon having a good model fit in the first stage.

If we do not regularize appropriately, then we will fit to the noise in the first stage, and there

will be insufficient posterior variability in the summary. If the fitted model is otherwise biased,

then the summary will similarly misrepresent the true (unknown) regression function. Therefore

standard model checks should be performed after the initial model is fit. As with any analysis,
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we are subject to fall victim to Simpson’s paradox if we do not carefully consider joint versus

marginal trends.

In statistical inference, there is a distinction between confirmatory analysis, where scientific

hypotheses are specified a priori and then tested in light of the data, and exploratory analysis,

where data are used to generate hypotheses for future investigation. Our method falls somewhere

between these two extremes. Summaries will typically be updated through the iterative process

we describe, so generally these analyses will not be confirmatory in the usual sense. However,

with our approach we do reduce researcher degrees of freedom. Instead of fitting and refining

multiple models, and using the data each time the best fitting one, we use the data only once to find

the best flexible estimate of the regression function without regard to inference. Thereafter, the

fitted posterior is investigated until an appropriate interpretable summary is found, thus resolving

the problem of “posterior hacking.”

A closely related line of research is projective model selection for generalized linear models

(Goutis and Robert, 1998; Dupuis and Robert, 2003; Piironen and Vehtari, 2017, 2016). Under

this approach, the posterior for a full “reference model” is calculated, and projected nested models

are found by minimizing the Kullback-Leibler divergence between predictive distributions of

these two models. The emphasis in these works is model selection, whereas our focus is on giving

interpretable explanations of models using a decision theoretic approach. However, this can be

considered a special case of our procedure when this KL divergence is used as the predictive

discrepancy function in the summary loss function. Further, Piironen and Vehtari (2017, 2016)

use this approach to rank variables, but to our knowledge this does not communicate the degree of

nonlinearity or interaction effects leading to this ranking, which our method attempts to answer.

The calculation of the linear summary projection approach is quite similar to the “effect size

analog” developed by Crawford et al. (2018, 2019), who also aim to quantify the influence of

individual explanatory variables in nonlinear kernel models by projecting the nonlinear func-

tion onto the original covariate space. They even propose to obtain a projected posterior using

Monte Carlo posterior draws of the regression function, and then focus on variable selection after

obtaining this projected posterior. Our method explicitly specifies summarization as a decision

problem, and embeds linear summaries into a broader class of available model summaries. Fur-
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thermore, we propose to find a sparse linear summary by enforcing sparsity in the point estimate

for the linear model summary via a penalty term, and then project posterior uncertainty onto this

subset of coefficients, as opposed to selecting variables after finding the complete posterior for

the linear projection with all variables.

Additionally, our work is related to the field of interpretable machine learning, where there

has been much recent development. Partial dependence plots (Friedman, 2001), and related tools

like individual conditional expectation plots (Goldstein et al., 2015) and accumulated local ef-

fects plots (Apley, 2016) attempt to explain the partial effects of individual covariates for generic

black box models. To estimate the partial effect of a covariate x j, these methods calculate the

value of f (x′j, x− j) over varying levels of x′j, each time marginalizing over all other covariates x− j.

These methods have several drawbacks. The resolution of the grid of x′j values must be specified,

querying the model for so many iterations often requires significant computation time, and it is

unclear how to propagate model uncertainty. Instead, our method more directly seeks to charac-

terize the predictive trends in f within a given region of covariate space by specifying the class of

summary functions. If we enforce this class of summaries to be additive, for example, then it al-

lows us to make statements of average partial effects. In addition, fitting these lower-dimensional

surrogates usually requires much less computation time compared to partial dependence plots,

and if we have posterior draws for the vector of predictions f, then it is efficient to calculate the

projected posterior.

Similar to our explanations of local model behavior, Ribeiro et al. (2016) introduce the LIME

method, which builds a local surrogate model to explain individual predictions by the presence

or absence of certain binary features. This method also repeatedly queries the output of the fitted

model. In contrast, we calculate summaries by fitting surrogate functions to the output of the

model only at specified locations. Additionally, our calculated partial effects for both local and

global summaries are accompanied by valid uncertainty estimates, and we quantify how well the

summaries represent the original model.

The are several possible downsides to our approach. Our method requires the use of a

Bayesian model in order to characterize a model summary as a well-defined decision problem,

and further to have rich understanding of how well the summary approximates the estimated
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regression function. Of course, this almost always requires posterior sampling which can be

computationally difficult with large sample sizes. In addition, our interaction search procedure

may break down in the presence of many covariates, say p > 100, in which case the number of

possible interactions becomes large. One possible approach would be to use a first stage covariate

selection, followed by a secondary exploratory stage, though it becomes more difficult to pose

these two stages jointly as a single decision problem. This avenue is left to future work.

Because of the generality of our developed approach, there is much room for expanding this

work. Here we considered only a limited number of potentially many possible model summaries.

We find the prospect of applying this approach to other nonparametric models used in different

applications be very promising. In particular, we plan to produce interpretable summaries of

nonparametric models for heterogeneous treatment effect estimation.

A Additional plots

See Figures 14, 15, and 16.
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single one-way interaction.
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Figure 16: Regression trees fit to summarization residuals from the purely additive model sum-
marization of GP fit, before (top) and after (bottom) adding a spatial interaction term for the case
study in Section 5. These plots serve as diagnostics to give us a clue of important interactions not
yet taken into account.
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