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Abstract

Monte Carlo maximum likelihood (MCML) provides an elegant approach to find maxi-

mum likelihood estimators (MLEs) for latent variable models. However, MCML algorithms

are computationally expensive when the latent variables are high-dimensional and corre-

lated, as is the case for latent Gaussian random field models. Latent Gaussian random

field models are widely used, for example in building flexible regression models and in the

interpolation of spatially dependent data in many research areas such as analyzing count

data in disease modeling and presence-absence satellite images of ice sheets. We propose

a computationally efficient MCML algorithm by using a projection-based approach to re-

duce the dimensions of the random effects. We develop an iterative method for finding an

effective importance function; this is generally a challenging problem and is crucial for the

MCML algorithm to be computationally feasible. We find that our method is applicable

to both continuous (latent Gaussian process) and discrete domain (latent Gaussian Markov

random field) models. We illustrate the application of our methods to challenging simulated

and real data examples for which maximum likelihood estimation would otherwise be very

challenging. Furthermore, we study an often overlooked challenge in MCML approaches to
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latent variable models: practical issues in calculating standard errors of the resulting esti-

mates, and assessing whether resulting confidence intervals provide nominal coverage. Our

study therefore provides useful insights into the details of implementing MCML algorithms

for high-dimensional latent variable models.

Keywords: Monte Carlo maximum likelihood; Markov Chain Monte Carlo; dimension reduc-

tion; importance sampling; non-Gaussian spatial data
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1 Introduction

Monte Carlo maximum likelihood (MCML) provides an elegant and flexible approach for

maximum likelihood estimation for latent variable models. However, MCML algorithms may

not be practical in many settings, especially in the context of high-dimensional latent variable

models. For instance, they may be computationally infeasible for high-dimensional versions of

stochastic volatility models (cf. Jacquier et al., 2007, Duan et al., 2017) for financial econometrics,

and finite Gaussian mixture models for galaxy data (Johansen et al., 2008). A particularly

important example of latent variable models where MCML estimation can be impractical is

latent Gaussian random field models or spatial generalized linear mixed models (SGLMMs),

which are popular models for spatial data, and widely used in many scientific domains (cf.

Banerjee et al., 2014, Lawson et al., 2016). The main challenge in MCML for high-dimensional

latent variable models arises from the high-dimensional integration of a multivariate random

variable. It is quite difficult to even obtain reasonable importance functions – distributions from

which samples are drawn to obtain a Monte Carlo approximate of the likelihood – to carry

out MCML for such models. In this manuscript, we develop a new computationally efficient

approach for MCML for high-dimensional latent Gaussian random field models. Our method is

based on projecting the high-dimensional latent variable to much lower dimensions, and involves

a practical iterative approach for finding an importance function that leads to a computationally

efficient algorithm. We also study different approaches for approximating the standard error of

the maximum likelihood estimates.

There is a vast literature on Bayesian approaches for latent Gaussian random field models,

and there have been many algorithms proposed for handling the computational challenges effec-

tively. Just a few of these include the predictive process (Banerjee et al., 2008), the integrated

nested Laplace approximation or INLA (Rue et al., 2009), and reparameterization and dimension

reduction methods (cf. Haran et al., 2003, Rue and Held, 2005, Christensen et al., 2006, Hughes

and Haran, 2013, Guan and Haran, 2018). Frequentist methods for latent Gaussian random

field models have been much less popular than Bayesian approaches at least in part due to the

fact that it is very computationally challenging to do maximum likelihood estimation in this

context. Here, we focus on the challenge of making maximum likelihood estimation efficient for
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such models via the MCML approach. We note that a Bayesian approach typically allows more

easily for flexible hierarchical modeling than frequentist methods, though for certain commonly

used SGLMMs a maximum likelihood approach can potentially lend itself to faster algorithms,

and can also provide some automation by avoiding the need for prior specification.

Several algorithms have been developed for maximum likelihood inference for SGLMMs.

Zhang (2002) proposes Monte Carlo expectation-maximization (MCEM) (Wei and Tanner, 1990)

and Christensen (2004) proposes Markov chain Monte Carlo maximum likelihood (MCML)

(Geyer and Thompson, 1992). The MCEM algorithm uses Monte Carlo in the expectation step of

the expectation-maximization (EM) algorithm, while the MCML algorithm works with a Monte

Carlo approximation of the log likelihood function. These approximations require sampling the

random effects and evaluating the likelihood function, which is computationally expensive for

large data sets. Evangelou et al. (2011), Bonat and Ribeiro (2016) develop sophisticated Laplace

approximations for the full conditional distribution of the random effects; this approach is related

to INLA. However, both algorithms require finding optimized values of the random effects for

Laplace approximations, which can be challenging for large data sets. Furthermore, unless the

conditional distribution is well approximated by a Gaussian distribution, for high-dimensional

data sets the Laplace approximation can be poor. Maximum likelihood inference has therefore

rarely been used for analyzing large non-Gaussian spatial data sets. A recent exception is Guan

and Haran (2019) which develops a projection-based Monte Carlo Expectation-Maximization

algorithm that is computationally feasible for such problems. However, as discussed in Knudson

(2016), rigorously quantifying uncertainties for the estimates can be difficult, as MCEM algo-

rithms lack the theoretical justifications of MCML. With increasing Monte Carlo sample size, the

asymptotic properties of the likelihood approximations in MCML are well established (Geyer and

Thompson, 1992, Geyer, 1994). Specifically, with a compactness assumption for the parameter

space, the MCMLE converges to the MLE almost surely (Geyer, 1994). The efficient MCML

algorithm we develop in this manuscript can take advantage of existing asymptotic theories for

estimating standard errors and establishing asymptotic confidence intervals. Notably, we show

that a central limit theorem holds for the gradient of the Monte Carlo log likelihood approxima-

tion. This provides a rigorous justification for the convergence of MCMLE to the MLE; MCEM

in general does not enjoy the theoretical convergence properties of MCMLE, though a notable
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exception is the theoretical work in Fort et al. (2003) on MCEM convergence for curved expo-

nential families. As pointed out in Knudson (2016), another advantage of the MCML compared

with the MCEM is that MCML can provide log likelihood approximation without additional

computational costs. This can be useful for likelihood-based inference beyond maximum likeli-

hood. For example, we can use the log likelihood approximations to calculate AIC for model

selection. On the other hand, MCEM (Guan and Haran, 2019) can only evaluate the conditional

expectations at specific parameter points without providing the log likelihood approximations.

Furthermore, the MCML algorithm may be easier to extend to more general settings than the

MCEM algorithm, for instance, when the distributions of the latent variables include intractable

normalizing functions as in image denoising problems (Geman and Graffigne, 1986, Tanaka, 2002,

Murphy, 2012) or in hidden Markov models for disease mapping (Green and Richardson, 2002).

In this manuscript we propose a fast MCML algorithm that uses projection methods (Baner-

jee et al., 2012, Hughes and Haran, 2013, Guan and Haran, 2018, cf.). Hughes and Haran (2013)

develops the projection method for efficiently carrying out Bayesian inference. In this work, we

develop a novel maximum likelihood approach based on MCML, which can fit latent Gaussian

random field models quickly. Maximum likelihood inference for such models via standard MCML

(Christensen, 2004) is computationally challenging since the evaluation of the likelihood func-

tion requires integration with respect to high-dimensional dependent latent variables. MCML

methods, which enjoy nice theoretical properties (Geyer and Thompson, 1992, Geyer, 1994), are

not readily applicable to such problems. Our method is, to our knowledge, the first attempt to

make MCML computationally feasible for fitting latent Gaussian random field models. While

Hughes and Haran (2013) focuses on the projection approach to areal data for the discrete spa-

tial domain – specifically the Gaussian Markov random field (GMRF) model – the methods we

develop here apply to a broader class of latent Gaussian fields, including both the GMRF and the

Matérn class covariance function for point-referenced data. Therefore, our methods are broadly

applicable to spatial data from both discrete and continuous domains, as we illustrate in several

simulated and real data examples. We show that our algorithm can address the computational

and inferential challenges of maximum likelihood estimation for SGLMMs. The outline of the

remainder of this paper is as follows. In Section 2 we describe SGLMMs and introduce relevant

notation, and in Section 3 we introduce a standard MCML approach and point out their com-
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putational challenges. In Section 4 we propose our fast dimension-reduced MCML approach to

inference and provide implementation details. We also investigate in detail the computational

complexity of our method. We study the performance of our approach via simulation studies in

Section 5 and describe the application of our methods to two real data sets in Section 6. We

conclude with a summary and discussion in Section 7.

2 Spatial Generalized Linear Mixed Models

In this section, we describe spatial generalized linear mixed models (SGLMMs), which are

latent Gaussian random field models for spatial data. Non-Gaussian spatial data are common

in climate science, epidemiology, ecology and agriculture, among other disciplines. Examples

include binary satellite data on ice sheets (ice-no ice) data (Chang et al., 2016), and count data

on plant disease (Zhang, 2002). Spatial generalized linear mixed models (SGLMMs) are popular

and flexible models well suited for non-Gaussian spatial data, both for continuous domain (Diggle

et al., 1998) and discrete domain or lattice data (Besag, 1974). SGLMMs are commonly used to

either interpolate these data or adjust for spatial dependence in a spatial regression model. How-

ever, for large data sets, maximum likelihood inference for such models becomes computationally

very demanding because evaluating the likelihood function involves high-dimensional integration

and operations on large matrices. Furthermore, spatial confounding between fixed and random

effects can lead to unreliable parameter estimations (Reich et al., 2006, Hanks et al., 2015, Guan

and Haran, 2018). In this manuscript we provide a fast MCML algorithm for SGLMMs that also

allows for adjustments to account for spatial confounding.

We now describe SGLMMs, and provide relevant notation. Let S ⊂ R2 be the spatial

domain of interest. Consider Z = (Z(s1), . . . , Z(sn)), the observed data at coordinates s =

(s1, . . . , sn) ∈ S and X = (x1(s), . . . , xp(s)) ∈ Rn×p is the matrix of covariates depending on

the spatial locations. At each location we can define spatially correlated random effect W =

(W (s1), . . . ,W (sn)). Then our model can be defined as follows. The random effects can be

defined differently depending on whether the spatial domain of interest is continuous or discrete:

(1) For continuous domains, W is a zero-mean second order stationary Gaussian process with

a covariance kernel Cθ(W (s + h),W (s)) = Cθ(h), where covariance function depends on the
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parameters θ = (σ2, φ); σ2 is the variance parameter and φ is the range parameter. For example,

the Matérn class (Stein, 2012) covariance function is widely used. Then W follows a normal

distribution, fW (W|θ) ∝ |Cθ|−1/2 exp(− 1
2W′C−1θ W). (2) For discrete domains, W is assumed

to follow a zero-mean Gaussian Markov random field (GMRF) (Besag, 1974). For all locations,

if ith location and jth location are neighbors, Ai,j = 1, otherwise Ai,j = 0 and Ai,i is defined

as 0. This forms an n × n adjacency matrix A. Then the distribution of W is fW (W|θ) ∝

τrank(Q)/2 exp(−θ2W′QW), where Q =diag(A1)−A and θ = τ controls the smoothness of the

spatial field.

Then with a link function g(·) the conditional mean E[Z|W,β] can be modeled as

g{E[Z|W,β]} = Xβ + W. (1)

Given random effects W and regression parameters β, Z are assumed to be conditionally in-

dependent of each other (i.e. fZ|W(Z|W,β) =
∏n
i=1 fZi|Wi

(Zi|Wi,β)). Let ψ = (β,θ) be the

model parameters for SGLMMs. Then the likelihood function is

L(ψ|Z) =

∫
Rn

fZ|W(Z|W,β)fW(W|θ)dW. (2)

The number of random effects grows with the size of the data, which makes likelihood function

evaluation difficult. Therefore, direct maximization of (2) is infeasible.

We note that for SGLMMs, spatial confounding can lead to uninterpretability of parameters

and variance inflation. Let P = X(X′X)−1X′ and P⊥ = I − P. Then our model can be

represented as

g{E[Z|W,β]} = Xβ + W = Xβ + PW + P⊥W. (3)

Then similar to the multicollinearity issue in standard regression models, PW is confounded with

X because they have a linear relationship. To alleviate spatial confounding, Reich et al. (2006)

suggests that PW should be deleted from the model, creating what is called a restricted spatial

regression model. For this model, Hanks et al. (2015) proposes to add a posteriori adjustment

based on the MCMC samples of β to account effect of removing PW. Hughes and Haran

(2013), Guan and Haran (2018) develop fast reduced-dimensional Bayesian methods and Guan
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and Haran (2019) develops a Monte Carlo Expectation Maximization approach for maximum

likelihood inference; all these approaches address both computational and confounding issues. In

what follows, we develop a Monte Carlo maximum likelihood approach that is computationally

efficient and also useful for addressing confounding issues.

3 Monte Carlo Maximum Likelihood

Here we outline a Monte Carlo maximum likelihood (MCML) algorithm (Geyer and Thompson,

1992, Christensen, 2004) for SGLMMs. The likelihood function can be written as

L(ψ|Z) =

∫
Rn

fZ|W(Z|W,β)fW(W|θ)dW =

∫
Rn

fZ,W(Z,W|ψ)dW

∝
∫
Rn

fZ,W(Z,W|ψ)

fZ,W(Z,W|ψ̃)
fW|Z(W|Z, ψ̃)dW,

(4)

where fW|Z(W|Z, ψ̃) ∝ fZ|W(Z|W, β̃)fW(W|θ̃) is the conditional density for the random effects

with the model parameter ψ̃ = (β̃, θ̃). In the MCML context fW|Z(W|Z, ψ̃) is called the

“importance function” and the importance function parameter ψ̃ should be reasonably close to

the MLE for an accurate approximation. Then the MLE can be obtained by maximizing the

following Monte Carlo approximation to the log likelihood function

l̂(ψ) = log

(
1

K

K∑
k=1

fZ,W(Z,W(k)|ψ)

fZ,W(Z,W(k)|ψ̃)

)
, (5)

where W(1), . . . ,W(K) are sampled by MCMC from the distribution fW|Z(W|Z, ψ̃). This ap-

proach works well for small data sets. However for more than thousands of data points, con-

structing efficient MCMC algorithms is challenging because the algorithms are expensive per

update due to the dimensionality of the random effects. Furthermore, the Markov chains thus

constructed tend to mix very slowly, which means that it takes many more iterations to obtain

reasonable approximations. By using gradient information of the target posterior in the pro-

posal distribution, a well mixing Langevin Hastings algorithm is proposed by Christensen and

Waagepetersen (2002), though the computational cost per iteration can increase significantly,
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thereby reducing the gains from better mixing. Haran et al. (2003) and Knorr-Held and Rue

(2002) suggest approaches for constructing proposals for large block updates of the random ef-

fects. Although this can improve the mixing of MCMC, application to large data sets can be

challenging. Furthermore, the choice of importance function is crucial to the success of the

MCML approach; that is, ψ̃ should be reasonably close to the MLE. To address these challenges,

we propose a projection-based MCML approach in the following section.

4 Projection-based Monte Carlo Maximum Likelihood

4.1 Projection-based Dimension Reduction

Projection methods (Hughes and Haran, 2013, Guan and Haran, 2018) have been developed

for both continuous and discrete spatial domain to alleviate spatial confounding issues as well

as to reduce computational costs. They reduce the dimension of the random effects from n to

m(<< n) by using the n×m projection matrix M.

In the continuous spatial domain, models include the zero-mean Gaussian random effects W

with a covariance Cθ = σ2Rφ, where σ2 is the variance parameter and φ is the range parameter.

In the context of principal component analysis (PCA), the projection matrix Mφ is constructed

via UφD
1/2
φ , where Uφ is the first m eigenvectors of correlation matrix Rφ, and Dφ is a diagonal

matrix with corresponding eigenvalues. The resulting model (Guan and Haran, 2018) is

g{E[Z|β,Mφ, δ]} = Xβ + Mφδ

δ ∼ N(0, σ2I).

(6)

By multiplying P⊥ to Mφ, a restricted model (Reich et al., 2006) can be easily constructed

to eliminate spatial confounding. For every φ update, eigendecomposition on Rφ is necessary.

This can lead to computational challenges for large data sets. Guan and Haran (2018) replaces

this exact eigendecomposition with a probabilistic version of Nyström’s approximation (Williams

and Seeger, 2001, Drineas and Mahoney, 2005). We provide an outline of the random projection

method in the supplementary material.

In the discrete case, we can construct M by taking the first m principal components of the
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Moran operator P⊥AP⊥, where A is an adjacency matrix. Such projection matrix can account

for the spatial covariates of interest as well as for the underlying graph on a lattice domain. Then

the projected model (Hughes and Haran, 2013) can be written as follows.

g{E[Z|β,M, δ]} = Xβ + Mδ

fδ(δ|τ) ∝ τm/2 exp(−τ
2
δ′M′QMδ).

(7)

In the following section we propose a projection-based MCML approach for SGLMMs. Our

approach addresses computational and inferential challenges, and is generally applicable to both

the continuous and discrete domain. Furthermore, we provide some guidance on how to tune the

algorithm.

4.2 Projection-based MCML

Here we propose a fast Monte Carlo maximum likelihood (MCML) algorithm for SGLMMs.

Our approach can be applicable to both the continuous and discrete spatial domain. Based on

projection approaches in the previous section, the likelihood function can be represented as

L(ψ|Z) =

∫
Rm

fZ|δ(Z|β,M, δ)fδ(δ|θ)dδ =

∫
Rm

fZ,δ(Z, δ|ψ)dδ

∝
∫
Rm

fZ,δ(Z, δ|ψ)

fZ,δ(Z, δ|ψ̃)
fδ|Z(δ|Z, ψ̃)dδ,

(8)

where fδ|Z(δ|Z, ψ̃) ∝ fZ|δ(Z|β̃,M, δ)fδ(δ|θ̃) is the importance function for the reduced-dimensional

random effects. Then we can obtain the MLE by maximizing the following Monte Carlo approx-

imation of the reduced-dimensional log likelihood function

l̂(ψ) = log

(
1

K

K∑
k=1

fZ,δ(Z, δ
(k)|ψ)

fZ,δ(Z, δ(k)|ψ̃)

)
, (9)

where δ(1), . . . , δ(K) are sampled from the distribution fδ|Z(δ|Z, ψ̃) via MCMC. The MCML

algorithm based on projection shows significant gains in computational efficiency over the original

method (Christensen, 2004). This is because, compared to the full model likelihood function (4),

(8) requires a much smaller dimension integration (m << n). For example, in our simulation
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study we show that m = 50 for n = 1, 000 can provide accurate estimates and prediction.

Furthermore, δ is less correlated than the original random effects W, resulting in fast mixing of

the MCMC for sampling the random effects from fδ|Z(δ|Z, ψ̃).

In the continuous spatial domain, model parameters are ψ = (β, σ2, φ). The maximization of

(9) with respect to β and σ2 is straightforward, because we can easily derive the first and second

derivatives of (9). Consider the conditional distribution of the response variable fZ|δ(Z|β,M, δ)

which is from the exponential family. Then the first and second derivatives with respect to the

the regression parameters β are

∂ log fZ|δ(Z|β,M, δ)

∂β
= X′(Z− E[Z|β,M, δ])

∂2 log fZ|δ(Z|β,M, δ)

∂β∂β′
= −X′V (Z|β,M, δ)X,

(10)

where V (Z|β,M, δ) is a diagonal matrix whose elements are the conditional variance of Z. In

the continuous case θ = (σ2, φ) and derivatives with respect to the σ2 are

∂ log fδ(δ|θ)

∂σ2
= − m

2σ2
+

δ′δ

2(σ2)2

∂2 log fδ(δ|θ)

∂(σ2)2
=

m

2(σ2)2
− δ′δ

(σ2)3
.

(11)

The derivatives with respect to φ do not have a closed form. For a given φ, we use a Newton-

Raphson procedure to obtain β̂(φ) and σ̂2(φ) which maximize (9). We refer the reader to the

supplementary material for calculating first and second derivatives of the objective function (9).

Then β̂(φ) and σ̂2(φ) are plugged into (9) to obtain l̂(β̂(φ), σ̂2(φ), φ). This function is maxi-

mized with respect to φ using numerical optimization. Our projection-based MCML algorithm

is described in Algorithm 1 below.

In Step 1 of the Algorithm 1, we construct a standard Metropolis-Hastings (MH) algorithm

whose stationary distribution is fδ|Z(δ|Z, ψ̃) (see supplementary material for details). In practice,

however, it is challenging to start the algorithm with ψ̃ which is reasonably close to the MLE.

Therefore, we provide Algorithm 2, an iterative method for finding ψ̃. Starting with an arbitrary

initial value ψ(0) (e.g. GLM estimates), we repeat Algorithm 1 with one modification: we replace

optimization of φ with numerical search on neighboring values of φ to reduce the computational
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Algorithm 1 Basic (non-iterative) projection-based MCML algorithm (continuous domain)

Given ψ̃ = (β̃, σ̃2, φ̃) which is close to the MLE.

1. Simulate random effects δ(1), . . . , δ(K) via MCMC from fδ|Z(δ|Z, ψ̃).
2. Construct a Monte Carlo approximation for the likelihood function as follows.

l̂(ψ) = log

(
1

K

K∑
k=1

fZ,δ(Z, δ
(k)|ψ)

fZ,δ(Z, δ(k)|ψ̃)

)

3. For given φ̃, obtain β̂(φ̃), σ̂2(φ̃) via an iterative Newton-Raphson method.

4. For given β̂(φ̃) and σ̂2(φ̃), obtain φ̂ via a numerical optimization of l̂(β̂(φ̃), σ̂2(φ̃), φ).

5. For given φ̂, obtain β̂(φ̂), σ̂2(φ̂) via an iterative Newton-Raphson method.

expense of that step. An iterative search is repeated until l̂t(ψ
(t+1)) is close to 0, which implies

that the fZ,δ(Z, δ
(t,k)|ψ(t+1)) and fZ,δ(Z, δ

(t,k)|ψ(t)) are close to each other. We present details

about stopping rules for the algorithm in Section 4.3.

Algorithm 2 An iterative method for finding ψ̃ (continuous domain)

For ψ(t) = (β(t), σ2(t), φ(t)) at tth iteration following procedures are repeated until l̂t(ψ
(t+1))

becomes close to 0.
1. Simulate random effects δ(t,1), . . . , δ(t,Kt) via MCMC from fδ|Z(δ|Z,ψ(t)).
2. Construct a Monte Carlo approximation for the objective function as follows.

l̂t(ψ) = log

(
1

Kt

Kt∑
k=1

fZ,δ(Z, δ
(t,k)|ψ)

fZ,δ(Z, δ(t,k)|ψ(t))

)
3. For φ(t), obtain β(φ(t))(t+1), σ2(φ(t))(t+1) via an iterative Newton-Raphson method.
4. For β(φ(t))(t+1) and σ2(φ(t))(t+1), obtain φ(t+1) via a numerical search on the neighboring

values of φ(t) which maximizes l̂t(β(φ(t))(t+1), σ2(φ(t))(t+1), φ).
5. Set (β(t+1), σ2(t+1), φ(t+1)) = (β(φ(t))(t+1), σ2(φ(t))(t+1), φ(t+1))

In the discrete spatial domain, parameters of interest are ψ = (β, τ). The derivatives with

respect to β are identical to the derivatives in continuous case, (10). However, derivatives

with respect to the covariance parameter τ are derived separately because of difference in the

covariance structure. The derivatives with respect to the τ are

∂ log fδ(δ|τ)

∂τ
=
m

2τ
− δ

′M′QMδ

2
∂2 log fδ(δ|τ)

∂τ2
= − m

2τ2
.

(12)

Since we have derivatives for both β and τ , a projection-based MCML algorithm and its
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iterative search method may be simply written as shown in Algorithm 3 and Algorithm 4.

Algorithm 3 Basic (non-iterative) projection-based MCML algorithm (discrete domain)

Given ψ̃ = (β̃, τ̃) which is close to the MLE.

1. Simulate random effects δ(1), . . . , δ(K) via MCMC from fδ|Z(δ|Z, ψ̃).
2. Construct a Monte Carlo approximation for the likelihood function as follows.

l̂(ψ) = log

(
1

K

K∑
k=1

fZ,δ(Z, δ
(k)|ψ)

fZ,δ(Z, δ(k)|ψ̃)

)

3. Obtain β̂, τ̂ via an iterative Newton-Raphson method.

Algorithm 4 An iterative method for finding ψ̃ (discrete domain)

For ψ(t) = (β(t), τ (t)) at tth iteration following procedures are repeated until l̂t(ψ
(t+1))

becomes close to 0.
1. Simulate random effects δ(t,1), . . . , δ(t,Kt) via MCMC from fδ|Z(δ|Z,ψ(t)).
2. Construct a Monte Carlo approximation for the objective function as follows.

l̂t(ψ) = log

(
1

Kt

Kt∑
k=1

fZ,δ(Z, δ
(t,k)|ψ)

fZ,δ(Z, δ(t,k)|ψ(t))

)
3. Obtain β(t+1), τ (t+1) via an iterative Newton-Raphson method.

4.3 Implementation Details

For our fast MCML approaches, we examine the approximation error. There are two sources

of error for MCML estimates: (1) sampling error and (2) Monte Carlo error. Knudson (2016)

derives two sources of error in the context of generalized linear mixed models (GLMMs). We

apply the results in Knudson (2016) to our fast MCML approaches for SGLMMs. Consider

an MLE ψ̂ from the data with sample size n, and ψ∗ is the true parameter value. Then under

regularity conditions listed in Geyer et al. (2013), ψ̂ asymptotically followsN(ψ∗, [−A]−1), where

A = ∇2l(ψ). The other source of error comes from the Monte Carlo approximation. Let ψ̂K

be the Monte Carlo estimates with K number of Monte Carlo samples. Then under regularity

conditions listed in Geyer (1994)
√
K(ψ̂K − ψ̂) converges to N(0,A−1BA−1), where B is

B =

∫
Rm [∇ log fZ,δ(Z, δ|ψ̂][∇ log fZ,δ(Z, δ|ψ̂]′

fZ,δ(Z,δ|ψ̂)2

fZ,δ(Z,δ|ψ̃)2
dδ( ∫

Rm fZ,δ(Z, δ|ψ̂)dδ
)2 (13)
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A can be estimated as ∇2 l̂(ψ̂K) based on the observed Fisher information. B can also be

estimated as

B̂ =

1
K

∑K
k=1[∇ log fZ,δ(Z, δ

(k)|ψ̂K)][∇ log fZ,δ(Z, δ
(k)|ψ̂K)]′

fZ,δ(Z,δ
(k)|ψ̂K)2

fZ,δ(Z,δ(k)|ψ̃)2(
1
K

∑K
k=1

fZ,δ(Z,δ(k)|ψ̂K)

fZ,δ(Z,δ(k)|ψ̃)

)2 (14)

Then Monte Carlo errors can be obtained as Â−1B̂Â−1. To justify the above results, we need

to show a finite variance for ∇l̂(ψ). We provide the proof of this in the supplementary material

by applying results in Knudson (2016). The main idea of this is to bound a variance for ∇l̂(ψ)

through the expectation of fZ,δ(Z, δ|ψ̃)−1 with respect to a normal distribution. Once ψ̃ belongs

to the compact region of the parameter space, fZ,δ(Z, δ|ψ̃)−1 is bounded, because fZ,δ(Z, δ|ψ̃)

is the product of exponential family and normal densities. This is not a strong assumption,

because we do not require ψ̃ to be close to the MLE in the proofs. In practice, however, ψ̃

should be reasonably close to the MLE for an accurate inference. Therefore, we use an iterative

method as recommended in Geyer (1994). One might want to use this quantity as a stopping

rule for the number of Monte Carlo samples. However, evaluating this value with each iteration

of MCMC is computationally expensive because it requires that we calculate ψ̂K for each K.

Instead we use the Effective Sample Size (ESS) (Kass et al., 1998, Robert and Casella, 2013) as

a stopping rule. Incorporating these two sources of error is challenging in general. Sung et al.

(2007) found that the sampling error and Monte Carlo error can be added when the importance

sampling distribution is constructed independently of the data. However we cannot apply this

result directly because our importance sampling distribution fδ|Z(δ|Z, ψ̃) depends on the data.

We can also obtain standard errors based on the parametric bootstrap (Efron and Tibshi-

rani, 1994) as follows: (1) From the observed data, we obtain parameter estimates via our fast

MCML approaches. (2) Multiple data sets are simulated from the SGLMMs for the estimated

parameter values. (3) We obtain point estimates of simulated data sets using our fast MCML

methods. (4) Finally we estimate standard errors from standard deviations of all parameter

estimates. In this manuscript we compare the observed Fisher information-based standard er-

rors with bootstrap-based standard errors. We found that bootstrap-based standard errors can

provide more reasonable coverage (See Table 3 and Table 5).

14



For this projection-based MCML approach, we need to tune the following: (1) rank (m),

(2) number of random effects simulations for Monte Carlo approximations, and (3) number of

iterative search for finding ψ̃. For the rank selection we follow suggestions in Hughes and Haran

(2013), Guan and Haran (2018). The rank m can be chosen from the desired proportion of

variation (e.g. 95%, explained by
∑m
i=1 λi/

∑n
i=1 λi). For the continuous domain we conduct

eigendecomposition of the correlation matrix Rφ(0) for given initial φ(0). Similarly, for the discrete

domain we can take the first m principal components of the Moran operator P⊥A⊥P⊥. Based

on this, m = 50 appears to suffice for all the examples we consider in our study. As another

option, Guan and Haran (2019) selects the rank based on a model selection criterion: we can fit

non-spatial generalized linear models with predictors X and Mφ0 ; here, Mφ0 is the projection

matrix for given initial φ(0). We can fit several models with different m values and compare AIC

to determine the best model.

The number of MCMC iterations is determined by the effective sample size (ESS) (Kass

et al., 1998, Robert and Casella, 2013, Gong and Flegal, 2015). ESS approximates the number

of independent samples that corresponds to the number of dependent MCMC samples. For K

number of MCMC samples, ESS is

ESS(K) =
K

1 + 2
∑∞
i=1 ρi

,

where ρi is the autocorrelation of lag i. An almost independent sequence of samples would

return an ESS similar to the actual length of the Markov chain; therefore, ESS provides a rough

diagnostic for how well the chain is mixing. ESS has also been studied in the multivariate

framework (Vats et al., 2019). In Algorithm 1 and Algorithm 3 we run the MCMC until the ESS

of the first random effect is at least 20 times the rank (m). In fact, our ESS-based stopping rule

is equivalent to a relative standard deviation fixed width stopping rule (Gong and Flegal, 2015),

which is theoretically justified. For K number of Monte Carlo samples, Gong and Flegal (2015)

provides a stopping rule of 2z0.025σ̂
2/
√
K ≤ ν̂ω, where σ̂2/

√
K is an estimated Monte Carlo

standard errors and ν̂ is an estimated posterior variance. This stopping criteria is equivalent

to ESS > 4z20.025/ω
2. Based on this criteria for instance, ω = 0.124 can be converted to ESS

> 1000, which is identical to our stopping criteria of 20m for rank m = 50. Considering that the
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projection methods reduce the dimension of random effects as well as make them uncorrelated,

we believe that this criteria is conservative.

We note that the Gelman-Rubin statistic (Gelman et al., 1992) is widely used to diagnose the

convergence of MCMC. Recently, Vats and Knudson (2018) improves the efficiency of the Gelman-

Rubin statistic (R) based on the batch mean estimators (Vats and Flegal, 2018). Furthermore,

they establish the one-to-one mapping between the Gelman-Rubin statistic (R) and ESS as

R ≈
√

1 +
number of parallel chains

ESS
.

Based on this, for m = 50 we use ESS= 20m = 1000 as a stopping criteria which yields Gelman-

Rubin statistic with 10 parallel chains as 1.004988. This is much lower than the commonly used

stopping criteria of 1.1. We note that the recommended cutoff of 1.1 is too high to provide reliable

Monte Carlo estimates, as pointed out in Vats and Knudson (2018). However, for an iterative

search (Algorithm 2 and Algorithm 4) we don’t need a long run of MCMC, because Monte Carlo

approximations only need to be accurate enough to obtain the improved importance function for

each iteration. Therefore we run MCMC until the ESS of the first random effect is at least 3

times the rank. This yields Gelman-Rubin criteria as 1.032796, which is still a reasonably small

threshold.

There are two stopping rules for our algorithm. One is for deciding the number of MCMC

samples (inner iteration) for log likelihood approximation, as we described above. The other one

is the number of iterative searches (outer iteration) for finding the importance function parameter

ψ̃. In Algorithm 2 and Algorithm 4 iterative searches are repeated until l̂t(ψ
(t+1)) becomes close

to 0, which indicates that the fZ,δ(Z, δ
(t,k)|ψ(t+1)) and fZ,δ(Z, δ

(t,k)|ψ(t)) are similar to each

other. We stop the iterative search when l̂t(ψ
(t+1)) + z0.05ASE < ε, where ASE denotes the

asymptotic Monte Carlo standard error of the sequence of log likelihood estimates {l̂t(ψ(t+1))}

using batch means (Flegal et al., 2008). We set ε to 0.5; this value was obtained by trial-and-

error. We note that this is the stopping rule for the sequence of log likelihood approximation

{l̂t(ψ(t+1))}, and is not for the MCMC samples. Based on this criteria we observe that l̂t(ψ
(t+1))

becomes close to 0 within several outer iterations. Geyer (1994) also recommended such iterative

searches for finding the improved importance function.
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4.4 Prediction

In many continuous spatial domain applications, prediction at unsampled locations is of great

interest. Consider a prediction of locations s∗ = (s∗1, . . . , s
∗
n∗) ∈ S. In the projection-based model

the spatial random effects W at the observed coordinates can be reparameterized as UφD
1/2
φ δ.

To obtain W∗ at some coordinates s∗, we use basic definitions of the Gaussian process to obtain

W

W∗

 = MVN

0,

σ2UφDφU
′
φ Cθ,s∗

Cθ,∗s Cθ,∗∗


 , (15)

where Cθ,∗s = C(s∗, s;θ). Then the conditional distribution of W∗ given observed W is

W∗|W ∼MVN(
1

σ2
Cθ,∗sUφD

−1
φ U′φW, Cθ,∗∗ −

1

σ2
Cθ,∗sUφD

−1
φ U′φCθ,s∗). (16)

To make a prediction of random effects, the Monte Carlo sample of the random effects W

and the parameter estimates θ̂ from the last iteration of the MCML algorithm are plugged into

(16). Then we can obtain the empirical best linear unbiased predictor (EBLUP) of W∗ from the

mean in (16).

4.5 Computational Complexity

Here we examine the computational complexity of our projection-based MCML approaches

and the standard MCML approaches (Christensen, 2004), summarizing how our methods scale

as we increase the size of the data. Table 1 summarizes these calculations. We provide details

about calculating computational complexity for the algorithms in the supplementary material.

Continuous Domain Operations Fast MCML Standard MCML
Importance sampling O(nm) O(n2)

Update β, σ2 O(n2) O(n2)
Update φ O(nm2) O(n3)

Discrete Domain Operations Fast MCML Standard MCML
Importance sampling O(nm) O(n2)

Update β, τ O(n2) O(n2)

Table 1: Computational complexity. n is the number of data points and m is the reduced rank.

The computational benefits come from reducing the dimension of random effects through
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projection methods. We could avoid expensive computations involving large covariance matrices

when we update model parameters. Considering that m is much smaller than n (we use m = 50

for thousands of n in our study), our projection-based MCML approaches scales well compared

to the standard MCML approaches.

5 Simulation Studies

We apply our approach to count and binary data for both the continuous and discrete

domain. The code for this is implemented in R. The source code can be downloaded from the

following repository (https://github.com/jwpark88/projMCML). All the code was run on dual

10 core Xeon E5-2680 processors on the Penn State high performance computing cluster.

5.1 Count Data in a Continuous Domain

We simulate a count data set with n = 1, 400 in the unit domain [0, 1]2 with model parameters

(β, σ2, φ) = (1, 1, 1, 0.2). We first simulate random effects W using a Matérn class (Stein, 2012)

covariance function with a smoothing parameter 2.5. Given simulated random effects, count

observations are simulated from a Poisson distribution with rates λ = exp (Xβ + W), where X

is coordinate matrix for W, randomly generated from the unit domain. We fit the model using

the first 1,000 observations and 400 points are used for prediction.

Our initial values are obtained from GLM estimates. For the range parameter φ, we use the

first quartile of the Euclidean distance between the locations. For the simulated example, this

gives us initial values β(0) = (0.546, 0.678) and θ(0) = (0.840, 0.333). We select a reduced rank

m = 50 and follow the stopping criteria described in Section 4.3. Figure 1 indicates agreement

between simulated and predicted random effects; we observed similar spatial patterns. We study

our methods for different values of m. Table 2 shows that the parameter estimates from different

choices of m are reasonably close to the true values. We observed that the bootstrap-based

confidence intervals are wider than the observed Fisher information-based confidence intervals.

Furthermore, we can obtain confidence intervals for φ using bootstrap, without calculating ana-

lytically intractable derivatives.
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Estimated Random Effects
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Hold−out Random Effects
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Predicted Random Effects

Figure 1: The left panel shows the simulated random effects at the observation (top) and pre-
diction locations (bottom). The right panel shows the estimated (top) and predicted (bottom)
random effects. Spatial patterns are similar between simulated and predicted random effects.
Estimations and predictions are obtained from the conditional distribution of the random effects
using the point estimates from fast MCML (see Section 4.4 for details).

To validate our methods, we repeat the simulation 100 times. We used the same algorithm

tuning parameters (m = 50, ε = 0.5) for all the simulated data sets. Figure 2 indicates that the

point estimates for each simulated data set are distributed around the true values. Compared to

the regression parameters, estimates of covariance parameters are slightly right skewed, but still

close to the true simulated values. We also investigate the coverages obtained from two different

confidence intervals based on: (1) bootstrap, and (2) observed Fisher information. We observe

that coverage based on the observed Fisher information is lower than the 95% confidence. On

the other hand, coverage based on bootstrap are close to the nominal rate.
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m 95% CI β1 = 1 β2 = 1 σ2 = 1 φ = 0.2 Time(min)
25 0.996 0.922 0.999 0.190 7.676

Fisher (0.859, 1.132) (0.784, 1.060) (0.423, 1.576) NA
Bootstrap (0.861, 1.127) (0.745, 1.068) (0.558, 5.734) (0.124, 0.411)

50 1.078 0.952 1.53 0.237 17.450
Fisher (0.944, 1.212) (0.817, 1.086) (0.877, 2.185) NA

Bootstrap (0.922, 1.189) (0.779, 1.054) (0.659, 5.304) (0.174, 0.384)
75 1.030 0.912 1.48 0.255 23.439

Fisher (0.971, 1.088) (0.877, 0.946) (0.961, 1.992) NA
Bootstrap (0.882, 1.144) (0.767, 1.028) (0.599, 3.799) (0.168, 0.367)

100 1.030 0.901 1.44 0.246 31.774
Fisher (0.872, 1.182) (0.746, 1.036) (1.011, 1.872) NA

Bootstrap (0.911, 1.169) (0.726, 1.020) (0.587, 3.846) (0.179, 0.343)

Table 2: Continuous domain simulated Poisson data; parameter estimates from different choices
of m are close to the true values. We cannot obtain standard errors of φ via Fisher information
because it is analytically intractable.
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Figure 2: Point estimates for the 100 simulated Poisson data sets in a continuous spatial domain.
Horizontal lines indicate true value. Point estimates are distributed around the true values.
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Methods β1 β2 σ2 φ
Fisher 0.81 0.83 0.69 NA

Bootstrap 0.93 0.88 0.95 0.97

Table 3: Coverage for simulated Poisson data sets in a continuous spatial domain.

5.2 Binary Data in a Continuous Domain

We simulate a binary data set with n = 1, 400 in the unit domain [0, 1]2 with parameters

(β, σ2, φ) = (1, 1, 1, 0.2). Similar to the Poisson data simulation, we generate random effects

W using a Matérn class covariance function with a smoothing parameter 2.5. Given simulated

random effects, binary observations are simulated from a logit link function log{p/(1 − p)} =

Xβ + W, where X is coordinate matrix for W. We use the first 1,000 observations and 400

points are used for prediction.

We use initial values β(0) = (0.352, 0.785) and θ(0) = (4.393, 0.327) which are obtained from

GLM estimates. We choose a reduce rank m = 50 and use stopping rules described in Section

4.3. We observed similar spatial patterns between simulated and predicted random effects (Fig-

ure 3). We also study our methods for different choices of m. In Table 4, we observed that Fisher

information-based confidence intervals are wider than the those in the Poisson cases. Similar to

the Poisson data examples, the bootstrap-based confidence intervals are wider than the observed

Fisher information-based confidence intervals. We note that for this example we also have re-

sults from an MCEM algorithm (Guan and Haran, 2019), which we provide for comparison:

(0.989, 1.344, 4.822, 0.49) under the same simulation settings (β, σ2, φ) = (1, 1, 1, 0.2).
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Figure 3: The left panel shows the simulated random effects at the observation (top) and pre-
diction locations (bottom). The right panel shows the estimated (top) and predicted (bottom)
random effects. Spatial patterns are similar between simulated and predicted random effects.
Estimations and predictions are obtained from the conditional distribution of the random effects
using the point estimates from fast MCML (see Section 4.4 for details).

We repeat the simulation 100 times to investigate distribution of point estimates. It is

observed that the point estimates are distributed around the true simulated values (Figure 4).

Coverage obtained from the observed Fisher information are higher than those in Poisson cases;

but still lower than the nominal rate (95% confidence). Coverage based on bootstrap are close

to the nominal rate.
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m 95% CI β1 = 1 β2 = 1 σ2 = 1 φ = 0.2 Time(min)
25 0.869 1.405 2.274 0.292 6.919

Fisher (0.520, 1.219) (0.994, 1.815) (1.686, 2.862) NA
Bootstrap (-0.054, 1.403) (0.807, 2.019) (0.689, 32311657) (0.117, 2.959)

50 0.805 1.381 1.181 0.208 11.482
Fisher (0.403, 1.207) (0.979, 1.783) (0.646, 1.717) NA

Bootstrap (0.227, 1.363) (0.851, 2.018) (0.444, 13727.69) (0.0989, 1.128)
75 0.824 1.424 1.461 0.217 21.913

Fisher (0.387, 1.259) (0.995, 1.852) (0.741, 2.181) NA
Bootstrap (0.131, 1.505) (0.832, 1.929) (0.389, 192147.4) (0.082, 1.101)

100 0.796 1.364 2.909 0.374 30.614
Fisher (0.413, 1.180) (0.973, 1.756) (2.017, 3.802) NA

Bootstrap (-0.003, 1.422) (0.714, 1.905) (0.481, 559588) (0.138, 7.918)

Table 4: Continuous domain simulated binary data; parameter estimates from different choices
of m are close to the true values. We cannot obtain standard errors of φ via Fisher information
because it is analytically intractable.
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Figure 4: Point estimates for the 100 simulated binary data sets in a continuous spatial domain.
Horizontal lines indicate true value. Point estimates are distributed around the true values.
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Methods β1 β2 σ2 φ
Fisher 0.87 0.90 0.72 NA

Bootstrap 0.97 0.96 0.97 0.93

Table 5: Coverage for simulated binary data sets in a continuous spatial domain.

m 95% CI β1 = 1 β2 = 1 τ = 6 Time(min)
25 1.069 0.963 6.263 9.558

Fisher (0.968, 1.171) (0.861, 1.065) (1.548, 10.979)
Bootstrap (1.010, 1.153) (0.906, 1.058) (2.367, 9.775)

50 1.053 0.970 6.712 15.988
Fisher (0.951, 1.154) (0.867, 1.072) (2.680, 10.744)

Bootstrap (0.986, 1.137) (0.920, 1.049) (3.117, 9.284)
75 1.049 0.964 6.94 23.684

Fisher (0.947, 1.152) (0.861, 1.067) (3.055, 10.819)
Bootstrap (0.986, 1.144) (0.913, 1.044) (3.388, 8.435)

100 1.046 0.958 5.731 28.411
Fisher (0.944, 1.148) (0.855, 1.061) (2.780, 8.682)

Bootstrap (0.992, 1.130) (0.907, 1.032) (2.916, 9.304)

Table 6: Discrete domain simulated Poisson data; parameter estimates from different choices of
m are close to the true values.

5.3 Count Data on a Lattice

Our methods are also applicable to the discrete spatial domain setting. We follow simulation

settings in Hughes and Haran (2013). We create a Poisson data set on a 30 × 30 lattice over

the unit domain with model parameters (β, τ) = (1, 1, 6). By taking first 400 eigenvectors of

the Moran operator, we construct 900 × 400 matrix M. Then we simulate random effects from

N(0, τM′QM). Given generated random effects, count observations are simulated from a Poisson

distribution with rates λ = exp (Xβ + W), where X is coordinate matrix for W.

As in previous examples we use an initial value obtained from GLM estimates (β(0) =

(1.111, 0.989) and τ (0) = 2.498). We choose a reduce rank m = 50 and use stopping rules

described in Section 4.3. We study our methods for different choices of m. In Table 6, it is

observed that all of the estimated values are close to the true simulated values. Both confidence

intervals (Fisher information, bootstrap) are tighter than those in continuous domain cases.

We conduct the simulation 100 times, and the point estimates for β are distributed around

the true simulated values. However the points estimates for τ are slightly biased (Figure 5). In

Table 7, it is observed that coverage obtained from the observed Fisher information and coverage
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Methods β1 β2 τ
Fisher 0.93 0.96 0.63

Bootstrap 0.95 0.93 0.49

Table 7: Coverage for simulated Poisson data sets in a discrete spatial domain.

based on the bootstrap are both close to the normal rate (95% confidence). This is because we

can simultaneously update β and τ based on derivatives with respect to each parameter unlike

continuous domain cases. However coverage for τ are lower than nominal rate, due to the bias in

point estimates. In general it is challenging to estimate τ correctly (Hughes and Haran, 2013).
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Figure 5: Point estimates for the 100 simulated Poisson data sets in a lattice spatial domain.
Horizontal lines indicate true value. Point estimates are distributed around the true values.

6 Real Data Examples

We illustrate the application of our approach to two real data examples: (1) binary mistletoe

data over the continuous domain, and (2) county-level US infant mortality data. For both large

non-Gaussian spatial data sets, a projection-based MCML algorithm can conduct statistical

inference as well as provide prediction for unobserved locations within a reasonable amount of

time.
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6.1 Mistletoe Data

We apply our method to mistletoe data set from the Minnesota Department of Natural

Resources forest inventory. The data set contains forest stand information from black spruce

stands in Minnesota forests (the binary response indicates whether or not dwarf mistletoe was

found in the stand). Eastern spruce dwarf mistletoe (Arceuthobium pusillum) is a parasitic

plant which causes the most serious disease of black spruce (Picea mariana) throughout its range

(Baker et al., 2006). These data are analyzed in Hanks et al. (2011) under a GLM framework.

We use 4,000 locations as training and the use 1,000 locations for model prediction. In addition

to coordinates (in Universal Transverse Mercator coordinate system), we also use average age

of trees in stands, basal area per acre, average height of trees, and the total volume of trees in

the stand as additional covariates. As in the simulated examples, we use initial values for model

parameters from GLM estimates. We use an initial value of φ(0) = 39011.55, which is the first

quartile of the Euclidean distance matrix from coordinates. For a given initial value of φ(0), we

conduct eigendecomposition of the correlation matrix Rφ(0) . We chose a reduced rank m = 50,

and this explains 99% of variation (
∑50
i=1 λi/

∑4000
i=1 λi = 0.99). We use stopping rules described

in Section 4.3.

Our fast MCML approach takes about 2 hours. Because of the expensive MCMC simulations

to approximate the log likelihood function, regular MCML (Christensen, 2004) are impracti-

cal. The projection-based MCEM approach in (Guan and Haran, 2019) may have comparable

computational costs to our approach. However, MCML offers an alternative that has rigorous

theoretical justifications for the convergence of estimates as we described in Section 4.3. Also,

as mentioned before, MCML provides Monte Carlo log likelihood approximations without ad-

ditional effort, which is useful, for example, in popular model choice approaches like AIC. In

contrast, MCEM (Guan and Haran, 2019) does not provide likelihood estimates as a by-product,

because it only evaluates conditional expectations at several parameter points. Furthermore, our

MCML approach may be more easily applicable to, and computationally tractable for, a broader

class of models, for instance, image processing problems (Geman and Graffigne, 1986, Tanaka,

2002, Murphy, 2012) or hidden Markov models for disease mapping (Green and Richardson,

2002), where the distributions of the latent variables are intractable, for example when an Ising
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Parameter Estimate 95% CI
X-coordinates -2.242e-05 (-2.489e-05, -1.995e-05)
Y-coordinates 2.869e-06 (-1.072e-06, 6.811e-06)

Age 0.005 (0.002, 0.007)
Basal area -0.002 (-0.005, 0.001)

Height 0.024 (0.018, 0.030)
Volume -0.002 (-0.004, 0.001)
σ2 4.772 (2.893, 6.651)
φ 35847.78 NA

Table 8: Inference results for a mistletoe data.

or Potts model is used as to model latent variables. Because our goal is maximum likelihood

estimation, we do not compare our results to the plethora of fast algorithms for Bayesian infer-

ence, though we note that the Bayesian approaches based on similar projection-based methods

are much more computationally expensive, for instance the algorithm in (Guan and Haran, 2018)

will take about several days to run. Inference results are summarized in Table 8. Confidence

intervals are obtained from the observed Fisher-information. Figure 6 indicates that there are

similar binary spatial patterns between observed and predicted locations.
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Figure 6: The left panel shows the mistletoe presence at the observation (top) and prediction
locations (bottom). The right panel shows the estimated (top) and predicted (bottom) mistletoe
presence. Red and blue points indicate presence-absence of mistletoe respectively. Spatial pat-
terns are similar between simulated and predicted random effects. Estimations and predictions
are obtained from the conditional distribution of the random effects using the point estimates
from fast MCML (see Section 4.4 for details).

6.2 US Infant Mortality Data

We apply our projection-based MCML algorithm to the infant mortality data set, which

is observed in 3,071 US counties. The data set is obtained from the 2008 Area Resource File,

which is maintained by the Bureau of Health Professions, Health Resources and Services Admin-
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Parameter Estimate 95% CI
Intercept -5.423 (-5.605, -5.240)

Low birth weight 8.802 (7.565, 10.038)
Black 0.004 (0.003, 0.006)

Hispanic -0.004 (-0.005, -0.003)
Gini -0.575 (-1.000, -0.151)

Affluence -0.077 (-0.089, -0.065)
Stability -0.029 (-0.044, -0.015)

τ 7.815 (2.152, 13.479)

Table 9: Inference results for the US infant mortality data.

istration, US Department of Health and Human Services. This data set is analyzed in Hughes

and Haran (2013) under a Bayesian framework. As in Hughes and Haran (2013), we use the

three-year (2002-2004) average number of infant deaths before the first birthday as a response

variable. We use the rate of low birth weight, the percentage of black residents, the percentage

of Hispanic, the Gini coefficient which measures income inequality, a composite score of social

affluence, and residential stability as covariates (see Hughes and Haran (2013) for details). Then,

we use the average number of live births as an offset. As in the previous examples, we set the

initial values for model parameters from GLM estimates. We chose a reduced rank m = 50 as in

Hughes and Haran (2013), and use same stopping rules as in Section 4.3.

Our approach takes about 1.5 hours. As in the binary mistletoe example, regular MCML

(Christensen, 2004) is infeasible. In the continuous domain there is a signficant computational

advantage of the MCML approach over the corresponding projection-based Bayesian approach

via MCMC. In the discrete domain, however, the computational benefit of MCML are not as

dramatic. The Bayes projection-based approach (Hughes and Haran, 2013) takes about 3.5 hours

for this example. However, a direct computational comparison is challenging because the Bayes

approach is implemented in C++ using the Rcpp and RcppArmadillo packages (Eddelbuettel et al.,

2011). We note that Hughes and Haran (2013) is applied to inference for latent GMRF models.

However, our method is more general as it enables maximum likelihood inference for both the

continuous and discrete spatial domains. Table 9 summarizes inference results for the US infant

mortality data set. We construct confidence intervals using the observed Fisher-information.

The results in Table 9 are comparable to those in Hughes and Haran (2013).
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7 Discussion

In this manuscript, we have proposed a fast Monte Carlo Maximum Likelihood approach for

latent Gaussian random field models. Our methods are based on recently developed projection

approaches (Hughes and Haran, 2013, Guan and Haran, 2018). By reducing the dimension of

random effects, we can avoid expensive computations involving large covariance matrices as well

as increase mixing of the algorithms for generating the MCMC samples for random effects, leading

to a fast Monte Carlo approximation to the likelihood function. Our method is applicable to both

the continuous and discrete domains. Our study shows that our approach obtains computational

gains over existing methods and provides accurate point estimates. Our methods also provide

accurate prediction in many applications (Figure 1, Figure 3, Figure 6).

We have studied two sources of error for MCML estimates: sampling error and Monte Carlo

error. Combining these two sources of error in cases where importance functions are dependent

on the data is challenging (Knudson, 2016). Asymptotic confidence intervals can be constructed

using sampling error via the observed Fisher information. We observe that in the continuous

domain cases, the coverage obtained from the observed Fisher information is lower than the

nominal rate. These results are consistent with a well-known fact that, under fixed domain

asymptotics, parameters in the Matérn class are not consistent and hence cannot be asymptoti-

cally normal (Zhang, 2004). As in the MCML algorithm for SGLMMs in Christensen (2004), our

fast MCML approach cannot simultaneously update all model parameters ψ = (β, σ2, φ) because

the derivatives with respect to φ do not have a closed form. For a given φ our methods update

(β(φ), σ2(φ)) through the Newton-Raphson procedure using the observed Fisher information.

Then, we update φ by maximizing approximated log likelihood using numerical optimization.

These iterative procedures could result in lower coverage. Considering that interpolation is the

ultimate goal in many geostatistical problems, constructing accurate confidence intervals is often

of limited interest in practice. However, for researchers who have an interest in constructing

confidence intervals, we recommend the bootstrap-based intervals, which have close to the nom-

inal rate of coverage. We point out that the bootstrap-based approach is still computationally

challenging, though we can take advantage of high-performance computing resources. To our

knowledge, no existing approach provides practical ways to address this coverage issue in the
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context of SGLMMs. Developing practical ways for efficiently calculating confidence intervals

for SGLMMs provides an interesting avenue for future research.

The computational methods developed in this manuscript allow researchers to perform max-

imum likelihood estimation to fit SGLMMs with much larger data sets than was previously

possible, and we hope that they will permit researchers to fit such models more routinely. The

algorithms we discuss here apply to a large and widely applicable class of spatial models, and can

be much faster than corresponding Bayesian approaches to fitting the same models. Bayesian

approaches are of course enormously flexible, especially for handling missing data, incorporating

prior information, and integrating multiple data sets; there is an extensive literature on fast com-

putational methods for fitting models in the Bayesian context (cf. Lindgren et al., 2011, Banerjee

et al., 2008, Hughes and Haran, 2013, Guan and Haran, 2018, Rue et al., 2009). The research on

efficient MCMLE approaches for maximum likelihood estimation for computationally challenging

problems is limited; we hope that the ideas and methods we have discussed here may be broadly

relevant for efficient maximum likelihood inference for high-dimensional latent variable models.

Examples include a Gaussian mixture model for galaxy data (Johansen et al., 2008), stochastic

volatility models in finance (Jacquier et al., 2007, Duan et al., 2017), and state space models in

economics (Duan and Fulop, 2015).

Acknowledgement

MH and JP were partially supported by the National Science Foundation through NSF-DMS-

1418090. JP was partially supported by the Yonsei University Research Fund of 2019-22-0194

and the National Research Foundation of Korea (NRF-2020R1C1C1A01003868). Research re-

ported in this publication was supported by the National Institute of General Medical Sciences

of the National Institutes of Health under Award Number R01GM123007. The content is solely

the responsibility of the authors and does not necessarily represent the official views of the Na-

tional Institutes of Health. The authors are grateful to Yawen Guan and Christina Knudson for

providing useful sample code and advice.

31



Supplementary Material for
Reduced-dimensional Monte Carlo Maximum

Likelihood for Spatial Generalized Linear Mixed
Models

Jaewoo Park and Murali Haran

A Monte Carlo Likelihood Approximation Calculations and

Derivatives

Consider a logarithm of the Monte Carlo approximation to the likelihood as

l̂(ψ) := log L̂(β,θ; Z) = log

(
1

K

K∑
k=1

fZ,δ(Z, δ
(k)|ψ)

fZ,δ(Z, δ(k)|ψ̃)

)
. (17)

The derivatives of the fZ,δ(Z, δ|ψ) can be defined as

∇fZ,δ(Z, δ|ψ) =

(
∂ log fZ|δ(Z|β,M, δ)

∂β
,
∂ log fδ(δ|θ)

∂θ

)
∇2fZ,δ(Z, δ|ψ) =

(
∂2 log fZ|δ(Z|β,M, δ)

∂β∂β′
,
∂2 log fδ(δ|θ)

∂θ∂θ′

)
.

(18)

From the chain rule, the gradient of the log likelihood can be derived as

∇l̂(ψ) =

1
K

∑K
k=1

∇fZ,δ(Z,δ
(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)

1
K

∑K
k=1

fZ,δ(Z,δ(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)

=

∑K
k=1[∇ log fZ,δ(Z, δ

(k)|ψ)]
fZ,δ(Z,δ

(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)∑K
k=1

fZ,δ(Z,δ(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)

(19)

By using the product rule, the Hessian of the MCML is as follows.
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∇2 l̂(ψ) =

∑K
k=1[∇2 log fZ,δ(Z, δ

(k)|ψ)]
fZ,δ(Z,δ

(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)∑K
k=1

fZ,δ(Z,δ(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)

+

∑K
k=1[∇ log fZ,δ(Z, δ

(k)|ψ)]
∇fZ,δ(Z,δ

(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)∑K
k=1

fZ,δ(Z,δ(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)

−

∑K
k=1[∇ log fZ,δ(Z, δ

(k)|ψ)]
fZ,δ(Z,δ

(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)(∑K
k=1

fZ,δ(Z,δ(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)

)2
(
∇

K∑
k=1

fZ,δ(Z, δ
(k)|ψ)

fZ,δ(Z, δ(k)|ψ̃)

)

(20)

Completing the derivative for each term gives

∇2 l̂(ψ) =

∑K
k=1[∇2 log fZ,δ(Z, δ

(k)|ψ)]
fZ,δ(Z,δ

(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)∑K
k=1

fZ,δ(Z,δ(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)

+

∑K
k=1[∇ log fZ,δ(Z, δ

(k)|ψ)][∇ log fZ,δ(Z, δ
(k)|ψ)]′

fZ,δ(Z,δ
(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)∑K
k=1

fZ,δ(Z,δ(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)

−

∑K
k=1[∇ log fZ,δ(Z, δ

(k)|ψ)]
fZ,δ(Z,δ

(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)

(
∑K
k=1

fZ,δ(Z,δ(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)
)2

(
∇ log fZ,δ(Z, δ

(k)|ψ)
)
.

(21)

This can be simplified as

∇2 l̂(ψ) =

∑K
k=1[∇2 log fZ,δ(Z, δ

(k)|ψ)]
fZ,δ(Z,δ

(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)∑K
k=1

fZ,δ(Z,δ(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)

+

∑K
k=1[∇ log fZ,δ(Z, δ

(k)|ψ)−∇l̂(ψ)][∇ log fZ,δ(Z, δ
(k)|ψ)−∇l̂(ψ)]′

fZ,δ(Z,δ
(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)∑K
k=1

fZ,δ(Z,δ(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)

(22)
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B CLT for the gradient of the Monte Carlo log likelihood

approximation

Consider the gradient of the Monte Carlo log likelihood approximation

∇l̂(ψ) =

1
K

∑K
k=1[∇ log fZ,δ(Z, δ

(k)|ψ)]
fZ,δ(Z,δ

(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)

1
K

∑K
k=1

fZ,δ(Z,δ(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)

, (23)

where fZ,δ(Z, δ|ψ) ∝ fZ|δ(Z|β,M, δ)fδ(δ|θ) is the joint distribution. Here, fZ,δ(Z, δ|ψ̃) is

bounded, if the ψ̃ belongs to the compact region of the parameter space. Then, the CLT for the

gradient of the Monte Carlo log likelihood can be written as

√
K
[ 1
K

∑K
k=1[∇ log fZ,δ(Z, δ

(k)|ψ)]
fZ,δ(Z,δ

(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)

1
K

∑K
k=1

fZ,δ(Z,δ(k)|ψ)

fZ,δ(Z,δ(k)|ψ̃)

−∇l(ψ)
]
, (24)

which converges to a normal distribution with mean 0 and variance

∫
Rm [∇ log fZ,δ(Z, δ|ψ̂][∇ log fZ,δ(Z, δ|ψ̂]′

fZ,δ(Z,δ|ψ̂)2

fZ,δ(Z,δ|ψ̃)2
dδ( ∫

Rm fZ,δ(Z, δ|ψ̂)dδ
)2 . (25)

To verify this, we need to show (25) is finite. This requires to show both the numerator of (23)

1

K

K∑
k=1

[∇ log fZ,δ(Z, δ
(k)|ψ)]

fZ,δ(Z, δ
(k)|ψ)

fZ,δ(Z, δ(k)|ψ̃)

and denominator of (23)

1

K

K∑
k=1

fZ,δ(Z, δ
(k)|ψ)

fZ,δ(Z, δ(k)|ψ̃)
,

have a finite variance respectively. In what follows we apply the results in Knudson (2016) to

our fast MCML methods for SGLMMs.
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B.1 A Finite Variance for the Numerator Part

We need to show the following three conditions

Var
(∂ log fZ|δ(Z|β,M, δ)

∂β

fZ,δ(Z, δ|ψ)

fZ,δ(Z, δ|ψ̃)

)
<∞ (26)

Var
(∂ log fδ(δ|θ)

∂θ

fZ,δ(Z, δ|ψ)

fZ,δ(Z, δ|ψ̃)

)
<∞ (27)

∣∣∣Cov
(∂ log fZ|δ(Z|β,M, δ)

∂β

fZ,δ(Z, δ|ψ)

fZ,δ(Z, δ|ψ̃)
,
∂ log fδ(δ|θ)

∂θ

fZ,δ(Z, δ|ψ)

fZ,δ(Z, δ|ψ̃)

)∣∣∣ <∞ (28)

Since (26) and (27) imply (28) by the Cauchy-Schwartz inequality, we only need to show (26)

and (27). For each βj ,

Var
(∂ log fZ|δ(Z|βj ,M, δ)

∂βj

fZ,δ(Z, δ|ψ)

fZ,δ(Z, δ|ψ̃)

)
< E

[(∂ log fZ|δ(Z|βj ,M, δ)

∂βj

fZ,δ(Z, δ|ψ)

fZ,δ(Z, δ|ψ̃)

)2]
=

∫ [∂ log fZ|δ(Z|βj ,M, δ)

∂βj

]2 [fZ|δ(Z|βj ,M, δ)]2[fδ(δ|θ)]2

fZ,δ(Z, δ|ψ̃)
dδ.

(29)

Since fZ|δ(Z|βj ,M, δ) belongs to the exponential family, it can be written as exp(Z′η − b(η))

for η = Xβ + Mδ. Let X·j be the jth column of X. Then, we have

∂ log fZ|δ(Z|βj ,M, δ)

∂βj
= X ′·,j(Z− b′(η)).

Also, fδ(δ|θ) = c exp(−δ′δ/2θ) for some constant c. By plugging in these into (29), we have

c

∫
[X ′·,j(Z− b′(η))]2

exp(2Z′η)fZ,δ(Z, δ|ψ̃)−1

exp(2b(η)) exp(δ′δ/θ)
dδ (30)

Since 0 ≤ exp(−2b(η)) ≤ 1 for both Bernoulli and Poisson cases, (30) is bounded by

c exp(2Z′Xβ)

∫
[X ′·,j(Z− b′(η))]2

exp(2Z′Mδ)fZ,δ(Z, δ|ψ̃)−1

exp(δ′δ/θ)
dδ (31)
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For the Bernoulli response case, by the triangle inequality and with some algebra, (31) is bounded

by

c exp(2Z′Xβ)
[ n∑
i=1

|xij |
]2 ∫

fZ,δ(Z, δ|ψ̃)−1 exp(−δ′δ/θ + 2Z′Mδ)dδ (32)

Here, (32) is proportional to the expectation of the bounded function fZ,δ(Z, δ|ψ̃)−1 with respect

to a normal density. Therefore, we have shown (26) for a Bernoulli case. For the Poisson response

case, we can represent (31) as

c exp(2Z′Xβ)

∫ [ n∑
i=1

xij(Zi − exp(Xiβ +Miδ))
]2 exp(2Z′Mδ)fZ,δ(Z, δ|ψ̃)−1

exp(δ′δ/θ)
dδ (33)

By the triangle inequality and with some algebra

c exp(2Z′Xβ)

∫ [ n∑
i=1

−xij exp
(
− δ′δ/2θ + Z′Mδ +Xiβ +Miδ

)
+

xijzi exp
(
− δ′δ/2θ + Z′Mδ

)]2
fZ,δ(Z, δ|ψ̃)−1dδ

≤ c exp(2Z′Xβ)

∫ [ n∑
i=1

|xij | exp
(
− δ′δ/2θ + Z′Mδ +Xiβ +Miδ

)
+

|xijzi| exp
(
− δ′δ/2θ + Z′Mδ

)]2
fZ,δ(Z, δ|ψ̃)−1dδ.

(34)

Similar to a Bernoulli case, (34) is the expectation of the bounded function fZ,δ(Z, δ|ψ̃)−1 with

respect to a normal density. Therefore, we have shown (26) for a Poisson case as well.

For (27) we can write

Var
(∂ log fδ(δ|θ)

∂θ

fZ,δ(Z, δ|ψ)

fZ,δ(Z, δ|ψ̃)

)
< E

[(∂ log fδ(δ|θ)

∂θ

fZ,δ(Z, δ|ψ)

fZ,δ(Z, δ|ψ̃)

)2]
=

∫ [∂ log fδ(δ|θ)

∂θ

]2 [fZ|δ(Z|βj ,M, δ)]2[fδ(δ|θ)]2

fZ,δ(Z, δ|ψ̃)
dδ.

(35)

By plugging in the densities for fδ(δ|θ) and fZ|δ(Z|βj ,M, δ), we have

∫ [∂ log fδ(δ|θ)

∂θ

]2 exp(2Z′η)fZ,δ(Z, δ|ψ̃)−1

exp(2b(η)) exp(δ′δ/θ)
dδ =

∫ [
− m

2θ
+
δ′δ

2θ

]2 exp(2Z′η)fZ,δ(Z, δ|ψ̃)−1

exp(2b(η)) exp(δ′δ/θ)
dδ.

(36)
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Since 0 ≤ exp(−2b(η)) ≤ 1 for both Bernoulli and Poisson cases, (36) is bounded by

∫ [
−m

2θ
+
δ′δ

2θ

]2 exp(2Z′η)fZ,δ(Z, δ|ψ̃)−1

exp(δ′δ/θ)
dδ =

∫ [
−m

2θ
+
δ′δ

2θ

]2
fZ,δ(Z, δ|ψ̃)−1 exp(−δ′δ/θ+2Z′Mδ)dδ.

(37)

Therefore, (37) is the expectation of

[
− m

2θ
+
δ′δ

2θ

]2
fZ,δ(Z, δ|ψ̃)−1

with respect to a normal distribution. (27). In conclusion, this proves a finite variance for the

numerator part of (23), which implies a CLT.

B.2 A Finite Variance for the Denominator Part

We need to show

Var
(fZ,δ(Z, δ(k)|ψ)

fZ,δ(Z, δ(k)|ψ̃)

)
<∞ (38)

Similar to the previous section, we can represent

Var
(fZ,δ(Z, δ(k)|ψ)

fZ,δ(Z, δ(k)|ψ̃)

)
< E

[(fZ,δ(Z, δ(k)|ψ)

fZ,δ(Z, δ(k)|ψ̃)

)2]
=

∫
[fZ|δ(Z|βj ,M, δ)]2[fδ(δ|θ)]2

fZ,δ(Z, δ|ψ̃)
dδ.

(39)

By plugging in the densities for fδ(δ|θ) and fZ|δ(Z|βj ,M, δ), we have

c

∫
exp(2Z′η)fZ,δ(Z, δ|ψ̃)−1

exp(2b(η)) exp(δ′δ/θ)
dδ = c exp(2Z′Xβ)

∫
exp(2Z′Mδ)fZ,δ(Z, δ|ψ̃)−1

exp(2b(η)) exp(δ′δ/θ)
dδ

≤ c exp(2Z′Xβ)

∫
exp(2Z′Mδ)fZ,δ(Z, δ|ψ̃)−1

exp(δ′δ/θ)
dδ

=≤ c exp(2Z′Xβ)

∫
fZ,δ(Z, δ|ψ̃)−1 exp(−δ′δ/θ + 2Z′Mδ)dδ.

(40)

This is because the 0 ≤ exp(−2b(η)) ≤ 1 in Bernoulli and Poisson cases. Then, (40) is the expec-

tation of the bounded function fZ,δ(Z, δ|ψ̃)−1 with respect to a normal distribution. Therefore,

this proves a finite variance for the denominator part of (23), which implies a CLT.
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C Random Projection Methods

We provide an outline of the random projection methods. (Here, we suppress the dependencies

of R on φ.) Let Φ = [Im×m,0m×(n−m)]
′ be an n × m truncation matrix. The deterministic

Nyström’s method partitions n×n positive semi-definite matrix R into four blocks

R11 R12

R21 R22

,

where R11 = Φ′RΦ. It conducts an exact eigendecomposition of the m ×m sub-matrix R11,

where V11 is its eigenvectors and Λ11 = diag(λ11,1, . . . , λ11,m) is the diagonal matrix with

corresponding eigenvalues. Then, the deterministic Nyström’s method maps the low-dimensional

m×m eigenvectors V11 to high-dimensional n×m projection matrix via
√

m
n [RΦ][V11Λ11

−1].

In the probabilistic version, Guan and Haran (2018) replace the truncation matrix Φ with

RΩ, where Ω is an n × (m + l) random matrix with Ωij ∼ N(0, 1/
√
m+ l), where l is an

oversampling factor to improve approximation (Halko et al., 2011). We use l = m as in Guan

and Haran (2018). To guarantee orthogonality among eigenvectors Guan and Haran (2018)

take a variant of theNyström’s method: use the first m columns of the left singular vectors of

[RΦ][V11Λ11
−1/2] as the final approximation to the eigenvectors. The algorithm may be simply

written as Algorithm 5. See Banerjee et al. (2012), Guan and Haran (2018) for details.

Algorithm 5 Random projection method for continuous domain

Given n× n positive semi-definite matrix R.
1. Construct and n× 2m random truncation matrix:

Φ = RΩ, where Ωij ∼ N(0, 1/
√
m+ l).

2. Conduct the Nyström’s approximation for eigendecomposition:
Form R11 = Φ′RΦ
SVD for R11 = V11Λ11V′11
Form Nyström’s approximation C = [RΦ][V11Λ11

−1/2]
SVD for C = UDV′

First m columns of U, and first m diagnoal elements of D2 are used as eigencomponents of
the R.

D MCMC for Simulating Random Effects

To simulate random effects in the MCML algorithms, we use the Metropolis-Hastings (MH)

whose stationary distribution is fδ|Z(δ|Z, ψ̃). Since projection-based models reduce the dimen-

sion of random effects as well as reduce the correlation among random effects, the constructed
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MCMC algorithm is efficient than that of traditional SGLMMs. We use a standard MCMC

algorithm with a multivariate normal proposal function q(·|δ) = MVN(δ, σ2I) (e.g. σ2 = 0.1).

The algorithm may be described as follows:

Algorithm 6 MCMC for simulating random effects

Given a fixed ψ̃ = (β̃, σ̃2, φ̃) and δ(k) at kth iteration.
1. Propose δ′ ∼ q(·|δ(k)).
2. Accept δ(k+1) = δ′ with probability

α = min

{
1,

fδ|Z(δ′|Z, ψ̃)q(δ(k)|δ′)
fδ|Z(δ(k)|Z, ψ̃)q(δ′|δ(k))

}
else reject (set δ(k+1) = δ(k)).
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Symbol Definition
n the number of data points
m reduced rank (m << n)
p the number of covariates
M n×m projection matrix
W n× 1 random effect
δ m× 1 dimension reduced random effect
Z n× 1 observed non-Gaussian data
X n× p design matrix including spatial covariates
Q n× n neighbor matrix for discrete case

E[Z|β,M, δ]) n× 1 conditional expectation
V (Z|β,M, δ) n× n conditional variance matrix

Cθ n× n covariance matrix for random effects (continous case)

Table 10: Summary of notations used for complexity calculations

E Complexity Calculations

Here we provide details about calculating computational complexity for the algorithms. We

summarize our notation in Table 10. All other notations follow previous sections.

E.1 Continuous Spatial Domain

1. Fast MCML approaches

• Importance sampling step (evaluating fδ|Z(δ′|Z, ψ̃))

matrix multiplications for Mφδ and δ′δ: O(nm) +O(m)

• Update β, σ2 (Newton-Raphson)

In ∇l̂(ψ) calculations, matrix multiplications for X′(Z− E[Z|β,M, δ]) and δ′δ:

O(np) +O(m)

In ∇2 l̂(ψ) calculations, matrix multiplications for −X′V (Z|β,M, δ)X: O(np(n+ p))

• Update φ

In Algorithm 1, SVD for an 2m× 2m matrix R11: O(8m3)

In Algorithm 1, SVD for an n× 2m matrix C: O(4nm2)

2. Standard MCML approaches (Christensen, 2004)

• Importance sampling step (evaluating fδ|Z(δ′|Z, ψ̃)): O(n2)

matrix multiplications for W′C−1θ W
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• Update β, σ2 (Newton-Raphson):

In∇l̂(ψ) calculations, matrix multiplications for X′(Z−E[Z|β,M, δ]) and W′C−1θ W:

O(np) +O(n2)

In ∇2 l̂(ψ) calculations, matrix multiplications for −X′V (Z|β,M, δ)X: O(np(n+ p))

• Update φ

matrix inversion for Cθ: O(n3)

E.2 Discrete Spatial Domain

1. Fast MCML approaches

• Importance sampling step (evaluating fδ|Z(δ′|Z, ψ̃))

matrix multiplications for Mδ and δ′M′QMδ: O(nm) +O(m2)

• Update β, τ (Newton-Raphson)

In∇l̂(ψ) calculations, matrix multiplications for X′(Z−E[Z|β,M, δ]) and δ′M′QMδ:

O(np) +O(m2)

In ∇2 l̂(ψ) calculations, matrix multiplications for −X′V (Z|β,M, δ)X: O(np(n+ p))

2. Standard MCML approaches (Christensen, 2004)

• Importance sampling step (evaluating fδ|Z(δ′|Z, ψ̃)): O(n2)

matrix multiplications for W′QW

• Update β, τ (Newton-Raphson)

In ∇l̂(ψ) calculations, matrix multiplications for X′(Z−E[Z|β,M, δ]) and W′QW:

O(np) +O(n2)

In ∇2 l̂(ψ) calculations, matrix multiplications for −X′V (Z|β,M, δ)X: O(np(n+ p))
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