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Abstract

Environmental processes resolved at a sufficiently small scale in space and time inevitably

display non-stationary behavior. Such processes are both challenging to model and computa-

tionally expensive when the data size is large. Instead of modeling the global non-stationarity

explicitly, local models can be applied to disjoint regions of the domain. The choice of the size

of these regions is dictated by a bias-variance trade-off; large regions will have smaller variance

and larger bias, whereas small regions will have higher variance and smaller bias. From both the

modeling and computational point of view, small regions are preferable to better accommodate

the non-stationarity. However, in practice, large regions are necessary to control the variance.

We propose a novel Bayesian three-step approach that allows for smaller regions without compro-

mising the increase of the variance that would follow. We are able to propagate the uncertainty

from one step to the next without issues caused by reusing the data. The improvement in infer-

ence also results in improved prediction, as our simulated example shows. We illustrate this new

approach on a data set of simulated high-resolution wind speed data over Saudi Arabia.
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1 Introduction

The rising popularity of statistical methods for environmental data calls for the development

of new methods that are able to capture the underlying varying dependencies and to provide

computationally efficient inference for the ever increasing amount of data. Traditional geosta-

tistical approaches are not only computationally intensive but are also based on stationarity

assumptions, which is convenient but too restrictive and rarely realistic. For instance, wind at

sufficiently small temporal resolution (e.g., hourly or sub-hourly) tends to be more variable over

complex terrain than over flat surfaces due to geographical features creating eddies. Additionally,

failing to account for how physical processes such as weather patterns vary over time or space

can lead to an unrealistic assessment of the dependence, and hence suboptimal inference and

prediction.

Traditionally, methods have focused on characterizing the spatial and spatio-temporal non-

stationarity explicitly via the covariance function. The deformation method in Sampson and

Guttorp (1992) constructs a non-stationary covariance structure from a stationary structure

by re-scaling the spatial distance, which was subsequently extended to the Bayesian context in

Damian et al. (2001) and Schmidt and O’Hagan (2003). Another class of non-stationary methods

is built on the process convolution or kernel smoothing method, introduced by Higdon (1998),

which uses a spatially varying kernel and a white noise process to create the covariance struc-

ture. Other well-known approaches to model non-stationarity include representing the covariance

function as a linear combination of basis functions and modelling the covariance matrix of the

random coefficients (Nychka et al., 2002), and to account for the effect of covariate information

directly in the covariance function (Schmidt et al., 2011; Neto et al., 2014). For a review on the

existing literature on non-stationary methods, see Risser (2016).

Although all of the above methods produce valid models, their computational burden for

inference and prediction can be unfeasible for large data sets. Indeed, for evaluating a Gaus-

sian likelihood in a data set of size n, O(n2) entries need to be stored and O(n3) flops need to
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be computed for the log-determinant and matrix factorization. This task is feasible in modern

computers only when n is at most a few tens of thousands of points. Additionally, evaluat-

ing a non-stationary model implies inference on a larger parameter space, which requires an

exponentially increasing number of likelihood evaluations for frequentist inference or posterior

sampling (Edwards et al., 2019). To address the difficulties in computation for large data sets,

Nychka et al. (2018) used a multi-resolution representation of Gaussian processes to represent

non-stationarity based on windowed estimates of the covariance function under the assumption of

local stationarity, and successfully used this idea to emulate fields from climate models. Kuusela

and Stein (2018) proposed modelling Argo profiling float data using locally stationary Gaussian

process regression, where parameter estimation and prediction were carried out in a moving

window. Other works related to moving window methods have been developed and applied in

Hammerling et al. (2012) and Tadić et al. (2015) to model remote sensing data.

The seminal work of Lindgren et al. (2011) predicated avoiding modeling the covariance

function altogether and modeled the data via a Stochastic Partial Differential Equation (SPDE)

instead. By considering a spatial field as a solution of an SPDE, and describing the covariance

function only implicitly, inference is of the orderO(n3/2) (Rue et al., 2017), thus allowing inference

on considerably larger data sets than covariance-based methods. The computational benefits arise

from the precision matrix (inverse covariance matrix) resulting from the approximate stochastic

weak solutions of the SPDE, which has a Markovian structure where only close neighbours are

non-zero (Rue and Held, 2005). By spatially varying the coefficients in the SPDEs, it is also

possible to construct a variety of non-stationary models. Bolin and Lindgren (2011) developed

such a method for global ozone mapping, whereas Bakka et al. (2019) defined a continuous

solution to an SPDE with spatially varying coefficients for solving problems that involve a physical

barrier to spatial correlation. By combining the SPDE representation of a stationary Matérn

field with the deformation method, Hildeman et al. (2019) modelled non-stationarity in significant

wave heights. Locally non-stationary fields were considered in Fuglstad et al. (2015a) by letting
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the coefficients in the SPDE vary with position, and further discussed and generalized for spatially

varying marginal standard deviations and correlation structure in Fuglstad et al. (2015b). More

recently, Fuglstad and Castruccio (2020) formulated a global SPDE model with locally varying

coefficients with a change of structure across land and ocean. Another application of the SPDE

approach to model non-stationarity is to include covariates directly into the model parameters;

see Ingebrigtsen et al. (2014) for an application to annual precipitation in Norway.

The aim of this paper is to develop a new method for modelling large data sets with spatial

dependence that not only improves local models in terms of inference and prediction, but is

also computationally affordable. As a motivating example, we use the high-resolution simulated

wind data from a computer model displayed in Figure 1a. We partition this data into several

small disjoint subsets of the data, which we call ‘regions’, as shown in Figure 1b. Modeling and

predicting such variable over a large region present several challenges. First, the data structure

at this high resolution is very complex, with details and features that are difficult to capture

with a single model. As a consequence, the assumption of stationarity for the entire region

is inappropriate. Second, because of the large number of locations, we need a method that is

computationally efficient. We show that our method is able to address not only the modeling

challenges arising from the inherent non-stationarity of hourly wind, but also the computational

issues that are implied by the large data size.

When choosing the size of these regions, we face the conflicting issue of bias-variance trade-

off in parameter estimation. Ideally, one wants to choose regions that accurately capture the

features in the data (low variance), but also have high predictive out-of-sample skills (low bias).

Indeed, small regions reduce the model bias and allow fast computations, at the expense of low

accuracy (high variance) in the parameter estimation. Large regions instead allow a control of

the variance but also imply a sub-optimal characterization of the dependence structure, hence a

bias.

We propose a novel three-step approach, which simultaneously allows for small regions and
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(a) (b)

Figure 1: (a): Snapshot of 2 meters wind speed simulations at 84,494 locations over Saudi Arabia
on 03/06/2010 averaged between 14:00 and 15:00 local time. The minimum wind speed is around
0.3 m/s and the maximum is 14 m/s. (b): Location of the R = 2000 clusters.

low variance. The key is to allow small regions to model the local dependence, and correct the

estimated parameter distribution with a smoothing step that borrows strength from neighboring

regions. The smoothing step is performed so that it accounts for the uncertainty of the param-

eter estimates from the first step. The resulting smoothed distribution represents the adjusted

uncertainty of the local parameters, which is then used for re-fitting the models. Allowing this

adjusted uncertainty to be used as a new prior would imply the incorrect premise of the model

being influenced by the data twice, hence our approach restricts the information propagation by

including it as the new posterior estimates instead. Crucially, the approach we propose is com-

putationally fast and scalable to massive spatial data sets, as it can be fully parallelized across

regions. We start with a simple example where the new posterior is the mode of the distribution

from the smoothing step. Then, using the wind data in Figure 1a, we show that it is possible

improve the predictive performances by also allowing the uncertainty to propagate from one step

to the next.

Our three-step approach is best exemplified by considering a toy data set, where each region
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consists of an autoregressive process of order one, AR(1). We simulate R time series from this

model, where each time series contains T observations, yr = {yr(1), . . . , yr(T )}>. For each r, the

observations yr are assumed to be conditionally independent, given the latent Gaussian random

field xr = {xr(1), . . . , xr(T )}> and the hyperparameter φr:

yr(t) = xr(t) + εr(t), εr(t)
iid∼ N (0, 1/τ),

xr(t) = φrxr(t− 1) + ωr(t), ωr(t)
iid∼ N (0, 1),

(1)

where t = 2, . . . , T is an index for time, |φr| < 1 and τ is the fixed precision (known and the same

for all time series). Figure 2 shows the different values of φr used to simulate R = 100 time series

from (1), where φr changes according to a series of sine squared (black squares in Figure 2). For

each time series, we set T = 50 and two different values for the precision: τ = 2 and τ = 1 in

Figure 2a and 2b, respectively. In the first step, we estimate local models for each time series (red

circles in Figure 2). In the second step, we apply a correction on the parameters’ estimates from

the first step, based on information from neighbouring regions (blue triangles in Figure 2). The

third step consists of re-fitting the model in (1) to each time series, propagating the information

from the adjusted posterior estimates from the second step back into the analysis. Figure 2

shows that our correction improves the parameter estimates substantially not only for the more

extreme case where τ = 1 in panel (b), but also when τ = 2 in panel (a). More details on this

example will be provided in Section 3.

The remainder of this paper is organized as follows. In Section 2 we provide an overview of

the proposed methodology. Further details of our approach using the AR(1) example are given

in Section 3. The application to the wind speed data in Figure 1 is presented in Section 4. A

comprehensive discussion and conclusions are provided in Section 5.
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Figure 2: Values of φr used to simulate R = 100 time series from (1) of length 50 (black
squares), estimated values of φr from fitting the AR(1) model to the simulated data (red circles),
and estimates after fitting a smoothing spline (blue triangles). The left plot corresponds to
simulations with fixed τ = 2 and the right plot corresponds to τ = 1.

2 Overview of the proposed methodology

2.1 Background

We consider a non-stationary and possibly very large data set, and a partition of the domain

into regions where the assumption of stationarity is plausible, defined as Ωr, r = 1, . . . , R, where

each observation is associated with exactly one Ωr. Each region contains Nr observations, yr =

{yr(1), . . . , yr(Nr)}>. For each Ωr, consider the following hierarchical structure:

yr | xr,θr ∼
Nr∏
i=1

π{yr(i) | xr(i),θr},

xr | θr ∼ π(xr | θr),

θr ∼ π(θr),

(2)

where xr = {xr(1), . . . , xr(Nr)}> is the vector of the latent field that describes the underlying

spatial dependence structure, θr is the m-dimensional vector of hyperparameters and π is a

generic distribution. The observations yr are assumed to be conditionally independent, given xr
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and θr. The resulting joint posterior distribution of xr and θr is given by

π(xr,θr | yr) ∝ π(θr)π(xr | θr)
Nr∏
i=1

π{yr(i) | xr(i),θr}.

Our main goal is to extract the posterior marginal distributions for the elements of the latent

field, π{xr(i) | yr} and hyperparameters, π{θr(j) | yr}, and use them to obtain predictive

distributions at unsampled locations. Calculation of these univariate posterior distributions

requires integrating with respect to xr and θr:

π{xr(i) | yr} =

∫
π(xr(i) | yr,θr)π(θr | yr)dθr, i = 1, . . . , Nr,

π{θr(j) | yr} =

∫
π(θr | yr)dθr(−j), j = 1, . . . ,m,

(3)

where θr(−j) is the vector of all but the j-th hyperparameter component omitted. When

the integrals in (3) cannot be found analytically, approximations are typically obtained via

simulation-based methods such as MCMC. Alternatively, Rue et al. (2009) proposed an ap-

proximate Bayesian inference approach that has become increasingly popular in the last decade.

Approximations for π(xr(i) | yr,θr) and π(θr | yr) are obtained via a Laplace approximation (see

Rue et al. (2017) for a comprehensive review on this approximation). The posterior π(θr | yr) is

computed as

π(θr | yr) ≈
π(y | x,θ)π(x | θ)π(θ)

π̃(x | y,θ)

∣∣∣∣
x=x∗(θ)

= π̃(θr | yr),

where π̃(x | y,θ) is a Laplace approximation, and x∗(θ) is the mode of x for a specific value of

θ. Similarly we obtain π̃(xr(i) | yr,θr), the approximation of π(xr(i) | yr,θr). These are then

used to construct the following nested approximations

π̃{xr(i) | yr} =

∫
π̃(xr(i) | yr,θr)π̃(θr | yr)dθr, i = 1, . . . , Nr,

π̃{θr(j) | yr} =

∫
π̃(θr | yr)dθr(−j), j = 1, . . . ,m.

(4)
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2.2 Improving the local estimates

We propose a new method for improving the estimation of π̃{θr | yr} in (4) and hence also

improving the estimated π̃{xr(i) | yr}, for i = 1, . . . , Nr. Since each region is selected to be small

enough to approximate the local non-stationarity well, the resulting parameters’ estimates are

likely to have a large variance, and smoothing across the regions is used to reduce it.

The method is based on two extra steps in the estimation procedure from the previous

section. In Step 2 we apply a correction to the posteriors π̃(θr | yr) by smoothing the mode of

this distribution across r. In Section 3, we show a one dimensional example with a smoothing

spline, while in Section 4.3 we describe the two dimensional case with a spatial model. We denote

by π̃smooth(θr | y) the resulting smoothed distribution for region r in Step 2 of our approach,

where y is the combined data sets from all regions, i.e., y = (y>1 , . . . ,y
>
R)>. In Step 3, the

correction from Step 2 is propagated back into the analysis as the posterior for each region:

π̃smooth{xr(i) | yr} =

∫
π̃(xr(i) | yr,θr)π̃smooth(θr | y)dθr, i = 1, . . . , Nr,

π̃smooth{θr(j) | yr} =

∫
π̃smooth(θr | y)dθr(−j), j = 1, . . . ,m,

(5)

where π̃(xr(i) | yr,θr) is obtained by plugging values of θr from π̃smooth(θr | yr) obtained in Step

2. Step 3 is very computationally efficient, since the posteriors for the hyperparameters have

already been estimated, and as in Step 1 the models for each region can be fully parallelized.

Also, as the posterior marginals in (5) are the basis to derive the predictive distributions, the

proposed correction will also have a direct impact in prediction performance.

Here, the vector θr contains the hyperparameters that need to be smoothed, while the ones

that do not require the smoothing are included in xr. In practice, it is more important to smooth

hyperparameters that have a higher variability and are harder to estimate.

Our approach has a crucial difference compared to Empirical Bayes methods. The key is to

account for the information from the smoothing in Step 2 directly into the posterior distribution

in Step 3, as opposed to introducing it through priors as in Empirical Bayes methods. By doing
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so, we prevent the estimation in Step 3 to be influenced by the likelihood of the data that was

already used in Step 1, and thus avoiding using the data twice. Moreover, our approach allows

for uncertainty propagation from Step 2 to Step 3.

3 Simulation with spatially varying AR(1) process

3.1 Model description

In the Introduction we briefly introduced our method on a simulated example (see Figure 2)

using the AR(1) model in (1). Here, we provide all the details about the methodology in light of

the steps proposed in the previous section. For the ease of exposition, we fix the precision τ in

(1), so that for each region r only the hyperparameter φr needs to be estimated. No covariates or

additional random effects have been included in (1), but the steps below can be easily adapted

to account for them.

The model is a special case of the hierarchical framework proposed in (2). Indeed for the

first equation of the hierarchy, the likelihood of the data yr given the latent field xr and the

hyperparameter φr is given by

yr | xr, φr ∼ NT (xr, τ
−1IT ),

where IT is the T × T identity matrix and τ is the fixed precision, while NT is a T -dimensional

normal distribution. For the latent process xr, we assume that the marginal distribution of xr(1)

is Gaussian with mean zero and variance 1/(1 − φ2
r) to have a stationary process. The joint

distribution can be written as

π(xr | φr) ∼ NT (0,Q−1x,r),

where Qx,r is the tridiagonal precision matrix of an AR(1) process.

The three steps of our approach can be summarized as follows:

Step 1: The model fitted to each region. Fit the AR(1) model in (1) with fixed known

τ to each time series, yr, separately. Following the notation in Section 2, we define the variance-
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stabilizing transformation θr = θr = log
(

1+φr
1−φr

)
, where θr has a normal prior with mean zero and

precision 0.15, independent across r. We then obtain the posterior marginal distributions for

the latent field and for the hyperparameter θr, which we denote by π̃{xr(t) | yr} and π̃(θr | yr),

respectively, for t = 1, . . . , T and r = 1, . . . , R. Inference is performed using the R-INLA package

(Rue et al., 2009).

Step 2: Smoothing the hyper-parameter. As in Lindgren and Rue (2008), we assume a

continuous spline on a discrete set of knots with a second order random walk RW(2). We denote

by θ̂r the mode for π̃(θr | yr) from Step 1, and we assume a normal distribution: θ̂r ∼ N (ur, τ
−1
θ;r ),

where τθ;r is the precision and is such that log(τθ;r) = log(1/ŝd
2

r), where ŝdr is the estimated

standard deviation of the posterior distribution π̃(θr | yr). The vector u = (u1, . . . , uR)> is

assumed to have independent second-order increments:

∆2ur = ur − 2ur+1 + ur+2 ∼ N (0, τ−1u ), r = 1, . . . , R− 2, (6)

where τu is the precision parameter and can be used to control the degree of smoothing across

regions. Section 3.2 discusses a method for choosing the optimal value of τu.

Step 3: Re-fit the model to each region using the estimated mode. For each region

r, we assume that the posterior distribution for the hyperparameters, namely π̃smooth(θr | yr), is

a point mass concentrated at the mode of θ̂r from Step 2. Our choice was dictated by ease of

exposition, and in the wind data application in Section 4.3 we will show a more general approach

with integration points and weights instead of just the mode. The marginal posterior for the

latent process xr is then obtained from the first equation in (5). Because here there are no

hyperparameters that need to be re-estimated in this example, re-fitting the model is equivalent

to updating the posterior for xr given the data under the smoothing from Step 2.

Step 3 implies a change of the original posterior in Step 1, and hence a change in the prior

of the model. While retrieving the appropriate prior is not relevant for our method, it is still

however possible, and in the Appendix we show the steps to do so. Figure 3 shows (a) the log
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posterior distributions, (b) log likelihood function, and (c) log prior distributions from Step 1

(solid red) and Step 2 (dashed blue), for φr = 0.88. The log prior distributions were obtained

simply by subtracting the log likelihood from the log posterior distributions, and the vertical line

represents the true value. The proposed smoothing in Step 2 concentrates the posterior (and

consequently the prior) considerably closer to the true value φr than a standard approach with

no smoothing. Similar results can be observed for other choices of φr; the mean absolute error

across r of the estimated mode posterior distributions from Steps 1 and 2 are 0.23 and 0.08,

whereas the mean absolute error of the estimated mode priors for these steps are 0.61 and 0.09,

respectively.
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Figure 3: Comparison between non-smoothing and smoothing changes in the posterior distribu-
tion of φr for the model (1). (a): Scaled log posterior distributions from Step 1 (solid red) and
Step 2 (dashed blue). (b): Scaled log likelihood function. (c): Scaled log prior distributions from
Step 1 (solid red) and Step 2 (dashed blue). The vertical line is the true value φr = 0.88.

3.2 Sensitivity of prediction to smoothing

There are different approaches to control the degree of smoothness in Step 2. This can be, for

instance, dictated by the case study and prior knowledge. Here, we present one possible method,

which is based on two metrics: the first focuses on the departure of the estimated posterior

against the exact simulated distribution, and the second is based on cross-validation.

To assess the improved accuracy in capturing the true distribution of the latent process xr,

for each value of φr, we calculate the Kullback-Leibler Divergence (KL), a widely used metric for

comparing two probability distributions. The departure from the true posterior π(xr | yr, φr) is
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defined as

KLr =

∫
π̃(xr | yr, φr) log

{
π̃(xr | yr, φr)
π(xr | yr, φr)

}
dxr, (7)

where φr in π̃ is calculated using either Step 1 or Step 2 of our approach. A small KLr indicates

a small departure from the target posterior, and a zero KLr indicates that the two distributions

are the same.

The data are simulated from a known model, and the posterior distribution of the latent

process π(xr | yr, φr) can be easily obtained from the joint distribution π(xr, φr | yr):

π(xr | yr, φr) ∝ π(xr, φr | yr)

∝ exp

(
− 1

2
x>r Qx,rxr

)
× exp

{
− 1

2
τ(x>r xr − 2y>r xr)

}
= exp

{
− 1

2
x>r (Qx,r + τ I)xr + τy>r xr

}
= exp

{
− 1

2
x>Prxr + b>r xr

}
,

where, Pr = Qx,r + τ I and b = y>r τ . This implies that π(xr | yr, φr) ∼ NT (µ0,r,Σ0,r), with

µ0,r = P−1r br and Σ0,r = P−1r . We also assume that the approximated posterior in (7) is normal,

i.e., πappr(xr | yr, φr) ∼ NT (µ1,r,Σ1,r), and we obtain µ1,r and Σ1,r based on the sample mean

vector and covariance matrix from 10,000 posterior samples. The KL divergence expression in

(7) can be simplified in the case of two multivariate Gaussian distributions. Indeed, if the target

distribution is NT (µ0,r,Σ0,r) and the approximation is NT (µ1,r,Σ1,r), we have

KLr =
1

2

{
log
|Σ1,r|
|Σ0,r|

− T + tr(Σ−11,rΣ0,r) + (µ1,r − µ0,r)
>Σ−11,r(µ1,r − µ0,r)

}
,

where |Σ| denotes the determinant of Σ. Since the KL changes across different orders of mag-

nitudes, we opted for a variance stabilizing estimator, the Expected Mean Log KL (EMLKL)

divergence, defined as EMLKL = exp
{

1
R

∑R
r=1 log(KLr)

}
Therefore, we assess the impact of smoothing on the prediction skills of the estimated process.
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We use the conditional predictive ordinate (CPO) for leave-one-out cross-validation, defined as

CPOr(t) = π{yr(t)|yr(−t)} =

∫
π{yr(t)|yr(−t), θr}π{θr|yr(−t)}dθr,

where yr(−t) represents the vector of observations yr with the t-th component omitted. In

other words, CPOr(t) is calculated by first obtaining the predictive distribution at t given all

but the t-th observation in the time series, and then evaluating it at the actual withheld value

yr(t). The CPO can be interpreted as a continuous equivalent of the posterior probability that

the observation is predicted from the model, so larger values are preferable. The CPO can

be computed efficiently without re-running the model R × T times (Held et al., 2010). The

CPOs are then aggregated in an overall score for comparing different models by averaging across

time and regions. As with the KL, we propose the Expected Mean Log Conditional Predictive

Ordinate (EMLCPO), defined as EMLCPO = exp

[
1
RT

∑R
r=1

∑T
t=1 log{CPOr(t)}

]
, with models

having relatively higher values of EMLCPO, showing a better fit.

We compare the EMLKL and the EMLCPO based on six different degrees of smoothing by

changing the values of τu in (6): log(τu) = {−5,−1, 3, 7, 11, 15}, with lower values of log(τu)

indicating less smoothing. Here, log(τu) = 15 results in a constant value across the regions

(complete smoothing), so no larger values are considered. Figure 4 shows the results based

on (a) KL and on (b) CPO according to the various degrees of smoothing. The first value

in the x-axis, ‘no smooth’, corresponds to the estimates directly from Step 1 of our approach.

According to the EMLKL (panel (a), left y-axis) and the EMLCPO (panel (b)), the best fit

occurs when log(τu) = 7 and log(τu) = −5, respectively. For the EMLKL there is a minimal

difference between the log(τu) = 3 and log(τu) = 7, and the right y-axis highlights how the first

choice results in less variable KL divergences. Both scores show that there is a clear improvement

against a model with no smoothing for log(τu) = {−5,−1, 3, 7}. After log(τu) = 7 the posteriors

are oversmoothed and this worsens the fit compared to no smoothing (high EMLKL and low

EMLCPO values). Evidence from this numerical study suggests that smoothing almost always
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improves the estimation of the latent process and prediction. The overall agreement between

EMLKL and EMLCPO is essential, as, in a real application, the actual underlying distribution

is unknown, and a cross-validation metric, such as the EMLCPO, would be used for choosing

the optimal degree of smoothness.

Smoothing does not just improve the prediction and decrease the bias, but also results in less

variable estimates. Figure 4a (right y-axis) shows the spread of KLr for the different amounts

of smoothing, displayed as a boxplot. It is readily apparent that optimal smoothing results in

more stable estimates by decreasing the variance across regions.
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Figure 4: Comparison of inference and prediction performances between the standard non-
smoothing method and the proposed smoothing approach from fitting (1). (a): EMLKL (dashed
red, left y-axis) and KLr (black, right y-axis) for no smoothing along with 6 different degrees of
smoothness. Lower values of log(τu) indicate less smoothing. (b): Corresponding EMCPO for
the same degrees of smoothing.

4 Application to the WRF data set

In this section, we apply the approaches in Section 2 to model and predict a sizeable simulated

wind speed data set in Saudi Arabia. The predictive ability at the sub-grid scale is of interest

for statistical downscaling. Interpolated wind from the numerical simulation can be used as a

baseline to build a mathematical relationship (e.g., pattern scaling) from in-situ ground wind
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data at the same location, hence allowing to generate more accurate, observation-driven wind

maps

We apply our method to a spatial data set of simulated wind speed detailed in Section 4.1. In

Section 4.2 we present the local model that is fitted to each region and in Section 4.3 we explain

in details each step of our approach and present the results.

4.1 The WRF data set

We focus on a simulation generated by Yip (2018) from the Weather Research and Forecasting

(WRF) model, which is a state-of-the-art Numerical Weather Prediction model, developed at

the National Center for Atmospheric Research and also recently used in wind energy assessment

in Tagle et al. (2020). Mesoscale numerical models such as WRF rely on large-scale atmospheric

phenomena or meteorological reanalysis to provide boundary conditions and solve physical equa-

tions driving the real processes on a fine scale. The boundary conditions used to simulate the

WRF data are obtained from the Modern-Era Retrospective analysis for Research and Appli-

cations (MERRA, Rienecker et al. (2011)), a reanalysis product developed at NASA’s Global

Modeling and Assimilation Office, using the Goddard Earth Observing System Version 5 general

circulation model, together with satellite and surface observations through a data assimilation

system.

Each simulation corresponds to hourly data of the zonal and meridional (U and V ) wind

components on a regular grid of 769 × 659 points in space (5-km resolution) bounded by 5-

35◦N and 30-65◦E during the 2009-2014 period, at 2 meters above ground level. The full data

set comprises of 506,771 spatial locations. We select data that fall inside Saudi Arabia from

03/06/2010 between 14:00 and 15:00 local time, when wind speeds tend to peak, resulting in

84,494 points in space. The U and V components are converted into wind speed:
√
U2 + V 2.

Figure 1a shows the map of the wind field.

We first partition the domain into R regions small enough so that the assumption of sta-
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tionarity is plausible. The disjoint subsets are obtained using the k-means clustering method,

which minimizes the sum of squares from points to the assigned region centers (Hartigan and

Wong, 1979). It is, in principle, possible to provide a more formal assessment of stationarity and

use it as a metric for clustering, for example, by fitting directional variograms to each region.

However, because these estimates are corrected with a smoothing step, the clustering method

is less critical. Our partition results into R = 2000 regions, (see Figure 1b), with the smallest

region containing 26 locations (≈ 28× 28 km) and the largest 62 (≈ 48× 48 km).

4.2 The spatial model

The distribution of wind speed is bounded below by zero and is significantly right-skewed. There-

fore, wind speed cannot be directly modeled with the Gaussian distribution. Common trans-

formations for normalizing wind speed data include logarithmic transformation and square-root

transformation (Taylor et al., 2009). Haslett and Raftery (1989) showed that square-root trans-

formation is well suited for wind data, as the resulting transformed wind speed resembles the

Gaussian distribution. Hence, for each region r we model the square-root transformed wind

speed yr at sampling locations s = (s1, . . . , sNr) with a latent Gaussian model, a special case of

the hierarchical framework proposed in (2). For each region r, we assume

yr(si) = zr(si)
>βr + ur(si) + εr(si), i = 1, . . . , Nr,

where zr is a p-dimensional vector of covariates, and βr is the vector of the linear coefficients.

Here, {εr(s1), . . . , εr(sNr)} ∼ NNr(0, τ
−1
ε,r INr) is the iid random noise that accounts for the model

uncertainty. The aforementioned model can be written in the vector form

yr|βr,ur, τε,r ∼ NNr(Zrβr + ur, τ
−1
ε,r INr), (8)

where yr = {y(s1), . . . , y(sNr)}> is the observation vector and the Nr × P design matrix is

Zr = {zr(s1), . . . , zr(sNr)}>. We consider p = 2, thus two covariates: elevation and distance to
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the coast. In terms of the hierarchical framework in Section 2.1, (8) is the first equation, i.e., the

data level, in (2).

The spatial field ur(si) is assumed to be Gaussian and isotropic, with a covariance described

by the Matérn function, a widely popular choice in spatial statistics. For two locations s1 and

s2 at distance h = ‖s1 − s2‖, the Matérn covariance is defined as (Stein, 1999)

cov{ur(s1), ur(s2)} = Cr(h) = σ2
u,r

1

Γ(νr)2νr−1
(κrh)νrKνr(κrh), (9)

where σ2
u,r = 1/τu,r is the marginal variance and Kνr is the modified Bessel function of the second

kind of order νr > 0. The popularity of the Matérn is mainly attributable to the control of the

number of mean square derivatives of the underlying process through the parameter νr. The

range is controlled by κr > 0 and ρr =
√

8νr/κr represents the distance at which the spatial

correlation is approximately 0.13, and we set νr = 1.

The vector of hyperparameters to be estimated is given by the precision of the data, the

precision of the latent process, and its range, so that

θr = (θ1,r, θ2,r, θ3,r)
> = {log(τε,r), log(τu,r), log(ρr)}>.

The linear coefficients βr in (8) are less variable, so they are not included in the vector of

hyperparameters to be smoothed.

We provide a joint distribution for the range ρr and the variance σ2
u,r using the concept of

the Penalized Complexity (PC) prior that was recently introduced by Simpson et al. (2017).

PC develops priors that allow shrinkage towards a base model, which is assumed to be the

reference. The prior is then built by allowing a control of the KL divergence from the base to the

actual model. Following Fuglstad et al. (2019), we assume a base model with infinite range and

precision, i.e., a constant, and we assign PC priors to ρr and τu,r that are able to control the tail

probabilities: P(σ2
u,r > σ2

0,r) = α1 and P(ρr < ρ0,r) = α2. We choose α1 = α2 = 0.01, ρ0,r to be

the 20% of the range of the observations and σ2
0,r the variance estimated from the data at region

17



r. In other words, we assume a prior that bounds the variance to be larger than that estimated

from the data with a 1% chance, and the range to be below 20% of the range of the observations

with a 1% chance. For r = 1, . . . , R, we assume a vague Gamma prior with parameters 1 and

0.00005 for τε,r and a vague Gaussian prior N (0, 1000) for βr. The priors are also assumed to be

independent across components. The R-INLA package is used for model fitting and predictions

(Rue et al., 2009).

4.3 Results

We now detail our approach with the data and the model described in the previous sections.

The three steps are described as follows:

Step 1: The model fitted to each region.

We fit the model outlined in Section 4.2 to each of the R = 2000 regions in Figure 1b

separately, and obtain estimates of the posterior distribution for the k-th element of θr for

k = 1, 2, 3, which we denote by π̃(θk,r | yr). We denote as θ̂k,r the mode of π̃(θk,r | yr), while the

posterior standard deviation is denoted as ŝdk,r. We show the results for θ3,r = log(ρr), since the

range is the hardest parameter to identify, and hence the most variable across regions. Figure 5a

shows the maps of θ̂3,r. Many regions have a considerably higher estimated posterior mode than

the neighboring regions, hence smoothing is necessary. Figure 5b shows the map of the posterior

standard deviation ŝd3,r, and it is apparent how the locations with large range values correspond

to the ones with low posterior variance. The high variance in the estimates of Figure 5 a is a

consequence of the small region size needed to accommodate the non-stationarity. The region

size is another tuning parameter of the method, and cross-validation could have been used to

choose the optimal region size.

Step 2: Smoothing the hyperparameters.

The modes θ̂k,r from Step 1 are smoothed here independently across k for simplicity and are

normalized by subtracting the mean and dividing by its standard deviation computed across
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(a) θ̂3,r (b) ŝd3,r (c)

Figure 5: Map of the estimated (a) mode and (b) standard deviation of π̃(θ3,r | yr) for the
R = 2000 regions shown in Figure 1b. (c) posterior mode of π̃smooth(θ3,r | y).

r = 1, . . . , R, for each k. For a general Matérn in region r with known smoothness νr, under infill

asymptotics, only σ2
rκ

2νr
r can be consistently estimated (Zhang, 2004). As the likelihood and the

posteriors can be concentrated around non-linear manifolds of the parameter space, modelling

the hyperparameters in the log-scale alleviates the problem of smoothing them separately. With

an abuse of notation, we now refer to θr and their components as their normalized version. We

assume an additive model for smoothing: θ̂k,r(sc) = uk(sc) + εk,r(sc), where the locations sc

are the centroids of each region r. The process uk(sc) is assumed to be Gaussian and modeled

with the Matérn covariance in (9), with marginal variance σ̃2
u,k, range ρ̃k, and the iid noise is

εk,r ∼ N (0, τ̃−1ε;k,r), for k = 1, 2 and 3.

We assume τ̃ε;k,r to be fixed at the value of 1/ŝd
2

k,r, r = 1, . . . , R, from Step 1. This ensures that

the same degree of smoothness is applied to all three additive models, i.e., the hyperparameters

with a larger standard deviation will be smoothed more than the ones with a smaller standard

deviation. Here, ρ̃k is fixed to half of the domain of the study region. A choice of considerably

different values, such as the size of the domain, would result in oversmoothing. The choice of

τ̃u = 1/σ̃2
u,k is performed via cross-validation and will be discussed later. Because θ̂k,r, k = 1, 2, 3,

are at the same scale after normalization, we can use the same smoothness and therefore τ̃u will

not be strongly dependent on k. We use six equally spaced values for log(τ̃u), varying from −7.5
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to 5. The fitted values from the smoothing are then transformed back from the normalized to

the original scale. Figure 5c is an example of the estimated posterior mode of π̃smooth(θ3,r | yr)

with log(τ̃u) = −5.

Step 3: Re-fit the model to each region using integration points.

In the AR(1) simulated example in Section 3, the smoothed hyperparameter posterior was

assumed to be a point mass concentrated at the smoothed posterior mode from Step 2, so that

calculation of π̃smooth{xr(i) | yr} in (5) was trivial. In this application, we propose a more

articulated method which numerically approximates the integral in the first equation of (5).

We use the Gauss–Hermite quadrature, a numerical scheme to approximate integrals of the

form
∫
e−ξ

2
f(ξ)dξ ≈

∑L
l=1 f{ξ(l)}∆(l) for a fixed L. The abscissas for the quadrature of order L,

which are given by the roots of the Hermite polynomials ξ(l), and the weights ∆(l), both have a

closed form expression (Abramowitz and Stegun, 1964).

We operate under the assumption that π̃smooth(θr | y) can be well approximated by a product

of marginal normal distributions π̃smooth(θr | y) ≈
∏3

k=1N (µk,r, σ
2
k,r), where µk,r and σ2

k,r are

the posterior mean and variance of π̃smooth(θk,r | y), respectively. The independence implied by

the product is made for convenience, although empirically, we found a relatively low correla-

tion between the components of θr. Also, because of the log-scale, the posteriors can be well

approximated by a Gaussian distribution, and the first expression in (5) becomes

π̃smooth{xr(i) | yr} =

∫
π̃smooth(xr | yr,θr)

3∏
k=1

1√
2πσ2

k,r

exp

{
−(θk,r − µk,r)2

2σ2
k,r

}
dθr

=
1√
π

∫
π̃smooth

(
xr | yr,

3∑
k=1

µk,r +
√

2ξk,rσk,r

)
exp

(
−

3∑
k=1

ξ2k,r

)
dξ1,rdξ2,rdξ3,r

≈ 1√
π

L∑
l1=1

L∑
l2=1

L∑
l3=1

π̃smooth

(
xr | yr,

3∑
k=1

µk,r +
√

2ξ(lk)r σk,r

)
∆(l1)∆(l2)∆(l3),

where the latent field xr = (u>r ,β
>
r )> contains the linear coefficients and the spatial process in

(8). Using a change of variables, we obtain ξk,r =
θk,r−µk,r√

2σk,r
⇔ θk,r = µk,r +

√
2ξk,rσk,r. For this

case study, L = 5 integration points in each of the three dimensions provide an approximation
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that is sufficiently accurate. Thus, the required number of configurations to evaluate the integral

is L3 = 53 = 125. Since each configuration can be evaluated independently, the computations

can be easily parallelized.

4.4 Choice of the smoothing parameter

There is no true underlying model here, so the EMLKL in Section 3.2 is not applicable and we

only focus on the cross-validation score EMLCPO. We compare the leave-one-out predictive per-

formance using the different degrees of smoothing, as explained previously in Section 3. Figure 6

shows this comparison: lower values of log(τ̃u) indicate more smoothing than higher values. The

highest value corresponds to the results obtained directly from Step 1. The EMLCPO value

attains its maximum at log(τ̃u) = −5, and any of the smoothing levels improves the original

estimates from Step 1. Differently from the AR(1) case in Section 3, where at some point the

smoothing becomes excessive and the scores progressively deteriorate, here the performance is

significantly improved even for a large smoothing. We also compare the predictive performances

of the integration method against the approach using only the mode as in the AR(1) case. The

Gauss-Hermite integration shows marginal improvement, especially for low degrees of smoothing.

For higher degrees of smoothing, the estimated posterior distribution is more narrow, and the

effect of the integration is less apparent.

5 Discussion

In this work, we developed a new three-step approach for analyzing large data sets with spatial

dependence that improves local models in terms of inference and prediction. The method is

scalable to extremely large spatial data sets and can properly propagate the uncertainty across

steps in a Bayesian framework. In Step 1, the domain is partitioned into regions, and local

models are fit to each region. The size of these regions is a bias-variance trade-off; larger regions

will have a smaller variance and more substantial bias, whereas smaller regions will have higher
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Figure 6: EMLCPO values for 6 different degrees of smoothness as well as no smoothing, the last
being the results directly from Step 1. The dashed red indicates marginal posteriors computed
with a point mass and the black solid with the Gauss-Hermite quadrature. From left to right:
very smooth to no smoothing.

variance and lower bias. We choose to use smaller regions, thus allowing the capture of local non-

stationarities, followed by a correction for the high variance, based on borrowing information from

neighboring regions in Step 2, while accounting for the uncertainty of the parameter estimates

from Step 1. Finally, in Step 3, the model is re-fitted to each region, propagating the uncertainty

from the smoothing back into the analysis as the new posterior, thus avoiding problems of using

the data twice. The approach allows flexible modeling of complex dependence structures, but

is at the same time computationally affordable, as the proposed adjustment is amenable to full

parallelization across regions.

In both the AR(1) simulated data and the application, the improvement from our method

compared to fitting local models to each region is apparent. Indeed, the smoothing adjustment

allows us to better recover the actual posterior distribution in the simulation study, and most

importantly, it enables a superior predictive skill. The smoothing can be chosen to achieve the

best possible advantage over the uncorrected model. Ad-hoc sensitivity analysis shows that our

22



method is robust concerning the smoothing technique, with improved results for a wide range

of smoothings. The existing methods for the nonstationary case involve highly complex model

fitting strategies, and only a few software is available, see, e.g., Gramacy (2007) and Risser and

Calder (2017). However, a detailed comparison with other methods was not feasible due to the

large size of our simulated wind data set, which could not be presently handled by either of these

packages.

Our method is general and can be applied to many settings: space, time, space/time, and

different domains, as long as a partition is provided. It relies on local models defined through a

hierarchical latent process framework, a class large enough to allow a wide range of applications.

If better local models are provided, our method can still be used to correct the variance of the

estimated parameters.

A limitation of this approach lies in the assumption of a domain partition. For some ap-

plications such as wind, the regions imply a discontinuity at the border, and hence prediction

at unsampled locations at the border might be suboptimal. Partition-based approaches that do

not imply independence across blocks of the partition with a globally valid model are available.

Guinness and Stein (2013) and Castruccio and Guinness (2017) proposed an evolutionary spec-

trum model to capture high-frequency temperature across day and night regimes. If the nature

of the problem suggests a change in spatial dependence dictated by some geographical features

such as mountain range as proposed in Jeong et al. (2018), then this strategy could be naturally

employed with appropriate likelihood approximation. For our domain and wind, however, the

partition must be provided by a clustering scheme such as the k-means.

An application of our model to spatio-temporal data is possible. Still, it would likely re-

quire additional approximations and a careful choice of the regions as the data size and the

hyperparameter space will be considerably larger.
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Appendix: Retrieving the priors

The re-fitting procedure in Step 3 of our approach uses the information from Step 2 as the new

posterior distribution. We show how to retrieve the prior distribution that corresponds to the

posterior for the toy example in Section 3.

For each φr and corresponding data yr, with r = 1, . . . , R, let π(yr | φr) be the likelihood of

observing data yr given the hyperparameter φr. We denote by π̃(φr | yr) and π̃smooth(φr | yr)

the posterior distributions from Steps 1 and 3, respectively, and π̃(φr) and π̃smooth(φr) are the

corresponding priors.

From Bayes’ Theorem, the prior distributions are given by:

log{π̃(φr)} = A+ log{π̃(φr | yr)} − log{π(yr | φr), }

log{π̃smooth(φr)} = A+ log{π̃smooth(φr | yr)} − log{π(yr | φr)},
(10)

where A is the normalizing constant.

Recall that the posteriors π̃(φr | yr) and π̃smooth(φr | yr) in the right hand sides of (10), are

readily available from Steps 1 and 2, respectively. Therefore, to evaluate π̃(φr) and π̃smooth(φr),

what remains to be computed is the likelihood term π(yr | φr), which is the same in both

equations given in (10). To compute this term, we start by writing:

π(yr | φr) =
π(yr,xr | φr)
π(xr | yr, φr)

, (11)

and then compute (11) in two steps:

1. The joint distribution π(yr,xr | φr) :

We assume that the marginal distribution of xr(1) is Gaussian with mean zero and variance

1/(1−φ2
r). Then, we can express the joint distribution of xr, π(xr | φr) = π{xr(1)}π{xr(2) |

xr(1)}, . . . , π{xr(T ) | xr(T − 1)}, as

π(xr | φr) ∼ NT (0,Qx,r), (12)
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where Qx,r is the tridiagonal precision matrix of an AR(1) process

Qx,r =


1 −φr
φr 1 + φ2

r −φr
· · · · · · · · ·

−φr 1 + φ2
r −φr

−φr 1

 .

It follows that the joint posterior distribution is

π(xr, φr | yr) ∝ π(φr)π(xr | φr)
T∏
t=1

π{yr(t) | xr(t), φr}

∝ π(φr)|Qx,r|1/2τ 1/2exp

[
− 1

2

{
x>r Qx,rxr + τ(yr − xr)

>(yr − xr)

}]
.

(13)

2. The conditional distribution π(xr | yr, φr) :

We use the fact that the conditional distribution of xr is just the joint distribution between

xr and yr, without the terms that do not depend on xr since yr and φr are fixed:

π(xr | yr, θr) ∝ π(yr,x | φr)

∝ exp

(
− 1

2
x>r Qx,rxr

)
× exp

{
− 1

2
τ(x>r xr − 2y>r xr)

}
= exp

{
− 1

2
x>r (Qx,r + τ I)xr + τy>r xr

}
.

(14)

Using the canonical form of the multivariate Gaussian distribution, we can write:

π(xr | yr, φr) ∝ exp

(
− 1

2
x>r Prxr + b>r xr

)
,

where, Pr = Qx,r + τ I and br = y>r τ . It follows that:

xr | yr, φr ∼ NT (P−1r br,Pr).
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Finally, from (13) and (14), we can write π(yr | φr) in (11) evaluated at xr = 0 as

π(yr | φr)
∣∣∣∣
xr=0

∝
|Qx,r|1/2exp

(
− 1

2
τy>r yr

)
|Pr|1/2exp

{
− 1

2
(−P−1r br)>Pr(−P−1r br)

}
=

|Qx,r|1/2

|Pr|1/2exp

{
− 1

2
(b>r P−1r br − τy>r yr)

} .
(15)

Next, from the posteriors π̃(φr | yr) and π̃smooth(φr | yr) on the right hand side of (10) that

are computed in Steps 1 and 2, respectively, together with the likelihood term in (15), we can

obtain the corresponding priors in (10). The right hand side plot of Figure 3 shows these exact

scaled log prior distributions.
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