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Abstract

We consider a measurement constrained supervised learning problem, that is, (1) full sample

of the predictors are given; (2) the response observations are unavailable and expensive to mea-

sure. Thus, it is ideal to select a subsample of predictor observations, measure the corresponding

responses, and then fit the supervised learning model on the subsample of the predictors and

responses. However, model fitting is a trial and error process, and a postulated model for the

data could be misspecified. Our empirical studies demonstrate that most of the existing sub-

sampling methods have unsatisfactory performances when the models are misspecified. In this

paper, we develop a novel subsampling method, called “LowCon”, which outperforms the com-

peting methods when the working linear model is misspecified. Our method uses orthogonal

Latin hypercube designs to achieve a robust estimation. We show that the proposed design-

based estimator approximately minimizes the so-called “worst-case” bias with respect to many

possible misspecification terms. Both the simulated and real-data analyses demonstrate the

proposed estimator is more robust than several subsample least squares estimators obtained by

state-of-the-art subsampling methods.

Keywords: Least squares estimation; Experimental design; Condition number; Worst-case MSE.
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1 Introduction

Measurement constrained supervised learning is an emerging problem in machine learning [35, 50, 9].

In this problem, the predictor observations (also called unlabeled data points in machine learning

literature) are collected, but the response observations are unavailable and difficult or expensive

to obtain. Considering speech recognition as an example, one may easily get plenty of unlabeled

audio data, but the accurate labeling of speech utterances is extremely time-consuming and requires

trained linguists. For an unlabeled speech of one minute, it can take up to ten minutes for the word-

level annotation and nearly seven hours for the phoneme-level annotation [57]. A more concrete

example is the task of predicting the soil functional property, i.e., the property related to a soil’s

capacity to support essential ecosystem service [16]. Suppose one wants to model the relationship

between the soil functional property and some predictors that can be easily derived from remote

sensing data. To get the response, the accurate measurement of the soil property, a sample of

soil from the target area, is needed. The response thus can be extremely time-consuming or even

impractical to obtain, especially when the target area is off the beaten path. Thus, it is ideal to

select a subsample of predictor observations, measure the corresponding responses, and then fit a

supervised learning model on the subsample of the predictors and responses.

In this paper, we study the subsampling method and postulate a general linear model for linking

the response and predictors. One of the natural subsampling methods is the uniform subsampling

method (also called the simple random subsampling method), i.e., selecting a subsample with

the uniform sampling probability. For many problems, uniform subsampling method performs

poorly [8, 41]. Motivated by the poor performance of uniform sampling, there has been a large

number of work dedicated to developing non-uniform random subsampling methods that select a

subsample with a data-dependent non-uniform sampling probability [25]. One popular choice of

the sampling probability is the normalized statistical leverage scores, leading to the algorithmic

leveraging approach [23, 28, 56, 24]. Such an approach has already yielded impressive algorithmic

and theoretical benefits in linear regression models [25, 10, 22]. Besides linear models, the idea

of algorithmic leveraging is also widely applied in generalized linear regression [49, 2, 54], quantile

regression [1, 45], streaming time series [52], and the Nyström method [3].
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Different from random subsampling methods, there also exist some deterministic subsampling

methods which select the subsample based on certain rules, especially optimality criteria developed

in the design of experiments [33], e.g., A-, D- and E-optimality. (author?) [50] proposed a

computationally tractable subsampling approach based on the A-optimality criterion. D-optimality

criterion was considered in (author?) [48].

Figure 1: The data (gray dots) are generated from a partial-linear model (gray curve). When the
non-linear term is omitted, the fitted line (dashed line) based on a leveraging subsample (black
dots) deviates severely from the full-sample least squares regression line (solid line).

While the existing subsampling methods have already shown extraordinary performance on

coefficient estimation and model prediction, their performance highly relies on the model specifica-

tion. However, the model specification is a trial and error process, during which a postulated model

could be misspecified. When the model is misspecified, most subsampling methods may lead to

unacceptable results. We now demonstrate the issue of model misspecification using a toy example.

In this example, data are generated from the model yi = xi + sin(x2i )/2 + εi, i = 1, 2, . . . , n, where

{εi}ni=1 are the i.i.d. standard normal errors. In Figure 1, the data points (gray points) and the

true function (the gray curve) are shown in the left panel. The right panel shows the full-sample

linear regression line (the solid line) based on xi only, without the nonlinear term. We postulate a

linear model without the nonlinear term and randomly select a subsample of size ten (black dots)

using the leverage subsampling method [22]. The subsample linear regression line (the dashed

line) deviates severely from the solid line. Such an observation suggests that the performance of

a subsample least squares estimator may deteriorate significantly when the model is misspecified.
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The poor performance under model misspecifications is not unique to random subsampling meth-

ods. The success of different deterministic subsampling methods depends on the optimality criteria

being used. The optimality criteria, however, differ from model to model. An optimality criterion

derived from a postulated model does not necessarily lead to a decent subsampling method for the

true model. We provide more discussion of this example in the Supplementary Material.

In practice, the true underlying model is almost always unknown to practitioners. The subsam-

pling hence is highly desirable to be robust to possible model misspecification. To achieve the goal,

(author?) [43] proposed to construct a robust estimator using bootstrap. One limitation of this

method is that it can not be applied to the measurement-constrained setting since the response

value for every predictor is needed in this method to compute the estimator. Another related

approach is (author?) [32], which aims to carefully select some observations to generate starting

points to compute a robust estimator. The literature on subsampling methods that yield robust

estimations in the measurement-constrained setting is still meager.

In this paper, we bridge the gap by proposing a statistical analysis of the subsampling method

in a linear model containing unknown misspecification. We do so in the context of coefficient

estimation via the least-squares on a subsample taken from the full sample. Our major theoretical

contribution is to provide an analytic framework for evaluating the mean squared error (MSE) of

the subsample least squares (SLS) estimator in a misspecified linear model. Within this framework,

we show that it is very easy to construct a “worst-case” sample and a misspecification term for

which an SLS estimator will have an arbitrarily large mean squared error. We also show that an

SLS estimator is robust if the information matrix of the subsample has a relatively low condition

number, a traditional concept in numerical linear algebra [42].

Based on these theoretical results, we propose and analyze a novel subsampling algorithm,

called “LowCon”. LowCon is designed to select a subsample, which balances the trade-off between

bias and variance, to yield a robust estimation of coefficients. This algorithm involves selecting

the subsample, which approximates a set of orthogonal Latin hypercube design points [53]. We

show the proposed SLS estimator has a finite upper bound of the mean squared error, and it

approximately minimizes the “worst-case” bias, with respect to all the possible misspecification

terms. Our main empirical contribution is to provide a detailed evaluation of the robustness of the
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SLS estimators on both synthetic and real datasets. The empirical results indicate the proposed

estimator is the only one, among all cutting-edge subsampling methods, that is robust to various

types of misspecification terms.

The remainder of the paper is organized as follows. We start in Section 2 by introducing the

misspecified linear model and deriving the so-called “worst-case” MSE. In Section 3, we present the

proposed LowCon subsampling algorithm and its theoretical properties. We examine the perfor-

mance of the proposed SLS estimator through extensive simulation and two real-world examples in

Sections 4 and 5, respectively. Section 6 concludes the paper, and the technical proofs are relegated

to the Supplementary Material.

2 Model Setup

In this section, we first introduce the linear model that contains unknown misspecification. We

then consider the subsample least squares estimator and derive the mean squared error of these

estimators under this model. We show that an SLS estimator is robust if the information matrix

of the selected subsample has a relatively low condition number.

Throughout this paper, || · || represents the Euclidean norm. Let λmin(·) and λmax(·) be the

smallest and the largest eigenvalue of a matrix, and µmin(·) and µmax(·) be the corresponding

eigenvectors, respectively. We use s1(·) and sp(·) to denote the largest and the smallest non-zero

singular value of a matrix with p columns, respectively.

2.1 Misspecified Linear Model

Suppose the underlying true model has the form

yi = xᵀ
iβ0 + ui, i = 1, 2, . . . , n, (1)

where yi’s are the responses, xi’s are the predictors, β0 ∈ Rp (p � n) is the vector of unknown

coefficients, the random errors {ui}ni=1 are independently distributed, and ui follows a non-centered

normal distribution N(h(xi), σ
2), i = 1, . . . , n. Let X be the design space. In this paper, we assume
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that the unknown multivariate function h satisfies

max
x∈X

|h(x)|
||x||

= α, (2)

where α is a finite positive constant. When xi = (xi1, . . . , xip)
ᵀ has finite values, some examples

of h include h(xi) = sin(xi1) and h(xi) = xi1xi2. Let y = (y1, . . . , yn)ᵀ be the response vector,

X = (x1, . . . ,xn)ᵀ be the predictor matrix, and hX = (h(x1), . . . , h(xn))ᵀ be the misspecification

term. For model identifiability, we assume the matrix [X;hX ] has a full column rank. Under this

assumption, we exclude the case that h(x) is a linear function of x, i.e., h(xi) cannot be a linear

combination of xi1, . . . ,xip.

We consider the scenario that practitioners have no prior information on the true model (1)

and postulate a classical linear model,

yi = xᵀ
iβ0 + εi, i = 1, 2, . . . , n, (3)

where the random errors {εi}ni=1 are i.i.d. and follow a normal distribution with mean zero and

constant variance σ2, i.e., N(0, σ2). Model (3) is thus a misspecified linear model of the true

model (1). Fitting model (3) without taking into account the model misspecification may result

in the degenerated performance of the coefficient estimation and model prediction. For example,

the full-sample ordinary least squares (OLS) estimate, known as the best linear unbiased estimate,

is a biased estimate of the true coefficient when the model is misspecified [5]. More discussion on

misspecified linear models can be found in (author?) [20] and (author?) [34].

In our measurement-constrained setting, practitioners are given the full sample of predictors

{xi}ni=1. The responses {yi}ni=1 in model (1), however, are hidden unless explicitly requested.

Practitioners are then allowed to reveal a subset of {yi}ni=1, denoted by y∗ = (y∗1, . . . , y
∗
r )

ᵀ, where

p < r � n. The goal is to estimate the true coefficient β0 using (x∗i , y
∗
i ), where i = 1, . . . , r, and x∗i

is the corresponding predictor for y∗i . A natural estimator for the coefficient β0 is the subsample

least squares estimator [50],

β̃X∗ = (X∗ᵀX∗)−1X∗ᵀy∗,
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where X∗ = (x∗1, . . . ,x
∗
r)

ᵀ. We derive the mean squared error (MSE) and the worst-case MSE of

this estimator, in the next subsection.

2.2 Worst-case MSE

Let Q = (X∗ᵀX∗)−1X∗ᵀ and h = (h(x∗1), . . . , h(x∗r))
ᵀ ∈ Rr. The MSE of the estimator β̃X∗

(conditional on X) thus can be decomposed as

MSE(β̃X∗) = tr(Var(β̃X∗)) + [bias(β̃X∗)]ᵀ[bias(β̃X∗)]

= σ2tr[(X∗ᵀX∗)−1] + [(X∗ᵀX∗)−1X∗ᵀh]ᵀ[(X∗ᵀX∗)−1X∗ᵀh]

= σ2tr[(X∗ᵀX∗)−1] + hᵀQᵀQh, (4)

where the bias term hᵀQᵀQh is associated with the model misspecification. Note that when the bias

term vanishes, hX = 0, i.e., when the model is correctly specified, minimizing MSE is equivalent to

minimizing the variance term σ2tr[(X∗ᵀX∗)−1]. Further discussion following this line of thinking

can be found in (author?) [50] and (author?) [48], in which the authors focused on selecting

the subsample that minimizes the variance term. In our setting, where the model is misspecified,

however, minimizing the variance term does not necessarily lead to a small MSE.

Recall that our goal is to select a subsample such that the corresponding SLS estimator is robust

to various model misspecification. Since the misspecification term hX is unknown to practitioners,

a natural and intuitive approach is to find the “minimax” subsample that minimizes the so-called

“worst-case” MSE, i.e., the maximum value of MSE(β̃X∗) with respect to all the possible choices of

the misspecification term hX . The following lemma gives an explicit form of the worst-case MSE;

the proof can be found in the Supplementary Material.

Lemma 2.1 (Worst-case MSE). Under the regularity condition (2), the following inequality holds,

MSE(β̃X∗) ≤ σ2tr[(X∗ᵀX∗)−1] + α2 tr(X∗ᵀX∗)

λmin(X∗ᵀX∗)
. (5)

The right-hand side of (5) is called the worst-case MSE.

Two conclusions can be made from Lemma 2.1. First, the worst-case MSE of an SLS estimator
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can be inflated to arbitrarily large values by a very small value of λmin(X∗ᵀX∗). It is thus very

easy to construct a “worst-case” sample and a misspecification term for which an SLS estimator

will have unacceptable performance. Second, β̃X∗ is the most robust SLS estimator if the selected

subsample minimizes the worst-case MSE. Such a subsample, however, is impossible to obtain in

real practice, since both values of σ2 and α2 are unknown to practitioners.

In this paper, we are more interested in the setting where the misspecified term h(x) is large

enough. In particular, the value of α2 is large enough such that, on the right-hand side of the

Inequality (5), the second term dominates the first term. Under this setting, the desired subsample

X∗ should yield a relatively small value of tr(X∗ᵀX∗)/λmin(X∗ᵀX∗). Notice that

tr(X∗ᵀX∗)/λmin(X∗ᵀX∗) ≥ p, (6)

where the equality holds when the condition number of the subsample information matrix, i.e.,

κ(X∗ᵀX∗)
def
= λmax(X∗ᵀX∗)/λmin(X∗ᵀX∗), takes the minimum value 1. Inequality (6) thus suggests

the desired subsample X∗ is the one with a relatively small value of κ(X∗ᵀX∗).

We now give another intuition about how κ(X∗ᵀX∗) is related to the robustness of the SLS

estimator. (author?) [6] showed that

||δβ̂ols||
||β̂ols||

=
||δ(XᵀX)−1Xᵀy||
||(XᵀX)−1Xᵀy||

≤ κ(XᵀX)
||δXᵀy||
||Xᵀy||

,

where δβ̂ols and δXᵀy are perturbations of β̂ols and Xᵀy respectively. Analogously, one can also

show that

||δβ̃X∗ ||
||β̃X∗ ||

≤ κ(X∗ᵀX∗)
||δX∗ᵀy∗||
||X∗ᵀy∗||

. (7)

Inequality (7) thus suggests that a smaller value of κ(X∗ᵀX∗) associates with a more robust esti-

mator β̃X∗ .

It is worth noting that, if the subsample matrix X∗ minimizes the worst-case MSE, it does not

necessarily minimize κ(X∗ᵀX∗) simultaneously since both the value of σ2 and α2 are not available

in practice. A robust subsample X∗ should at least yield a relatively small value of κ(X∗ᵀX∗) and
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balance the trade-off between the bias and the variance in the Equation (4). Following this line of

thinking, we propose a novel subsampling algorithm, the details of which are presented in the next

section.

3 LowCon Algorithm

In this section, we present our main algorithm, called “Low condition number pursuit” or “Low-

Con.” In Section 3.1, we introduce the notion of orthogonal Latin hypercube designs (OLHD) and

how these can be used to generate a design matrix L such that κ(LᵀL) has a relatively small value.

In Section 3.2, we present the detail of the proposed algorithm, which incorporates the idea of

OLHD. In Section 3.3, we present the theoretical property of the proposed SLS estimator, which

is obtained by the LowCon algorithm. We show that the proposed estimator has a relatively small

upper bound of the MSE.

3.1 Orthogonal Latin Hypercube Design

Taking a subsample with some specific characteristics has many similarities to the design of exper-

iments, which aims to place design points in a continuous design space, so that resulting design

points have certain properties [51]. The theory and methods in the design of experiments are po-

tentially useful for solving subsampling problems. The fundamental difference between the design

of experiments and the subsampling is that, in subsampling, the selected points cannot be freely

designed in a continuous space as the design of experiments but must be taken from the given finite

sample {xi}ni=1. To borrow the strength of the design of experiments, we focus on space-filling

designs, which aims to place the design points that cover a continuous design space as uniformly as

possible [11, 21, 18, 29, 47]. In other words, for any point in the experimental region, space-filling

designs have a design point close to it. We thus propose to round the design point to its nearest

neighbor in the sample. Details are provided in Section 3.2.

We now introduce a specific space-filling design that is of interest, the Latin hypercube design

(LHD) [37, 26, 46].

Definition 3.1 (Latin hypercube design). Given the design space X = [−1, 1]p, L ∈ Rr×p is called
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a Latin hypercube design matrix if each column of L is a random permutation of {1−rr , 3−rr , . . . , r−1r }

[38].

Intuitively, if one divides the design space [−1, 1]p into r equally-sized slices in the jth (j =

1, . . . , p) dimension, a Latin hypercube design ensures that there is exactly one design point in each

slice. The left panel of Figure 2 shows an example of a set of Latin hypercube design points (black

dots). Although uniformly distributed on the marginal, the Latin hypercube design points do not

necessarily spread out in the whole design space. That is to say, a set of LHD points may not be

“space-filling” enough. To improve the “space-filling” property of LHD, various methods have been

developed [40, 31, 12, 19]. Of particular interest in this paper is the orthogonal Latin hypercube

design (OLHD), which achieves the goal by reducing the pairwise correlations of LHD [53]; see the

right panel of Figure 2 for an example.

Figure 2: Example of LHD (left panel) and OLHD (right panel) with nine design points in [−1, 1]2.
The design points are marked as black dots. As a special case of LHD, OLHD has relatively low
pairwise correlation.

Consider the information matrix LᵀL, where L is an OLHD matrix. Intuitively, the matrix LᵀL

has a relatively small condition number, since all of the diagonal elements of LᵀL are the same

and all of the off-diagonal elements of LᵀL have relatively small absolute value. Although there is

a lack of theoretical guarantee, empirically, it is known that κ(LᵀL) is in general no greater than

1.13 [7]. Such a fact motivates us to select the subsample that approximates a set of orthogonal
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Latin hypercube design points.

3.2 LowCon Subsampling Algorithm

Without loss of generality, we assume the data points {xi}ni=1 are first scaled to [−1, 1]p. The

proposed algorithm works as follows. We first generate a set of orthogonal Latin hypercube design

points from a design space X ⊆ [−1, 1]p. We then search and select the nearest neighbor from the

sample for every design point.

The key to success is that the selected subsample can well-represent the set of design points, i.e.,

each selected subsample point is close-enough to its nearest design point, respectively. We provide

more discussion in Section 3.3 about when such a requirement is met in practice. Empirically, we

find [−1, 1]p may not be a good choice for the design space X . This is because, in such a scenario,

the design points, which are close to the boundary of [−1, 1]p, may be too far away from their

nearest neighbors, especially when the population density function has a heavy tail. As a result, a

design space that is slightly smaller than [−1, 1]p would be a safer choice. We opt to set the design

space as Xθ = [θj1, θj2]
p, where θj1 and θj2 are the θ-percentile and (100− θ)-percentile of the jth

column of the scaled data points, respectively. The algorithm is summarized below.

Algorithm 1 “Low Condition Number Pursuit (LowCon)” subsampling algorithm

1. Data normalization: The data points {xi}ni=1 are first scaled to [−1, 1]p.

2. Generate OLHD points: Given the parameter θ and the design space Xθ ⊆ [−1, 1]p,
generate a set of orthogonal Latin hypercube design points {li}ri=1.

3. Nearest neighbor search: Select the nearest neighbor for each design point li from
{xi}ni=1, denoted by l∗i . The selected subsample is thus given by {l∗i }ri=1.

Figure 3 illustrates LowCon algorithm. The synthetic data points in the left panel were gen-

erated from a bivariate normal distribution and are scaled to [−1, 1]2. A set of orthogonal Latin

hypercube design points are then generated, labeled as black triangles in the middle panel. For

each design point, the nearest data point is selected, marked as black dots in the right panel. The

selected points can well-approximate the design points.

Note that the set of design points generated by the orthogonal Latin hypercube design technique

is not unique; different sets of design points may result in different subsamples. Algorithm 1 thus
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Figure 3: Illustration for Algorithm 1. The data points (gray dots) are first scaled to [−1, 1]p, shown
in the left panel. A set of OLHD points (black triangles) are generated from Xθ = [−0.8, 0.8]2,
shown in the middle panel. In the left panel, the nearest neighbor for each design point is selected
(black dots).

is a random subsampling method instead of a deterministic subsampling method. In practice, the

set of design points {li}ri=1 in Algorithm 1 can be randomly generated.

3.3 Theoretical Results

We now present the theoretical property of the proposed subsample least squares estimator, ob-

tained by the LowCon algorithm. Some notations are needed before we show our main theorem.

Recall that L represents an orthogonal Latin hypercube design matrix. Let X∗L be the subsample

matrix obtained by the proposed algorithm. One thus can decompose X∗L into a sum of the design

matrix L and a matrix D = (d1, · · · ,dr)ᵀ, i.e., X∗L = L + D.

Following the notations in Algorithm 1, one can write L = (l1, . . . , lr)
ᵀ and X∗L = (l∗1, . . . , l

∗
r)

ᵀ,

where li and l∗i represent the ith design point and its corresponding nearest neighbor from the

sample, respectively. One thus has di = l∗i − li, for i = 1, . . . , r. Intuitively, D is a random

perturbation matrix, and the selected data points can well-approximate the design points if D is

“negligible”. In such a case, MSE(β̃X∗
L
), which is a function of X∗L, can be expanded around

MSE(β̃L) through Taylor expansion. From this, we can establish our main theorem below; the

proof is relegated to the appendix.
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Theorem 3.1. Suppose the data follow the model (1) and the regularity condition (2) is satisfied.

Assume sp(L) > s1(D), where s1(·) and sp(·) represent the largest and the smallest singular value

of a matrix of p columns, respectively. A Taylor expansion of MSE(β̃X∗
L
) around the point X∗L = L

yields the following upper bound,

MSE(β̃X∗
L
) ≤ σ2p2 κ(LᵀL)

tr(LᵀL)
+ α2pκ(LᵀL) +W. (8)

Here, W = O(s1(D)) is the Taylor expansion remainder.

When the Taylor expansion in Theorem 3.1 is valid, three significant conclusions can be made.

First, the theorem indicates that the MSE of the proposed estimator is finite. Specifically, following

the Definition 3.1, we have

tr(LᵀL) =

(
(
1− r
r

)2 + (
3− r
r

)2 + . . .+ (
r − 1

r
)2
)
× p.

Moreover, the value of κ(LᵀL) is in general no greater than 1.13, as discussed in Section 3.1.

Combining these two facts yields an informal but finite upper bound for MSE(β̃X∗
L
), i.e.,

MSE(β̃X∗
L
) ≤ σ2p2 1.13

tr(LᵀL)
+ 1.13α2p+W.

Recall that Lemma 2.1 shows that the worst-case MSE of an SLS estimator can be inflated to an

arbitrarily large value by a very small value of λmin(X∗ᵀX∗). The fact that the proposed estimator

has a finite MSE thus indicates the proposed estimator is robust.

Second, the upper bound of the squared bias of the proposed estimator, which equals α2pκ(LᵀL),

is very close to the minimum value of the worst-case squared bias. This is because the worst-case

squared bias has the minimum value of α2p, and the value of κ(LᵀL) is close to 1. Consider the

common situation when the value of α2 is large enough such that, in Inequality (5), the bias term

dominates the variance term. Under such a situation, the second conclusion thus indicates the

proposed estimator is very close to the “most robust” estimator, which minimizes the worst-case

squared bias.

Third, the proposed estimator has a finite variance. Recall that in Algorithm 1, sometimes we
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may choose a design space Xθ ⊂ [−1, 1]p. The value of tr(LᵀL) will decrease in such cases, compared

to the case when the design space equals [−1, 1]p. The variance of the proposed estimator thus will

increase in such cases. Nevertheless, the variance term will not be inflated to be arbitrarily large,

as long as the design space is not too small. More discussion on the impact of the design space to

the Inequality (8) is relegated to the Supplementary Material.

There are two essential assumptions in Theorem 3.1. One is that sp(L) > s1(D), and the other is

that the Taylor expansion is valid, i.e., when s1(D) is “small”. Although we will evaluate the quality

of the proposed estimator empirically in the next section, a precise theoretical characterization of

when these two assumptions are valid is currently not available. Here, we simply give an example

such that s1(D) converges to zero as n goes to infinity, in which case the desired Taylor expansion

is apparently valid. The assumption sp(L) > s1(D) is also satisfied in such a case, as n goes to

infinity, since the value of sp(L) is not relevant to n. Consider the case when the non-zero support

of the population distribution is [−1, 1]p, i.e., the sample and the design points have the same

domain. In such a case, the distance between each design point and its nearest neighbor converges

to zero, as n goes to infinity. As a result, each entry of the matrix D converges to zero, and thus

s1(D) converges to zero as well, as n goes to infinity. Consequently, the desired Taylor expansion

is valid in such a case.

4 Simulation Results

To show the effectiveness of the proposed LowCon algorithm in misspecified linear models, we

compare it with the existing subsampling methods in terms of MSE. The subsampling methods

considered here are uniform subsampling (UNIF), basic leverage subsampling (BLEV), shrink-

age leverage subsampling (SLEV), unweighted-leverage subsampling (LEVUNW) [22, 23], and

information-based optimal subset selection (IBOSS) [48]. The shrinkage parameter for SLEV is

set as 0.9, as suggested in (author?) [22]. Through all the experiments in this paper, we set θ = 1.

More simulation results with other values of θ can be found in the Supplementary Material.

We simulate the data from the model (1) with n = 104, p = {10, 20} and r = {2p, 4p, . . . , 10p}.

Three different distributions are used to generate the X matrix,
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D1. N(1,Σ);

D2. 0.5N(0, 2Σ) + 0.5N(1,Σ);

D3. t10(1,Σ),

where the (i, j)th element of Σ is set to be 10 × 0.6|i−j| for i, j = 1, . . . , p. For the coefficient β0,

the first 20% and the last 20% entries are set to be 1, and the rest of them are set to be 0.1. To

show the robustness of the proposed estimator under various misspecification terms, we consider

five different h’s,

H1. h(xi) = 0;

H2. h(xi) = 10 sin(xi3);

H3. h(xi) = c1 · xi3xi8;

H4. h(xi) = c2 · xi3 sin(xi8);

H5. h(xi) = c3 · x2i3,

where the constants c1, c2 and c3 are selected so that maxx∈{xi}ni=1
({|h(x)|}ni=1) = 10, i.e., the re-

sponse is not dominated by the misspecification term. Note that H1 does not have any misspecified

terms. Figure 4 shows the heatmap of the misspecified terms from H2 to H5, where X matrix is

generated from D1. Only the third and eighth predictors are shown.

Figure 4: The heatmap of ten thousand data points generated from distribution D1 with ten
predictors. Only the 3rd and 8th predictors are shown. The color demonstrates the values of
different model misspecification terms, from H2 to H5.

We illustrate the subsamples selected by different subsampling methods in Figure 5. The

LEVUNW method is omitted here since the subsample identified by LEVUNW is the same as

the subsample identified by BLEV. The data points (gray dots) are generated from distribution

D3 with n = 104 and p = 10, where only the third and the eighth predictors are shown. In each
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panel, a subsample of size 40 is selected (black dots). Figure 5 reveals some interesting facts. We

first observe the subsamples selected by BLEV and SLEV are more dispersed than the subsample

selected by UNIF. Such an observation can be attributed to the fact that BLEV and SLEV give

more weight to the high-leverage-score data points. For the IBOSS method, the selected subsample

includes all the “extreme” data points from all predictors. Such a subsample is most informative

when the linear model assumption is valid. Finally, we observe that the subsample chosen by the

proposed LowCon algorithm is most “uniformly distributed” among all. Intuitively, such a pattern

indicates the selected subsample yields an information matrix that has a relatively small condition

number.

Figure 5: An illustration of five subsamples identified by different subsampling methods. The
samples are marked in gray and the selected subsamples are marked in black.

To compare the performance for different SLS estimators, we calculate the MSE for each of the

SLS estimators based on 100 replicates, MSE =
∑100

i=1 ||β̂(i) − β0||2/100, where β̂(i) represents the

SLS estimator in the ith replication. Figure 6 and Figure 7 show the log(MSE) versus different

subsample size under various settings, when p = 10 and 20, respectively. In both figures, each

row represents a particular data distribution D1−D3 and each column represents a particular

misspecification term H1−H5.

In Figures 6 and 7, we first observe that UNIF, as expected, does not perform well. As two

random subsampling methods, BLEV and SLEV perform similarly, and both perform better than

UNIF in most of the cases. Such a phenomenon is attributed to the fact that both methods

tend to select the data points with high leverage-scores, and these points are more informative for

estimating the coefficient, compared to randomly selected points.

Next, we find both LEVUNW and IBOSS have decent performance when the misspecification
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Figure 6: Comparison of different estimators when p = 10. Each row represents a different data
distribution (D1−3) and each column represents a different misspecification term (H1–5).

term equals zero (the leftmost column). Their performance, however, is inconsistent when the

non-zero misspecification term exists, i.e., they perform well in some cases and perform poorly on

others. Note that these two methods, occasionally, are even inferior to the UNIF method. Such

an observation indicates that these two methods are effective when the linear model assumption is

correct, but are not robust when the model is misspecified. We attribute this observation to the fact

that the most informative data points derived under the postulated model do not necessarily lead

to a decent estimator when the postulated model is incorrect. In fact, the selected subsample can

even be misleading and may dramatically deteriorate the performance of the subsample estimator.

Finally, we observe that the proposed LowCon method is consistently better than the UNIF

method. Furthermore, LowCon has a decent performance in most of the cases, especially when the
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Figure 7: Comparison of different estimators when p = 20. Each row represents a different data
distribution (D1−3) and each column represents a different misspecification term (H1–5).

model is misspecified. This observation indicates LowCon is able to give a robust estimator under

various misspecified linear models. Such success can be attributed to the fact that the proposed

estimator has a relatively small upper bound for the worst-case MSE.

5 Real Data Analysis

We now evaluate the performance of different SLS estimators on two real-world datasets. One

problem in real data analysis is that one does not know the true coefficient. It is thus impossible to

calculate the mean squared error of a coefficient estimate. To overcome this problem, we consider

the full-sample OLS estimator β̂OLS and the following three estimators as the surrogates for the true

coefficient β0. One of them is the M-estimator β̂M , which is a well-known estimator in robust linear
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regression [27]. M-estimators can be calculated by using iterated re-weighted least squares, and it is

known that such an estimator is more robust to the potential outliers in the data, compared to the

OLS estimator [4]. We compute the M-estimator using the R package MASS with default parameters.

We also consider the estimator yielded by the cellwise robust M regression method (CRM), denoted

by β̂CRM [14]. Such a method improves the ordinary M-estimator by automatically identifying and

replacing the outliers, resulting in a more robust estimator. We implement the CRM method using

the R package crmReg. The results for the CRM method, however, are omitted in the second

dataset, since the code did not stop within a reasonable amount of time. The last estimator we

considered is the cubic smoothing spline estimator for the “null space” [44, 15, 55], denoted by β̂SS .

We now briefly introduce the cubic smoothing spline estimator in the following.

Suppose the response yi and the vector of predictors xi = (xi1, . . . , xip)
ᵀ are related through

the unknown functions η such that yi = η(xi) + εi, where εi
iid∼ N(0, σ2). A widely used approach

for estimating η is via minimizing the penalized likelihood function,

1

n

n∑
i=1

(yi − η(xi))
2 + λJ(η), (9)

where λ is the tuning parameter and J(η) is a penalty term. We refer to [44, 15, 39] for how to select

the tuning parameter and how to construct the penalty term. The standard formulation of cubic

smoothing splines performs the minimization of (9) in a reproducing kernel Hilbert space H. In this

case, the well-known representer theorem [44] states that there exist vectors β = (β1, . . . , βp)
ᵀ and

c = (c1, . . . , cn)ᵀ such that the minimizer of (9) is given by η(x) =
∑p

j=1 βjxij +
∑n

i=1 ciH(xi,x).

Here, the bivariate function H(·, ·) is related to the reproducing kernel of H, and we refer to [15]

for technical details. Let H be an n × n matrix where the (i, j)-th element equals H(xi,xj). By

construction of H, one has J(η) = cᵀHc [15]. Solving the minimization problem in (9) thus is

equivalent to solving

(β̂SS , ĉ) = argmin
β,c

1

n
(y −Xβ −Hc)ᵀ(y −Xβ −Hc) + λcᵀHc. (10)

We could then view the estimated β̂SS in (10) as the “corrected” estimate of the true coefficient
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β0 that takes into consideration the misspecified terms quantified by Hĉ. We calculate such an

estimate using the R package gss with the default parameters.

To compare the performance of different SLS estimators, we calculate the empirical MSE

(EMSE) through one hundred replicates. In the ith replicate, each subsampling method selects

a subsample leading to an SLS estimator β̂(i). For each of the four full-sample estimators (β̂OLS ,

β̂M , β̂CRM , and β̂SS), the corresponding EMSE is then calculated as

EMSEOLS =

100∑
i=1

||β̂(i) − β̂OLS ||2/100, EMSEM =

100∑
i=1

||β̂(i) − β̂M ||2/100,

EMSECRM =
100∑
i=1

||β̂(i) − β̂CRM ||2/100, EMSESS =
100∑
i=1

||β̂(i) − β̂SS ||2/100.

We emphasize that none of these full-sample estimators can be regarded as the gold standard.

However, a robust SLS estimator should at least be relatively “close” to all of these estimators. That

is to say, intuitively, a robust SLS estimator yields relatively small values of EMSEOLS , EMSEM ,

EMSECRM , and EMSESS .

Throughout this section, we set the parameter θ for the proposed LowCon method as 1. We

opt to choose the subsample size r as 5p, 10p and 20p. The results in this section show that

the proposed SLS estimator yields the smallest empirical mean squared error in almost all of the

scenarios.

5.1 Africa Soil Property Prediction

Soil functional properties refer to the properties related to a soil’s capacity to support essential

ecosystem services, which include primary productivity, nutrient and water retention, and resis-

tance to soil erosion [16]. The soil functional properties are thus important for planning sustainable

agricultural intensification and natural resource management. To measure the soil functional prop-

erties in a target area, a natural paradigm is to first collect a sample of soil in this area, then analyze

the sample using the technique of diffuse reflectance infrared spectroscopy [36]. Such a paradigm

might be time-consuming or even impractical if the desired sample of soil from the target area

is difficult to obtain. Predicting the soil functional properties is thus a measurement-constrained
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problem.

With the help of greater availability of Earth remote sensing data, the practitioners are provided

new opportunities to predict soil functional properties at unsampled locations. One of the Earth

remote sensing databases is provided by the Shuttle Radar Topography Mission (SRTM), which

aims to generate the most complete high-resolution digital topographic database of Earth [13].

In this section, we consider the Africa Soil Property Prediction dataset, which contains the soil

samples from 1157 different areas (n = 1157). We aim to analyze the relationship between the sand

content, one of the soil functional properties, and the five features (p = 5) derived from the SRTM

data. The features include compound topographic index calculated from SRTM elevation data

(CTI), SRTM elevation data (ELEV), topographic Relief calculated from SRTM elevation data

(RELI), mean annual precipitation of average long-term Tropical Rainfall Monitoring Mission data

(TMAP), and modified Fournier index of average long-term Tropical Rainfall Monitoring Mission

data (TMFI). We assume the data follow the model,

yi = β0 + β1CTIi + β2ELEVi + β3RELIi + β4TMAPi + β5TMFIi + ui, i = 1, 2, . . . , n, (11)

where the random errors ui are i.i.d. and follow a non-centered normal distribution N(h(xi), σ
2).

Here, xi = (1, CTIi, ELEVi, RELIi, TMAPi, TMFIi)
ᵀ and h(·) represents a multivariate function

that is unknown to the practitioner. The postulated model is thus a misspecified linear model.

In our measurement-constrained setting, we assume the response vector is hidden unless explicitly

requested. We then estimate the true coefficient of Model (11), i.e., (β0, β1, β2, β3, β4, β5)
ᵀ, using

subsampling methods.

The subsampling methods considered here are uniform subsampling (UNIF), basic leverage

subsampling (BLEV), shrinkage leverage subsampling (SLEV) with parameter α = 0.9, unweighted-

leverage subsampling (LEVUNW) [22, 23], information-based optimal subset selection (IBOSS) [48]

and the proposed LowCon method. Table 1 summarizes the EMSEs for all six SLS estimators, and

the best result in each row is in bold letter. We observe that the proposed LowCon method yields

the best result in every row.
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Table 1: EMSEs for the Africa Soil Property Prediction dataset
UNIF BLEV SLEV LEVUNW IBOSS LowCon

EMSEOLS 5.39 2.92 3.44 2.09 34.87 1.18
r = 5p EMSEM 5.38 2.97 3.50 2.13 34.07 1.17

EMSECRM 5.32 3.01 3.52 2.20 34.98 1.30
EMSESS 9.82 6.71 7.31 5.71 43.59 4.89

EMSEOLS 1.34 1.13 1.37 0.88 18.62 0.48
r = 10p EMSEM 1.36 1.17 1.35 0.92 17.97 0.51

EMSECRM 1.38 1.21 1.37 1.00 18.51 0.61
EMSESS 5.49 5.04 5.71 4.55 27.09 4.06

EMSEOLS 0.61 0.45 0.64 0.38 2.84 0.27
r = 20p EMSEM 0.62 0.44 0.65 0.39 2.64 0.29

EMSECRM 0.66 0.47 0.68 0.47 2.90 0.38
EMSESS 4.68 4.71 4.72 4.25 8.30 4.01

5.2 Diamond Price Prediction

The second real-data example we consider is the Diamond Price Prediction dataset 1, which contains

the prices and the features of around 54,000 diamonds. Of interest is to analyze the relationship

between the price of the diamond, and three continuous features (p=3): weight of the diamond

(caret), total depth percentage (depth), and width of top of diamond relative to widest point (table).

As the same setting used in Section 5.1, we assume the data follow a misspecified linear model,

yi = β0 + β1careti + β2depthi + β3tablei + ui, i = 1, 2, . . . , n.

Here, the random errors ui are i.i.d. and follow a non-centered normal distribution N(h(xi), σ
2),

where xi = (1, careti, depthi, tablei)
ᵀ, and h(·) is a multivariate function that is unknown to the

practitioner. Note that the price of a diamond might be time-consuming or even impossible to

obtain if the diamond has not been on the market yet. We thus assume the value of the response

vector is hidden unless explicitly requested, and we estimate the true coefficient using subsampling

methods.

Table 2 summarizes the EMSEs for all the subsample estimators, and the best result in each

row is in bold letter. From Table 2, we observe that the proposed LowCon algorithm yields decent

performance in all the cases and the best result in most of the cases.

1The dataset can be downloaded from https://www.kaggle.com/shivam2503/diamonds.
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Table 2: EMSEs for the Diamond Price Prediction data
UNIF BLEV SLEV LEVUNW IBOSS LowCon

EMSEOLS 7.01 4.24 5.29 4.67 8.96 3.40
r = 5p EMSEM 7.08 4.52 5.60 4.96 6.07 4.09

EMSESS 11.16 9.13 10.13 9.69 10.32 8.36

EMSEOLS 2.54 2.09 1.76 2.68 8.68 1.58
r = 10p EMSEM 2.88 2.37 2.15 2.89 5.82 2.19

EMSESS 7.41 6.83 6.53 7.54 10.18 6.28

EMSEOLS 1.36 0.83 1.03 1.28 8.16 0.80
r = 20p EMSEM 1.72 1.17 1.40 1.32 5.38 1.33

EMSESS 6.27 5.50 5.91 5.67 9.56 5.45

6 Concluding Remarks

We considered the problem of estimating the coefficients in a misspecified linear model, under

the measurement-constrained setting. When the model is correctly specified, various subsampling

methods have been proposed to solve this problem. When the model is misspecified, however, we

found the worst-case bias for a subsample least squares estimator can be inflated to be arbitrarily

large. To overcome this problem, we aim to find a robust SLS estimator whose variance is bounded,

and the worst-case bias is relatively small. We found such a goal can be achieved by selecting a

subsample whose information matrix has a relatively small condition number. Motivated by this, we

proposed the LowCon subsampling algorithm, which utilizes the orthogonal Latin hypercube design

to identify sampling points. We proved the proposed estimator based on the subsample has a finite

mean squared error. Furthermore, the bias of the proposed estimator has an upper bound, which

approximately achieves the minimum value of the worst-case bias. We evaluated the performance

of the proposed estimator through extensive simulation and real data analysis. Consistent with the

theorem, the empirical results showed the proposed method has a robust performance.

The proposed algorithm can be easily extended to the cases when the predictor variables are

categorical or are a mixture of categorical and continuous variables. The key idea is to replace the

OLHD in Algorithm 1 by a proper design in a categorical (or mixture) design space. We refer to

[30] and the reference therein for more discussion of such designs. Intuitively, utilizing such designs

in Algorithm 1 will result in a subsample in a categorical (or mixture) design space with relatively

low “condition number”.
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SUPPLEMENTARY MATERIALS

Title: Proofs of theoretical results and related materials.

More Discussion of Figure 1: More discussion on the performance of the subsampling methods

in the example shown in Figure 1.

More Simulation Results: We illustrate the impact of different choices of the parameter θ

through more simulation results.

Proof of Lemma 2.1: A proof of the lemma stating the upper bound of the worst-case MSE.

Proof of Theorem 3.1: A proof of the main theorem stating the property of the proposed sub-

sample least squares estimator.

More discussion on Theorem 3.1: A discussion of the impact of θ on Theorem 3.1.

R-code: A package containing code to perform the methods described in the article, the simulation

studies, and the real data analysis.

Dataset: Data are publicly available.

Africa soil property prediction dataset: https://www.kaggle.com/c/afsis-soil-properties/data

Diamond price prediction dataset: https://www.kaggle.com/shivam2503/diamonds

A More Discussion of Figure 1

In the example shown in Figure 1, one may wonder about the chances of poor performances of the

existing subsampling methods. To answer this question, we compare the proposed method (Low-

Con) with the uniform subsampling (UNIF) and the basic leverage subsampling method (BLEV)

in terms of estimation error. We consider the mean squared error for each of the subsample least

squares (SLS) based on one hundred replicates, MSE =
∑100

i=1 ||β̂(i) − β0||2/100, where β̂(i) repre-

sents the SLS estimator in the ith replication. We consider different subsample sizes r from ten to

fifty. Table 3 summarizes the results, and the best result in each row is in bold letters. We observe

that although the BLEV method performs better than UNIF, it still yields pretty large MSE. In
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other words, both UNIF and BLEV may result in unacceptable performance, especially when r is

small. We also observe the proposed LowCon method yields the best result in every row, indicating

the performance of LowCon is robust to the misspecification term.

Table 3: MSEs for the example in Figure 1
UNIF BLEV LowCon

r = 10 0.148 0.091 0.028
r = 20 0.118 0.075 0.027
r = 30 0.111 0.068 0.027
r = 40 0.108 0.067 0.028
r = 50 0.105 0.060 0.028

B More Simulation Results

Recall that the design space in Algorithm 1 is set to be X = [θj1, θj2]
p, where θj1 and θj2 are

the θ-percentile and (100− θ)-percentile of the jth column of the scaled data points, respectively.

Throughout Section 4, we set θ = 1. In this section, we illustrate the impact of different choices

of the parameter θ. We consider three different choices of θ, i.e., θ = 0, 5, 10. Here, θ = 0 means

the design space X = [0, 1]p. We let the dimension p = 10. Other simulation settings are the same

as the ones we used in Section 4. The results are shown in Figure 8, Figure 9, and Figure 10,

respectively.

Consider the cases when θ = 0. First, we observe that LowCon gives the best of the results in

most of the cases when the model is correctly-specified, as shown in the leftmost column. Such an

observation is expected since when θ = 0, the LowCon method tends to select more data points

with large leverage scores, resulting in a better estimation. We then observe that the performance

of LowCon when θ = 0 is not as good as its performance when θ = 1, indicating that a positive

value of θ is essential for LowCon to work well in misspecified models. Consider the cases when

θ = 10. We observe LowCon yields unacceptable performance in many cases. Such an observation

indicates the choice θ = 10 yields a large sampling bias to LowCon, resulting in poor performance.

Finally, when θ = 5, we observe LowCon yields reasonably well performance in most of the cases.

In summary, it is essential to select a θ that is neither too large nor too small for LowCon to

perform well in misspecified models. In practice, we find θ ∈ [0.5, 5] works reasonably well in most
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Figure 8: Comparison of different estimators when p = 10, θ = 0.

of the cases.

C Proofs of Theoretical Results

C.1 Proof of Lemma 2.1

Proof. Inequality (2) yields ||h||2 ≤ α2
∑r

i=1 ||x∗i ||2 = α2tr(X∗ᵀX∗). One thus has

hᵀQᵀQh ≤ λmax(QᵀQ)||h||2 ≤ λmax(QᵀQ) · α2tr(X∗ᵀX∗) (12)

= λmax((X∗ᵀX∗)−1) · α2tr(X∗ᵀX∗) =
α2tr(X∗ᵀX∗)

λmin(X∗ᵀX∗)
. (13)

Recall that µmax(·) is the corresponding eigenvector to λmax(·). The first equation in (12) holds
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Figure 9: Comparison of different estimators when p = 10, θ = 5.
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Figure 10: Comparison of different estimators when p = 10, θ = 10.
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when h = c·µmax(QᵀQ) for some real number c, and the second equation in (12) holds when ||h||2 =

α2tr(X∗ᵀX∗). As a result, both equations in (12) hold when h =
√
α2tr(X∗ᵀX∗) · µmax(QᵀQ).

The desired result follows directly after plugging Inequality (13) into Equation (4).

C.2 Proof of Theorem 3.1

The following Weyl’s inequalities are needed in the proof.

Theorem C.1. Weyl’s inequalities [17] Let A ∈ Rn×d and B ∈ Rn×d be two matrices and

t = min{n, d}. Let s1(A) ≥ s2(A) ≥ . . . ≥ st(A) ≥ 0, s1(B) ≥ s2(B) ≥ . . . ≥ st(B) ≥ 0 and

s1(A + B) ≥ s2(A + B) ≥ . . . ≥ st(A + B) ≥ 0 be the singular values of A, B and A + B,

respectively. Then

|si(A + B)− si(A)| ≤ s1(B), i = 1, . . . , t.

Proof of Theorem 3.1. Let i = 1; the Weyl’s inequalities yield

s1(X
∗
L) = s1(L + D) ≤ s1(L) + s1(D). (14)

Let i = p; Weyl’s inequalities yield

sp(X
∗
L) = sp(L + D) ≥ sp(L)− s1(D). (15)

Recall that, in Theorem 3.1, we assume sp(L) − s1(D) > 0. Combining Inequality (14) and

Inequality (15) thus yields

κ(X∗ᵀL X∗L) =

(
s1(X

∗
L)

sp(X∗L)

)2

≤
(
s1(L) + s1(D)

sp(L)− s1(D)

)2

. (16)

Performing a Taylor expansion of the right-hand side of Inequality (16), which can be viewed
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as a function of s1(D), around the point 0 yields

(
s1(L) + s1(D)

sp(L)− s1(D)

)2

=

(
s1(L)

sp(L)

)2

+ 2

(
s1(L) (s1(L) + sp(L))

sp(L)3

)
s1(D) +W1

≤ κ(LᵀL) + 4
s1(L)2

sp(L)3
s1(D) +W1

= κ(LᵀL) + 4
κ(LᵀL)

sp(L)
s1(D) +W1, (17)

where W1 = o(s1(D)) is the remainder. Plugging Inequality (17) back into (16) yields

κ(X∗ᵀL X∗L) ≤ κ(LᵀL) + 4
κ(LᵀL)

sp(L)
s1(D) +W1. (18)

We now derive an upper bound for the first term on the right-hand side of Inequality (4). Note

that

tr[(X∗ᵀL X∗L)−1] ≤ pλmax((X∗ᵀL X∗L)−1) =
p

sp(X∗L)2
≤ p

(sp(L)− s1(D))2
, (19)

where Inequality (15) is used in the last step.

By performing a Taylor expansion of the right-hand side of Inequality (19) around the point 0,

one has

p

(sp(L)− s1(D))2
=

p

sp(L)2
+ 2

√
p

sp(L)2
s1(D) +W2, (20)

where W2 = o(s1(D)) is the remainder. Plugging Inequality (20) back into (19) yields

tr[(X∗ᵀL X∗L)−1] ≤ p

sp(L)2
+ 2

√
p

sp(L)2
s1(D) +W2. (21)
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Finally, plugging both Inequality (18) and (21) in Inequality (4) yields

MSE(β̃X∗) ≤ σ2
(

p

sp(L)2
+ 2

√
p

sp(L)2
s1(D) +W1

)
+ α2p

(
κ(LᵀL) + 4

κ(LᵀL)

sp(L)
s1(D) +W2

)
=

(
σ2

sp(L)2
+ α2κ(LᵀL)

)
p+

(
2σ2
√
p

sp(L)2
+

4α2pκ(LᵀL)

sp(L)

)
s1(D) + σ2W1 + α2pW2

≤ σ2p2 κ(LᵀL)

tr(LᵀL)
+ α2pκ(LᵀL) +O(s1(D)).

The fact that tr(LᵀL)) ≤ pλmax(LᵀL)) = pκ(LᵀL))sp(L)2 is used in the last step. This completes

the proof.

D More discussion on Theorem 3.1

We now discuss the impact of θ on Theorem 3.1. Recall that we have Xθ = [θj1, θj2]
p. For simplicity,

we assume all the marginal distributions of the probability density function are symmetric, i.e.,

θj1 = −θj2, for j = 1, . . . , p. Note that the data are first scaled to [−1, 1]p, and thus we have

−1 < θj1 < 0 < θj2 < 1. Let Lθ to denote the design matrix generated from Xθ. By the definition

of orthogonal Latin hypercube design, it is easy to check that κ(Lᵀ
θLθ) = κ(LᵀL). We also have

tr(Lᵀ
θLθ) = tr(LᵀL)×

p∏
j=1

(1− θj2)2.

In summary, we have

MSE(β̃X∗
L
) ≤ σ2p2

κ(Lᵀ
θLθ)

tr(Lᵀ
θLθ)

+ α2pκ(Lᵀ
θLθ) +W

= σ2p2
κ(LᵀL)

tr(LᵀL)×
∏p
j=1(1− θj2)2

+ α2pκ(LᵀL) +W. (22)

Inequality (22) indicates that a large θ is associated with a larger upper bound of MSE(β̃X∗
L
).

Furthermore, for fixed θ, a “heavy-tailed” probability density function also yields a larger upper

bound of MSE(β̃X∗
L
).
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