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Abstract

Data taking value on a Riemannian manifold and observed over a com-
plex spatial domain are becoming more frequent in applications, e.g. in
environmental sciences and in geoscience. The analysis of these data needs
to rely on local models to account for the non stationarity of the gener-
ating random process, the non linearity of the manifold and the complex
topology of the domain. In this paper, we propose to use a random domain
decomposition approach to estimate an ensemble of local models and then
to aggregate the predictions of the local models through Fréchet averaging.
The algorithm is introduced in complete generality and is valid for data
belonging to any smooth Riemannian manifold but it is then described in
details for the case of the manifold of positive definite matrices, the hy-
persphere and the Cholesky manifold. The predictive performance of the
method are explored via simulation studies for covariance matrices and cor-
relation matrices, where the Cholesky manifold geometry is used. Finally,
the method is illustrated on an environmental dataset observed over the
Chesapeake Bay (USA).

Keywords: Divide-and-conquer, Bagging, Prediction, Fréchet mean, Local
approximation.

1 Introduction

In many problems of applied interest, data can be better understood if embedded
in a non Euclidean space. Statisticians have been aware for a long time of the
particular challenges these data present, indeed since the first works on spherical
data (Fisher [1953]) and shapes (Kendall [1977]), motivated by practical problems
in astronomy, anthropology and geology. It is now recognised that considerable
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care needs to be taken to understand what are the key properties of the statistical
units – i.e., the atoms of the analysis – which should be accounted for in a
sensible statistical analysis. This viewpoint indeed provides the foundation of
Object Oriented Data Analysis (OODA, Marron and Alonso [2014]), a system of
ideas and methods for the statistical analysis of complex data. In this context, a
considerable effort has been made to develop comprehensive frameworks for the
analysis of general types of data, taking into account the geometry of the space
(see, e.g., Patrangenaru and Ellingson [2015]).

Although the literature on OODA is nowadays well-developed, a question that
is yet to be fully addressed is how to measure, and incorporate in the analysis, the
stochastic dependence between observations. This point is particularly challeng-
ing when data are spatially distributed, i.e., in the context of Object Oriented
Spatial Statistics (O2S2, Menafoglio and Secchi [2017]), and possibly generated
by a non-stationary stochastic process. For instance, when data are manifold-
valued objects, existing approaches to spatial prediction have been mainly based
on a tangent space approximation (i.e., linearisation) of the data, that enables
one to rely on linear techniques in O2S2 while accounting for the mildly non
Euclidean structure of Riemannian manifolds (see Pigoli et al. [2016]). These
approaches have clear limitations whenever the variability of the observations is
particularly large and complex, which may be well the case in the presence of
large spatial domains, or complex non-stationarities.

In parallel to this literature stream, recent research in spatial statistics has
started to address the problem of analysing spatial data when their domain of
observation has a complex topology, e.g., in the presence of irregular boundaries,
holes and barriers (e.g., Ramsay [2002], Wood et al. [2008], Sangalli et al. [2013],
Bernardi et al. [2016], Menafoglio et al. [2018] and references therein). Even
though the challenges arising from this latter problem are indeed different from
those related with the analysis of manifold data, the two problems share the need
to localize the models for the data analysis.

In this work, we jointly tackle these challenges through the key role of random
domain decompositions (RDDs), which are here used to estimate an ensemble of
local models. The proposed approach extends to Riemannian data the ideas of
Menafoglio et al. [2018], which were developed in the context of non-stationary
spatial fields of Hilbert data. The computational methodology we propose is
based on a bagging strategy which consists of two steps: (i) repeatedly and
randomly partition the domain of observation in disjoint subdomains, where to
estimate local geostatistical models and perform prediction (Kriging) and (ii) ag-
gregate the results of these repetitions to provide a final result. Unlike Menafoglio
et al. [2018], the RDD is here used to support the construction and estimate of a
local linearization of the observations, which is then employed for modeling and
prediction purposes.

Although the idea of using domain decompositions has similarities with exist-
ing machine learning techniques (e.g., Gramacy and Lee [2008],Rasmussen and
Ghahramani [2002]), a bagging approach is used in this work to control the uncer-
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tainty and possible spatial discontinuities introduced by the random partitioning
of the spatial domain.

The proposed method is of general validity, being well-suited for any kind of
Riemannian data. We here describe its implementation in detail for two specific
examples: positive definite matrices (covariance matrices) and correlation matri-
ces (and, more generally, hyperspheres). We use these two examples as test cases
to assess the performances of the method in a simulation setting. We finally
illustrate the application of the method to a dataset of environmental interest,
consisting of covariance matrices estimated within the Chesapeake estuarine sys-
tem, which is a domain with complex topology.

The remaining part of the paper is structured as follows. Section 2 recalls
the RDD method for Hilbert data of Menafoglio et al. [2018], whereas Section
3 provides the modeling framework for the development of our method. Section
4 describes the RDD method for kriging manifold data (RDD-MK), which is
described in detail for the cases of covariance and correlation matrices in Section
5. Section 6 illustrates the simulation study and Section 7 the case study. Section
8 concludes the work.

2 RDD for kriging in Hilbert spaces

We here recall the computational methodology proposed by Menafoglio et al.
[2018] to perform kriging of Hilbert data, distributed over domains with complex
topology (irregular boundaries, holes, barriers).

Let (Ω,F ,P) be a probability space, and call D ⊂ Rd (usually d = 2, 3)
the spatial domain of interest. In the same framework considered by Menafoglio
et al. [2018], denote by {Ys, s ∈ D} a random field defined on (Ω,F ,P) and with
values in a separable Hilbert space H. Given n locations s1, ..., sn in D, denote
by Ys1 , ...,Ysn the observations of the field at these locations, which are (random)
elements of H.

Whenever the domain D is simple and the random field {Ys, s ∈ D} can
be assumed to be stationary, a mathematical framework for kriging can be es-
tablished as in [Menafoglio et al., 2013, Menafoglio and Secchi, 2017], where
the well-known concepts of covariogram, variogram and kriging predictor [e.g.
Cressie, 1993] were extended to the Hilbert space setting. The latter framework
can also be considered in the presence of mild non-stationarities, i.e., when the
non-stationarity can be modeled by decoupling each element Ys, s in D, as the
sum of a mean term ms – described by a linear model – and a stationary residual
δs = Ys −ms.

In case of strong non-stationarity of the random field or of a domain D with
a complex topology (irregularly shaped, with holes or barriers), the framework of
Menafoglio et al. [2013] cannot be used, as it is not able to capture (i) a possible
non-stationarity of the residual random field and (ii) a non-Euclidean metric on
the spatial domain. However, the degree of non-stationarity of the field, as well
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as the degree of complexity of the domain, may depend on the spatial scale of
observation. Indeed, even though the field may appear non-stationary at a global
spatial scale, stationarity may be a viable assumption at a local scale (i.e., local
stationarity). Similarly, a spatial domain which is complex (non-Euclidean) at a
global scale, might be locally approximated through a simple (Euclidean) domain.
The random domain decomposition (RDD) approach introduced by Menafoglio
et al. [2018] brings the latter foundational idea into play by implementing an
operational strategy, named Random Domain Decomposition for Object Oriented
Kriging (RDD-OOK).

RDD-OOK is grounded on a divide-et-impera approach, and follows a bag-
ging strategy [Breiman, 1996]. In the bootstrap stage, the domain is iteratively
randomly partitioned in tiles, where local stationary analyses are performed. For
a given location s0, this stage results in a set of B predictions, where B stands for
the number of bootstrap replicates. Each of these B predictions is conditioned
on the realization of the RDD, and is based on the stationary model estimated
within the tile at that iteration. Finally the B predictions resulting from the
bootstrap stage are aggregated in a final prediction (a.k.a. aggregation step),
typically by taking a (weighted) average of the bootstrap predictions. For fur-
ther details, we refer the reader to Menafoglio et al. [2018]. In the following
sections, we extend this framework to Riemannian data, and detail the modeling
choices adopted in this work.

3 Statistical analysis of Riemannian data

Data belonging to Riemannian manifolds appear in many applications and they
have long been studied in statistics. Examples include but are not limited to
directional data (Fisher et al. [1993], Mardia [2014]), shapes (Goodall [1991],
Dryden and Mardia [1998]) and positive definite matrices (Dryden et al. [2009],
Yuan et al. [2012]). We are going to discuss here only the essential ingredients of
the Riemannian geometry that need to be taken into account when developing the
kriging prediction. For a complete description of the state of the art of statistics
on manifolds we refer the interested reader to Patrangenaru and Ellingson [2015].

3.1 Riemannian manifolds: preliminaries and definitions

A manifold is a metric space which is locally homeomorphic to an Euclidean
space (see, e.g., Patrangenaru and Ellingson [2015]). Given a point Ψ in M,
we denote by TΨM the tangent space at Ψ to M. For a manifold to be Rie-
mannian, it means that, for every Ψ ∈ M, it is possible to define a bilinear
form κ(Ψ) : TΨM×TΨM→ R, called Riemannian structure, that is symmetric,
positive definite and depends smoothly on Ψ. Then, TΨM is a Hilbert space
when equipped with the inner product 〈·, ·〉Ψ = κ(Ψ)(·, ·). If the manifoldM is
connected (i.e., it cannot be expressed as disjoint union of two non-empty open
subset), the Riemannian structure (and hence the inner product on the tangent
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space) induces a metric on the manifoldM, in the following way. Let P(Ψ1,Ψ2)
be the set of piecewise differentiable curves c : [0, 1] →M such that c(0) = Ψ1

and c(1) = Ψ2. The (kinetic) energy functional E : P(Ψ1,Ψ2) → R, is defined
by

E(c) =
1

2

ˆ 1

0
κ(c(t))

(dc(t)

dt
,
dc(t)

dt

)
dt =

1

2

ˆ 1

0

∥∥∥∥dc(t)

dt

∥∥∥∥2

c(t)

dt.

Here the norm ||a||c(t) =
√
〈a, a〉c(t) is the one induced by the inner product on

Tc(t)M. A geodesic from Ψ1 to Ψ2 is the path g in P(Ψ1,Ψ2) that minimises the
energy functional and the geodesic distance dR between Ψ1 and Ψ2 is the length
of this path, i.e.

dR(Ψ1,Ψ2) =

ˆ 1

0

∥∥∥∥dg(t)

dt

∥∥∥∥
g(t)

dt.

For the scope of this work, we also assume that the manifoldM is geodesically
complete, i.e. for any pair of points Ψ1,Ψ2 ∈ M it exists a geodesic joining
Ψ1 and Ψ2. Then, from the theory of second order differential equations, it
follows that for every pair (Ψ0, Y ) inM× TΨ0M, there exists a unique geodesic
curve g(t) such that g(0) = Ψ0 and dg

dt (0) = Y . In this context, one can define
exponential and logarithmic maps, that, based on g, associate objects in TΨ0M
with objects in M and viceversa. The exponential map is defined as a smooth
function from TΨ0M toM, that maps a tangent vector Y ∈ TΨ0M, to the point
at t = 1 of the geodesic starting in Ψ0 with direction Y , i.e.,

expΨ0
(Y ) = g(1).

The exponential map is invertible in a neighbourhood of 0; we denote its inverse
as the logarithmic map logΨ0

(Ψ) which returns the tangent point Y in t =
0 associated with the geodesic such that g(0) = Ψ0 and g(1) = Ψ. Figure
1 shows a visualisation of these latter notions. Locally, the geodesic passing
through Ψ0 and Ψ is represented by a line going through the origin, i.e. g(t) =
t logΨ0

(Ψ) and the distance with respect to Ψ0 is preserved as dR(Ψ0,Ψ) =√
〈logΨ0

(Ψ), logΨ0
(Ψ)〉Ψ0 .

We can then look at the largest domain for which expΨ0
(·) is a diffeomor-

phism. Let t0 be the largest t for which the geodesic g is minimising the path
length between Ψ0 and g(t), then g(t0) is called a cut point and the set of all
cut points for all the geodesics starting from Ψ0 is called the cut locus C(Ψ0).
The set of tangent vectors T C(Ψ0) such that C(Ψ0) = expΨ0

(T C(Ψ0)) is called
tangent cut locus and the maximal definition domain for the exponential map is
the domain that contains 0 and is delimited by the tangent cut locus.

We refer the reader to [Lee, 2012] for further details on the definitions and
on the properties of Riemannian manifolds; the Riemannian manifolds of covari-
ance and correlation matrices are further detailed in Subsections 5.1 and 5.2,
respectively.
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Figure 1: Representation of exponential and logarithmic maps.

3.2 Random elements in a Riemannian manifold

Let us now consider a random variable X taking value on the Riemannian man-
ifold M, i.e. a measurable map on a probability space (Ω,F ,P) into (M,B),
where B is the Borel sigma-algebra generated by the open subsets of M. The
probability distribution PX on B associated to X can be defined as PX (B) =
P(X−1(B)), for B in B. We can then define the moments of this random vari-
able via a Fréchet function based on the Riemannian distance dR. For example,

F(Ψ) =

ˆ
d2
R(Ψ, x)PX (dx), (1)

for each Ψ ∈ M. The minimiser(s) of F is called Fréchet mean (set) or the
intrinsic mean (set) of X . It was first defined by Fréchet [1948] as the set of global
minima of the variance in a general metric space and later used to summarise data
points on Riemannian manifolds by Karcher [1977]. If the F(Ψ) is finite for some
Ψ, then the intrinsic mean set is non empty. The conditions for the intrinsic mean
to be unique are more restrictive. The minimum is unique for simply connected
Riemannian manifolds of non-positive curvature (see, e.g., Pennec [2006], for
more details). This is the case for example of the manifold of positive definite
matrices described in Section 5.1. There are also alternative conditions that
guarantee the intrinsic mean to be unique if the support of the random variable
X is localised, see Karcher [1977] and Kendall [1990] for the technical details. For
the purpose of the random domain decomposition algorithm, this would require
to define tiles that are small enough so that the variation of the data within the
tile is also small.

If the Fréchet function (1) of X is finite, its local minima (and therefore also
its global minimum, the Fréchet mean) can be characterised in the following way
(Pennec [2006]). Let A be the set of points where the cut locus has non zero
probability measure, then any local minimum Ψ of the Fréchet function is such
that either Ψ ∈ A or E[logΨ(X )] = 0 if Ψ ∈ AC .

Given a sample X1, . . . ,Xn from the random variable X , it is possible to
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define the empirical equivalent of the Fréchet mean as the sample Fréchet mean

Ψ̂ = argmin
Ψ

n∑
i=1

d2
R(Xi,Ψ),

also called sample intrinsic mean. If the intrinsic mean exists and is unique,
the sample intrinsic mean is a consistent estimator. This is true even when the
intrinsic mean is not unique if we accept a broader definition of consistency,
see Bhattacharya and Patrangenaru [2003] for more details and an extensive
discussion of the properties of this estimator. In particular, the characterization
of local minima for the Fréchet function described above still holds when PX is
the empirical probability distribution generated by the observations. Now the set
A is given by the union of the cut loci for all the observed data points X1, . . . ,Xn
and, if the local minimum Ψ does not belong to A, then

∑n
i=1 logΨ(Xi) = 0.

3.3 A tangent space model for spatial manifold data

In the broad context of Subsection 3.2, a geostatistical framework for kriging
Riemannian data can be based on a tangent-space approximation.

We now denote by Xs1 , ...,Xsn the observations available at locations s1, ..., sn
inD, which are here interpreted as a partial observation of a random field {Xs, s ∈
D}, valued in a Riemannian manifoldM. Given a location s0 in D, we consider
the problem of performing spatial prediction of the unobserved element Xs0 . A
possible model for the random element Xs is

Xs(Ψs) = expΨs
{ms + δs} , s ∈ D, (2)

where Ψs is a point inM, ms is the mean in TΨsM and δs a zero-mean process
in TΨsM.

Specializing model (2), one may derive a variety of statistical methods for
manifold data. For instance, the geodesic regression model in Fletcher [2013]
falls within this framework for the case of independent errors and a specific
parametric model for Ψs. For the case we are considering in this work, it is
of particular relevance the geostatistical model described in Pigoli et al. [2016],
which is a special case of model (2), with the further assumptions that (i) the
tangent point Ψs is spatially constant (i.e., Ψs = Ψ for s ∈ D), (ii) the mean
ms is described by a linear model in TΨsM, ms = A

(−→
f (s),−→a

)
, with scalar

regressors
−→
f (s) = (f0(s), ..., fL(s))T and coefficients −→a = (a0, ..., aL), al ∈ M,

l = 0, ..., L, and (iii) the stochastic process of the residuals {δs, s ∈ D} is second-
order stationary in the sense of [Menafoglio et al., 2013], with trace-variogram

2γ(si − sj) = E[‖δsi − δsj‖2Ψ], for si, sj ∈ D. (3)

We recall that, in the Hilbert setting, the trace-variogram (3) describes the global
second order properties of the field; as such, it plays the same key role as its
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classical counterpart [e.g., Cressie, 1993]. Although model (2) is quite general, it
should be noted that its specialization to the model of [Pigoli et al., 2016] allows
to accurately represent the geometry of the data only locally on the manifold
(i.e., in a neighborhood of Ψ). Thus, it is apt to describe fields characterized
by a limited variability on the manifold. Further, as in the case of Hilbert
data [Menafoglio et al., 2013], the model of [Pigoli et al., 2016] may capture the
possible non-stationarity of the field only by modeling the drift through the term
A(
−→
f (s),−→a ), the residuals being assumed stationary.
We here aim to develop a methodology to allow for (i) a high degree of vari-

ability of the data on the manifold; (ii) a strong non-stationarity of the field; (iii)
a possible complex domain topology which hinders the use of state-of-the-art
geostatistical approaches for manifold data. To cope with all these issues jointly,
we here consider model (2) to hold only in local spatial neighborhoods. In prac-
tice, following the strategy originally proposed by Menafoglio et al. [2018], our
approach is based on the idea of using random decompositions of the domain to
define the latter system of neighborhoods, estimate the local model conditionally
on the RDD, and perform the kriging predictions accordingly. The next section
provides a complete description of the proposed procedure.

4 RDD for manifold data

The methodology we propose follows a bagging strategy [Breiman, 1996]. In
the bootstrap step, the domain is randomly decomposed in subdomains where
local tangent-space models are formulated and estimated. These models are used
to provide a prediction conditional on the RDD. In the aggregation stage, the
results of the bootstrap iterations are aggregated to provide a final prediction
result. In the following paragraphs we detail the methodological proposal as well
as the modeling choices of this work.

4.1 Bootstrap stage

Local tangent-space approximations We call P an RDD of the domain D
in K tiles, and denote by P a realization of P. For simplicity, we here follow
the proposal of Menafoglio et al. [2018], and consider as P a random Voronoi
tessellation induced by a set of K centers ΦK = {c1, ..., cK} randomly drawn
among the observation sites {s1, ..., sn}:

V (ck|ΦK) = {s ∈ D : d(s, ck) ≤ d(s, cj), for all cj ∈ ΦK , j 6= k}, (4)

with d a distance on D. Note that d should be a distance properly representing
proximity in D; in case of domains with a complex topology, d could thus be
different from the Euclidean distance. We remark that other systems of partitions
can be considered as well. For instance, if prior knowledge is available on possible
discontinuities in the spatial distribution of the field, this should be formalized
by building P accordingly.
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Given P = P , we call D1, ..., DK the K tiles identified by the partition P . In
each tile Dk, k = 1, ...,K, we model the field as in Pigoli et al. [2016]. Indeed, for
s ∈ Dk we consider model (2), and set the tangent point Ψs to be constant, i.e.,
Ψs = Ψk, for k = 1, ...,K. In view of our application, hereafter we assume that
the mean is constant within the tile Dk, i.e., ms = mk for s ∈ Dk. Nonetheless, if
covariates

−→
f (s) are available, these can be incorporated by further modeling the

drift term, e.g., in a linear model ms = A
(−→
f (s),−→a

)
as in [Pigoli et al., 2016].

We denote by 2γ(si, sj ; k) the trace-variogram of the residuals within the tile.
By virtue of the stationary assumption within the tile, the latter trace-variogram
reads

2γ(si − sj ; k) = E[‖ logΨk
(Xsi)− logΨk

(Xsj )‖2Ψk
], si, sj ∈ Dk. (5)

Note that the viability of the stationarity assumption may depend on the size of
the tiles; here, the distribution P of the RDD is relevant to control the degree of
locality of the model.

We also remark that definition (5) strongly depends on the metric used in
the tangent-space, which in turn depends on Ψk. In fact, model (2) entails
the use of a different Hilbert metric for the observations of the field relative to
locations in Dk, k = 1, ...,K, each metric being chosen as to best represent the
geometrical structure of the elements in the tile. This flexibility clearly allows
for an enhanced characterization of the geometry of the Riemannian manifold
with respect to previous works, which may be particularly relevant for data
characterized by a large variability inM.

Model Estimation Conditional on the RDD Given a realization of the
RDD, we here propose to estimate model (2) in two steps: (i) estimate the local
tangent point Ψ̂k, k = 1, ...,K, (ii) given Ψ̂k, estimate a model for the spatial
dependence in H

Ψ̂k
, k = 1, ...,K.

For k = 1, ...,K, we propose to estimate Ψk via the intrinsic mean of the
observations within the tile Dk, i.e., as

Ψ̂k = argmin
Ψ∈M

∑
si∈Dk

d2
R(Ψ,Xsi), (6)

where dR(·, ·) denotes the Riemannian distance in M, i.e. estimator (6) is the
sample Fréchet mean (or the sample intrinsic mean) of the data within the tile.
In general, no explicit expression for the sample intrinsic mean is available, but
the latter can be found by implicit optimization routines.

Given Ψ̂k, we estimate the model for the spatial dependence in the Hilbert
space H

Ψ̂k
by extending the ideas of Menafoglio et al. [2018]. By virtue of sta-

tionarity in Dk, we estimate the trace-semivariogram γ(·; k) via a geographically
weighted estimator as

γ̂(h; k) =

∑
N(h)K(ck, si)K(ck, sj)‖ log

Ψ̂k
(Xsi)− log

Ψ̂k
(Xsj )‖2Ψ̂k

2
∑

N(h)K(ck, si)K(ck, sj)
, (7)

9



where N(h) = {(si, sj) ∈ D × D : h − ∆h ≤ si − sj ≤ h + ∆h}, and K is a
kernel function. Although Menafoglio et al. [2018] use a Gaussian kernel (i.e.,
Kε(s1, s2) = exp{−d2(s1, s2)/(2ε2)}), different choices are indeed possible. One
may also opt for a trivial kernel which associates weight 1 to the observations
within the tile, and 0 otherwise; in this case, the estimate γ(·; k) would only
be based on the pairs within Dk. In general, estimator (7) will down-weight
the contribution of pairs whose locations are far from the center of the tile.
This is consistent with the local nature of the tangent-space approximation as
well as of the stationarity assumption. Nonetheless, estimator (7) allows to
borrow strength from neighboring tiles, thus increasing its robustness in tiles
of small size. Whatever the choice of the kernel, to guarantee the validity of
the estimated variogram, a parametric valid model (e.g., spherical, exponential,
Matérn) γ(·; θ, k) should be fitted to γ̂(·; k) (e.g., by least squares). The final
estimate of the spatial dependence within Dk, γ(·; θ̂, k) can be then used for the
purpose of prediction of the unobserved element Xs0 .

Kriging Conditional on the RDD Given the estimated variogram model,
we build the optimal predictor for Xs0 , s0 ∈ Dk, as the image inM of the kriging
predictor in H

Ψ̂k
under model (2) restricted to Dk. This is defined as

X ∗s0 = exp
Ψ̂k

(
n∑
i=1

λ∗i · logΨ̂k
(Xsi)1{si ∈ Dk}

)
, (8)

where 1 is the indicator function, and the weights λ∗1, . . . , λ∗n ∈ R minimize

E

∥∥∥∥∥logΨ̂k
(Xs0)−

n∑
i=1

λi · logΨ̂k
(Xsi)1{si ∈ Dk}

∥∥∥∥∥
2

Ψ̂k


subject to (9)

E

[
n∑
i=1

λi · logΨ̂k
(Xsi)1{si ∈ Dk}

]
= mk,

over λ1, . . . , λn ∈ R. The solution of system (4.1) exists and it is unique; it can be
explicitly found by solving a linear system that only depends on the (estimated)
trace-semivariogram γ(·; θ̂, k). For further details on kriging in Hilbert spaces
we refer the reader to [Menafoglio et al., 2013, Menafoglio and Petris, 2016,
Menafoglio and Secchi, 2017].

4.2 Aggregation stage

The result of the bootstrap iterations is a set of kriging predictions {X ∗bs0 }
B
b=1.

Each of these predictions is obtained conditioned on the realization of the RDD,
and it is relative to the model (2) estimated from that iteration. To obtain a
final prediction at location s0 one needs to aggregate this ensemble of predictors,
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to obtain a final strong result out of the B weak results of the bootstrap stage.
For this purpose, we here propose to use the intrinsic mean of the ensemble, that
is

X ∗s0 = argmin
x∈M

B∑
b=1

d2
R(x,X ∗bs0 ). (10)

Weighted versions of (10) can be considered to associate a different weight to
each iteration; this latter approach is not pursued further here.

The pseudo-code of the proposed computational method is displayed in Figure
2. In Section 5 we shall detail two paradigmatic examples of manifold data,
namely covariance and correlation matrices, and embed the general proposed
framework in these geometries, that are particularly relevant for the applications.

Manifold Kriging via RDD

Initialization.
Set the parameters 1 ≤ K ≤ n, B ≥ 1, a kernel K with its parameters,
a valid variogram model, a metric d for the spatial domain D and the
target location s0.

Bootstrap step.
for b := 1 to B do

Step 1. Draw a realization of P.
Randomly generate a set of nuclei ΦK = {c1, . . . , cK} among
the observed sites s1, ..., sn ∈ D; define the Voronoi cells
{V (ck|ΦK)}Kk=1 by assigning each site s to the nearest nucleus ck,
according to the metric d.

Step 2. For each Voronoi cell Dk: estimate the tangent point Ψk as
in (6); estimate the semivariogram γ̂(h; k), by means of (7); fit
the parametric valid model to the empirical estimate and obtain
γ(·; θ̂, k).

Step 3. For s0 ∈ Dk, obtain the kriging prediction X ∗bs0 , as in (8).

end for.

Aggregation step.
For s0 ∈ D, compute the final prediction (RDD-MK predictor) by aggre-
gating the B predictions as their intrinsic mean

X ∗s0 = argmin
X∈M

B∑
b=1

d2R(X ,X ∗bs0 ).

Figure 2: Pseudocode scheme of the algorithm for Manifold Kriging through
Random Domain Decomposition (RDD-MK).
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5 Two paradigmatic examples

5.1 The space of covariance matrices

We detail here our method in the special case where the Riemannian manifoldM
is the space PD(p) of the p× p symmetric positive definite matrices. The space
Sym(p) of the p×p symmetric matrices is a Hilbert space that is usually equipped
with the Frobenius inner product 〈Y1, Y2〉Sym(p) = trace(Y T

1 Y2), which induces

the well-known Frobenius norm ||Y ||Sym(p) =
√

trace(Y TY ) =
√∑

i,j Y
2
i,j . The

additional constraint on the matrices to be positive definite makes instead the
space PD(p) a non Euclidean space, even if it can be embedded in Sym(p).
Different metrics have been proposed to measure differences between positive
definite matrices [Dryden et al., 2009] but a natural choice is a metric that
is invariant under affine transformation. Such a metric is obtained as follows.
The tangent space TΨ0PD(p) at each point Ψ0 ∈ PD(p) can be identified
with Sym(p), but we now equip Sym(p) with the inner product 〈Y1, Y2〉Ψ0 =

〈Ψ−1/2
0 Y1Ψ

−1/2
0 ,Ψ

−1/2
0 Y2Ψ

−1/2
0 〉Sym(p) = trace(Ψ−1

0 Y1Ψ−1
0 Y2) which depends on

the point Ψ0 on the manifold where the tangent space is attached. For every pair
(Ψ0, Y ) ∈ PD(p)× Sym(p), there is a unique geodesic passing through Ψ0 with
tangent vector Y and it has expression g(t) = Ψ

1/2
0 exp(tΨ

−1/2
0 YΨ

−1/2
0 )Ψ

1/2
0 ,

where exp(·) denotes the matrix exponential and t is the curve parameter. The
corresponding geodesic distance between Ψ1,Ψ2 ∈ PD(p) is then the affine-
invariant metric dR(Ψ1,Ψ2) = || log(Ψ

1/2
1 Ψ2Ψ

1/2
1 )||Sym(p), with log(·) being the

logarithm matrix and || · ||Sym(p) the Frobenius norm. The exponential map
expΨ0

(Y ) in Ψ0 applied to Y is the geodesic curve passing through Ψ0 with
tangent vector Y evaluated for t = 1, i.e.

expΨ0
(Y ) = Ψ

1/2
0 exp(Ψ

−1/2
0 YΨ

−1/2
0 )Ψ

1/2
0

and its inverse is the logarithmic map

logΨ0
(Ψ) = Ψ

1/2
0 log(Ψ

−1/2
0 ΨΨ

−1/2
0 )Ψ

1/2
0 .

A complete description of the Riemannian geometry of PD(p), with proofs
of the above statements, can be found, e.g., in Moakher and Zéraï [2011].

We shall now illustrate the explicit expressions to apply the RDD-MKmethod
discussed in Section 4, when the Riemannian manifoldM is PD(p). The random
observations Xs1 , ...,Xsn in PD(p), at locations s1, . . . , sn in D, are assumed to
be a partial observation of the random field {Xs, s ∈ D} valued in PD(p). In
the k-th tile Dk, k = 1, ...,K, we represent the random field as

Xs(Ψk) = expΨk
{mk + δs} = Ψ

1/2
k exp(Ψ

−1/2
k (mk + δs)Ψ

−1/2
k )Ψ

1/2
k ,

with Ψk ∈ PD(p) and mk, δs ∈ Sym(p).
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At each iteration of the bootstrap algorithm, the point Ψk in the k-th tile is
estimated as the sample Fréchet mean of the observations within the k-th tile,
i.e.,

Ψ̂k = argmin
Ψ∈PD(p)

∑
si∈Dk

‖ log(Ψ1/2XsiΨ1/2)‖2Sym(p), (11)

Note that the sample Fréchet mean is uniquely defined for a sample of observa-
tions belonging to PD(p), as shown in Moakher [2005]. The stationary trace-
variogram (3) for the transformed field logΨk

(Xsi) in this context reads

2γ(si − sj ; k) = E[‖ logΨk
(Xsi)− logΨk

(Xsj )‖2Ψk
] =

= E[trace((Ψ
−1/2
k (logΨk

(Xsi)− logΨk
(Xsj ))Ψ

−1/2
k )2)].

Its geographically-weighted estimator (7) is then found as

γ̂(h; k) =

∑
N(h)K(ck, si)K(ck, sj)[trace((Ψ̂

−1/2
k (logΨ̂k

(Xsi)− logΨ̂k
(Xsj ))Ψ̂

−1/2
k )2)]

2
∑

N(h)K(ck, si)K(ck, sj)
=

=

∑
N(h)K(ck, si)K(ck, sj)[‖ logΨ̂k

(Xsi)− logΨ̂k
(Xsj )‖2Ψ̂k

]

2
∑

N(h)K(ck, si)K(ck, sj)
. (12)

where Ψ̂k is defined in (11). Finally, given the bootstrap kriging predictors
{X ∗bs0 }

B
b=1, the final RDD-MK predictor is found as their intrinsic mean in PD(p),

i.e.,

X ∗s0 = argmin
x∈PD(p)

B∑
b=1

‖ log(x1/2X ∗bs0 x
1/2)‖2Sym(p). (13)

5.2 The space of correlation matrices (and the hypersphere)

As a second example we consider the space of correlation matrices. While in
recent years there has been much interest in the statistical analysis of positive
definite matrices [see, e.g., Dryden et al., 2009, Yuan et al., 2012], little attention
has been devoted to the case of the space R of correlation matrices. These
form a subset of the space of positive definite matrices, defined by the additional
constraint of having ones on the diagonal. This additional constraint entails
that it is not possible to use the geometry described in the previous subsection
to deal with correlation matrices. For example, the geodesic in PD(p) between
two correlation matrices is not bounded to be in the space of correlation matrices
and the local tangent approximation is not guaranteed to return valid correlation
matrices. Therefore, one needs to use a different space to carry out statistical
analysis for correlation matrices.

It is possible to identify the space of full rank correlation matrices of di-
mension p with a specific set of p × p upper triangular matrices, the Cholesky
manifold, whose properties have been studied by Grubišić and Pietersz [2007]
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in the context of rank reduction in the estimation of a correlation matrix. The
Cholesky manifold is defined as

Chol(p) = {H ∈ Rp×p : Hij = 0 if j < i; H11 = 1, ||H(i)||Ri = 1},

where H(i) denotes the vector of the first i elements of the i-th column of H
(the remaining elements being 0 by definition). This means that (i) if H ∈
Chol(p), the i-th column of H can be identified with an element of the i-th
dimensional hypersphere Si with radius 1, and (ii) Chol(p) is a product manifold
with Chol(p) = e1 ⊗

∏p
i=2 S

i, e1 being the p-dimensional vector such that e11 =
1 and e1i = 0 for i = 2, . . . , p. The geometry of the Cholesky manifold is
therefore inherited from the geometry of the (hyper)spheres, since geodesic curves
on the product manifold are tensor product of geodesic curves on the spheres.
In the following, we discuss how to apply the proposed method to the Cholesky
manifold but the same tools can of course be used to analyse data belonging to
a hypersphere.

The key motivation to introduce the Cholesky manifold is that it has a
one-to-one correspondence with the space of correlation matrices, since for any
H ∈ Chol(p), R = HTH is a correlation matrix and for any correlation matrix
R, it exists H ∈ Chol(p) such that R = HTH [see Grubišić and Pietersz, 2007].
Moreover, since R is a positive definite matrix, there is a unique Cholesky factor-
ization such that R = HTH, thus defining a bijection between the two spaces. In
the following, we will denote with Ch(R) the unique Cholesky factor such that
R = Ch(R)TCh(R). For example, in the case of 2× 2 correlation matrices,

R =

(
1 ρ
ρ 1

)
, H = Ch(R) =

(
1 ρ

0
√

1− ρ2

)
.

We can therefore map the sample of correlation matrices to the Cholesky
manifold, use the geometry of the manifold to carry out the analysis and then
map back the predicted field to the space of correlation matrices.

Riemannian structure of hyperspheres Let us first recall that the hyper-
sphere Sq = {z ∈ Rq : ||z||Rq = 1} can be equipped with a Riemannian manifold
structure by considering it as a Riemannian submanifold of the embedding Eu-
clidean space Rq with the usual inner product 〈x,y〉Rq = xTy, x,y ∈ Rq. The
tangent space to Sq in z is TzSq = {y ∈ Rq : 〈z,y〉Rq = 0}, i.e. the set of
vector orthogonal to z, which can be equipped with the usual inner product in
Rq. The geodesic curve passing through z0 ∈ Sq in direction y ∈ TzSq,y 6= 0
has expression

expz0
(ty) = cos(t||y||Rq)z0 + sin(t||y||Rq)

y

||y||Rq
.

For t = 1, we get the exponential map

expz0
(y) = cos(||y||Rq)z0 + sin(||y||Rq)

y

||y||Rq
.
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The geodesic distance between two elements z0 and z in Sq is the great circle
distance

dSq(z0, z) = arccos(〈z0, z〉Rq).

By inverting the exponential map, we obtain the logarithmic map

logz0
(z) =

dSq(z0, z)

||Pz0(z− z0)||Rq
Pz0(z− z0),

where Pz0(x) = x − 〈z0,x〉Rqz0 is the projection of an element x ∈ Rq into the
tangent space Tz0S

q.

Riemannian structure of Chol(p) We can extend the latter definitions to
the Cholesky manifold by acting individually on each vector H(i) of the Cholesky
matrix H, for i = 2, . . . , p. Let us define a map R : R⊗

⊗p
i=2 S

i → Chol(p) such
that

R(H(1), H(2), . . . ,H(p)) = H =


H11 = H(1)

Hij = 0 if i > j

Hij = H
(i)
j otherwise .

The tangent space in a point H ∈ Chol(p) is THChol(p) =
⊗p

q=2 TH(q)Sq, i.e., if
X ∈ THChol(p), then X is an upper triangular matrix p× p such that X11 = 0
and X(q) ∈ TH(q)Sq for q = 2, . . . , p, where X(q) again denotes the vector of
the first q elements of the q-th column of X. The geodesics on Chol(p) passing
through H in direction X have the form

expH(tX) = R
(
1, expH(2)(tX(2)), . . . , expH(p)(tX(p))

)
,

where expH(q)(txq) denotes the geodesic on Sq. The exponential and logarithmic
maps are therefore

expH(X) = R
(
1, expH(2)(X(2)), . . . , expH(p)(X(p))

)
,

and
logH(Z) = R

(
0, logH(2)(Z(2)), . . . , logH(p)(Z(p))

)
respectively, logH(q)(Z(q)) denoting the logarithmic map in Sq and H(q), Z(q)

being the vectors of the first q elements of the q-th column of H and Z. The
geodesic distance between H and Z in Chol(p) is

dChol(p)(H,Z) =

√√√√ p∑
q=2

d2
Sq(H(q), Z(q)). (14)
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RDD-MK with correlation matrices The RDD-MK algorithm in the case
of correlation matrices works as follow. The random correlation matrix Rs at
location s ∈ Dk is decomposed in the random Cholesky factors Rs = X Ts Xs,
Xs ∈ Chol(p). Each factor is modelled in the k-th tile as

Xs(Ψk) = expΨk
{mk + δs},

where expΨk
(·) denotes the exponential map on the Cholesky manifold in Ψk and

mk, δs ∈ TΨk
Chol(p).

At each iteration of the bootstrap algorithm, the point Ψk in the k-th tile
can be estimated as the intrinsic mean of the observations within the k-th tile,
i.e.

Ψ̂k = argmin
Ψ∈Chol(p)

∑
si∈Dk

d2
Chol(p)(Ψ,Xsi),

where d2
Chol(p)(·, ·) is defined in (14).

However, for the case of (hyper)spheres – and, as a consequence, of the
Cholesky manifold – unicity of the intrinsic mean is guaranteed only if the sup-
port of the distribution is not too large. While this can in principle be obtained
by considering a smaller tile, the price to pay on the accuracy in the estimation
of the spatial dependence may be too high. In this case, it is possible to use the
sample extrinsic mean as tangent point Ψk. This is obtained by computing the
arithmetic mean for the column vectors and then projecting them on the sphere,
i.e., rescaling each column vector to have norm 1.

The stationary trace-variogram (3) for the transformed field logΨk
(Xs) ∈

TΨk
Chol(p) is then

2γ(si − sj ; k) =E[‖ logΨk
(Xsi)− logΨk

(Xsj )‖2TΨk
Chol(p)] =

=E

 p∑
q=2

‖(logΨk
(Xsi)− logΨk

(Xsj ))(q)‖2Rq

 ,
where ‖x‖2TΨk

Chol(p) = 〈x, x〉TΨk
Chol(p). Similarly, its empirical estimator in (7)

reads

γ̂(h; k) =

∑
N(h)K(ck, si)K(ck, sj)‖ logΨk

(Xsi)− logΨk
(Xsj )‖2TΨk

Chol(p)

2
∑

N(h)K(ck, si)K(ck, sj)
, h ∈ Rd.

Given the bootstrap kriging predictors {X ∗bs0 }
B
b=1, the final RDD-MK predic-

tor is found as their intrinsic mean as

X ∗s0 = argmin
x∈Chol(p)

B∑
b=1

d2
Chol(p)(x,X

∗b
s0 )

and the corresponding correlation matrix is R∗s0 = (X ∗s0)TX ∗s0 .
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Figure 3: Realization of a locally stationary random field in PD(2) on a C-
shaped domain. Positive definite matrices are represented through the associated
quadratic form. Grey ellipses represent a sub-sample of the reference realization,
thick black ellipses represent the sampled observations.

6 Two simulation studies

6.1 Covariance matrices over a C-shaped domain

We here illustrate a simulation study to test the performances of the RDD-MK
methodology described in Section 4, in the case of PD(p), with p = 2.

The spatial domain we consider is the C-shaped domain of Ramsay [2002],
Wood et al. [2008], Sangalli et al. [2013], Menafoglio et al. [2018, and references
therein], which is represented in Figure 3. Inspired by the non-stationary field
considered by these authors, we generate a random realization of a field in PD(2)
over the C by following three steps, namely (i) construction of a grid of tangent
points Ψs, (ii) construction of a zero-mean locally stationary process {δs, s ∈ D}
and a drift A(s) in Sym(p), and (iii) combination of the results to build {Xs, s ∈
D} as

Xs = expΨs
(A(s) + δs), s ∈ D. (15)

In all these steps, the construction is made on a fine grid over a rectangular
planar domain (ϕ, r), and then the planar coordinates are mapped into the C by
using (ϕ, r) as centerline and radius coordinates along the C, finally obtaining
a grid G of 1582 points on the C domain. Although this generating procedure
might be seen as an ad hoc technique for this domain, generating random fields
on non-Euclidean domains is still an open challenge in geostatistics, due to the
absence of valid variogram models (see, e.g., Curriero [2006]). Note that the
dimensions of the rectangle (i.e., the ranges for ϕ, r) are set as to obtain a C
inscribed in the cartesian rectangle [−1, 3.5]× [−1.1, 1.1].
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The elements Ψs are here built as Ψs = 0.5 · α(s) · expΣ{A(s)}, with

Σ =

(
2 1
1 2

)
A(s) =

(
0.5 0.4
0.4 0.5

)
φ+

(
0.2 −0.1
−0.1 0.2

)
· (φM − φ) +

(
−0.2 0.1
0.1 0.4

)
· r,

(16)

α(s) =

(
0.1 +

ϕM − ϕ
ϕM

)1/2

for s = (ϕ, r), ϕ ∈ [0, ϕM ], ϕM = 8.88, and r ∈ [−0.5, 0.5]. The locally station-
ary random field in Sym(2), {δs, s ∈ D}, is generated by simulating its matrix

elements δ
(ij)
s , i, j = 1, 2 as follows. First, the elements δ̃

(11)

s , δ̃
(12)

s , δ̃
(22)

s are
sampled from three independent zero-mean Gaussian stationary random fields,
with spherical variogram of range ρ = 10 and sill σ2 = (3.75)2, and by symmetry

δ̃
(21)

s = δ̃
(12)

s . The elements δ(ij)
s , i, j = 1, 2, are then built as δ(ij)

s = α(s)2δ̃
(ij)

s .
Note that the latter construction entails a non-stationary covariance model. In-
deed, the process variance slowly varies with s, according to α(s)2. Finally the
random process is built as in (15), by using the drift A(s) in (16). The results are
represented as grey ellipses in Figure 3, where matrices are represented through
the ellipses generated by the associated quadratic forms. Here, the direction of
the axes were determined as the matrix eigenvectors, the length of the semi-axes
set proportional to the square-root of the eigenvalues, and the ellipses’ radius
fixed to 0.02 for representation purposes.

To test the performances of the RDD-MKmethod, we randomly draw n = 100
locations, uniformly in the C-shaped domain. The selected observations are
depicted as thick black ellipses in Figure 3. Graphical inspection of Figure 3
suggests the existence of an evident trend in the data, which follows the shape of
the C. Indeed, the model parameters slowly vary as a function of the centerline
and of the radius of the C. However, an abrupt discontinuity would be observed
if moving from one branch to the other through the boundaries of the C. This
motivates the use of a non-Euclidean distance to build the Voronoi tessellations
(4), similarly as in [Menafoglio et al., 2018].

To compute the latter distance, the non-Euclidean metric in the C is here
approximated through the graph-distance (shortest path on the graph) among
locations induced by a Delaunay triangulation [Hjelle and Dæhlen, 2006] with
vertices in the data locations (Figure 4). The finer the Delaunay triangulation,
the better the graph distance approximates the geodesic distance between points
within the C. A similar idea is used in [Menafoglio et al., 2018].

For the variogram estimation, we consider a Gaussian kernel Kε, with band-
width ε = 1.5. The latter parameter is set as to balance the trade-off between
the locality of the results and the stability of the algorithm. A spherical model
with nugget is considered as a parametric valid model for the variogram. The
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Figure 4: Representation of the C-shaped domain through a Delaunay triangu-
lation. Black points indicate data locations, blue points indicate the point used
to define the domain border.

number of bootstrap iteration is set to B = 100 and the prediction performances
tested for values of K in {1, 2, 4, 6, 8, 10}. Note that the case K = 1 coincides
with the model of [Pigoli et al., 2016].

The results of the RDD-MK algorithm for K = 1, 2, 4 are shown in Figure 5,
which displays the predictions obtained on the same grid G used for generating
the data. Figure 6 reports the errors with respect to the reference realization,
computed as dR(Xs0 ,X ∗s0), Xs0 denoting the reference realization at s0 ∈ G.
Both figures suggest that a significant improvement is obtained when moving
from K = 1 to K = 2, supporting the use of an RDD algorithm. Indeed,
when K = 1 the method cannot account for the non-stationary behavior of the
data, particularly at the boundary separating the two branches of the C. Here,
increasing K enables to better account for the shape of the domain, avoiding to
incorrectly combine the information in the different parts of the domain.

To further test the prediction performances of RDD-MK, we perform a Monte
Carlo study. For 30 subsamples randomly drawn from the realization depicted
in Figure 3, we repeat the same procedure detailed before, i.e., domain repre-
sentation and RDD-MK prediction with the same parameter settings. For the
j-th subsample, j = 1, 2, ..., 30, the prediction error is computed on the grid, i.e.,
SPE(s0, j,K) = dR(Xs0 ,X

∗(j,K)
s0 ), s0 ∈ G, K ∈ {1, 2, 4, 8, 10}. Each error map is

then summarized by its average MSPE(j,K) =
∑

s0∈G dR(Xs0 ,X
∗(j,K)
s0 )/|G|, |G|

denoting the cardinality of G. Figure 7 reports the boxplot of MSPE(·,K), for
K ∈ {1, 2, 4, 6, 8, 10}, whereas Table 1 reports its mean, median and standard
deviation. These results confirm a clear improvement of the prediction perfor-
mances when using RDD-MK (K ≥ 2) with respect to the stationary case of
[Pigoli et al., 2016] (K = 1). Although a clear elbow is visible at K = 2, the
best results – in terms of MSPE – are obtained for K = 4. No improvement is
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(c) K = 4

Figure 5: Spatial prediction via RDD-MK. Predicted covariance matrices are rep-
resented as ellipses. Predictions refer to the same grid as the reference realization
in Figure 3.
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(b) K = 2
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(c) K = 4

Figure 6: Prediction error of RDD-MK method, computed as Riemannian dis-
tance between prediction and target, dR(Xs0 ,X ∗s0).
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Figure 7: Monte Carlo study on covariance matrices. Boxplots of the average
mean square prediction error, K ∈ {1, 2, 4, 6, 8, 10}.

K 1 2 4 6 8 10

Mean 0.3127 0.2433 0.2387 0.2413 0.2444 0.2482
Median 0.3073 0.2426 0.2365 0.2407 0.2427 0.2459
SD 0.0316 0.0180 0.0156 0.0156 0.0157 0.0167

Table 1: Monte Carlo study on covariance matrices. Mean, median and standard
deviation of the average mean square prediction error, for K ∈ {1, 2, 4, 6, 8, 10}.
The minimum over K is highlighted in bold.

attained by a further increase of K, due to the bias-variance trade-off affecting
the choice of this parameter.

6.2 Correlation matrices over a C-shaped domain

We here illustrate a second simulation study where the correlation matrices are
the objects of interest and we want therefore to use the geometry of the Cholesky
manifold in the random domain decomposition algorithm. Data are simulated on
the same C-shaped domain described in Section 6.1 and using the same generative
process to simulate 2 × 2 covariance matrices, which are then transformed into
the corresponding correlation matrices. These are then treated as the given data
objects. It is worth to notice that this means that even locally the generative
process does not coincide with the local tangent space model on the Cholesky
manifold that we are going to use in the algorithm, although we expect this to
be a useful approximation. We simulated the random field on the grid points
G of the C-shaped domain (see Section 6.1) for 30 times and for each of these
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replicates we randomly subsampled 100 grid points to be labelled as observed.
We then compute the Cholesky matrix for each of the observed correlation matrix
and we apply the RDD-MK algorithm for kriging described in Section 4, using
the Cholesky manifold geometry discussed in Section 5.2 and a varying number
of tiles. This results in the kriging prediction of the Cholesky matrices at each
grid point, from which the corresponding correlation matrices can be directly
obtained. Finally, we compute the prediction error by averaging over all the
unobserved locations the square Cholesky distance between the true (simulated)
value for the correlation matrix field and the prediction obtained from the random
domain decomposition algorithm. Alternatively, since we are in the special case
of the 2 × 2 matrices, we also compute the average square difference between
true and predicted correlation indices (i.e. the only out of diagonal element
of the correlation matrix). Figure 10 shows the boxplot of these two types of
errors across the simulated replicates for the various number of tiles set in the
algorithm. Both metrics suggest the use of K = 4 tiles for the kriging prediction
and this leads to a relevant decrease of the prediction error with respect to the
stationary case of [Pigoli et al., 2016] (K = 1). To investigate the reason for this
improvement, Figures 8 and 9 show the results (predicted field and prediction
error, respectively) for the first replicate in the simulation study for K = 1, 2 and
4. It can be again seen how the stationary approach suffers where the domain
is far from Euclidean and the global approach incorrectly combines information
from parts of the domain that are not close in the correct geometry. On the other
hand, the fact that there is a gain from using more than 2 tiles seems to suggest
that a more localised approach is necessary to account for the non Euclidean
nature of the data beyond what would be needed because of the complex topology
of the domain.

7 A case study: analysis of associations between
aquatic variables in the Chesapeake Bay

As an illustrative example, we here consider the spatial prediction of the asso-
ciation between aquatic variables in the Chesapeake Bay. This is the largest
estuarine systems in the United States and one of its most productive and com-
plex ecosystem, whose restoration and protection is in charge of the Chesapeake
Bay Program (CBP). Amongst the aquatic variables monitored by CBP, the con-
centration of dissolved oxygen (DO) in water is of particular interest, as it is key
to guarantee the life of most marine species. An RDD approach for the spatial
analysis and prediction of the probability density functions of DO in the Chesa-
peake Bay is reported in [Menafoglio et al., 2018]. It is widely recognized that
DO is influenced by temperature: for instance, the solubility of oxygen decreases
as the water temperature (WT) increases (negative correlation). We here aim to
study the spatial variation within the Bay of the variability of DO and of WT,
and of their covariation.
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(c) K = 4

Figure 8: Spatial prediction of correlation matrices via RDD-MK. Predicted
correlation matrices are represented as ellipses. Predictions refer to the same
grid as the reference realization in Figure 3.
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(c) K = 4

Figure 9: Prediction error for correlation matrices estimated via RDD-MK
method, computed as Riemannian distance between prediction and target,
dR(Xs0 ,X ∗s0).
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Figure 10: Boxplots of prediction errors for the correlation matrices field for
different values of the number of tiles used in the random domain decomposition
algorithm. Left: prediction errors computed using Cholesky distance. Right:
prediction errors computed as square difference between correlation.
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(a) Covariance matrices at the sampling
sites
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(b) Domain representation through con-
strained Delaunay triangulation

Figure 11: Chesapeake Bay data: covariance matrices between dissolved oxygen
and water temperature at the 144 data locations in the Bay. In panel (a) data
were represented through the ellipses generated by the associated quadratic forms
(radius of ellipses: 0.01).

The dataset we consider consists of the sample covariance matrices between
DO and WT estimated at 144 locations within the Bay. These were computed
on the basis of the joint measurements of (DO, WT) available at those loca-
tions along the period 1990-2006 [source: US Environmental Protection Agency
Chesapeake Bay Program (US EPA-CBP)]. Although the original database was
relatively large, a high number of missing data was present at several locations;
to control for the variability of the estimated covariance matrices, only the lo-
cations with more than 10 measurements were considered for the analysis. For
the purpose of this illustration, we assume the covariance matrices of the ran-
dom vector (DO, WT) to be constant over time, and we neglect the uncertainty
associated with their estimates. An in-depth analysis of these aspects could be
the scope of future work. Figure 11(a) reports the covariance matrices estimated
at the 144 data locations.

As noted by several authors (e.g., Jensen et al. [2006], Menafoglio et al.
[2018]), the complex topology of the Bay – characterized by irregular bound-
aries and non-convexities – prevents the use of a global stationary model for
the phenomenon based on a Euclidean metric for the spatial domain. Indeed,
the distance among sites at which aquatic variables are recorded should be mea-
sured in terms of water distance, rather than their Euclidean distance. For this
reason, we shall consider on the spatial domain the graph-distance based on a

26



K 1 2 4 6 8 10

Mean 0.501 0.527 0.519 0.508 0.497 0.486
Median 0.425 0.471 0.464 0.443 0.430 0.414

Table 2: Cross-validation results on the Chesapeake Bay case study, when the
data objects are covariance matrices. The entries are the mean and the median
of the square prediction error, assessed by leave-one-out cross-validation, for
K ∈ {1, 2, 4, 6, 8, 10}. The minimum over K is highlighted in bold.

mesh representation of the Bay, which provides an approximation of the water
distance among locations. We thus employ the simplified spatial domain used
in Menafoglio et al. [2018], and represent the latter spatial domain through a
constrained Delaunay triangulation with vertices at the spatial locations. To de-
fine the boundaries and refine the quality of the triangulation, additional vertices
were added (red and empty symbols in Figure 11(b)).

We thus applied the RDD-MK method to the covariance matrices, by using
the method detailed in Subsection 5.1 with a Gaussian kernel with bandwidth
ε = 100 for the variogram estimation. Figure 12 reports the results obtained
for K = 1, 6, 10, as aggregation of B = 100 bootstrap iterations. Results are
reported through the maps of the standard deviations of DO and WT, and the
map of the correlation between the two variables. Graphical inspection of Figure
12 suggests that the standard deviations predicted via RDD-MK with K = 6, 10
tend to be smaller than those obtained with K = 1, for both variables DO and
WT; these differences appear both in the main branch and in the lateral ones.
Regarding the correlations – which are all negative, as expected – those predicted
for K = 6, 10 are generally smaller, in absolute value, than those obtained with
K = 1. These differences appear especially in the main left branch, where predic-
tions for K = 1 seem to result from an inappropriate smoothing across the upper
and central left branches of the Bay. Note particularly that, by increasing K,
the results appear to better reflect the topology of the domain. Leave-one-out
cross-validation results, reported in Table 2, suggests a slight improvement of
predictions for K = 8, 10 with respect to K = 1. There is therefore some indica-
tion in favour of using a relatively large number of tiles, although we should take
these results with some care, since cross-validation is not completely reliable in
this context, because of the spatial dependence among data and the possible pres-
ence of influential data in the sampling design. We also remark that the choice
of K is informed by the number of available observations. Indeed, by increasing
K, the average size of the tiles is decreased. For the case study considered here
– which is based on a relatively small number of sites – using a number of tiles
higher than K = 10 is likely to be associated with a strong uncertainty in the
results. The three cases displayed in Figure 12 are thus representative of cases
of a low, moderate and high number of tiles.
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(c) K = 10

Figure 12: Prediction of covariance matrices between DO and WT in the Chesa-
peake Bay.
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(a) K = 6 (b) K = 10

Figure 13: Bootstrap variance of RDD-MK for covariance matrices between DO
and WT in the Chesapeake Bay.

Figure 13 reports the bootstrap variance associated with the predictions in
Figure 12, for K = 6, 10. The latter was computed as

ς2(s0) =
1

B

B∑
b=1

d2(X ∗,bs0 ,X
∗
s0),

where X ∗,bs0 is the kriging prediction at location s0 at iteration b, for s0 in D and
b = 1, ..., B, whereas X ∗s0 is the aggregated predictor. The bootstrap variance
provides indications on the areas of higher instability of the predictor along the
bootstrap replicates (for further discussion see Menafoglio et al. [2018]). Clearly,
for K = 1, the bootstrap variance is uniformly zero over the field. Inspection
of Figure 13 suggests that the regions of higher variability are located along
the areas of the main branch of the Bay, characterized by particularly irregular
boundaries, or in correspondence of isolated data within the left branches. These
areas may be associated with a more complex spatial structure or influent data
as in the left branches; similar results were also obtained by [Menafoglio et al.,
2018].

For the sake of comparison, Figure 14 displays the correlation indices pre-
dicted via RDD-MK when applied directly to the correlation matrices, by fol-
lowing the method of Subsection 5.2. Results are reported for K = 1, 6, 10 and
with the same parameter settings as before. Comparison of Figures 12 and 14
suggests that the results of the two analyses are indeed consistent.

8 Conclusion

This is a paper in Object Oriented Spatial Statistics (O2S2), where we presented
an operational strategy for the prediction of manifold data observed on a spatial
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(a) K = 1 (b) K = 6 (c) K = 10

Figure 14: Spatial prediction of the correlation between DO and WT via RDD-
MK applied on the correlation matrices.

domain, when spatial dependence is an important issue of the analysis.
In a previous work [Pigoli et al., 2016], we developed a Kriging approach

for manifold data, suitable for situations in which the data variability is limited
and the random spatial field generating the data is stationary. Expanding to a
more general line of attack able to deal with a non-stationary random field is
highly non trivial. To meet this challenge, we have here proposed a scheme that
localizes the analysis by generating an ensemble of local models. The strategy is
founded on the RDD approach – originally introduced in Menafoglio et al. [2018]
– which repeatedly splits the spatial domain of interest according to independent
realizations of a random partition. At each iteration of the algorithm, a local
analysis is conducted in each element of the partition, where the variability of the
observed data can be reasonably assumed to be limited and the field generating
them to be stationary. These local analyses are finally aggregated into a global
one.

The advantages of the RDD-MK approach for O2S2 are twofold. First, the
possibility to deal with data generated by random fields which are only locally
stationary. Second, the potential for the analysis of data observed on complex
spatial domains, non Euclidean at a global scale, but locally approximated by
simple Euclidean subdomains. These include spatial domains with holes, barriers
and more general non-convexities where the appropriate notion of closeness is not
captured by the Euclidean distance. The Chesapeake Bay estuarine system here
considered (Section 7) is a real world paradigmatic example. At this point in
the discussion, it is worth recalling that kriging data observed on non-Euclidean
domains is still an open challenge in geostatistics, due to the absence of valid
variogram models.

We have applied our operational strategy to the analysis and prediction or
random fields of positive definite symmetric matrices, namely covariance or cor-
relation matrices, observed on complex spatial domains. Covariances and corre-
lations have been embedded in different Riemannian manifolds; the two in silico
case studies, one for covariances and the other for correlations, provide support
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to a proper Object Oriented perspective on data analysis.
Finally, as in Menafoglio et al. [2018], we point out that by localizing the

analysis through a random domain partition of the spatial domain, we are intro-
ducing an exogenous source of variability. In fact, the bagging scheme illustrated
in the paper naturally leads to the evaluation of a bootstrap variance estimated
in each site of the spatial prediction grid, and this in turns identifies locations
of larger instability of the predictor, discontinuities and, more generally, subdo-
mains where the assumption of local stationarity could not be viable. Nonethe-
less, further research is still needed to decouple this source of variability from
the natural endogenous variability of the phenomenon under study.
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