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Abstract

Motivated by applications to Bayesian inference for statistical models with orthogo-

nal matrix parameters, we present polar expansion, a general approach to Monte Carlo

simulation from probability distributions on the Stiefel manifold. To bypass many of

the well-established challenges of simulating from the distribution of a random orthog-

onal matrix Q, we construct a distribution for an unconstrained random matrix X

such that QX , the orthogonal component of the polar decomposition of X, is equal in

distribution to Q. The distribution of X is amenable to Markov chain Monte Carlo

(MCMC) simulation using standard methods, and an approximation to the distribu-

tion of Q can be recovered from a Markov chain on the unconstrained space. When

combined with modern MCMC software, polar expansion allows for routine and flex-

ible posterior inference in models with orthogonal matrix parameters. We find that

polar expansion with adaptive Hamiltonian Monte Carlo is an order of magnitude more

efficient than competing MCMC approaches in a benchmark protein interaction net-

work application. We also propose a new approach to Bayesian functional principal

components analysis which we illustrate in a meteorological time series application.

Keywords: Markov chain Monte Carlo, multivariate data, orthogonal matrix, parameter

expansion, polar decomposition, Bayesian inference.
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1 Introduction

Probability distributions on the Stiefel manifold, the set of orthogonal matrices

V(k, p) =
{
Q ∈ Rp×k |Q>Q = Ik

}
with p ≥ k, play a number of roles throughout statistics.

The uniform distribution on the Stiefel manifold appears in foundational work on multi-

variate theory (James, 1954), while non-uniform distributions on V(k, p) arise in modern

statistical applications. Distributions on the Stiefel manifold model directions, axes, planes,

and rotations in the field of directional statistics (Mardia and Jupp, 2009). They also repre-

sent prior or posterior distributions in Bayesian analyses of models with orthogonal matrix

parameters. In this work, we are primarily motivated by applications in Bayesian statistics,

but the discussion is relevant more broadly.

Statistical models for multivariate data are often naturally parametrized by a set of

orthogonal matrices. Parametrization in terms of orthogonal matrices is common in low-rank

matrix or tensor estimation, dimension reduction, and covariance modeling. For example, we

might model an n× p data matrix as Y = UDV > + σE, where U ∈ V(k, n), V ∈ V(k, p),

D is a k × k diagonal matrix with positive entries on the diagonal, E is a matrix of errors,

and σ > 0. This model and variants are important in matrix denoising problems (Donoho

and Gavish, 2014) and model-based principal component analysis (PCA) (Hoff, 2009b).

Bayesian analyses of models with orthogonal matrix parameters are increasingly common

but raise computational challenges. In modern Bayesian statistics, analytic calculation of

posterior expectations or exact Monte Carlo simulation from the posterior is typically infea-

sible. Instead, one constructs a Markov chain whose stationary distribution is the posterior

using Markov chain Monte Carlo (MCMC) methods. For models with orthogonal matrix pa-

rameters, this Markov chain must lie on the Stiefel manifold. However, the constraints which

define the manifold complicate MCMC simulation to the extent that Bayesian analyses of

models with orthogonal matrix parameters are often prohibitively difficult.

A number of authors have addressed simulation from distributions on the Stiefel manifold,

but there remains a need for more routine and flexible methodology for posterior simulation
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in models with orthogonal matrix parameters. In the directional statistics literature, which

focuses on exact Monte Carlo simulation in a low dimensional setting, rejection sampling

is common. See, for example, Kent et al. (2013). These rejection sampling approaches are

not well suited for routine and flexible posterior simulation, as they must be tailored to par-

ticular distributions, and acceptance rates can decrease rapidly with increasing dimension

or concentration of the target distribution. Hoff (2009b) proposes a Gibbs sampler for the

Bingham-von Mises-Fisher family of distributions on the Stiefel manifold and applies it to

posterior simulation for the network eigenmodel discussed in Section 5.1. The Gibbs sam-

pler of Hoff (2009b) can be a practical option for posterior simulation but is applicable only

when the conditional posterior distributions belong to the designated family. As we will see

in Section 5.1, Gibbs sampling can also produce Markov chains with high autocorrelation.

Furthermore, simulation from conditional distributions is performed via rejection sampling,

and acceptance rates can be vanishingly small, as described in Brubaker et al. (2012). Byrne

and Girolami (2013) introduce geodesic Monte Carlo (GMC), an elegant and well-motivated

algorithm extending Hamiltonian Monte Carlo (HMC) (Neal, 2011) to distributions defined

on the Stiefel manifold and other manifolds embedded in Euclidean spaces. However, without

methodology for adaptive tuning parameter selection or a robust software implementation,

GMC does not yet offer routine and flexible posterior simulation. Jauch et al. (2018) and

Pourzanjani et al. (2017) reparametrize the Stiefel manifold in terms of unconstrained Eu-

clidean parameters, derive the Jacobian term required to map the target distribution from

the Stiefel manifold to Euclidean space, then leverage MCMC software to simulate from the

transformed distribution. The core idea of recasting a constrained simulation problem as an

easier unconstrained problem is compelling, but the cost of computing the Jacobian term

(in Jauch et al. (2018)) and the pathologies introduced in mapping between topologically

distinct spaces are drawbacks of these reparametrization approaches.

In this work, we present polar expansion, a general approach to Monte Carlo simulation

from probability distributions on the Stiefel manifold. To bypass many of the well-established
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challenges of simulating from the distribution of a random orthogonal matrix Q ∈ V(k, p),

we construct a distribution for an unconstrained random matrix X ∈ Rp×k such that QX ,

the orthogonal component of the polar decomposition, is equal in distribution to Q. The

distribution of X is amenable to Markov chain Monte Carlo simulation using standard

methods, and an approximation to the distribution of Q can be recovered from a Markov

chain on the unconstrained space. When combined with modern MCMC software, polar

expansion allows for routine and flexible posterior inference in models with orthogonal matrix

parameters. Polar expansion can be seen as a generalization of the method for simulating

from the unit sphere V(1, p) built into Stan at the time of writing (Stan Development Team,

2019).

We provide an outline of what follows. In Section 2, we present polar expansion in de-

tail. In Section 3, we build intuition through simple examples in which exact Monte Carlo

simulation is possible. That discussion serves as a prelude for Section 4, which addresses

polar expansion and MCMC simulation in more complex settings, including posterior simu-

lation for models with orthogonal matrix parameters. In Section 5, we illustrate the practical

importance of polar expansion in applications. We find that polar expansion with adaptive

HMC is an order of magnitude more efficient than competing MCMC approaches in a bench-

mark protein interaction network application. We also propose a new approach to Bayesian

functional principal components analysis which we illustrate in a meteorological time series

application. We conclude with a brief discussion in Section 6. Code to reproduce the figures

and analyses in this article is available at https://github.com/michaeljauch/polar.

2 Polar expansion via change of variables

The polar decomposition is the unique representation of a full rank matrix X ∈ Rp×k as

the product X = QXS
1/2
X where QX ∈ V(k, p), SX is a k × k symmetric positive definite

(SPD) matrix, and S
1/2
X is the symmetric square root of SX . As the name suggests, the polar
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decomposition is analogous to the polar form z = eiϕr of a nonzero complex number, with

QX being the analog of eiϕ and S
1/2
X being the analog of r. The components of the polar

decomposition can be computed from X as QX = X(X>X)−1/2 and SX = X>X. In terms

of the singular value decomposition X = UDV >, we have QX = UV > and S
1/2
X = V DV >.

Additionally, the orthogonal component QX has an intuitive geometric interpretation as the

closest matrix in V(k, p) to X in the Frobenius norm, i.e. QX = argminQ∈V(k,p)‖X −Q‖F .

Given a density fQ defined with respect to the uniform measure on V(k, p), we would like

to simulate a random orthogonal matrix Q whose distribution has density fQ. Our strategy,

motivated by the relative ease of unconstrained simulation, is to simulate a random matrix

X from a distribution whose QX-margin has density fQ. The distributions on X that

have the desired marginal distribution for QX can be identified via a change of variables.

The mapping from a real, full rank matrix X to the components (QX ,SX) of its polar

decomposition is one-to-one, so the density of the distribution of X can be derived from the

density of the joint distribution of QX and SX as

fX(X) = fSX |QX
(SX | QX) fQX

(QX)× J(QX ,SX ;X).

The Jacobian of the transformation from X to (QX ,SX) is provided in Chikuse (2003):

J (QX ,SX ;X) =
Γk(p

2
)

π
pk
2

|SX |−
p−k−1

2 .

If QX is to have marginal density fQ, we must have

fX(X) = fSX |QX
(SX |QX) fQ(QX)× J(QX ,SX ;X).

Putting these observations together, we arrive at the following proposition:

Proposition 2.1. The QX-margin of an absolutely continuous random matrix X has density
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fQ if and only if

fX(X) = fSX |QX
(SX |QX) fQ(QX)× J(QX ,SX ;X). (1)

There is not a unique distribution for X which has the desired QX-margin. From Propo-

sition 2.1, we see there is one such distribution for each choice of conditional density fSX |QX
.

For some simulation problems, there is an obvious choice for the distribution of X having

the desired QX−margin, and the conditional density fSX |QX
is an afterthought. For others,

there is no obvious choice. In that case, we construct a distribution for X by choosing a

conditional density fSX |QX
and plugging it into Equation (1).

The term “parameter expansion” applies to methods which expand the parameter space

of a statistical model by introducing redundant working parameters for computational pur-

poses. The working parameters render the expanded parametrization non-identifiable, but

the original parameters of interest can still be recovered. Parameter expansion has been

successfully applied in the context of the expectation maximization algorithm (Liu et al.,

1998) and MCMC simulation (Liu and Wu, 1999; Van Dyk and Meng, 2001). As the name

suggests, polar expansion fits this pattern. When applied to posterior simulation in a model

with a parameter Q ∈ V(k, p), polar expansion replaces the orthogonal matrix Q having

pk − k(k − 1)/2 free parameters with an unconstrained matrix X ∈ Rp×k having pk free

parameters. The expanded model is non-identifiable, but the original parameter of interest

Q can be recovered via the polar decomposition of X.

3 Polar expansion and exact Monte Carlo

There are some simple, well-known distributions for a random orthogonal matrix Q which

are the QX-margin of a standard distribution for X. If exact Monte Carlo simulation of X

is possible, then the same is true of Q. To simulate a random orthogonal matrix Q with

the desired distribution, we simply simulate X and then set Q = QX . We go through the
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following examples, in order of increasing generality, to build intuition about polar expansion

and familiarity with the required calculations. We will draw on these foundations in Section

4, which addresses polar expansion in more complex settings.

Uniform distribution on the sphere Suppose we want to simulate a random vector Q

which is uniformly distributed on the unit sphere V(1, p). A well-known approach described,

for example, in Marsaglia (1972) is to simulate X ∼ N(0, Ip) and then set Q = QX =

X/
√
X>X. The random variable SX > 0 is independent of QX and χ2

p distributed.

Uniform distribution on the Stiefel manifold Now suppose we want to simulate a

random orthogonal matrix Q which is uniformly distributed on the Stiefel manifold V(k, p).

We can do so by simulating a random matrix X ∈ Rp×k with independent standard normal

entries and then setting Q = QX . This construction of a uniform orthogonal matrix is also

well-known (Eaton, 1989). The random SPD matrix SX is independent of QX and Wishart

Wp(Ik) distributed.

Matrix angular central Gaussian The random orthogonal matrix Q is said to have a

matrix angular central Gaussian MACG(Σ) distribution if Q
d
= QX where X ∼ Np,k(0,Σ, I)

(Chikuse, 2003). The notation Np,k(0,Σ, I) indicates a centered matrix normal distribu-

tion with Σ as its row covariance matrix and the identity as its column covariance ma-

trix (Srivastava and Khatri, 1979; Dawid, 1981). The MACG(Σ) distribution has density

fQ(Q) = |Σ|−k/2|Q>Σ−1Q|−p/2 and is uniform on the Stiefel manifold when Σ = I. Clearly,

we can simulate Q ∼ MACG(Σ) by first simulating X ∼ Np,k(0,Σ, I) and then setting

Q = QX . The random SPD matrix SX is independent of QX with

fSX |QX
(SX | QX) =

0F
(p)
0

(
−1

2
Σ−1,SX

)
2pk/2Γk(p

2
) |Σ|k/2

|SX |(p−k−1)/2 . (2)

See Chikuse (2003) for a discussion of the hypergeometric function 0F
(p)
0 of matrix argument.
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As we indicated before, the examples are listed in order of increasing generality. In each

case, the distribution of Q is MACG. More generally, any distribution which is the QX-

margin of a standard distribution for X lends itself to exact Monte Carlo simulation via

polar expansion.

4 Polar expansion and MCMC

In many simulation problems of interest, the target distribution of the random orthogonal

matrix Q is not the QX-margin of a standard distribution for X. While exact Monte Carlo

simulation from these distributions is out of reach, we can still apply polar expansion to

construct a distribution for X which has the desired QX-margin and is amenable to MCMC

simulation. We first consider the scenario in which the distribution of Q is a posterior arising

from an MACG prior. Guided by the examples of the previous section, we propose a simple

way to construct a distribution for X with the desired QX-margin. We then consider the very

general scenario in which the distribution of Q is specified by a density fQ which is known

up to a multiplicative constant. In this general scenario, we construct a distribution for X

which has the desired QX-margin by choosing a conditional density fSX |QX
and plugging it

into Equation (1). Finally, we motivate our recommendation of HMC for MCMC simulation

from the distribution of X.

4.1 Posterior simulation with an MACG prior

We consider the case in which the distribution of Q is a posterior arising from an MACG(Σ)

prior. The MACG(Σ) distribution is uniform when Σ = I but can incorporate prior struc-

ture such as row dependence when Σ 6= I. We take advantage of this flexibility in the

functional PCA application of Section 5.2.

Suppose we have data y whose distribution given the unknown parameter Q ∈ V(k, p) has

density p(y |Q). The MACG prior density is p(Q) = |Σ|−k/2|Q>Σ−1Q|−p/2 and the posterior
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density satisfies p(Q |y) ∝ p(y |Q) p(Q). To approximate the posterior distribution of Q,

we propose constructing a Markov chain {Xt}Tt=1 whose stationary distribution has density

fX(X) = p(X | y)

∝ p(y | QX)Np,k(X | 0,Σ, I) (3)

and taking {QXt}Tt=1 as our approximation. The QX-margin of the distribution for X

specified by the density (3) is the posterior distribution of Q. This can be verified formally via

a change of variables from X to the components of its polar decomposition. The distribution

of X is nonstandard, but knowing its density allows us to apply standard MCMC methods.

An analogous approach to posterior simulation is available whenever the prior distribution

for Q is the QX-margin of a standard distribution for X. One can simply replace the matrix

normal density in Equation (3) with the alternative density for X. We emphasize the MACG

distribution because of its utility as a prior distribution and because, as far as we are aware,

it is the only distribution in the literature which is the QX-margin of a standard distribution

for X.

4.2 General simulation problems

There are important settings in which the distribution of an orthogonal matrix Q is neither

the QX-margin of a standard distribution for X nor a posterior arising from such a prior.

In particular, the distribution of Q might belong to the Bingham-von Mises-Fisher family

(Hoff, 2009b) or be a posterior distribution arising from a prior which is not the QX-margin

of a standard distribution for X. With these examples in mind, we consider simulating from

a distribution for Q specified by a density fQ which is known up to a multiplicative constant.

In this general scenario, unlike the previous examples, there is no obvious choice for the

distribution of X which has the desired QX-margin. Instead, we construct a distribution for

X by choosing a conditional density fSX |QX
and plugging it into Equation (1). We propose
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to let fSX |QX
= Wp(SX ; Ik). That is, the conditional density fSX |QX

is a Wishart density

with p degrees of freedom and Ik as its scale matrix. With this choice, the density of the

distribution of X simplifies to

fX(X) = (2π)−pk/2 etr
(
−X>X/2

)
fQ(QX). (4)

When fQ(QX) ∝ 1 and the distribution of Q is uniform, the entries of X are independent

standard normal random variables. This appealing correspondence between the uniform

distribution on V(k, p) and the distribution of pk independent standard normals is one moti-

vation for our choice of conditional density fSX |QX
. Furthermore, when applied to the problem

of simulating from the unit sphere V(1, p), our proposed approach is equivalent to the method

for simulating from V(1, p) built into Stan at the time of writing (Stan Development Team,

2019).

4.3 Hamiltonian Monte Carlo

To simulate from the distribution of X, we recommend Hamiltonian Monte Carlo (Neal,

2011). Hamiltonian Monte Carlo (originally Hybrid Monte Carlo (Duane et al., 1987)) is a

class of MCMC methods which simulates Hamiltonian dynamics in order to propose long

distance moves in the state space while maintaining high acceptance rates. Markov chains

produced by HMC typically converge more quickly to their stationary distribution and ex-

hibit less autocorrelation than those produced by random walk Metropolis or Gibbs sampling

algorithms. Through their automatic differentiation and adaptive tuning functionality, soft-

ware implementations such as Stan (Carpenter et al., 2017) greatly simplify applications

of HMC. They also provide a powerful set of diagnostics which alert the user to potential

problems that may lead to poor Monte Carlo estimates.
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5 Applications

5.1 Network eigenmodel for protein interaction data

We compare polar expansion to competing MCMC approaches in a benchmark protein inter-

action network application. Using polar expansion with adaptive HMC as implemented in

Stan, GMC without parallel tempering, and the Gibbs sampler of Hoff (2009b), we simulate

from the posterior distribution of the network eigenmodel of Hoff (2009b) applied to the

protein interaction data first appearing in Butland et al. (2005). Compared to GMC, its

strongest competitor, polar expansion with adaptive HMC is an order of magnitude more

efficient in terms of effective sample size per iteration and comparable in terms of iterations

per second.

The application which we use as a benchmark was first introduced in Hoff (2009b). The

interactions of p = 270 proteins of Escherichia coli are recorded in the binary, symmetric

p× p matrix Y = (yi,j). If protein i and protein j interact, then yi,j = 1. Otherwise, yi,j = 0.

The edge probabilities are assumed to have a low-rank structure with

P (yi,j = 1) = Φ
[
c+

(
QΛQ>

)
i,j

]
(5)

where Φ is the cumulative distribution function of a standard normal random variable and

(c,Q,Λ) are unknown parameters. The parameter Q is a p × 3 orthogonal matrix, Λ =

diag(λ1, λ2, λ3) is a 3 × 3 diagonal matrix, and c is a real number. Following Hoff (2009b),

Q is a priori uniform on V(3, p), the diagonal elements of Λ have independent N(0, p) prior

distributions, and c ∼ N(0, 102).

Hoff (2009b) proposes a Gibbs sampler for posterior simulation. As discussed in Albert

and Chib (1993), the probit link function admits a simple data augmentation scheme which

often leads to standard conditional posterior distributions. After taking advantage of this

data augmentation scheme, the conditional posterior distribution of the orthogonal matrix
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parameter Q is matrix Bingham-von Mises-Fisher. Hoff (2009b) provides a column-wise

strategy for simulating from this conditional posterior distribution.

An approximation to the posterior distribution of the parameters (c,Q,Λ) can also be

obtained using polar expansion with adaptive HMC as implemented in Stan. To carry out

posterior simulation with Stan’s adaptive HMC algorithm, we must provide the log posterior

density, modulo an additive constant. Applying polar expansion, the log posterior density is

log p(c,X,Λ | Y ) =
∑
i>j

yi,jΦ
[
c+

(
QXΛQ>X

)
i,j

]
+
∑
i>j

(1− yi,j)
{

1− Φ
[
c+

(
QXΛQ>X

)
i,j

]}
− c2

2× 102
− X>X

2
−

3∑
j=1

λ2j
2p

+ C (6)

where C is a constant which does not depend upon the parameters. Given a Markov chain

{ct,Xt,Λt}Tt=1 whose stationary distribution has density (6), we approximate the posterior

distribution of (c,Q,Λ) by {ct,QXt ,Λt}Tt=1.

Figure 1 provides traceplots for the diagonal elements of Λ = diag(λ1, λ2, λ3) based

on polar expansion with adaptive HMC, GMC without parallel tempering, and the Gibbs

sampler of Hoff (2009b). Stan’s diagnostics did not give any indication of problems which

would lead to poor Monte Carlo estimates. For GMC, we used the tuning parameters given

in Byrne and Girolami (2013). Even visually, we can tell that the Markov chain produced

by polar expansion with adaptive HMC exhibits less autocorrelation than those produced

via GMC or the Gibbs sampler. This is confirmed by the calculations in Table 1 which show

that the effective sample size per iteration of our approach is an order of magnitude greater

than that of the competing methods. Effective sample size per second is the truly relevant

quantity to compare, but variability in code quality and random initializations make such

comparisons challenging. We remark only that simulating 5000 post warm up Markov chain

iterations with our approach took a similar amount of time to the equivalent task with GMC
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and far less time compared to the Gibbs sampler.

Because one can simultaneously permute the columns of Q and D and change their signs

without changing the value of the posterior density, the posterior distribution of the network

eigenmodel has multiple symmetric modes. None of the MCMC methods we compare are ca-

pable of switching between these symmetric modes. However, this lack of switching does not

affect inferences about identifiable parameters. Byrne and Girolami (2013) combine GMC

with parallel tempering and show that the resulting Markov chains do switch between sym-

metric modes. They also describe how, without parallel tempering, Markov chains produced

by GMC can become stuck in a local mode with negligible posterior mass. Markov chains

produced by HMC applied to the distribution with the log posterior density (6) are likewise

vulnerable to becoming stuck in this mode. However, all the Markov chains in Figure 1 have

converged to the same mode as in Byrne and Girolami (2013) and Hoff (2009b).

12
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0

Index

λ 1
70

90
11

0

Index
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0 200 400 600 800 1000−
13

0
−

10
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Iteration
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Figure 1: Traceplots for the diagonal elements of Λ = diag(λ1, λ2, λ3) based on the three
MCMC methods. The solid black lines correspond to polar expansion with adaptive HMC,
the dashed blue lines correspond GMC without parallel tempering, and the dotted red lines
correspond to the Gibbs sampler of Hoff (2009b).
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Parameter Polar Exp. GMC Gibbs
λ1 0.835 0.031 0.030
λ2 0.886 0.038 0.030
λ3 0.683 0.033 0.036

Table 1: Effective sample sizes per iteration for the diagonal elements of Λ calculated using
the R package mcmcse (Flegal et al., 2017). The calculations are based on 5000 post warm
up Markov chain iterations.

5.2 Principal components analysis of functional data

We propose a new approach to Bayesian functional principal components analysis which we

illustrate in a meteorological time series application. Principal component analysis linearly

transforms a set of high-dimensional, correlated variables into a lower-dimensional set of

uncorrelated “principal component scores,” accounting for as much variation in the origi-

nal data as possible. PCA has become an essential tool for exploratory data analysis and

dimension reduction, and has inspired a vast literature of related methodology. When ap-

plied to data arising from an underlying curve or surface, however, classical PCA fails to

take the functional structure into account and, as a result, can be excessively noisy. Ram-

say and Silverman’s influential book (Ramsay and Silverman, 1997) describes how to adapt

PCA to functional data from a penalized optimization perspective. As an alternative, our

Bayesian approach to principal components analysis of functional data has a number of po-

tential advantages: functional structure can be incorporated through the prior distribution,

smoothing parameters can be estimated rather than chosen via cross-validation, and param-

eter uncertainty is reflected in posterior distribution. Additionally, our method can easily

accommodate certain types of missing data and can be flexibly modified or extended.

We consider the Canadian weather data previously analyzed in Ramsay and Silverman

(1997) and Suarez and Ghosal (2017). The Canadian weather data set, available in the R (R

Core Team, 2019) package FDA (Ramsay et al., 2018), includes average daily temperatures

for 35 weather stations throughout Canada. The raw data matrix Yraw has n = 35 rows

and p = 365 columns with entry (i, j) recording the average temperature in city i on day
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j. The columns of Yraw are plotted in the top left panel of Figure 2. Immediately, we see

the functional nature of the data, large differences in the average yearly temperature across

cities, and a roughly sinusoidal pattern of seasonal variation. Large differences in average

yearly temperature are to be expected, given that the data set includes weather stations from

Victoria, British Columbia to Inuvik, Northwest Territories. The roughly sinusoidal pattern

of seasonal variation is also unsurprising. The aim of our functional principal component

analysis is to identify subtler modes of variation present in the data, while taking into account

its functional nature.

We subtract row and column means from Yraw and model the resulting matrix as Y =

UDV > + σEΩ(ϕ)1/2. The unknown parameters are the orthogonal matrices U ∈ V(k, n)

and V ∈ V(k, p), the diagonal matrix D = diag(d1, ..., dk) with d1, ..., dk > 0, the scale

parameter σ > 0, and the correlation parameter ϕ. The entries of the matrix E are inde-

pendent standard normal random variables, and Ω(ϕ) is the correlation matrix of an AR(1)

process with parameter ϕ. The low rank matrix UDV > is intended to capture long term,

seasonal variation in temperature. The rows of UD contain the principal component scores

for each weather station, while the columns of V form the corresponding basis of principal

component curves. In this analysis, we set k = 3. The matrix σEΩ(ϕ)1/2 is intended to

capture short term, day to day variation in temperature. Conditional on σ and ϕ, each

column of σEΩ(ϕ)1/2 is an independent AR(1) process.

We assign the parameter V a hierarchical prior chosen to reflect the functional nature of

the temperature data. Because we intend UDV > to capture long term, seasonal variation

in temperature, we want the principal component curves in each column of V to look like

the discretization of a smooth function. This functional structure can be represented by a

MACG(K) prior when K = (ki,j) is constructed using, for instance, the squared exponential

covariance function (Rasmussen and Williams, 2006) with ki,j = exp [−(i− j)2/ρ2] . The

length-scale hyperparameter ρ controls the “wiggliness” of the principal component curves.
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Figure 2: The columns of Yraw are plotted in the top left panel. The other three panels plot
the column means of Yraw plus and minus a suitable multiple of the principal component
curves.
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We assign ρ an inverse gamma prior, yielding the following hierarchical prior for V :

V | ρ ∼ MACG(K)

1/ρ ∼ Ga(α, β).

When V is MACG(K) and p � k, each column of V behaves like a centered Gaussian

process (GP) with a squared exponential covariance function and length-scale ρ. Such a

GP is infinitely differentiable, and the expected number of zero crossings in an interval of

length T is T/(2πρ) (Rasmussen and Williams, 2006; Adler, 1981). Motivated by the latter

observation, we choose the inverse gamma hyperparameters α and β so that ρ has a prior

mean of 365/(4π) and prior standard deviation of five. If ρ were fixed at its prior mean, the

expected number of zero crossings of the principal component curves would be approximately

two. The proposed inverse gamma prior also puts very little prior mass on small values of

ρ. Together, these attributes reflect our intention that UDV > capture long term, seasonal

variation in temperature.

We now specify priors for the remaining parameters. The rows of U correspond to

locations throughout Canada. We could try to incorporate this spatial structure through the

prior distribution, but in this analysis we simply assign U a uniform prior. To the correlation

parameter ϕ, we assign the arc-sine prior discussed in Fosdick and Raftery (2012). The priors

for σ2 are inverse gamma and truncated normal:

1/σ2 ∼ Ga
(ν

2
,
ν

2
s2
)

p(d1, ..., dk) ∝ 1 {d1, ..., dk > 0}
k∏

i=1

N(di ; 0, τ 2).

We use an empirical Bayes strategy to select the hyperparameters ν, s2, and τ. Let Ŷ be the

best rank-k approximation to Y in the Frobenius norm Eckart and Young (1936), and let

σ̂2 be the sample variance of the entries of the residual matrix Y − Ŷ . The prior variance
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of σ2 is decreasing as a function of the hyperparameter ν, which has an interpretation as a

prior sample size in a normal model (Hoff, 2009a). We let ν = 1 and then set s2 = 3 σ̂2 so

that the prior mode for σ2 is σ̂2. We choose τ 2 so that the prior expectation of
∑k

i=1 d
2
i is

equal to Tr(Ŷ >Ŷ ).

We simulate from the posterior of the proposed functional principal components model

using polar expansion with adaptive HMC. Again, Stan’s diagnostics did not give any indi-

cation of problems which would lead to poor Monte Carlo estimates. As our point estimate

of V , we take the first k = 3 right singular vectors of the posterior mean of UDV >. Figure

3 compares our point estimate to the results of classical PCA. The black lines are our esti-

mated principal component curves, while the gray lines are the corresponding values based

on classical PCA. Compared to the results of classical PCA, the principal component curves

produced by our method are smoother and less noisy.

Figure 2 aids in interpreting the principal component curves. The top left panel is a

plot of the raw temperature data. The other three panels plot the column means of Yraw

plus and minus a suitable multiple of the principal component curves. The multiple is

chosen subjectively for the sake of interpretability. This approach to visualizing principal

components analyses of functional data is described in Ramsay and Silverman (1997). We

see that the first principal component relates to the difference between summer and winter

temperatures, with a higher principal component score corresponding to a larger difference.

The second principal component relates to a time shift effect. The third principal component

is hardest to interpret, but a higher value appears to indicate a later spring and an earlier

end to Autumn.

The left hand side of Figure 4 compares a histogram estimate of the marginal posterior

density of ρ with its prior density. The marginal posterior distribution of ρ is more con-

centrated than the prior and has a higher mean, indicating that the proposed method can

learn a suitable value for ρ without resorting to cross-validation. The right hand side shows

simulated posterior values of the third principal component curve (in gray) and the point

18



estimate (in black). The simulated posterior values, not just the point estimate, are smooth,

and their variation about the point estimate reflects the parameter uncertainty remaining.
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Figure 3: A comparison of our point estimate of V to the results of classical PCA. The black

lines are our estimated principal component curves, while the gray lines are the corresponding

values based on classical PCA.
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Figure 4: The left hand side compares a histogram estimate of the marginal posterior density

of ρ with its prior density. The right hand side shows simulated posterior values of the third

principal component curve (in gray) and its point estimate (in black).
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6 Discussion

Together with modern MCMC software, polar expansion allows for routine and flexible

simulation from probability distributions on the Stiefel manifold, including posterior distri-

butions arising from statistical models with orthogonal matrix parameters. The key idea

is to transform the constrained simulation problem into an easier unconstrained problem

using the polar decomposition and its Jacobian. We described how to apply polar expansion

in simulation problems and then considered two applications. In the first, we found that

polar expansion with adaptive HMC is an order of magnitude more efficient than competing

MCMC approaches in a benchmark protein interaction network application. In the second,

we proposed a new approach to Bayesian functional principal components analysis which we

illustrated in a meteorological time series application.

We briefly describe a few directions for future work. Proposition 2.1 tells us we have a

great deal of flexibility in our choice of conditional density fSX |QX
. The choices in Section

4 are motivated by the simplicity of the resulting distribution for X. While these choices

work well in a wide range of simulation problems, it would be interesting to explore more

systematically how the choice of conditional density impacts subsequent MCMC simulation.

Thus far, we have made a case for polar expansion based on its practical performance.

Recent work on the convergence of HMC may provide tools to analyze polar expansion

from a theoretical perspective (Durmus et al., 2017; Livingstone et al., 2018; Bou-Rabee and

Sanz-Serna, 2017). Sections 4 and 5 demonstrate that prior distributions which are the QX-

margin of a standard distribution for X are tractable and useful. An interesting direction

is to study the relationship between the distribution of X and its QX-margin.
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