arXiv:1807.07207v2 [stat.ML] 25 Jul 2018

A Projection Pursuit Forest Algorithm for Supervised

Classification

Natalia da Silva, Dianne Cook & Eun-Kyung Lee

July 27, 2018

Abstract

This paper presents a new ensemble learning method for classification problems called pro-
jection pursuit random forest (PPF). PPF uses the PPtree algorithm introduced in Lee et al]
. In PPF, trees are constructed by splitting on linear combinations of randomly cho-
sen variables. Projection pursuit is used to choose a projection of the variables that best
separates the classes. Utilizing linear combinations of variables to separate classes takes the
correlation between variables into account which allows PPF to outperform a traditional

random forest when separations between groups occurs in combinations of variables.

The method presented here can be used in multi-class problems and is implemented into

an R (R Core Team, [2018)) package, PPforest, which is available on CRAN.

1 Introduction

There are two main aspects of a random forest (Breiman, 2001), bootstrap aggregation and
(Breiman|, (1996; Breiman et al., [1996) random predictor selection (Amit and Geman, 1997}
Hol 1998), that are broadly applicable to build ensemble classifiers from any basic method.
Bagging stabilizes the variance and random predictor selection reduces correlation between

trees in the forest.

This paper presents the projection pursuit random forest (PPF), a new ensemble learning
method for classification problems, built on combinations of predictors in the tree construc-

tion.

PPF builds on the projection pursuit tree (PPtree) algorithm (Lee et al., [2013)), available
in the R package PPtreeViz (Lee, 2018a) which fits a single multi-class tree to the data.
Projection pursuit is used to find the linear combination of variables that best separates

groups, and many different rules to make the actual split are provided.

Trees that use linear combinations of predictors in a split are known in the literature as
oblique trees (Kim and Loh| 2001}, Brodley and Utgoft, |1995; |Tan and Dowe, [2004; Truong
2009; Lee et al., 2013). All these algorithms use different approaches for finding linear
combinations of predictors upon which to make a split. Some of the methods used for
selecting the linear combination include random coefficient generation, linear discriminant
analysis, and linear support vector machines. Theoretically, these could also be used as a

base underlying PPF.

For each split, a random sample of predictors is selected, then an optimal linear combination
for separating the classes is computed by using a projection pursuit index. The algorithm is
targeted for problems where classes can be separated by linear combinations of predictors,
which define separating hyperplanes that are oblique to the axes rather than orthogonal to
them. Additionally PPF accommodates class imbalance by using stratified bootstrap samples
and variable importance measures are computed using the coefficients of the projections. PPF
can be used for multi-class problems and is implemented into an R package, called PPforest.

Only the LDA and PDA projection pursuit indexes are available in PPF.

In the machine learning literature numerous work has been conducted on algorithms for
building forests from oblique trees (Tan and Dowe, [2006)), (Menze et al.,2011]) and (Do et al.|
2010). The performance is reported to be better than random forests, which is what we have
determined with our algorithm also. A limitation of building on these approaches is the lack

of readily available software.

This paper is organized as follows. Section [2explains the projection pursuit tree underlying
PPF. Section [3| describes the PPF algorithm; diagnostics, including how to compute vari-
able importance and the implementation details. Section [4] evaluates the algorithm using a
simulation study and performance on benchmark machine learning data in comparison with
other methods. Section [5| discusses the choice of parameters, and compares the diagnostics

relative to random forests. Section [7] discusses possible extensions and future directions.

2 Background on the projection pursuit tree

The projection pursuit algorithm searches for a low dimensional projection that optimizes a
continuous function which measures some aspect of interest; for PPF, this is class separation.
Friedman and Tukey (1973)) coined the term “projection pursuit”, but the ideas existed
earlier than this (Kruskal, 1969). |Lee et al.| (2005) developed an index, derived from the
linear discriminant analysis, for finding projections that separate classes. Let xg; be a p-
dimensional data vector, i-th observation of the g-th class, g = {1,..., G}, G is the number
of classes, i = {1,...,n,}, and n, is the number of observations in class g. The LDA index

is defined as follows:

1— WAL for| AT(W + B)A| # 0
[LDA(A) _ [AT(W+B)A| (1)
0 for| A"(W + B)A| =0

where B = Zgazl ng(Xg — X_)(Xg — x_)7 is the between-group sums of squares, and W =

Figure 1: Comparison of decision boundaries for the rpart (left) and PPtree (right) algorithms
on 2D simulated data. The partitions generated by PPtree algorithm are oblique to the axis,
incorporating the association between the two variables.

ZgG=1 i (Xig — Xg.)(Xig — Xg)7 is the within-group sums of squares. If the LDA index

value is high, there is a large difference between classes.

A second index, PDA, was developed to address large p, small n data (Lee and Cookl

2010)). The main idea used in construction of the index is that when n < p or the variables
are highly correlated, the maximum likelihood variance-covariance matrix estimator will be
close to being singular, and this will affect the inverse calculation. The PDA index adjusts

the variance-covariance matrix calculation, and is defined as follows:

__ |ATWppad| 2)
|AT(Wppa + B)A|

Ippa(AN) =1

where A is an orthonormal projection onto a k-dimensional space and A € [0,1) is a pre-

determined parameter. B is the between-class sums of squares and Wppy = diag(W) + (1 —

A)offdiag(W).

The PPtree algorithm uses a multi-step approach to fit a multi-class model by finding
linear combinations to split on. Figure [I] compares the boundaries that would result from
a classification tree fitted using the rpart algorithm (Therneau et al., 2010) and the PPtree

algorithm.

Figure [2] illustrates the PPtree algorithm for three classes, and the algorithm steps are
detailed below. Let d, = {(xi,y;)}"; be the data set where x; is a p-dimensional vector
of explanatory variables and y; € 4 (¥4 = {1,2,...G}) represents class information with

1=1,...n.
1. Optimize a projection pursuit index to find an optimal one-dimensional projection, a*,
for separating all classes in the current data yielding projected data z = a*x.

2. On the projected data, z, redefine the problem into a two class problem by comparing
means, and assign a new label, either g7 or g; to each observation, generating a new

class variable y}. The new groups g; and g5 can contain more than one original class.

3. Find an optimal one-dimensional projection o™, using {(x;, y;)}!_; to separate the two
class problem ¢i and g¢;. The best separation of g and g; is determined in this step

providing the decision rule for the node,
if a**T M, < c then assign g} to the left node else assign g3 to the right node,

where M is the mean of gj.

4. For each group, all the previous steps are repeated until g; and g5 have only one class

from the original classes. The depth of PPtree is at most the number of classes.

Training data

| ! !

Step 1: find the optimal1-D

Projection rér;?aproject the \ g1 92 g3
N\ N\ \\\: /

Step 2: mean for each _ _
class _ X1 X2 X3

is computed l \ /

Step 3: using the distance
among means redefine the | —> g*1 g*2
Problem in two class

Step 4: find the optimal 1-D

Projection to separate e e e

g*1 and g*2 .
l : 1 Step 1: find the optimal1-D
Projection and project the
Final node _*H'*_*_.'“'.’"' — data

!

| Repeat step 2 to 4

Figure 2: Illustration of the PPtree algorithm for g = 3 classes. It is a dual pass algorithm
for multiclass problems, for each split. It first finds the best separation and combines classes
into two super-groups. It then searches again for the best separation between these two
super-groups and splits on this. It proceeds sequentially on the subsets in the nodes, but
only g — 1 splits are allowed.

3 Projection pursuit random forest

This section provides the definition of PPF for classification and the algorithm. Diagnostics

for the classifier are also defined.

3.1 Definition

Let the random vector of predictor variables X € RP and the output random variable Y € 4,

where ¢ is a finite set such that 4 = {1,2,...,G}. The training sample is defined as

D, = {(X1,Y1),...(X,,Y,)} of i.i.d R x & random variables (p > 2). The objective is to

build a classifier which predicts y from x using D,, given an ensemble of classifiers h.

A projection pursuit classification random forest can be defined as a collection of random-
ized classification trees {h,(x,O,, D,),m > 1} where {©,,} are i.i.d. random vectors. ©,,
includes the two sources of randomness in the tree (random variable selection and random
bootstrap sample), then ©,, has information about which variables were selected in each

partition and which cases were selected in the bootstrap sample.

For each tree, h,,, a unique vote is collected based on the most popular class for the selected

predictor variables. Equation [3| defines the PPF estimator based on combining the trees.

fn(X, Dy) = argmax{Ee(I[h,(X,0,D,) = g])} (3)

ge¥y

= argmax Pg(h,(X,0,D,) = g)

geY

Eo is the expectation wrt ©, conditionally on X and D,. In practice, the PPF estimator
is evaluated by generating B random trees and take the average of the individual outcomes.
This procedure is justified in a similar way to the original random forest defined by Breiman

(2001), and is based on the Law of the Large Numbers (Athreya and Lahiri, 2006)).

Equation {4 describes the prediction of a new observation xg.

fn(xo) = arg maxz I[h, (X0, Ou) = ¢ (4)

geY 1

3.2 Algorithm

1. Let n = Zszl n; the total number of cases in the training set d,, = {x;,y;}",. B
stratified bootstrap samples from d,, are taken. Then for each class, independently and

uniformly re-sample cases from d,,, (training data set for group g) with size n, to create

a stratified bootstrap data set {bk = by, bia, . .. big }-

2. Use a bootstrap sample bk to grow a PPtree (h,(x, ©)) to the largest extent possible

without pruning. (Note that the depth of the PPtree is at most G — 1, where G is the

number of classes).

(a)
(b)

()
(d)

(f)

(2)
(h)
(i)

Start with all the cases in by in the root node.

A simple random sample of m predictor variables from the set of all the predictor

variables M is drawn, where m << M.
Find the optimal one-dimensional projection a* to separate all the classes in by.

If more than two class, then reduce the number of classes to two by comparing
means, and assign new labels, g] and g; to each case (called the new response y;
in by).

Find the optimal one-dimensional projection, a**, using the bootstrap data set
with the relabeled response, y*, to separate g; and g;. The linear combination
is computed by optimizing a projection pursuit index to get a projection of the
variables that best separates the classes using the m random selected variables.

Two index options are available LDA or PDA.

Compute the decision boundary c. Eight different rules to define the cutoff value

of each node can be used. All the rules are defined in Lee| (2018b)).
Keep o™ and c.
Separate the data into two groups using the new labels ¢g; and g;.

Repeat from (b) to (h) if g7 or g5 have more than two original classes.

3. Repeat 2 for k=1,...B.

4. The output is the ensemble of PPtrees, {h%*}5 .

Split values on the projected data can be computed by one of eight methods, which use the

group means, or medians, sample size and variance or IQR weighting

Figure |3 has a diagram illustrating the PPforest algorithm.

Training data

Stratified bootstrap
samples by class
v

Bootstrap 1 Bootstrap 2 Bootstrap k
b1=b11,b12....b1g b2=b21,b22...b2g | e bk= bk1, bk2 bkg

l ! l

PPtree with random / * / \ / \
variable selecion i each ® [B - T B
Y N\ Y N\ Y O\
-l- @@ @ ® l ®
Y*1 Y*Z Y*k

v
Based on majority vote \
Predict the class *
Y PPforest

Figure 3: lustration of the PPforest algorithm. It is effectively the same as a random forest
algorithm except that the PPtree classifier is used on each bootstrap sample.

3.3 Implementation

The initial code for PPforest was developed entirely in R. It was subsequently profiled using

profvis (Chang and Luraschi, 2016)), and two code optimization strategies were employed:

translate main functions into Repp (Eddelbuettel et al., 2011)) and parallelization using plyr.

The microbenchmark package was used to compare the speed before and after optimization.
Figure [4 shows the performance before and after optimization. The decrease in speed is linear
as the number of groups increases. The improvement is between 3- and 9-fold for this range

of parameters. The machine used for this comparison was a MacBook Pro with a processor

of 2.4 GHz Intel Core i7 with a memory of 8GB and 1867MHz LPDDRS3.

Table 1: Optimization assessment simulation design

Parameters \ Values
g = number of classes | (3,3% 3%)
n = obs. by class 10%,10?)

(

p = number of variables | (10!, 10%)

m = number of trees (50, 500)

cr = numbers of cores (1,2,4)

v PPforest version (only R, C code)

3.4 PPF diagnostics

The process of bagging and combining results from multiple trees produces numerous diag-
nostics which can provide a lot of insight into the class structure in high dimensions. Because
ensemble methods are composed of many models fitted to subsets of the data, many statis-
tics can be calculated to be analyzed as a separate data set. This provides the ability to
understand how the model is working. The diagnostics of interest are the error rate, variable

importance measure, vote matrix, and proximity matrix.

3.4.1 Error rate

Using the out-of-bag (oob) cases from bagged trees in the forest construction allows ongoing
estimates of the generalization error for an ensemble of trees, described in |Breiman| (2001]).
Given a training data set d,, B bootstrap samples from d,, are taken. For each bootstrap
sample (b = 1,2,... B), a PPtree classifier h,(x,©;) is constructed, and a majority vote is
used to get the PPF predictor. The oob cases are used to get the error rate estimates. For
each {x;,y;} in d,, the votes are aggregated only for the classifiers h,(x,0,) that do not
contain {x;,y;}. Hence, PPF is called the out-of-bag classifier, and the error rate for this
classifier (out-of-bag error rate) is the estimate of the generalized error. The out-of-bag error
rate is a measure for each model that is combined in the ensemble and is used to provide the

overall error of the ensemble.

10

n: 10 n: 10 n: 100 n: 100

p: 10 p: 100 p: 10 p: 100

15 = W
10 - ® 2
@
iy £ o)
)
a1
S
=
75 -) @
D
@
50 = ()]
’ o
S S

T, o
o DT - Al A O VY X Nyl YR
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Num. groups

=== onlyR == C code

Figure 4: Computational performance for different sample sizes and number variables, with
purely R code (green) and with C++ code (purple).

11

3.4.2 Variable importance

PPF calculates variable importance in two ways: (1) permuted importance using accuracy,
and (2) importance based on projection coefficients on standardized variables. The permuted
variable importance is comparable to the measure defined in the classical random forest
algorithm. It is computed using the oob cases for the tree k (B®)) for each X; predictor
variable. Then the permuted importance of the variable X; in the tree k can be defined as:

(k)

~(k ~
Yiepe L = 9) — Iy = 9%

| B

IMPW(X;) =

where g}i(k)is the predicted class for the observation 7 in the tree k, and yi(% is the predicted
class for the observation 7 in the tree k£ after permuting the values for variable X;. The global
permuted importance measure is the average importance over all the trees in the forest.This
measure is based on comparing the accuracy of classifying oob observations using the true

class with permuted (nonsense) class.

For the second importance measure, the coefficients of each projection are examined. The
magnitude of these values indicates importance if the variables have been standardized. The
variable importance for a single tree is computed by a weighted sum of the absolute values
of the coefficients across node, then the weights take the number of classes in each node into
account(cl,q) (Lee et al) 2013) . The importance of the variable X in the PPtree k can be
defined as:

[
IMPp(]Ijt)ree(Xj> = Z —nd

where agfi) is the projected coefficient for node ns and variable k and nn the total number of

node partitions in the tree k.

The global variable importance in a PPforest then can be defined in different ways. The

most intuitive are the average variable importance from each PPtree across all the trees in

12

the forest.
I 1P

pptree(

K

X5)

IM Py foresn (X;) =

Alternatively, a global importance measure is defined for the forest as a weighted mean of
the absolute value of the projection coefficients across all nodes in every tree. The weights
are based on the projection pursuit indexes in each node (Ix,4), and 1-(OOB-error of each

tree)(accy,).

Zk 1 @CCk an 1 Imnija d

IMPppforestZ (X]) K

3.4.3 Vote matrix

An uncertainty measure for each observation, across models, is the proportion of times that
a case is predicted to be in each class. If a case is always predicted to be the one class,
there is no uncertainty about its group, and if this matches the true class then it is correctly
labeled. Cases that are proportionately predicted to be multiple classes indicate difficult-
to-classify observations. These cases may be important in that they might indicate special
attention is needed in some neighborhoods of the data space, or more simply, could be errors

in measurements in the data.

3.4.4 Proximity matrix

In a tree, each pair of observations can be in the same terminal node or not. Tallying this
up across all trees in a forest gives the proximity matrix, an n x n matrix of the proportion
of trees that the pair shares a terminal node. A proximity matrix can be considered to be
a similarity matrix. This is typically used to do a follow-up cluster analysis to assess the

strength of the class structure, and whether there are additional unlabeled clusters.

13

3.4.5 Summary

These diagnostics are used to assess model complexity; individual model contributions; vari-
able importance and dimension reduction; and uncertainty in prediction associated with

individual observations.

4 Performance comparison

This section presents simulation results and a benchmark data study to examine the predic-
tive performance of PPF in comparison to other methods. In the benchmark data study, PPF
is compared with PPtree, CART and RF. The simulation results are designed to compare

PPF with RF on data with linear projections defining class differences.

4.1 Benchmark data study

The performance of PPF is compared with the classification methods, PPtree, CART and
RF using 10 benchmark data sets taken from the UCI Machine Learning archive (Lichman)
2013). Table [2[presents summary information about the benchmark data, number of groups,
cases, and predictors for each data set. The imbalance between groups is measured by the
range of group size proportions and correlation is the average of all pairwise correlation

coefficients among predictor variables.

For each benchmark data set, 2/3 of the observations are randomly chosen and used for
training while the remaining 1/3 are used as test data for computing predictive error. This
procedure is repeated 200 times and the mean error rate is reported in Table [l In PPF, the
number of variables selected in each node partition is a tuning parameter, the proportion of
variables selected at each partition. Three different values were used (0.6, 0.9 and the RF

default). The test error reported for PPF is the best from these.

The results show that PPF has a better performance in the test data set than the other

14

Table 2: Summary of benchmark data. Imbalance and correlation indicating relative class
sizes, and separations in combinations of variables.

DF Cases Predictors Groups Imbalance Correlation
crab 200 5 4 0.00 0.95
lymphoma 80 50 3 0.41 0.75
NCI60 61 30 8 0.07 0.56
parkinson 195 22 2 0.51 0.50
fishcatch 159 6 7 0.31 0.46
leukemia 72 40 3 0.40 0.44
olive 572 8 9 0.32 0.35
wine 178 13 3 0.13 0.30
image 2310 18 7 0.00 0.28
glass 214 9 6 0.31 0.23

methods for the crab, fishcatch, leukemia, lymphoma, olive and wine data, while the RF test

error is smaller for glass, image, NCI60 and parkinson data.

Table 3: Comparison of PPtree, CART, RF and PPF results with various data sets. The
mean of training and test error rates from 200 re-samples is shown. (Order of rows is same

as in Table efbench.tab.) PPF performs favorably compared to the other methods.

TRAINING TEST

Data CART PPforest PPtree RF || CART PPforest PPtree RF

crab 0.277 0.046 0.044 0.244 || 0.453 0.057 0.057 0.238
fishcatch 0.118 0.000 0.000 0.193 | 0.184 0.011 0.012 0.191
glass 0.237 0.306 0.331 0.240 || 0.330 0.390 0.403 0.224
image 0.069 0.079 0.067 0.024 || 0.082 0.083 0.073 0.024
leukemia 0.037 0.000 0.000 0.033 | 0.146 0.030 0.049 0.032
lymphoma || 0.052 0.000 0.000 0.100 || 0.155 0.053 0.069 0.081
NCI60 0.503 0.019 0.000 0.458 || 0.676 0.388 0.423 0.376
olive 0.072 0.037 0.048 0.053 | 0.119 0.048 0.068 0.052
parkinson 0.081 0.112 0.175 0.107 || 0.159 0.171 0.229 0.101
wine 0.050 0.001 0.001 0.019 || 0.127 0.018 0.021 0.021

Figures |5| displays the performance comparison graphically. Each line connects the errors

for one data set. Even though RF outperforms PPF on almost half the data (Table [1) PPF

tends to have consistently low error.

15

Training Test

0.6-

Average error rate

e = _ —— -

0.0-
p;:)f p[I)tr rlf cellrp;)f p;ljtr rlf callrt
Method
— crab — glass leukemia NCI60 —— parkinson
Data _) _ _
— fishcatch image lymphoma olive —— wine

Figure 5: Benchmark data results shown graphically. PPF performs consistently well across
most of the data sets.

4.2 Boundary comparison with random forest

To illustrate why and where PPF outperforms RF, results from a small simulation are shown.
We expect PPF to outperform RF when the separation between classes is in linear combina-

tions of variables. The simulated data is similar to the crab data.

Each 2D simulated data set was rotated from 0 through 90°, and 20 replications were
conducted. Average (and standard deviation) of error was computed. Figure @ shows the
boundaries for two of the rotations generated by the RF and PPF models, and shows the
summary of the errors by rotation angle. PPF uniformly outperforms RF in this scenario

and produces better boundaries.

5 Diagnostics comparison

16

(a) RF (6 deg)

04 00 04 04 00 04

Varl Varl
(c) RF (30 deg) (d) PPF (30 deg) (e)
125-
__105-
S
§ 7.5-
T 50-
o
W 5.
! ! ! ! ! ! 0.0 ______________
04 00 04 04 00 04 0 18 36 54 72 90

Varl Varl Angle

Figure 6: Boundaries in rotated trangle simulation, for RF and PPF, for different rotations
(a-d), and (e) the average error over 20 repetitions for different angle, solid line is RF, and
dashed is PPF. PPF beats RF uniformly in this type of data, and RF produces inferior
boundaries. A little surprising that RF does worse with a small rotation.

The diagnostics computed by PPF (Section [3) and RF are compared for the lymphona
data, which helps to understand why and how PPF outperforms RF with this data.

5.1 Variable importance

Figure [7] illustrates how the variable importance differs, using the lymphoma data. PPF
outperformed RF for this data. There are three groups, and it is a high-dimension, low
sample size data set. With PPF, the PDA index is used, and the 60% of variables are
available at each node. The number of trees used is the same as the RF default. Only the

top ten most important variables are shown. There are some common on both lists and a

17

some differences. Showing just the first two variables from each list is sufficient to illustrate
the different type of boundaries induced by the classifiers. The two ways of computing
importance in PPF do produce a different hierarchy of variables. With the global average
importance, Gene3b and Geneb0 are the top two, and these distinguish the small group FL
best. With the global importance, Gene35 and Gene44 are featured, and together these find a
big gap between DLBCL and the other two groups. PPF is utilizing the association between

variables to classify groups, as would be expected.

PPforest PPforest Random Forest
Gene35- (] Gene35- [Gene34 - [
Gene50 - ° Gene44 - ° Gene49 - °
Gene34 - o Gene50 - o Gene47 - [
Gened4 - (] Gene34 - ° Gene44 - °
Genel7 - o Gene46 - ° Gene26 - o
Genel2- (] Genel7- (] Gene46 - (]
Gene46- ® Genel2- ° Geneg - °
Gene4l- o Gene38- Gene4l- o
Gene4 - ® Gene4l- e Genel7- e
Gene47- e Gene49- e Gene38- e
0.10 0.12 0.14 0.16 0.15 0.20 0.25 0.30 0.015 0.020 0.025 0.030 0.035
Global aver. importance Global importance Permuted importance
PPforest PPforest Random Forest
2- o 2 5 2- o
13 ¥ o° (T) ¢ ° L
LS (1 ° ®e® ® oo
1 .. (X)y ° .’ ° 1- o o ©
&° 3% 1 o o o . r: 0‘ . %e o
o Lt I8 < o g0 o ° °
0 O < @ e ° < ¢
[)] L) o) PO ® O 0- o9 o o @
= ° c ° c °
o ° ® . v 0- t o °
O] ° ° O] -] ot® P
] i .. od‘ °® -1-ep 7
l."... —l"&‘ o ®)
‘e bp o0
° ° o ° S
-1 0 1 2 -1 0 1 2 -1 0 1 2
Gene35 Gene35 Gene34

Type e B-CLL e DLBCL e FL

Figure 7: Comparison of importance measures for the lymphoma data, where PPF outper-
formed RF. Top row shows the top 10 variables by each method, with two ways of calculating
with PPF. Bottom row shows the top two variables from each, which illustrates the differ-
ence between methods. PPF is detecting differences between groups when there is association
between variables. Using the global average importance (left), Gene35 and Gene50 better dis-
tinguish group FL. Using the global importance, Gene35 and Gene44 find a big gap between
group DLBCL and the other two.

18

T2

PPforest Random Forest

)
_0.5-
0.0-
04 00 04 04 00 04
T1 T1
PPforest Random Forest
100- amp g &, 1.00- a g
[}
«' .Q Qe
0.75- R) o 0.75- — °
(XK]
S ¢ S o 8 °
£ CX) =) 00 ©® ® e
O 0.50- ® (d © 0.50- ®
5 s s %
o [} o
0.25- ® | 4 0.25- ‘. ’ °
. 32 2 « 4
0.00- = 8 0.00- “
&0 & &0 &
O\/ Q" Q\/ Q"

Class ® B-CLL ® DLBCL @® FL

Figure 8: Comparison of the out-of-bag vote matrix for the three groups of the lymphoma
data, returned by PPF and RF: (top) ternary plot, (bottom) side-by-side jittered dotplots.
This illustrates the difference between methods. PPF votes more decidedly for most cases,
than RF. Especially this is true for the DLCBL class, where all but one are almost always
predicted to the true class.

19

5.2 Vote matrix

Figure [§| shows the vote matrices returned by PPF and RF for three classes of the lymphona
data. It is represented in two ways: as a ternary plot and as a side-by-side jittered dotplot.
The vote matrix has three columns corresponding to the proportion of times the case was
predicted to be class B-CLL, DLBCL or FL, and thus is constrained to lie in a 2D triangle in
3D space. A ternary diagram is created using a helmert transformation of the vote matrix to
capture the 2D subspace. The way to read it is: points near the vertex are clearly predicted
to be one class, points along an edge are confused between two classes, and points in the
middle are confused between the three classes. PPF provides more distinct classification of
observations than RF, because the points are more concentrated in the vertices, and along

one edge.

The side-by-side jittered dotplot is an alternative representation that readily can be used for
any number of classes. The proportion each case is classified to a group is diplayed vertically
along a horizontal axis representing the categorical class variable. Points are jittered a little
horizontally to better see the distribution of proportions, and colour represents the true class.
Points concentrated at the top part indicate cases that are clearly grouped into a class, and
if the colour matches the true class then these are correct classifications. The message is
similar to the ternary diagram: DLBCL is much more clearly distinguished by PPF, and FL
is actually distinguishable from B-CLL by PPF but confused by RF.

5.3 Proximity

Figure [0 shows multidimensional scaling plots of the proximity matrix produced by PPF and
RF classification of the lymphoma data. PPF provides the cleaner proximities. This means
that more frequently observations from the same class reside in the same terminal node of

the trees making up the PPF, than those of RF.

20

PPforest Random Forest

0.75 'Y
®
0.50 - e
0.50- S
N & 0.25- e
A 0.25 a
= = o

0.00 o 0 2
N : 3
. ~0.25- e

-0.25 0.00 0.25 0.50 -04 -0.2 00 02 04 06
MDS1 MDS1

Class ©® B-CLL DLBCL FL

Figure 9: Examining similarity between cases, using pairwise plots of multidimensional scal-
ing on the proximity matrix from PPF and RF fits of the lymphoma data. It can be seen
that most cases are grouped closely with their class in PPF while in RF FL and B-CLL are
mixed.

6 Parameter selection

The primary parameters for PPF are mostly the same as those for RF: number of trees, and
number of variables used in each node partition, with the addition of A when PDA is used

as the index.

Figure 10| (left) shows the effect of proportion of variables for the benchmark data compar-
ison. The average error over 200 training/test splits is shown. For all data sets error is lower
when the more variables are used. Most converge to low error rate when half the variables

are included.

The right plot compares the number of trees needed to optimise the OOB error for both PPF
and RF on the lymphona data. Both need around 100 trees to produce best performance.

21

06- 0.151

= 0.4-] - C
g = 0.10 >
) . ®© © c000 © o0
c o
I =
0} o
= m ee oo00 o0 ° o0
0.2 \ (@)
\ O 0.05-
0.0-
0.25 0.50 0.75 0.00-
Proportion of variables 0 100 200 300 200 500
Trees
NCI60 leukemia wine fishcatch in
—o— crab —e— lymphoma -e- glass parkinson -e— ol =o= PPF =e= RF

Figure 10: Illustrating model tuning using error rate reduction. The average error rate
plotted against proportion of variables in all the benchmark data is shown at left. The error
rate tends to be better with more variables, but it does vary substantially by data set. OOB
error is plotted against number of trees (right) on the lymphoma data for both PPF and RF.
PPF has the consistently lower error, but both would indicate about 100 trees is sufficient
to get the best results.

7 Discussion

This article has presented a new ensemble method (PPF) for classification problems, that
is built on an oblique tree classifier (PPtree). PPF takes the correlation between variables
into account. The forest algorithm enhances the single tree performance, adding diagnostics
to assess variable importance, confusion of observations between groups and proximity of
observations. It is best for medium sized data sets, both in number of observations and

variables.

The benchmark data study showed that PPF predictive performance is always at least as
good, or better, than CART and PPtree, and often better than RF. Simulation results show
that PPF performs better than RF when the classes are separated by a linear combination
of variables and when the correlation between variables increases. The variable importance
diagnostic shows that different variables are combined to create the classification using a

PPF than RF.

22

There are several directions where the work could be extended. The two projection pursuit
indexes, LDA and PDA, can be readily supplemented by other indices. An example would be
to add a regression index for a continuous response. Another direction is to adapt the PPtree
algorithm to allow more than g — 1 splits. This constraint protects the single tree model from
overfitting. There is some protection against this with the bagging, and we expect it would
enable deeper non-linear boundaries to be constructed by PPF. Lastly, because the accuracy

of each tree is collected, automatic pruning of poor performing trees is a possibility.

8 Acknowledgements

The code for PPF are implemented in an R (R Core Team| 2018) package, PPforest, which
is available on CRAN, with development versions at https://github.com/natydasilva/

PPforest.

This paper was written with the R packages knitr (Xie (2015))), ggplot2 (Wickham| (July
2009)) and dplyr (Wickham et al.| (2015)).

References

Amit, Yali, and Donald Geman. 1997. Shape quantization and recognition with randomized

trees. Neural computation 9 (7): 1545-1588.

Athreya, Krishna B, and Soumendra N Lahiri. 2006. Measure theory and probability theory.
Springer.

Breiman, Leo. 1996. Bagging predictors. Machine learning 24 (2): 123-140.
Breiman, Leo. 2001. Random forests. Machine learning 45 (1): 5-32.

Breiman, Leo, et al.. 1996. Heuristics of instability and stabilization in model selection. The

annals of statistics 24 (6): 2350-2383.

23

https://github.com/natydasilva/PPforest
https://github.com/natydasilva/PPforest

Brodley, Carla E, and Paul E Utgoff. 1995. Multivariate decision trees. Machine learning 19
(1): 45-77.

Chang, W., and J. Luraschi. 2016. profvis: Interactive Visualizations for Profiling R Code.
Version 0.3.2.

Do, Thanh-Nghi, Philippe Lenca, Stéphane Lallich, and Nguyen-Khang Pham. 2010. Classi-
fying very-high-dimensional data with random forests of oblique decision trees. In Advances

in knowledge discovery and management, 39-55. Springer.

Eddelbuettel, Dirk, Romain Francois, J Allaire, John Chambers, Douglas Bates, and Kevin
Ushey. 2011. Repp: Seamless r and c++ integration. Journal of Statistical Software 40 (8):
1-18.

Friedman, Jerome H, and John W Tukey. 1973. A projection pursuit algorithm for exploratory

data analysis.

Ho, Tin Kam. 1998. The random subspace method for constructing decision forests. Pattern

Analysis and Machine Intelligence, IEEE Transactions on 20 (8): 832-844.

Kim, Hyunjoong, and Wei-Yin Loh. 2001. Classification trees with unbiased multiway splits.
Journal of the American Statistical Association 96 (454).

Kruskal, Joseph B. 1969. Toward a practical method which helps uncover the structure of a
set of multivariate observations by finding the linear transformation which optimizes a new
‘index of condensation’. In Statistical computation, 427-440. Academic Press, New York.

Academic Press, New York.

Lee, Eun-Kyung. 2018a. PPtreeViz: An R package for visualizing projection pursuit classifi-
cation trees. Journal of Statistical Software 83 (8): 1-30. doi:10.18637 /jss.v083.108.

Lee, Eun-Kyung. 2018b. Pptreeviz: An r package for visualizing projection pursuit classifi-

cation trees. Journal of Statistical Software 83 (1): 1-30.

Lee, Eun-Kyung, and Dianne Cook. 2010. A projection pursuit index for large p small n
data. Statistics and Computing 20 (3): 381-392.

24

Lee, Eun-Kyung, Dianne Cook, Sigbert Klinke, and Thomas Lumley. 2005. Projection pursuit
for exploratory supervised classification. Journal of Computational and Graphical Statistics

14 (4).

Lee, Yoon Dong, Dianne Cook, Ji-won Park, Eun-Kyung Lee, et al.. 2013. PPtree: Projection
pursuit classification tree. Electronic Journal of Statistics 7: 1369-1386.

Lichman, M. 2013. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml.

Menze, Bjoern H, B Michael Kelm, Daniel N Splitthoff, Ullrich Koethe, and Fred A Ham-
precht. 2011. On oblique random forests. In Machine learning and knowledge discovery in

databases, 453-469. Springer.

R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Aus-

tria. R Foundation for Statistical Computing. https://www.R-project.org/.

Tan, Peter J, and David L Dowe. 2004. Mml inference of oblique decision trees. In Ai 2004:

Advances in artificial intelligence, 1082—-1088. Springer.

Tan, Peter J, and David L. Dowe. 2006. Decision forests with oblique decision trees. In Micai

2006: Advances in artificial intelligence, 593—-603. Springer.
Therneau, Terry M, Beth Atkinson, and Maintainer Brian Ripley. 2010. The rpart package.

Truong, Alfred. 2009. Fast growing and interpretable oblique trees via probabilistic models.
Unwv. of Oxford, A thesis submitted for the degree of Doctor of Philosophy, Trinity term.

Wickham, H., R. Francois, and Rstudio. 2015. dplyr: A Grammar of data manipulation.
http://cran.r-project.org/web/packages/dplyr/index.html. Maintained by Wick-
ham, H..

Wickham, Hadley. July 2009. ggplot2: Elegant graphics for data analysis. useR. Springer.

Xie, Yihui. 2015. Dynamic documents with R and knitr, 2nd edn. Boca Raton, Florida:
Chapman and Hall/CRC. ISBN 978-1498716963. http://yihui.name/knitr/.

25

http://archive.ics.uci.edu/ml
http://cran.r-project.org/web/packages/dplyr/index.html

	1 Introduction
	2 Background on the projection pursuit tree
	3 Projection pursuit random forest
	3.1 Definition
	3.2 Algorithm
	3.3 Implementation
	3.4 PPF diagnostics
	3.4.1 Error rate
	3.4.2 Variable importance
	3.4.3 Vote matrix
	3.4.4 Proximity matrix
	3.4.5 Summary

	4 Performance comparison
	4.1 Benchmark data study
	4.2 Boundary comparison with random forest

	5 Diagnostics comparison
	5.1 Variable importance
	5.2 Vote matrix
	5.3 Proximity

	6 Parameter selection
	7 Discussion
	8 Acknowledgements

