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SUMMARY. In this document, we present the detailed proofs for the main results and additional

examples.

S.1. A PRELIMINARY LEMMA

Lemma 1. Let {BN(α)} be a sequence of random numbers (scalers, vectors, or matrices) indexed

by α, α ∈ Γ, where Γ is a bounded subspace of an Euclidean space. For notation, we treat BN(α)

as an 1×M vector, where M is the number of elements in BN(α).

(a) If BN(α) is a continuous function of α uniformly for α and the data and for any fixed α,

{BN(α)} converges in probability to 0, then, for any ε > 0, lim
N→∞

Pr(sup
α∈Γ
||BN(α)|| ≤ ε) =

1.

(b) Suppose that for any ε > 0, there exists δ(ε) > 0 such that ||α2 − α1|| ≤ δ(ε), α1, α2 ∈

Γ implies ||E[(BN{α2) − BN(α1)}t · {BN(α2) − BN(α1)}]|| ≤ ε for all N . If for any
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α, {BN(α)} converges in distribution to F (b;α), which is continuous with respect to b,

uniformly for α, then for any b, b ∈ (−∞,∞)M , lim
N→∞

sup
α∈Γ
|Pr(BN(α) < b)− F (b;α)| = 1.

Proof: (a) Because BN(α) is a continuous function of α uniformly for α and the data, for any

ε > 0, there exists δ(ε) > 0 such that for any α1 and α2 satisfying ||α2 − α1|| ≤ δ(ε),

||BN(α2)−BN(α1)|| ≤ ε.

Because Γ is a bounded Euclidean space, there exists a finite number J(ε) such that we can divide

Γ into subsets Γ1, . . . ,ΓJ(ε) with fixed points α1 ∈ Γ1, . . . , αJ(ε) ∈ ΓJ(ε) such that sup
α∈Γj

||α−αj|| ≤

δ(ε) holds for all j = 1, . . . , J(ε). Thus,

sup
α∈Γ
||BN(α)|| = sup

α∈Γ


J(ε)∑
j=1

[I(α ∈ Γj) · ||BN(α)||]


≤ sup

α∈Γ

J(ε)∑
j=1

[
I(α ∈ Γj) · {||BN(αj)||+ ||BN(α)−BN(αj)||}

]
≤ max

j=1,...,J(ε)
||BN(αj)||+ ε.

Letting N tend to∞ and then ε tend to 0, we have the result.

(b) For any two 1×K random vectors, Z and Z ′ with respective distributions P (b) and P ′(b)

and ε > 0, we have P (b− ε)− Pr(Z ′ − Z ≥ ε) ≤ P ′(b) ≤ P (b+ ε) + Pr(Z ′ − Z ≥ ε). Hence,

P (b− ε)− ||E{(Z
′ − Z)t(Z ′ − Z)}||
||ε||2

≤ P ′(b) ≤ P (b+ ε) +
||E{(Z ′ − Z)t(Z ′ − Z)}||

||ε||2
.

Hence,

|P ′(b)− P (b)| ≤ ||E{(Z
′ − Z)t(Z ′ − Z)}||
||ε||2

+ max{P (b+ ε)− P (b), P (b)− P (b− ε)}.

For any ε > 0, let δ∗(ε) > 0 be such that for any α1 and α2 in Γ satisfying ||α2 − α1|| ≤ δ∗(ε),

||E[{BN(α1)−BN(α2)}t{BN(α1)−BN(α2)}]|| ≤ ε and |F (b;α1)− F (b;α2)| ≤ ε.
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Let FN(b;α) denote the distribution of BN(α). Because Γ is a bounded Euclidean space, there

exists a finite number J(ε) such that we can divide Γ into subsets Γ1, . . . ,ΓJ(ε) with fixed points

α1 ∈ Γ1, . . . , αJ(ε) ∈ ΓJ(ε) such that sup
α∈Γj

||α − αj|| ≤ δ∗(ε) holds for all j = 1, . . . , J(ε). Hence,

for any ε > 0, ε ∈ (−∞,∞)M , we have

sup
α∈Γ
|(BN(α) < b)− F (b;α)| = sup

α∈Γ

∣∣∣∣∣∣
J(ε)∑
j=1

I(α ∈ Γj) · {FN(b;α)− F (b;α)}

∣∣∣∣∣∣
≤ sup

α∈Γ

J(ε)∑
j=1

[
I(α ∈ Γj) · {|FN(b, αj)− F (b;αj)|+ |F (b;αj)− F (b;α)|

+|FN(b;α)− FN(b;αj)|}
]

≤ max
j=1,...,J(ε)

{|FN(b, αj)− F (b;αj)|}+ ε

+sup
α∈Γ

J(ε)∑
j=1

I(α ∈ Γj) ·
(
||E[{(BN(α)−BN(αj)}t{BN(α)−BN(αj)}]||

||ε||2

+ max(FN{b+ ε;αj)− FN(b;αj), FN(b;αj)− FN(b− ε;αj)}
)

≤ max
j=1,...,J(ε)

|FN(b, αj)− F (b;αj)|+ ε+
ε

||ε||2

+ max
j=1,...,J(ε)

[max{F (b+ ε;αj)− F (b;αj), F (b;αj)− F (b− ε;αj)}

+|FN(b+ ε;αj)− F (b+ ε;αj)|+ |FN(b;αj)− F (b;αj)|

+|FN(b− ε;αj)− F (b− ε;αj)|
]
.

This term can be further bounded by max
j=1,...,J(ε)

|FN(b, αj)−F (b;αj)|+ε+ε/||ε||2+supα∈Γ[max{F (b+

ε;α)−F (b;α), F (b;α)−F (b− ε;α)}] + max
j=1,...,J(ε)

{|FN(b+ ε;αj)−F (b+ ε;αj)|+ |FN(b;αj)−

F (b;αj)|+ |FN(b− ε;αj)− F (b− ε;αj)|}. Letting N tend to∞, ε to 0, and then ε to 0, we have

the result.
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S.2. PROOF OF THEOREM 1

We define for any θ and θ′ in Θ, QN(θ, θ′)
def.
= ∂LN(θ, θ′)/∂θ, Q0N(θ, θ′)

def.
= EQN(θ, θ′), L0N(θ, θ′)

def.
=

ELN(θ, θ′), G0N(θ)
def.
= EGN(θ), H0N(θ)

def.
= EHN(θ), U0N(θ)

def.
= EUN(θ), TN(θ, θ′)

def.
= LN(θ, θ′)−

ELN(θ, θ′), and A(δ)
def.
= TN(θ+δ (θ′−θ), θ′)−TN(θ, θ′). It follows from the regularity condition

that, for any θ and θ′ in Θ, dA(δ)/dδ = N(θ′−θ) · [QN(θ+δ(θ′−θ), θ′)−Q0N(θ+δ(θ′−θ), θ′)]t

is a continuous function of δ. Thus, there exists δ∗ ∈ (0, 1) such that TN(θ′, θ′) − TN(θ, θ′) =

A(1)− A(0) = dA(δ)
dδ
|δ=δ∗ = N(θ − θ′) · {QN(θ′′, θ′)−Q0N(θ′′, θ′)}t, where θ′′ = θ + δ∗(θ′ − θ)

is also within Θ because Θ is convex. Hence,

|TN(θ′, θ′)− TN(θ, θ′)|
N ||θ′ − θ||

≤ ||QN(θ′′, θ′)−Q0N(θ′′, θ′)|| ≤ sup
θ∗,θ∗∗∈Θ

||QN(θ∗, θ∗∗)−Q0N(θ∗, θ∗∗)||.

For any ε > 0, we have

Pr(||θ̂N − θ0N || ≤ ε) ≥ Pr

(
C{L0N(θ0N , θ̂N)− L0N(θ̂N , θ̂N)}

N ||θ̂N − θ0N ||
≤ ε

)

≥ Pr

(
C{LN(θ0N , θ̂N)− LN(θ̂N , θ̂N)}

√
N ||θ̂N − θ0N ||

≤ 0

)

−Pr

(
C|(LN{θ̂N , θ̂N)− L0N(θ̂N , θ̂N)} − {LN(θ0N , θ̂N)− L0N(θ0N , θ̂N)}|

N ||θ̂N − θ0N ||
> ε

)

= 1− Pr

(
|TN(θ̂N ; θ̂N)− TN(θ0N , θ̂N)|

N ||β̂N − θ0N ||
>

ε

C

)

≥1− Pr

(
sup

θ∗,θ∗∗∈Θ
|QN(θ∗, θ∗∗)−Q0N(θ∗, θ∗∗)| > ε

C

)
.

The regularity condition ensures that QN(θ∗, θ∗∗) − Q0N(θ∗, θ∗∗) is a continuous function of

(θ∗, θ∗∗) uniformly for (θ∗, θ∗∗) ∈ Θ × Θ and the law of large numbers ensures that QN(θ∗,

θ∗∗)−Q0N(θ∗, θ∗∗) converges in probability to 0 as N tends to∞. Letting N tend to∞ and then

ε to 0, and applying Lemma 1 (a), we have lim
N→∞

Pr(||θ̂N − θ0N || ≤ ε) = 1, which yields (a).
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We now prove (b). For an 1×K vector e, we denote rN(e)
def.
= GN(θ0N + e)−G0N(θ0N) + e

H0N(θ0N). Let ε0 > 0 be the lower bound of ρ(EHN(θ0N)) = ρ(H0N(θ0N)). It follows from

the regularity condition and the Taylor expansion of G0N(θ0N + e) around e = 0 that for any ε,

0 < ε ≤ ε0, we can find δ(ε), 0 < δ(ε) ≤ ε such that for all N , θ, and e, ||e|| < δ(ε) ≤ ε,

||G0N(θ0N + e) − G0N(θ0N) + e · H0N(θ0N)|| ≤ ε||e||/2 ≤ ε0||e||/2, and ||H0N(θ0N + e) −

H0N(θ0N)|| ≤ ε/4 ≤ ε0/4.

We now consider a probability subspace Ωε = { sup
||e||≤δ(ε)

||GN(θ0N + e) − G0N(θ0N + e)|| ≤

ε0δ(ε)/2} ∩ { sup
||e||≤δ(ε)

||HN(θ0N + e)−H0N(θ0N + e)|| ≤ ε0/4}. For any data point in Ωε, 1×K

vectors e and η, ||e|| ≤ δ(ε) ≤ ε, ||η|| = 1, we have ||rN(e)|| = ||G0N(θ0N + e) − G0N(θ0N) +

e H0N(θ0N) +GN(θ0N + e)−G0N(θ0N + e)|| ≤ ε0||e||/2 + ε0δ(ε)/2 = ε0δ(ε), and

η HN(θ0N + e) ηt = η H0N(θ0N) ηt + η [HN(θ0N + e)−H0N(θ0N + e)] ηt

+η{H0N(θ0N + e)−H0N(θ0N)} ηt

≥ ρ(H0N(θ0N + e))− ε0/4− ε0/4 ≥ ε0 − ε0/4− ε0/4 = ε0/2.

Thus, ρ(HN(θ0N + e)) ≥ ε0/2. For the operator S that maps e to rN(e){H0N(θ0N)}−1,

||S(e)|| = ||rN(e) · {H0N(θ0N)}−1|| ≤ ||rN(e)|| · ||{H0N(θ0N)}−1||

≤ ε0δ(ε) · ρ(H0N(θ0N))−1 ≤ δ(ε).

Thus, S is a continuous function from {e : ||e|| ≤ δ(ε)} to {e : ||e|| ≤ δ(ε)}. The Brouwer fixed

point theorem ensures that there exists êN , ||êN || ≤ δ(ε) ≤ ε, such that êN = S(êN) = rN(êN) ·

[H0N(θ0N)]−1.We define θ̂N as a statistic such that for any data point in Ωε, θ̂N = θ0N+êN . Hence,

GN(θ̂N) = −êN · H0N(θ0N) + rN(êN) + G0N(θ0N) = −rN(êN) · {H0N(θ0N)}−1 · H0N(θ0N) +

rN(êN) = 0.

5



Because ρ(H0N(θ̂N)) = ρ(H0N(θ0N + êN)) > ε0/2 > 0 and

LN(θ, θ̂N) = LN(θ̂N , θ̂N) + (θ − θ̂N) ·Gt
N(θ̂N)

− 1

2
(θ − θ̂N) · HN(θ̂N) + {HN(θ̂N)}−1

2
· (θ − θ̂N)t + o(||θ − θ̂N ||),

there exists a neighborhood of θ̂N such that for any θ in the neighborhood, LN(θ̂N , θ̂N) ≥ LN(θ,

θ̂N), indicating that for any fixed data point in Ωε, θ̂N is a local estimate from LN(θ, θ′). Hence,

Pr(||θ̂N − θ0N || ≤ ε and θ̂N is a local estimate)

= Pr(||êN || ≤ ε and θ̂N is a local estimate)

≥ Pr(Ωε)

= Pr
(
{ sup
||e||≤δ(ε)

||GN(θ0N + e)−G0N(θ0N + e)|| ≤ ε0δ(ε)/2}

∩{ sup
||e||≤δ(ε)

||HN(θ0N + e)−H0N(θ0N)|| ≤ ε0/4}
)
.

The regularity condition ensures that both GN(θ0N + e)−G0N(θ0N + e) and HN(θ0N + e)−

H0N(θ0N) are continuous functions of e uniformly for e, ||e|| ≤ δ(ε), and the law of large numbers

ensures that for any fixed e both converge in probability to 0 as N tends to∞. Letting N tend to

∞ and applying Lemma 1(a), we have lim
N→∞

Pr(||θ̂N − θ0N || < ε and θ̂N is a local estimate) = 1.

The proof of (c) is similar. We now prove (d). By the definition of global, local, or stationary

attractions, there exists ε0 > 0 such that (10c) and (10d) hold. For {θ̂N} with {θ̂N − θ0N}

converging in probability to θ1, using Taylor expansion along with the regularity condition, we

have

0 = GN(θ̂N) = GN(θ0N) + (θ̂N − θ0N) ·HN(θ0N) + op

(∥∥∥θ̂N − θ0N

∥∥∥)
= GN(θ0N) + (θ̂N − θ0N) · {H0N(θ0N) + op(1)}.
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It follows from the regularity condition and (10d) that

√
N(θ̂N − θ0N) = −

√
N ·GN(θ0N) · {H0N(θ0N) + op(1)}−1

= −
√
N ·GN(θ0N) · {H0N(θ0N)}−1 · {1 + op(1)} (s.1)

We denote BN(α) = −
√
N · {GN(α)−G0N(α)}, α ∈ Θ. For a fixed α ∈ Θ, we have

E{BN(α)} = E[−
√
N · {GN(α)−G0N(α)}] = 0

Var{BN(α)} = Var[−
√
N · {GN(α)−G0N(α)}]

=
1

N

N∑
i=1

Var{gi(θ)} = EUN(α) = U0N(α).

It follows from the central limit theorem that for any fixed α, BN(α) converges in distribution

to F (b;α), the multivariate normal distribution with mean EBN(α) = 0 and variance matrix

Var{BN(α)} = U0N(α). Further, for any α1, α2 in Θ, we have

||E{(BN(α1)−BN(α2)}t{BN(α1)−BN(α2))}||

= || 1
N

N∑
i=1

Var{gi(α2)− gi(α1)}||

≤ 1

N

N∑
i=1

||Var{gi(α2)− gi(α1)}||.

We denote h∗i (α)
def.
= hi(α)−Ehi(α) = −[∂gi(α)/∂α−E∂gi(α)/∂α]. It follows from the regularity

condition and the Taylor expansion that

{gi(α2)− gi(α1)} − E{gi(α2)− gi(α1)} = h∗i (α1) (α1 − α2) + ei(α1, α2),

where ||ei(α1, α2)||/||α2 − α1|| converges to 0 uniformly for i and α1 as ||α2 − α1|| tends to 0.

Thus, we have from the above equation,

Var{gi(α2)− gi(α1)} = E[{h∗i (α1) (α1 − α2) + ei(α1, α2)}t {h∗i (α1) (α1 − α2) + ei(α1, α2)}]
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= E[(α1 − α2)t {h∗i (α1)}t h∗i (α1) (α1 − α2)]

+E[(α1 − α2)t {h∗i (α1)}t ei(α1, α2)]

+E{eti(α1, α2) h∗i (α1) (α1 − α2)}+ E{eti(α1, α2) ei(α1, α2)}.

It follows from the regularity condition that ||Var[gi(α2) − gi(α1)]|| converges to 0 uniformly for

i and α1 as ||α2 − α1|| tends to 0. Therefore, for any ε > 0, there exists δ(ε) > 0 such that

||α2−α1|| ≤ δ(ε) implies ||E[{BN(α2)−BN(α1)}t{BN(α2)−BN(α1)}]|| ≤ ε.Applying Lemma

1(b) and the regularity condition, we have that lim
N→∞

sup
α∈Θ
|Pr(BN(α) < b) − F (b;α)| = 1. Thus,

lim
N→∞

|Pr(BN{θ0N) < b}−F (b; θ0N)| = 1. Finally, it follows from (s.1) and (10c) that
√
N(θ̂N −

θ0N) = BN(θ0N) · [EHN(θ0N)]−1 · [1 + op(1)] is asymptotically normally distributed with mean 0

and variance matrix (12c).

S.3. PROOF OF THEOREM 2

Note from (8c) and (9a) that θ̂N satisfies K(θ̂N) = θ̂N . It follows from Condition (i) that K(θ) is

differentiable at θ̂N . Further,

∂

∂θ
K(θ)|θ=θ̂N = I +

[
∂GN(θ)

∂θ
· {H(0)

N (θ)}−1

] ∣∣∣
θ=θ̂N

+

[
GN(θ) · ∂

∂θ
{H(0)

N (θ)}−1

] ∣∣∣
θ=θ̂N

= I −HN(θ̂N) · {H(0)
N (θ̂N)}−1 = H

(1)
N (θ̂N) · {H(0)

N (θ̂N)}−1.

It follows Condition (ii) that the largest absolute eigenvalue of ∂K(θ)/∂θ|θ=θ̂N is smaller than 1.

Applying Ostrowski theorem (Ortega, 1987, ,p. 145) to K() yields the result.

S.4. ADDITIONAL EXAMPLES

Example 7 (GEE with missing covariates) Further consider the GEE with missing covariates.

Along the notation in Example 2 of the manuscript; i.e., let Yi = (Yi1, . . . , YiMi
) be the responses,
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Xi = (Xi1, . . . , XiMi
) be the covariates (just one-dimensional for notational simplicity) of the ith

subject, whereMi is the number of observations from the ith subject. Let δij = 1 ifXij is observed

and δij = 0 otherwise. Assume that the X’s are missing at random (MAR) in the sense that

π(Yij, ζ) = P (δij = 1|Xij, Yij) = P (δij = 1|Yij),

which is parameterized by ζ . We model the mean, standard deviation and correlation as in Exam-

ple 2.

We define an iterative likelihood for θ = (b, a, c, ζ) as,

LN(θ, θ′)
def.
= L

(m)
N (b, θ′) + L

(d)
N (a, θ′) + L

(r)
N (c, θ′), (s.2)

where θ = (b, a, c, ζ), θ′ = (b′, a′, c′, ζ ′), and

L
(m)
N (b, θ′)

def.
= −

N∑
i=1

∑
j1,j2

{W (m)
ij1j2

(θ′) ·D(m)
ij1

(b) ·D(m )
ij2

(b)} δij1
π(Yij1 , ζ

′)

δij2
π(Yij2 , ζ

′)
, (s.3a)

L
(d)
N (a, θ′)

def.
= −

N∑
i=1

∑
j

[W
(d)
ij (θ′) · {D(d)

ij (b′, a)}2]
δij1

π(Yij1 , ζ
′)

δij2
π(Yij2 , ζ

′)
, (s.3b)

L
(r)
N (c, θ′)

def.
= −

N∑
i=1

∑
j1,j2

[W
(r)
ij1j2

(θ′) · {D(r)
ij1j2

(b′, a′, c)}2]
δij1

π(Yij1 , ζ
′)

δij2
π(Yij2 , ζ

′)
, (s.3c)

L
(π)
N (ζ, θ′)

def.
= −

N∑
i=1

∑
j1,j2

{W (π)
ij1j2

(θ′) ·D(π)
ij1

(ζ) ·D(π)
ij2

(ζ)}, (s.3d)

with

D
(m)
ij (b)

def.
= Yij −mij(Xij; b), (s.4a)

D
(d)
ij (a, b′)

def.
= {Yij −mij(Xij; b

′)}2 − d2
ij(b
′, a), (s.4b)

D
(r)
ij1j2

(c, a′, b′) =
Yij1 −mij1(Xij; b

′)

dij1(bi
′, a′)

Yij2 −mij2(Xij; b
′)

dij2(Xij; b′, a′)
− rij1j2(b

′, a′, c) (s.4c)

Dπ
ij(ζ) = δij − π(Yij, ζ). (s.4d)
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Example 8 (Unweighted estimator for big data subsampling) Let {(Xi, Yi)}Ni=1 be the indepen-

dent full data of size N from the joint distribution of (X, Y ), where Y is the response variable and

X is the covariate variable. Let the joint density of (X, Y ) be fXY (x, y; θ) = fY |X(y|x; β)fX(x;α),

where θ = (β, α), fY |X(y|x; β) is the conditional density of Y givenX , and fX(x;α) is the density

of X . With big data where N is super large, using the full data to estimate θ is computationally ex-

pensive, so a popular practical solution is to select a smaller subsample to perform calculation (e.g.

Avron et al., 2010; Ma et al., 2015; Mahoney, 2011; Meng et al., 2014; Zhang et al., 2020). For

estimation efficiency, nonuniform sampling probabilities are recommended where the sampling

probabilities depend on the data. For example, optimal subsampling assigns larger probabilities

to more informative data points (Wang et al., 2018). Let π(Xi, Yi) be the sampling probability

such that πn(Xi, Yi) = Pr(δi = 1|Xi, Yi), i = 1, ..., N , where n is the expected subsample size

so that E{πn(Xi, Yi)} = n and δi is the indicator variable signifying if (Xi, Yi) is included in the

subsample (δi = 1 if the i-th data point is selected in the subsample and δi = 0 otherwise). Al-

though uniform sampling is often used, there is increasing interest in optimal subsampling where

a more inforrmative data point is given a larger value of π(Xi, Yi) (Mahoney, 2011; Zhang et al.,

2020). For a selected subsample, a commonly used estimator is the inverse probability weighted

estimator, the maximizer of
N∑
i=1

δi log fXY (Xi, Yi; θ)

π(Xi, Yi)
. (s.5)

However, the estimator θ̂W gives smaller weights to more informative data points, so it is not effi-

cient. To solve this issue, methods have been proposed to correct the bias in the naive unweighted

estimator (Fithian and Hastie, 2014; Scott and Wild, 1986; Wang, 2019), and Wang (2019) has

proved that the unweighted estimator with bias correction has a higher estimation efficiency. How-
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ever, the aforementioned investigations exclusively focused on the logistic regression because the

bias correction terms depends on the special structure of the logistic regression. A general approach

to avoid the inefficient inverse probability weighting is not available for optimal subsampling.

The proposed iterative likelihood framework gives general solutions beyond logistic regression

for subsampled data. From Bayes’ theorem, the density of (X, Y ) for the sampled observation

with δ = 1 is

fXY (x, y|δ = 1; θ) =
fY |X(y|x; β)fX(x;α)πn(x, y)∫

π̄(x; β)fX(x;α)dx
(s.6)

where

π̄n(x; β) =

∫
fY |X(y|x; θ)πn(x, y)dy (s.7)

often have closed form expression in optimal subsampling.

Letting θ = (β, α) and θ′ = (β′, α′), we define an iterative likelihood as

LN(θ, θ′) =
N∑
i=1

δili(θ, θ
′), (s.8)

where

li(θ, θ
′) = log fY |X(y|x; β) + log fX(x;α′)− log

∫
π̄n(x; β)fX(x;α′)dx. (s.9)

The above iterative likelihood procedure is innovative in multiple aspects. 1) It gives a gen-

eral solution to avoid the inverse probability weighting. In addition, our theoretical results in the

paper apply, assuming n and N goes to infinity. Note that in subsampling for a given expected

subsample size n, the density of (X, Y ) given δ = 1 is a sequence that changes with n and N , so

the standard i.i.d. argumentation for MLE does not directly applies. 2) Our theoretical results are

unconditional, and it is about the true parameter. This is different from existing results for optimal

subsampling estimators where the distributional results are often conditional on the observed data,
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and the theoretical properties are about approximating the full data estimator instead of estimating

the true parameter, e.g., Ai et al. (2020); Keret and Gorfine (2020); Wang et al. (2018); Yao and

Wang (2019); Yu et al. (2020); Zhang and Wang (2021); Zuo et al. (2021), among others. 3) We

believe the resulting estimator has the highest estimation efficiency among regular asymptotically

unbiased estimators. However, a rigorous proof needs further investigations.

Of course for the additional estimation efficiency, the iterative likelihood has to pay a price in

regression problems. If β is the only parameter of interest, then the weighted estimator can be

obtain thorough maximizing
N∑
i=1

δi log fY |X(y|x; β)

π(Xi, Yi)
, (s.10)

without estimating α. We point out this because we do not want oversell iterative likelihood. Every

method has its advantages and disadvantages. From the above example, we see that the iterative

likelihood provides a general solution to an important problem by looking at it from a broader

view. This is definitely one of the advantages of iterative likelihood. Our paper is the first paper

about iterative likelihood and we do not expect it to solve all the problems. We hope the paper can

be a start in this direction.
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