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In Appendix A, we collect technical lemmas needed to prove the main results, which
are presented in Appendix B. Details of the algorithm for solving the optimization prob-
lem (4) are presented in Appendix C, while the selection of the tuning parameters is dis-
cussed in detail in Appendix D. Further, additional simulation results for the comparison
with two competing methods are reported in Appendix E. Finally, note that all constants
c1, c2, . . . , k1, k2, . . . in the proofs of Lemmas and Theorems are generic constants, and their
repetitions on different places in the proofs do not imply they are identical.

Appendix A: Technical Lemmas

Lemma A1. Under Assumption A1, there exist constants ci > 0 such that with probability
at least 1− c1 exp(−c2(log(q) + 2 log(p))), for any sequence cn,

sup
1≤j≤m0+1,s≥tj−1+q,|tj−s|>cn

∣∣∣∣∣
∣∣∣∣∣(tj − s)−1

tj−1∑
l=s

Yl−1Y
′
l−1 − Γqj(0)

∣∣∣∣∣
∣∣∣∣∣
∞

≤ c3

√
log(q) + 2 log(p)

cn
,

(A.1)
where Γqj(0) = E(Yt−1Y

′
t−1) for tj−1 + q ≤ t < tj. Moreover,

sup
1≤j≤m0+1,s≥tj−1+q,|tj−s|>cn

∣∣∣∣∣
∣∣∣∣∣(tj − s)−1

tj−1∑
l=s

Yl−1ε
′
l

∣∣∣∣∣
∣∣∣∣∣
∞

≤ c3

√
log(q) + 2 log(p)

cn
. (A.2)

Proof. The proof of this lemma is similar to that of Proposition 2.4 in Basu and Michailidis
(2015). Next, we briefly outline the main steps of the proof, while omitting unnecessary
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details. For (A.1), note that using an argument similar to Proposition 2.4(a) in Basu and
Michailidis (2015), there exist k1, k2 > 0 such that for each fixed k, l = 1, · · · , pq,

P

(∣∣∣∣∣e′k(
∑tj−1

l=s Yl−1Y
′
l−1

tj − s
− Γqj(0)

)
el

∣∣∣∣∣ > k1η

)
≤ 6 exp(−k2cn min(η, η2)). (A.3)

Setting η = k3

√
log(qp2)
cn

, and taking union over all possible values of k, l, we obtain (A.1).

Note that, there exist k1, k2 > 0 such that for each fixed k = 1, ..., pq, l = 1, ..., p,

P

(∣∣∣∣∣e′k
∑tj−1

l=s Yl−1ε
′
l

tj − s
el

∣∣∣∣∣ > k1η

)
≤ 6 exp(−k2cn min(η, η2)). (A.4)

Setting η = k3

√
log(qp2)
cn

, and taking union over all possible values of k, l, we get:∣∣∣∣∣
∣∣∣∣∣(tj − s)−1

tj−1∑
l=s

Yl−1ε
′
l

∣∣∣∣∣
∣∣∣∣∣
∞

≤ c3

√
log(q) + 2 log(p)

cn
, (A.5)

with high probability converging to 1 for any j = 1, 2, · · · ,m0 + 1, as long as |tj − s| > cn
and s ≥ tj−1 +q. Note that the constants c1, c2 and c3 can be chosen large enough such that
the upper bounds above would be independent of the break point ti. Therefore, we have the
desired upper bounds verified with probability at least 1−c1 exp(−c2(log(q)+2 log(p))).

Appendix B: Proof of Main Results

Proof of Theorem 1. The proof is similar to Theorem 2 in Safikhani and Shojaie (2020).
For a matrix A ∈ Rp×pq, let ||A||1,Ij =

∑
(k,h)∈Ij |akh|.

First, we focus on the second part. Suppose there exists a true break point tj0 where
j0 ∈ {1, · · · ,m0}, which is isolated from all estimated points, i.e., min1≤j≤m̂ |t̂j−tj0| > nγn.
In other words, there exists an estimated break point t̂j such that, tj0 − tj0−1 ∨ t̂j ≥ nγn
and tj0+1 ∧ t̂j+1 − tj0 ≥ nγn. The idea of the proof is to show the estimated AR parameter
estimated in the interval [tj0−1 ∨ t̂j, tj0+1 ∧ t̂j+1] converges in L2 to both Φ(.,j0) and Φ(.,j0+1)

which contradicts Assumption A3. This is due to the fact that the length of the interval
is large enough to verify restricted eigenvalue and deviation bound inequalities needed to
show parameter estimation consistency.

Based on the definition of Θ̂ in (4), the value of the function defined in (4) is minimized

exactly at Θ̂. This means that any other choice of parameters yields a higher value in
(4). Denote the closest ri to the right side of tj0−1 plus q by sj0−1, i.e, sj0−1 = ri + q, and
similarly, denote the closest ri to the left side of tj0 by sj0 . First, we focus on the interval

[sj0−1 ∨ t̂j, sj0 ]. Define a new parameter sequence ψk’s, k = 1, ..., kn with ψk = θ̂k except

for two time points k = îj ∨ ij0−1 and k = ij0 . For these two points, if t̂j > sj0−1, set

ψîj = Φ(.,j0) − Φ̂j and ψij0 = Φ̂j+1 − Φ(.,j0); if t̂j ≤ sj0−1, set set ψij0−1
= Φ(.,j0) − Φ̂j+1 and

ψij0 = Φ̂j+1 − Φ(.,j0), where Φ̂j =
∑îj−1

k=1 θ̂k and Φ̂j+1 =
∑îj

k=1 θ̂k , i.e. θ̂̂ij = Φ̂j+1 − Φ̂j,
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where ij0−1, ij0 and îj are the corresponding indices of candidate points sj0−1, sj0 and t̂j.
Denoting Ψ = vector(ψ1, ..., ψkn) ∈ Rπb×1, we have

1

n
‖Y− ZΘ̂‖22 + λ1,n‖Θ̂‖1 + λ2,n

kn∑
i=1

∥∥∥∥∥∥
i∑

j=1

θ̂j

∥∥∥∥∥∥
1

≤ 1

n
‖Y− ZΨ‖22 + λ1,n‖Ψ‖1 (B.1)

+ λ2,n

kn∑
i=1

∥∥∥∥∥∥
i∑

j=1

ψj

∥∥∥∥∥∥
1

.

When t̂j > sj0−1, some rearrangement of equation (B.1) leads to

0 ≤ c ‖Φ(.,j0) − Φ̂j+1‖2F

≤ 1

sj0 − sj0−1 ∨ t̂j

sj0−1∑
l=sj0−1∨t̂j

(
Φ(.,j0) − Φ̂j+1

)′
Yl−1Y

′
l−1

(
Φ(.,j0) − Φ̂j+1

)

≤ 2

sj0 − sj0−1 ∨ t̂j

sj0−1∑
l=sj0−1∨t̂j

Y ′l−1

(
Φ(.,j0) − Φ̂j+1

)
εl

+
nλ1,n

sj0 − sj0−1 ∨ t̂j

(
‖Φ(.,j0) − Φ̂j+1‖1 + ‖Φ(.,j0) − Φ̂j‖1 − ‖Φ̂j+1 − Φ̂j‖1

)
+

nλ2,n

bn

(
‖Φ(.,j0)‖1 − ‖Φ̂j+1‖1

)
≤

(
2nλ1,n

sj0 − sj0−1 ∨ t̂j
+ C

√
log p

nγn

)
‖Φ(.,j0) − Φ̂j+1‖1 +

nλ2,n

bn

(
‖Φ(.,j0)‖1 − ‖Φ̂j+1‖1

)
≤ 1

2

nλ2,n

bn
‖Φ(.,j0) − Φ̂j+1‖1 +

nλ2,n

bn

(
‖Φ(.,j0)‖1 − ‖Φ̂j+1‖1

)
≤ 3

2

nλ2,n

bn
‖Φ(.,j0) − Φ̂j+1‖1,Ij0 −

1

2

nλ2,n

bn
‖Φ(.,j0) − Φ̂j+1‖1,Icj0 . (B.2)

When t̂j ≤ sj0−1, a similar result can be obtained using an analogous rearrangement
of equation (B.1). In equation (B.2), the second inequality holds with high probability
converging to 1 due to first part of Lemma A1 and the fact that sj0 − sj0−1 ∨ t̂j ≥ 1

2
nγn

and bn ≤ 1
4
nγn by Assumption A3. The fourth inequality holds with high probability

converging to 1 due to second part of Lemma A1 and triangular inequality. The fifth
inequality is based on Assumption A3 and the selection for λ2,n in the statement of the
Theorem. The last inequality holds by the sparsity assumption. This implies that

∥∥∥Φ(.,j0) − Φ̂j+1

∥∥∥
F

= Op

(√
d?n log p

nγn

)
, (B.3)

which means that ‖Φ(.,j0) − Φ̂j+1‖F converges to zero in probability based on Assumption
A3. Similarly, the same procedure can be applied to the interval [sj0 , sj0+1 ∧ t̂j+1], where

sj0+1 is the closest ri to the left side of tj0+1, which leads to ‖Φ(.,j0+1) − Φ̂j+1‖F converges
to zero in probability as well. This yields a contradiction to Assumption A3, and therefore,
the proof is complete.
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The proof of the first part is similar to the second part. Hence, a brief sketch is provided.
Assume |Ân| < m0. This means there exist an isolated true break point, say tj0 . More
specifically, there exists an estimated break point t̂j such that, tj0 − tj0−1 ∨ t̂j ≥ nγn/3
and tj0+1 ∧ t̂j+1 − tj0 ≥ nγn/3. Now, similar arguments as explained in details in the
second part can be applied to both intervals [sj0−1 ∨ t̂j, sj0 ] and [sj0 , sj0+1 ∧ t̂j+1] which
leads to

∥∥Φ(.,j0+1) − Φ(.,j0)
∥∥
F

converges to zero and therefore contradicts Assumption A3.
This completes the proof.

Proof of Theorem 2. Theorem 1 implies that for each ti, i = 1, . . . ,m0, there exist points
t̂j ∈ Ân such that |t̂j − ti| ≤ nγn. First, we show that{

t̂j ∈ Ân s.t. |t̂j − ti| ≤ nγn, for some i = 1, . . . ,m0

}
⊆ Ãn

with high probability converging to one as n tends to infinity. This shows that (a) P(m̃ <

m0) → 0; (b) P
(
dH

(
Ãn,An

)
≤ nγn

)
→ 1. We show this by contradiction. Suppose for

some j, t̂j is not included in the optimal set Ãn which is a minimizer of (10). We show
that adding t̂j costs less than removing it based on the LIC price.

Consider the case when t̂j is dropped in the screening step, while there exists a true
change point ti such that |t̂j−ti| ≤ nγn. Similar arguments as in Proposition 4.1 of Basu and
Michailidis (2015) show that the tuning parameter selected based on Assumption A5 (i.e.

ηt̂j = c1

√
d?nnγn
an

+c2d
?
n) yield:

∥∥∥Φ(.,i) − ψ̂t̂j
∥∥∥

1
≤ 4
√
d?n

∥∥∥Φ(.,i) − ψ̂t̂j
∥∥∥
F

and
∥∥∥Φ(.,i+1) − ψ̂t̂j

∥∥∥
1
≤

4
√
d?n

∥∥∥Φ(.,i+1) − ψ̂t̂j
∥∥∥
F

. Note that in this case, the restricted eigenvalue condition does not

hold. Therefore, the convergence of the ψ̂t̂j cannot be verified. For this scenario, based

on similar calculations as in case (c) of proof of Lemma 4 in Safikhani and Shojaie (2020)
(see equations (22)-(26) in Safikhani and Shojaie (2020)’s supplement for details), after
replacing si−1 and si with t̂j − an and t̂j + an − 1, we have the following lower bound:

t̂j+an−1∑
t=t̂j−an

‖yt − ψ̂t̂jYt−1‖2
2 ≥

t̂j+an−1∑
t=t̂j−an

‖εt‖2
2 + c1an − c2d

?
n log p, (B.4)

for some positive c1 and c2 with high probability converging to one.
Denote by B = Ãn ∪ {t̂j}. We only consider one segment

[
t̂j − an, t̂j + an

)
for the case

when t̂j is kept as a selected break point. Similar arguments as in Lemma 4 of Safikhani
and Shojaie (2020) yield:

∥∥∥ψ̂t̂j ,1 − Φ(.,i)
∥∥∥

1
≤ 4
√
d?n

∥∥∥ψ̂t̂j ,1 − Φ(.,i)
∥∥∥
F
,
∥∥∥ψ̂t̂j ,1 − Φ(.,i)

∥∥∥
F

= Op

(
d?n

√
nγn
an

)
, (B.5)

and∥∥∥ψ̂t̂j ,2 − Φ(.,i+1)
∥∥∥

1
≤ 4
√
d?n

∥∥∥ψ̂t̂j ,2 − Φ(.,i+1)
∥∥∥
F
,
∥∥∥ψ̂t̂j ,2 − Φ(.,i+1)

∥∥∥
F

= Op

(
d?n

√
nγn
an

)
.

(B.6)
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To see this, suppose ti + q < t̂j (the other case is similar). Observe that ψ̂t̂j ,1 in (6)
minimizes the least squares plus the `1 norm loss function. Therefore, the value of this
objective function for ψ̂t̂j ,1 will be smaller than any other choice of parameters, including

Φ(.,i). Hence,

1

an

t̂j−1∑
t=t̂j−an

∥∥∥yt − ψ̂t̂j ,1Yt−1

∥∥∥2

2
+ ηt̂j ,1

∥∥∥ψ̂t̂j ,1∥∥∥1
≤ 1

an

t̂j−1∑
t=t̂j−an

∥∥yt − Φ(.,i)Yt−1

∥∥2

2

+ ηt̂j ,1
∥∥Φ(.,i)

∥∥
1
. (B.7)

Some rearrangements together with the use of proposition 4.2 of Basu and Michailidis
(2015) lead to:

c1

∥∥∥Φ(.,i+1) − ψ̂t̂j ,1

∥∥∥2

F
− c2

log p

an

∥∥∥Φ(.,i) − ψ̂t̂j ,1

∥∥∥2

1
≤ max

(
0, c1

∥∥∥Φ(.,i+1) − ψ̂t̂j ,1

∥∥∥2

F
− c2

log p

an

∥∥∥Φ(.,i) − ψ̂t̂j ,1

∥∥∥2

1

)

≤ 1

an

t̂j−1∑
t=t̂j−an

Y ′t−1

(
Φ(.,i) − ψ̂t̂j ,1

)′ (
Φ(.,i) − ψ̂t̂j ,1

)
Yt−1

≤ 2

an

t̂j−1∑
t=t̂j−an

Y ′t−1

(
Φ(.,i) − ψ̂t̂j ,1

)′ (
yt − Φ(.,i)Yt−1

)
+ ηt̂j ,1

(∥∥∥Φ(.,i)
∥∥∥

1
−
∥∥∥ψ̂t̂j ,1

∥∥∥
1

)

=
2

an

t̂j−1∑
t=t̂j−an

Y ′t−1

(
Φ(.,i) − ψ̂t̂j ,1

)′
εt + ηt̂j ,,1

(∥∥∥Φ(.,i)
∥∥∥

1
−
∥∥∥ψ̂j,1

∥∥∥
1

)

+
2

an

t̂j−1∑
t=ti

Y ′t−1

(
Φ(.,i) − ψ̂t̂j ,1

)′ (
Φ(.,i+1) − Φ(.,i)

)
Yt−1

≤ c

√
log p

an

∥∥∥Φ(.,i) − ψ̂t̂j ,1

∥∥∥
1

+ ηt̂j ,1

(∥∥∥Φ(.,i)
∥∥∥

1
−
∥∥∥ψ̂t̂j ,1

∥∥∥
1

)
+ 2

t̂j − ti
an

tr

(Φ(.,i) − ψ̂t̂j ,1

)′ 1

t̂j − ti

t̂j−1∑
t=ti

Yt−1Y
′
t−1 − Γq

i+1(0) + Γq
i+1(0)

(Φ(.,i+1) − Φ(.,i)
)

= I,

where the second inequality is due to the restricted eigenvalue property (proposition 4.2
of Basu and Michailidis (2015)), the fourth inequality uses the circular invariance property
of the trace function. Now, observe that
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I ≤ c

√
log p

an

∥∥∥Φ(.,i) − ψ̂t̂j ,1

∥∥∥
1

+ ηt̂j ,1

(∥∥∥Φ(.,i)
∥∥∥

1
−
∥∥∥ψ̂t̂j ,1

∥∥∥
1

)
+ 2c′

t̂j − ti
an

(
max

(√
log p

t̂j − ti
,

log p

t̂j − ti

)
+ λmax

(
Γq
i+1(0)

))∥∥∥Φ(.,i) − ψ̂t̂j ,1

∥∥∥
1

∥∥∥Φ(.,i+1) − Φ(.,i)
∥∥∥

1

≤

(
c

√
log p

an
+ 4c′MΦd

?
n

nγn
an

)∥∥∥Φ(.,i) − ψ̂t̂j ,1

∥∥∥
1

+ ηt̂j ,1

(∥∥∥Φ(.,i)
∥∥∥

1
−
∥∥∥θ̂∥∥∥

1

)
≤ max (c, 4c′MΦ)

√
d?nnγn
an

∥∥∥Φ(.,i) − ψ̂t̂j ,1

∥∥∥
1

+ ηt̂j ,1

(∥∥∥Φ(.,i)
∥∥∥

1
−
∥∥∥θ̂∥∥∥

1

)
≤

ηt̂j ,1

2

∥∥∥Φ(.,i) − ψ̂t̂j ,1

∥∥∥
1

+ ηt̂j ,1

(∥∥∥Φ(.,i)
∥∥∥

1
−
∥∥∥ψ̂t̂j ,1

∥∥∥
1

)
≤

3ηt̂j ,1

2

∥∥∥Φ(.,i) − ψ̂t̂j ,1

∥∥∥
1,Ii
−
ηt̂j ,1

2

∥∥∥Φ(.,i) − ψ̂t̂j ,1

∥∥∥
1,Ici

≤ 2ηt̂j ,1

∥∥∥Φ(.,i) − ψ̂t̂j ,1

∥∥∥
1
, (B.8)

where the first inequality is based on the first part of Lemma A1 with cn = t̂j − ti, the
third inequality is due to Assumptions A3 and A4 under which log p ≤ nγn ≤ an and

an > cd?n
3nγn, which lead to

√
log p
an
≤
√

nγn
an

and d?n
nγn
an
≤
√

d?nnγn
an

; the fourth inequality is

due the selection of the tuning parameter ηt̂j ,1 = c
√

d?nnγn
an

; the fifth inequality is due the

triangular inequality.

This ensures that
∥∥∥Φ(.,i) − ψ̂t̂j ,1

∥∥∥
1,Ici
≤ 3

∥∥∥Φ(.,i) − ψ̂t̂j ,1
∥∥∥

1,Ii
, and hence

∥∥∥Φ(.,i) − ψ̂t̂j ,1
∥∥∥

1
≤

4
∥∥∥Φ(.,i) − ψ̂t̂j ,1

∥∥∥
1,Ii
≤ 4
√
d?n

∥∥∥Φ(.,i) − ψ̂t̂j ,1
∥∥∥
F

. This comparison between L1 and L2 norms of

the error term together with the bound in Equation (B.8) will get the desired consistency
rates in (B.5). Verifying (B.6) follows exactly from proposition 4.1 of Basu and Michailidis
(2015) since there are no break points in the interval [t̂j, t̂j +an]. Note that the convergence

rate here is of order
√

d?nnγn
an

instead of
√
d?n

√
log p
an

due to the different selection of tuning

parameter in our setup compared to Basu and Michailidis (2015). In fact, one could select

ηt̂j ,2 to be of order
√

log p
an

in order to match the rate here with Basu and Michailidis (2015).

However, since we don’t know whether the true break point ti will be on the left hand side
or the right hand side of t̂j, it’s better for the tuning parameters ηt̂j ,1 and ηt̂j ,2 to have the
same order from a practical viewpoint. This justifies setting them to be of the same order
here.

Using the results of (B.5) and (B.6), one can find upper bounds for the sum of squared
errors in the segment

(
t̂j − an, t̂j + an

)
for the case when t̂j is kept as a selected break

point. Specifically, we have:

t̂j−1∑
t=t̂j−an

‖yt − ψ̂t̂j ,1Yt−1‖2
2 ≤

t̂j−1∑
t=t̂j−an

‖εt‖2
2 +Op

(
d?n

3nγn
)
, (B.9)
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and
t̂j+an−1∑
t=t̂j

‖yt − ψ̂t̂j ,2Yt−1‖2
2 ≤

t̂j+an−1∑
t=t̂j

‖εt‖2
2 +Op

(
d?n

3nγn
)
. (B.10)

To see (B.9), we follow the steps of the proof of Theorem 3 in Safikhani and Shojaie
(2020). Observe that:

ti−1∑
t=t̂j−an

‖yt − ψ̂t̂j ,1
Yt−1‖22 ≤

ti−1∑
t=t̂j−an

‖εt‖22 + c

√
(ti − t̂j + an) log p

∥∥∥Φ(.,i) − ψ̂t̂j ,1

∥∥∥
1

+ (ti − t̂j + an)tr

(Φ(.,i) − ψ̂t̂j ,1

)′ 1

ti − t̂j + an

ti−1∑
t=t̂j−an

Yt−1Y
′
t−1 − Γq

i (0) + Γq
i (0)

(Φ(.,i) − ψ̂t̂j ,1

)
≤

ti−1∑
t=t̂j−an

‖εt‖22 + cd?n
2
√
nγn log p+ (ti − t̂j + an)

(√
log p

ti − t̂j + an
+ λmax (Γq

i (0))

)∥∥∥Φ(.,i) − ψ̂t̂j ,1

∥∥∥2

1

≤
ti−1∑

t=t̂j−an

‖εt‖22 + cd?n
2
√
nγn log p+ c′d?n

3nγn

=

ti−1∑
t=t̂j−an

‖εt‖22 +Op

(
d?n

3nγn

)
, (B.11)

where the second inequality is based on the fact that
∥∥∥ψ̂t̂j ,1 − Φ(.,i)

∥∥∥
1
≤ cd?n

3/2
√

nγn
an

and

ti − t̂j + an ≤ an. Also, for the segment [ti, t̂j], note that:

t̂j−1∑
t=ti

‖yt − ψ̂t̂j ,1
Yt−1‖22 ≤

t̂j−1∑
t=ti

‖εt‖22 + c(t̂j − ti) max

(
log p

t̂j − ti
,

√
log p

t̂j − ti

)∥∥∥Φ(.,i+1) − ψ̂t̂j ,1

∥∥∥
1

+ (t̂j − ti)tr

(Φ(.,i+1) − ψ̂t̂j ,1

)′ 1

t̂j − ti

t̂j−1∑
t=ti

Yt−1Y
′
t−1 − Γq

i+1(0) + Γq
i+1(0)

(Φ(.,i+1) − ψ̂t̂j ,1

)
≤

t̂j−1∑
t=ti

‖εt‖22 + cnγn

(
2MΦd

?
n +

∥∥∥Φ(.,i) − ψ̂t̂j ,1

∥∥∥
1

)
+ (t̂j − ti)

(
max

(
log p

t̂j − ti
,

√
log p

t̂j − ti

)
+ λmax

(
Γq
i+1(0)

))∥∥∥Φ(.,i+1) − ψ̂t̂j ,1

∥∥∥2

1

≤
t̂j−1∑
t=ti

‖εt‖22 + cd?nnγn + c′nγn

(
2MΦd

?
n +

∥∥∥Φ(.,i) − ψ̂t̂j ,1

∥∥∥
1

)2

=

t̂j−1∑
t=ti

‖εt‖22 +Op

(
d?n

2nγn

)
. (B.12)

where the second inequality is based on t̂j−ti ≤ nγn, log p ≤ nγn and triangular inequality∥∥∥Φ(.,i+1) − ψ̂t̂j ,1
∥∥∥

1
≤
∥∥Φ(.,i+1) − Φ(.,i)

∥∥
1

+
∥∥∥Φ(.,i) − ψ̂t̂j ,1

∥∥∥
1
≤ 2MΦd

?
n +

∥∥∥Φ(.,i) − ψ̂t̂j ,1
∥∥∥

1
; the

second term in the third inequality is based on Assumption A4 of an > cd?n
3nγn so that

d?n ≥ d?n
3/2
√

nγn
an

.

7



Property (B.9) is now verified by combining (B.11) and (B.12). Property (B.10) is
similar and therefore its proof is omitted.

Recall that B =
{
t̂1, . . . , t̂m0

}
= Ãn∪{t̂j}. Applying the results (B.4), (B.9) and (B.10),

we have

LIC(t̃1, ..., t̃m̃)− LIC(B)

= Ln(t̃1, ..., t̃m̃; ηn) + m̃ωn −
(
Ln(t̂1, ..., t̂m0 ; ηn) + (m̃+ 1)ωn

)
=

t̂j+an−1∑
t=t̂j−an

‖yt − ψ̂jYt−1‖2
2 −

t̂j−1∑
t=t̂j−an

‖yt − ψ̂t̂j ,1Yt−1‖2
2 −

t̂j+an−1∑
t=t̂j

‖yt − ψ̂t̂j ,2Yt−1‖2
2 − ωn

≥ c1an − c2d
?
n log p− c3nγnd

?
n

3 − ωn
≥ c1an − 2c2nγnd

?
n

3 − ωn
> 0.

The second inequality hold due to condition log p ≤ nγn in Assumption A3. The last
inequality holds due to conditions ωn = nγnd

?
n

3 and limn→∞ ωn/an = 0 in Assumption A4.

This proves that P
({
t̂1, . . . , t̂m0

}
⊆ Ãn

)
→ 1.

It remains to establish that P
(
dH

(
An, Ãn

)
≤ an

)
→ 1. It suffices to show that there

exists a true break point in the interval
(
t̃j − an, t̃j + an

)
for any t̃j ∈ Ãn. We prove

this statement by contradiction. Suppose that there is a time point s ∈ Ãn, such that
there exists no true break point in the interval (s− an, s+ an) . Next, define a new set

C = Ãn\{s}.
Since there is no true break point in the segment, (s− an, s+ an), it belongs to some

stationary segment, say the i-th one. Select tuning parameter ηs = ηs,1 = ηs,2 = c
√

log p
an

.

Denote the estimated AR parameters in [s− an, s) by ψ̂s,1 and the estimated AR parameters

in [s, s+ an) by ψ̂s,2 . Keeping the point s yields to :

∥∥∥ψ̂s,1 − Φ(.,i)
∥∥∥

1
≤ 4
√
d?n

∥∥∥ψ̂s,1 − Φ(.,i)
∥∥∥
F
,
∥∥∥ψ̂s,1 − Φ(.,i)

∥∥∥
F

= Op

(√
d?n log p

an

)
, (B.13)

and∥∥∥ψ̂s,2 − Φ(.,i)
∥∥∥

1
≤ 4
√
d?n

∥∥∥ψ̂s,2 − Φ(.,i)
∥∥∥
F
,
∥∥∥ψ̂s,2 − Φ(.,i)

∥∥∥
F

= Op

(√
d?n log p

an

)
. (B.14)

Therefore, we have the following lower bound:

s−1∑
t=s−an

‖yt − ψ̂s,1Yt−1‖2
2 +

s+an−1∑
t=s

‖yt − ψ̂s,2Yt−1‖2
2 ≥

s+an−1∑
t=s−an

‖εt‖2
2 − c1d

?
nnγn, (B.15)

for some positive c1 with high probability converging to one.
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To see (B.15), we follow the case (b) in the proof of Lemma 4 in Safikhani and Shojaie
(2020). For interval [s− an, s),

s−1∑
t=s−an

‖yt − ψ̂s,1Yt−1‖22 ≥
s−1∑

t=s−an

‖εt‖22 + can

∥∥∥Φ(.,i) − ψ̂s,1

∥∥∥2

2
− c′

√
an log p

∥∥∥Φ(.,i) − ψ̂s,1

∥∥∥
1

≥
s−1∑

t=s−an

‖εt‖22 + can

∥∥∥Φ(.,i) − ψ̂s,1

∥∥∥
2

(∥∥∥Φ(.,i) − ψ̂s,1

∥∥∥
2
− 4c′

c

√
d?n log p

an

)
≥

s−1∑
t=s−an

‖εt‖22 − c′′d?n log p.

Similarly, for interval [s, s + an), we have
∑s+an−1

t=s ‖yt − ψ̂2Yt−1‖2
2 ≥

∑s+an−1
t=s ‖εt‖2

2 −
c′′d?n log p.

Next, we remove the break point s and denote the estimated parameters in [s− an, s+ an)

by ψ̂s. We get
s+an−1∑
t=s−an

‖yt − ψ̂sYt−1‖2
2 ≤

s+an−1∑
t=s−an

‖εt‖2
2 + c2d

?
n

2 log p (B.16)

To see (B.16), we again follow the steps of the proof of Theorem 3 in Safikhani and
Shojaie (2020):

s+an−1∑
t=s−an

‖yt − ψ̂sYt−1‖22 ≤
s+an−1∑
t=s−an

‖εt‖22 + c
√

(2an) log p
∥∥∥Φ(.,i) − ψ̂s

∥∥∥
1

+ (2an)tr

((
Φ(.,i) − ψ̂s

)′( 1

2an

s+an−1∑
t=s−an

Yt−1Y
′
t−1 − Γq

i (0) + Γq
i (0)

)(
Φ(.,i) − ψ̂s

))

≤
s+an−1∑
t=s−an

‖εt‖22 + cd?n log p+ (2an)

(√
log p

2an
+ λmax (Γq

i (0))

)∥∥∥Φ(.,i) − ψ̂s

∥∥∥2

1

≤
s+an−1∑
t=s−an

‖εt‖22 + cd?n log p+ c′d?n
2 log p

=

s+an−1∑
t=s−an

‖εt‖22 +Op

(
d?n

2 log p
)
.

where
∥∥∥ψ̂s − Φ(.,i)

∥∥∥
1
≤ 4
√
d?n

∥∥∥ψ̂s − Φ(.,i)
∥∥∥

2
,
∥∥∥ψ̂s − Φ(.,i)

∥∥∥
F

= Op

(√
d?
n log p
an

)
,

Combining (B.15) and (B.16) yields

0 ≥ LIC(t̃1, ..., t̃m̃)− LIC(C)

≥ −c1d
?
n log p− c2d

?
n

2 log p+ ωn

≥ −2c2d
?
n

2 log p+ ωn (B.17)

However, (B.17) contradicts Assumption A4 that d?n
2 log p/ωn → 0. This completes the

proof of the second part.

It remains to show that P
(∣∣∣cluster

(
Ãn, 2an

)∣∣∣ = m0

)
→ 1. For this, note that based

on the previous calculations, all points in Ãn are either very close to a true break point,
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i.e. in the Knγn-neighborhood of a true break point for some positive and finite K, or
they are at least in the can-neighborhood of a true break point for a constant 0 < c < 1.
Next, fix one of the true break points, say tj. Denote by Bj, all the selected break points

in Ãn which are in the Knγn-neighborhood of tj for some positive and finite K. Now, if
there are any points in the an-neighborhood of tj, add them to Bj as well. Note that since
there is at least one estimated break point in the nγn-neighborhood of tj, Bj is not empty.
Also, note that the diameter of each Bj is at most 2an. Finally, based on the choice of an
in Assumption A4, all Bj’s are disjoint, j = 1, . . . ,m0. Therefore, the collection of all Bj’s

form cluster
(
Ãn, 2an

)
which has cardinality equal to m0 (note that due to Assumption A4,

the collection of sets Bj’s is a minimal partitioning of set Ãn while the diameter of all Bj’s
are at most 2an). This completes the proof of the last part.

Proof of Theorem 3. Suppose for any constant K > 0, there exists some change point

tj ∈ An such that
∣∣∣t̃fj − tj∣∣∣ > Kd?n log p. From Theorem 2, we know that for any subset Bj ∈

cluster
(
Ãn, 2an

)
, there exists a true change point tj lies in (min(Bj)− an,max(Bj) + an).

Therefore, there exists a true change point tj lying within interval [t̃fj−an, t̃
f
j +an). Assume,

without loss of generality, that t̃fj > tj.

Based on the local refinement algorithm, we define the loss function Ln

(
t̃fj

)
as follows:

t̃fj−1∑
t=min(Bj)−an

∥∥∥yt − ψ̃j,1Yt−1

∥∥∥2

2
+

max(Bj)+an−1∑
t=t̃fj

∥∥∥yt − ψ̃j,2Yt−1

∥∥∥2

2

def
= I1 + I2,

and the loss function Ln(tj) for the true change point tj as:

tj−1∑
t=min(Bj)−an

∥∥∥yt − ψ̃j,1Yt−1

∥∥∥2

2
+

max(Bj)+an−1∑
t=tj

∥∥∥yt − ψ̃j,2Yt−1

∥∥∥2

2

def
= I3 + I4.

where t̃fj ∈ (lj, uj), lj = min(Bj) − an and uj = max(Bj) + an, for j = 1, . . . ,m0 + 1. ψ̃j,1

and ψ̃j,2 are the local coefficient parameter estimates given that a time point s ∈ Bj is the
break point.

Suppose s > tj; then, similar arguments as in Lemma 4 of Safikhani and Shojaie (2020)
yield:

∥∥∥ψ̃j,1 − Φ(.,j)
∥∥∥

1
≤ 4
√
d?n

∥∥∥ψ̃j,1 − Φ(.,j)
∥∥∥
F
,
∥∥∥ψ̃j,1 − Φ(.,j)

∥∥∥
F

= Op

(√
d?n log p

R̃n

)
, (B.18)

and∥∥∥ψ̃j,2 − Φ(.,j+1)
∥∥∥

1
≤ 4
√
d?n

∥∥∥ψ̃j,2 − Φ(.,j+1)
∥∥∥
F
,
∥∥∥ψ̃j,2 − Φ(.,j+1)

∥∥∥
F

= Op

(√
d?n log p

R̃n

)
.

(B.19)
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To see this, observe that ψ̃j,1 in (12) minimizes the least squares plus the `1 norm loss

function. Therefore, the value of this objective function for ψ̃j,1 will be smaller than any
other choice of parameters, including Φ(.,j). Hence,

1

R̃n

t̃fj−1∑
t=t̃fj−R̃n

∥∥∥yt − ψ̃j,1Yt−1

∥∥∥2

2
+ η̃j,1

∥∥∥ψ̃j,1∥∥∥
1
≤ 1

R̃n

t̃fj−1∑
t=t̃fj−R̃n

∥∥yt − Φ(.,j)Yt−1

∥∥2

2

+ η̃j,1
∥∥Φ(.,j)

∥∥
1
. (B.20)

Note that the segment [tj, t̃
f
j ) has at most length an, so the length of [t̃fj − R̃n, tj) is at least

cR̃n, for some positive constant c > 0. In that case, the misspecification part is negligible.
Some rearrangements together with the use of proposition 4.2 of Basu and Michailidis
(2015) lead to:

c1

∥∥∥Φ(.,j) − ψ̃j,1

∥∥∥2

F
− c2

log p

R̃n

∥∥∥Φ(.,j) − ψ̃j,1

∥∥∥2

1
≤ max

(
0, c1

∥∥∥Φ(.,j) − ψ̃j,1

∥∥∥2

F
− c2

log p

R̃n

∥∥∥Φ(.,j) − ψ̃j,1

∥∥∥2

1

)

≤ 1

R̃n

t̃fj−1∑
t=t̃fj−R̃n

Y ′t−1

(
Φ(.,j) − ψ̃j,1

)′ (
Φ(.,j) − ψ̃j,1

)
Yt−1

≤ 2

R̃n

t̃fj−1∑
t=t̃fj−R̃n

Y ′t−1

(
Φ(.,j) − ψ̃j,1

)′ (
yt − Φ(.,j)Yt−1

)
+ η̃j,1

(∥∥∥Φ(.,j)
∥∥∥

1
−
∥∥∥ψ̃j,1

∥∥∥
1

)

=
2

R̃n

t̃fj−1∑
t=t̃fj−R̃n

Y ′t−1

(
Φ(.,j) − ψ̃j,1

)′
εt + η̃j,1

(∥∥∥Φ(.,j)
∥∥∥

1
−
∥∥∥ψ̃j,1

∥∥∥
1

)

+
2

R̃n

t̃fj−1∑
t=tj

Y ′t−1

(
Φ(.,j) − ψ̃j,1

)′ (
Φ(.,j+1) − Φ(.,j)

)
Yt−1

≤ c

√
log p

R̃n

∥∥∥Φ(.,j) − ψ̃j,1

∥∥∥
1

+ η̃j,1

(∥∥∥Φ(.,j)
∥∥∥

1
−
∥∥∥ψ̃j,1

∥∥∥
1

)

+ 2
t̃fj − tj
R̃n

tr

(Φ(.,j) − ψ̃j,1

)′ 1

t̃fj − tj

t̃fj−1∑
t=tj

Yt−1Y
′
t−1 − Γq

j+1(0) + Γq
j+1(0)

(Φ(.,j+1) − Φ(.,j)
)

= I,

where the second inequality is due to the restricted eigenvalue property (proposition 4.2 of
Basu and Michailidis (2015)) and the fourth inequality uses the circular invariance property
of the trace function. Next, observe that
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I ≤ c

√
log p

R̃n

∥∥∥Φ(.,j) − ψ̃j,1

∥∥∥
1

+ η̃j,1

(∥∥∥Φ(.,j)
∥∥∥

1
−
∥∥∥ψ̃j,1

∥∥∥
1

)
+ 2c′

t̃fj − tj
R̃n

(
max

(√
log p

t̃fj − tj
,

log p

t̃fj − tj

)
+ λmax

(
Γq
j+1(0)

))∥∥∥Φ(.,j) − ψ̃j,1

∥∥∥
1

∥∥∥Φ(.,j+1) − Φ(.,j)
∥∥∥

1

≤

(
c

√
log p

R̃n

+ 4c′MΦd
?
n

an

R̃n

)∥∥∥Φ(.,j) − ψ̃j,1

∥∥∥
1

+ η̃j,1

(∥∥∥Φ(.,i)
∥∥∥

1
−
∥∥∥ψ̃j,1

∥∥∥
1

)
≤ max (c, 4c′MΦ)

√
log p

R̃n

∥∥∥Φ(.,j) − ψ̃j,1

∥∥∥
1

+ η̃j,1

(∥∥∥Φ(.,j)
∥∥∥

1
−
∥∥∥ψ̃j,1

∥∥∥
1

)
≤ η̃j,1

2

∥∥∥Φ(.,j) − ψ̃j,1

∥∥∥
1

+ η̃j,1

(∥∥∥Φ(.,j)
∥∥∥

1
−
∥∥∥ψ̃j,1

∥∥∥
1

)
≤ 3η̃j,1

2

∥∥∥Φ(.,j) − ψ̃j,1

∥∥∥
1,Ij
− η̃j,1

2

∥∥∥Φ(.,j) − ψ̃j,1

∥∥∥
1,Icj

≤ 2η̃j,1

∥∥∥Φ(.,j) − ψ̃j,1

∥∥∥
1
, (B.21)

where the first inequality is based on the first part of Lemma A1 with cn = t̃fj −tj; the third
inequality is due to Assumption A3 and Assumption A4 under which log p ≤ nγn ≤ an

and ∆n

4
≥ R̃n = d?n

2a2n
log p

such that
√

log p

R̃n
≥ d?n

an
R̃n

; the fourth inequality is due the selection

of the tuning parameter η̃j,1 =
√

log p

R̃n
; and finally the fifth inequality is due the triangular

inequality.

This ensures that
∥∥∥Φ(.,j) − ψ̃j,1

∥∥∥
1,Icj
≤ 3

∥∥∥Φ(.,j) − ψ̃j,1
∥∥∥

1,Ij
, and hence

∥∥∥Φ(.,j) − ψ̃j,1
∥∥∥

1
≤

4
∥∥∥Φ(.,j) − ψ̃j,1

∥∥∥
1,Ij
≤ 4

√
d?n

∥∥∥Φ(.,j) − ψ̃j,1
∥∥∥
F

. This comparison between L1 and L2 norms

of the error term together with the bound in Equation (B.21) will get the desired consis-
tency rates in (B.18). Verifying (B.19) follows exactly from proposition 4.1 of Basu and

Michailidis (2015) since there are no break points in the interval [t̃fj , t̃
f
j + R̃n).

Using the results from (B.18) and (B.19), we obtain
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I1 =

tj−1∑
t=t̃fj−an

∥∥∥yt − ψ̃j,1Yt−1

∥∥∥2

2
+

t̃rj−1∑
t=tj

∥∥∥yt − ψ̃j,1Yt−1

∥∥∥2

2

≥ I3 +

t̃rj−1∑
t=tj

‖εt‖22 +

t̃rj−1∑
t=tj

∥∥∥(ψ̃j,1 − Φ(.,j+1)
)
Yt−1

∥∥∥2

2
− 2

∣∣∣∣∣∣
t̃rj−1∑
t=tj

Y ′t−1

(
ψ̃j,1 − Φ(.,j+1)

)
εt

∣∣∣∣∣∣
= I3 +

t̃rj−1∑
t=tj

‖εt‖22 +

t̃rj−1∑
t=tj

∥∥∥(ψ̃j,1 − Φ(.,j) + Φ(.,j) − Φ(.,j+1)
)
Yt−1

∥∥∥2

2

− 2

∣∣∣∣∣∣
t̃rj−1∑
t=tj

Y ′t−1

(
ψ̃j,1 − Φ(.,j) + Φ(.,j) − Φ(.,j+1)

)
εt

∣∣∣∣∣∣
≥ I3 +

t̃rj−1∑
t=tj

‖εt‖22 +

t̃rj−1∑
t=tj

∥∥∥(ψ̃j,1 − Φ(.,j)
)
Yt−1

∥∥∥2

2
+

t̃rj−1∑
t=tj

∥∥∥(Φ(.,j) − Φ(.,j+1)
)
Yt−1

∥∥∥2

2

− 2

∣∣∣∣∣∣
t̃rj−1∑
t=tj

Y ′t−1

(
ψ̃j,1 − Φ(.,j)

)′ (
Φ(.,j) − Φ(.,j+1)

)
Yt−1

∣∣∣∣∣∣− 2

∣∣∣∣∣∣
t̃rj−1∑
t=tj

Y ′t−1

(
ψ̃j,1 − Φ(.,j)

)
εt

∣∣∣∣∣∣
− 2

∣∣∣∣∣∣
t̃rj−1∑
t=tj

Y ′t−1

(
Φ(.,j) − Φ(.,j+1)

)
εt

∣∣∣∣∣∣
(i)

≥ c′
∣∣t̃rj − tj∣∣ (∥∥∥ψ̃j,1 − Φ(.,j)

∥∥∥2

F
+
∥∥∥Φ(.,j) − Φ(.,j+1)

∥∥∥2

F

)
− c′′

∣∣t̃rj − tj∣∣ ∥∥∥Φ(.,j) − Φ(.,j+1)
∥∥∥
F

∥∥∥ψ̃j,1 − Φ(.,j)
∥∥∥
F

− c′′′
√∣∣t̃rj − tj∣∣ (log p)

(∥∥∥ψ̃j,1 − Φ(.,j)
∥∥∥

1
+
∥∥∥Φ(.,j) − Φ(.,j+1)

∥∥∥
1

)
+ I3 +

t̃rj−1∑
t=tj

‖εt‖22

(ii)

≥ I3 +

t̃rj−1∑
t=tj

‖εt‖22 + c′
∣∣t̃rj − tj∣∣ ∥∥∥Φ(.,j) − Φ(.,j+1)

∥∥∥2

F
− c′′

∣∣t̃rj − tj∣∣ ∥∥∥Φ(.,j) − Φ(.,j+1)
∥∥∥
F

∥∥∥ψ̃j,1 − Φ(.,j)
∥∥∥
F

− c′′′
√∣∣t̃rj − tj∣∣ (log p)

∥∥∥Φ(.,j) − Φ(.,j+1)
∥∥∥

1

≥ I3 +

t̃rj−1∑
t=tj

‖εt‖22 + C ′
∣∣t̃rj − tj∣∣ ∥∥∥Φ(.,j) − Φ(.,j+1)

∥∥∥
F

(∥∥∥Φ(.,j) − Φ(.,j+1)
∥∥∥
F
−
∥∥∥ψ̃j,1 − Φ(.,j)

∥∥∥
F

)
− c′′′

√∣∣t̃rj − tj∣∣ (log p)
∥∥∥Φ(.,j) − Φ(.,j+1)

∥∥∥
1

(iii)

≥ I3 +

t̃rj−1∑
t=tj

‖εt‖22 + c1
∣∣t̃rj − tj∣∣ ∥∥∥Φ(.,j) − Φ(.,j+1)

∥∥∥
F

(∥∥∥Φ(.,j) − Φ(.,j+1)
∥∥∥
F
−
√
d?n(log p)∣∣t̃rj − tj∣∣

)

≥ I3 +

t̃rj−1∑
t=tj

‖εt‖22 + C
∣∣t̃rj − tj∣∣ ∥∥∥Φ(.,j) − Φ(.,j+1)

∥∥∥
F

(∥∥∥Φ(.,j) − Φ(.,j+1)
∥∥∥
F
−
√

1

K

)

(iv)

≥ I3 +

t̃rj−1∑
t=tj

‖εt‖22 +K1

∣∣t̃rj − tj∣∣ . (B.22)

The second term inequality in (i) holds by Hölder’s inequality; the third term inequality

13



in (i) holds by the deviation bound condition; inequality (ii) holds by
∥∥Φ(.,j+1) − Φ(.,j)

∥∥
1
≤√

d?n
∥∥Φ(.,j+1) − Φ(.,j)

∥∥
F

; inequality (iii) holds by the fact that
∥∥Φ(.,j+1) − Φ(.,j)

∥∥2

F
≥ v2,

where v is a positive constant; and inequality (iv) holds by
∣∣∣t̃fj − tj∣∣∣ > Kd?n log p and

choosing large enough constant K > 0 such that
√

1
K
< 1

4
.

Similarly, we have

I4 =

max(Bj)+an−1∑
t=tj

∥∥∥yt − ψ̃j,2Yt−1

∥∥∥2

2

=

t̃fj−1∑
t=tj

∥∥∥yt − ψ̃j,2Yt−1

∥∥∥2

2
+

max(Bj)+an−1∑
t=t̃fj

∥∥∥yt − ψ̃j,2Yt−1

∥∥∥2

2

≤ I2 +

t̃fj−1∑
t=tj

‖εt‖22 +

t̃fj−1∑
t=tj

∥∥∥(ψ̃j,2 − Φ(.,j+1)
)
Yt−1

∥∥∥2

2
+ 2

∣∣∣∣∣∣∣
t̃fj−1∑
t=tj

Y ′t−1

(
ψ̃j,2 − Φ(.,j+1)

)
εt

∣∣∣∣∣∣∣
(i)

≤ I2 +

t̃rj−1∑
t=tj

‖εt‖22 + c′an

∥∥∥ψ̃j,2 − Φ(.,j+1)
∥∥∥2

F
+ c′′

√
an(log p)

∥∥∥ψ̃j,2 − Φ(.,j+1)
∥∥∥

1

≤ I2 +

t̃rj−1∑
t=tj

‖εt‖22 + c′an

∥∥∥ψ̃j,2 − Φ(.,j+1)
∥∥∥
F

∥∥∥ψ̃j,2 − Φ(.,j+1)
∥∥∥
F

+
c′′

c

√
d?n(log p)

an


(ii)

≤ I2 +

t̃fj−1∑
t=tj

‖εt‖22 +K2d
?
n(log p), (B.23)

where the second term in inequality (i) holds by the upper-RE condition and the fact

that
∥∥∥Φ(.,j+1) − ψ̃j,2

∥∥∥2

1
≤ 16d?n

∥∥∥Φ(.,j+1) − ψ̃j,2
∥∥∥2

F
; the third term in inequality (i) holds by

deviation bound condition; inequality (ii) holds by the result (B.19). Note that based on

Assumption A4 that ∆n

4
≥ R̃n = d?n

2a2n
log p

, we have
∥∥∥Φ(.,j+1) − ψ̃j,2

∥∥∥
F
≤ c
√

d?n log p
an

.

Next, based on the definition of (11), we have Ln

(
t̃fj

)
≤ Ln(tj) and then

I3 +

t̃fj−1∑
t=tj

‖εt‖2
2 +K1

∣∣∣t̃fj − tj∣∣∣+ I2 ≤ Ln(t̃fj ) ≤ Ln(tj) ≤ I3 + I2 +

t̃fj−1∑
t=tj

‖εt‖2
2 +K2d

?
n(log p),

which leads to ∣∣∣t̃fj − tj∣∣∣ ≤ Kjd
?
n log p. (B.24)

This contradicts the setting. Under Assumptions A1 and A2, we set K? = max1≤j≤m0 Kj

and complete the proof.

Proof of Theorem 4. The proof of this theorem follows along similar lines to Theorem 4 of
Safikhani and Shojaie (2020), where it is also shown that, if m0 is known, then it is enough
to set Rn = nγn.
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We need to firstly verify two important conditions: (1) the restricted eigenvalue (RE)
condition for Γ̂ = Ip ⊗ (X ′rXr/N) ; and (2) the deviation bound condition for ‖γ̂ − Γ̂Φ‖∞
where γ̂ = (Ip ⊗ X ′r)Yr/N . Once these two are verified, the rest of the proof is applying
deterministic arguments used in Proposition 4.1 in Basu and Michailidis (2015).

Condition (1) implies that there exist α, τ > 0 such that for any θ ∈ Rπ̃, we have

θ′Γ̂θ ≥ α‖θ‖2
2 − τ‖θ‖2

1

with probability at least 1 − c1exp(−c2N) for large enough constants c1, c2 > 0. Based
on Lemma B.1 in Basu and Michailidis (2015), it is enough to show the RE for S =
X ′iXi/N , where Xi is the ith block component of Xr. Applying Proposition 2.4 of Basu and
Michailidis (2015), we have for any Rpq with ‖v‖2 ≤ 1, and any η > 0:

P
(∣∣∣v′(S − Ni

N
Γi(0)

)
v
∣∣∣ > cη

)
≤ 2exp(−c3Nmin(η2, η)).

Next, to make the above probability hold uniformly over all vectors v, we apply the dis-
cretization Lemma F2 in Basu and Michailidis (2015) and also Lemma 12 in the supplement
of Loh and Wainwright (2012) to get:∣∣∣v′(S − Ni

N
Γi(0)

)
v
∣∣∣ ≤ α‖v‖2

2 + α/k‖v‖2
1,

with probability at least 1 − c1exp(c2N), for all v ∈ Rpq, some α > 0 and with an integer
k = dc4N/log(pq)e with some c4 > 0. This implies that

v′Sv ≥ v′
Ni

N
Γi(0)v − α‖v‖2

2 − α/k‖v‖2
1 ≥ α‖v‖2

2 − α/k‖v‖2
1,

since Ni ≥ ∆n − 4Rn, N = n + q − 1 − 2m0Rn, and assuming ∆n ≥ εn implies that
Ni/N ≥ ε ≥ 2α.

Condition (2) means that there exists a large enough constant C ′ > 0 such that

‖γ̂ − Γ̂Φ‖∞ ≤ C ′
√

log π̃

N
,

with probability at least 1 − c1exp(−c2logπ̃). To verify this condition here, observe that
γ̂ − Γ̂Φ = vec(X ′rEr)/N . Therefore, denoting the h–th column block of Xr by Xr,(h), for
h = 1, . . . , (m0 + 1)q, we have:

‖γ̂ − Γ̂Φ‖∞ = max
1≤k,l≤p;1≤h≤(m0+1)q

∣∣e′kX ′r,(h)Erel
∣∣. (B.25)

Now, for a fixed k, l, h, applying Proposition 2.4(b) in Basu and Michailidis (2015) gives:

P
(∣∣e′kX ′r,(h)Erel

∣∣ > k1η
)
≤ 6exp(−k2Nmin(η2, η)), (B.26)

for large enough k1, k2 > 0, and any η > 0. Now, setting η = C ′
√

˜log π
N

, and taking the
union over all the π̃ cases for k, l, h yield the desired result. This completes the proof of
this theorem.
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Proof of Corollary 1. The proof of this Corollary is similar to that of Proposition 4.1 in
Basu and Michailidis (2015). The key steps in this proof are similar to the previous proof
of Theorem 4. Hence, we only highlight the main differences compared to Theorem 4; see
more details in the proof of Theorem 4.

Instead of estimating the m0 + 1 transition matrices simultaneously, we separately
estimate the model parameters in each segment. For the i-the segment, i = 1, · · · ,m0 +
1, let Γ̂i = (Ip ⊗ X ′iXi/Ni) and γ̂i = (Ip ⊗ X ′i )Yi/Ni. We need to verify the restricted

eigenvalue (RE) condition for Γ̂i and the deviation bound condition for
∥∥∥γ̂i − Γ̂iΦ

(.,i)
∥∥∥
∞

.

Once these two are verified, the rest of the proof is applying deterministic arguments used
in Proposition 4.1 in Basu and Michailidis (2015).

Similar to Theorem 4, it suffices to show the RE for S = X ′iXi/Ni. Then, we have

v′Sv ≥ v′Γi(0)v − α‖v‖2
2 − α/k‖v‖2

1 ≥ α‖v‖2
2 − α/k‖v‖2

1,

with probability at least 1− c1exp(c2Ni), for all v ∈ Rpq, some α > 0 and with an integer
k = dc4Ni/log(pq)e with some c4 > 0

The DB condition implies that there exists a large enough constant C ′ > 0 such that

‖γ̂i − Γ̂iΦ
(.,i)‖∞ ≤ C ′

√
log p2q

Ni

,

with probability at least 1−c1exp(−c2log(p2q)). To verify this condition here, observe that
γ̂i − Γ̂iΦ

(.,i) = vec(X ′iEi)/Ni. We replace Xr, Er and N with Xi, Ei and Ni in (B.25) and

(B.26). Next, setting η = C ′
√

log p2q
Ni

, and taking the union over all p2q cases for k, l, h

yields the desired result. This completes the proof.

Appendix C: Details on the Detection Algorithm

Next, we provide details of the algorithm that solves optimization problem (4).
Let S(.;λ) be the element-wise soft-thresholding operator which maps its input x to x−λ

when x > λ, x + λ when x < −λ, and 0 when |x| ≤ λ. Recall that throughout the paper,
for a m × n matrix A, ‖A‖∞ = max1≤i≤m,1≤j≤n |aij|. recall that Y ′l =

(
y′l . . . y

′
l−q+1

)
1×pq.

For two time points s < t, define Y(s,t) = (Ys, Ys+1, . . . , Yt) ∈ Rpq×(t−s+1) and y(s,t) =
(ys, ys+1, . . . , yt) ∈ Rp×(t−s+1).

The main steps of the algorithm are as follows:

(i) Set the initial values for all parameters to zero; i.e. θ
(0)
i = 0, for i = 1, . . . , kn.

(ii) For each i = 1, . . . , kn, calculate the (h+1)-th iteration of the parameters θ
(h+1)
i using

the KKT condition as follows:

θ′i
(h+1)=

(∑kn
l=i Y(ri−1,ri)

Y ′
(ri−1,ri)

)−1
S
(∑kn

l=i Y(ri−1,ri)
y′
(ri,ri+1)

−
∑

j 6=i

(∑kn
l=max(i,j)

Y(ri−1,ri)
Y ′
(ri−1,ri)

)
θ′j

(h);λ1,n
)
.

(C.1)
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(iii) (a) If max1≤i≤kn ‖θi(h+1) − θi(h)‖∞ < δ, where δ is a tolerance threshold set to 10−3

in the implementation, stop and denote the final estimate by Θ(intermediate).

(b) If max1≤i≤kn ‖θi(h+1) − θi(h)‖∞ ≥ δ, set h = h+ 1. Go to step (ii).

(iv) Apply soft–thresholding to Θ(intermediate) to find the optimizer in equation (4). In

other words, Θ̂ = S(Θ(intermediate);λ2,n).

Note that in this algorithm, the whole block of θi with p2q elements is updated once,
which reduces the computation time dramatically.

Appendix D: Tuning Parameters Selection

There are a number of tuning parameters in BSS: λ1,n, λ2,n, an, ηn, ωn, ρn and Rn. Although
their asymptotic values have been presented and discussed in the previous section, their
selection in finite samples merits further discussion. Data-driven methods are developed to
select them1:

λ1,n, λ2,n: Both λ1,n and λ2,n can be selected through cross-validation. For splitting the training
set and the validation set, we randomly select 20% of the blocks equally spaced with
a random initial point. Denote the last time point in these selected blocks by T . The
data without observations in T can then be used in the first step of our procedure to
estimate Θ for a range of values for λ1,n and λ2,n. The parameters estimated in the
first step are then used to predict the series at time points in T . The value of λ1,n and
λ2,n which minimize the mean squared prediction error over T is the cross-validated
choice of λ1,n and λ2,n. The sequence for λ1,n, λ2,n are selected as follows. Similar
to Friedman et al. (2010), we construct a sequence of K1 values for λ1,n, decreasing
from λ1,max to λ1,min on the log scale, where the maximum value λ1,max is the smallest

value for which the entire estimated parameter θ̂i = 0, for all i = 1, . . . , kn while the

minimum value is set to be λ1,min = ελ1,max. We choose λ2,n = c
√

log p
T

, where c is

a decreasing sequence of K2 values. In the simulation study, we choose K1 = 10,
K2 = 3, ε = 10−3 when the blocks size bn is smaller than 2p and ε = 10−4 otherwise.

an: This tuning parameter can be selected through a grid search. We apply an exhaustive
search procedure on a grid of an’s ranked from the minimum to the maximum and
record the number of selected break points for each an, and then stop this process
when the number of break points selected does not change any more. In detail, we
select a

(1)
n , a

(2)
n , . . . , a

(`)
n as an equally spaced sequence from the interval [a

(lb)
n , a

(ub)
n ]

in a increasing order where a
(lb)
n = max(bbnc, blogn logpc), a(ub)

n = min(10a
(lb)
n , (t̂1 −

q − 1), (T − q − t̂m̂ − 1)), and bn is the mean of block sizes. Denote the number

of selected break points using BSS with a
(i)
n as the neighborhood size by ni, for

i = 1, 2, . . . , `. The optimal neighborhood size can be defined as the first time ni

1The R/Rcpp codes to perform the BSS algorithm are available at the author’s GitHub page:
https://github.com/abolfazlsafikhani/BSS-ChangePoint-VAR
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remains unchanged. In other words, a
(`?)
n is the optimal neighborhood size when

`? = min{1 ≤ i ≤ ` : ni = ni+1 = ni+2}. In all simulation scenarios, we set ` = 5.

ηn: Despite the fact that based on Assumption A5, different treatments are needed for
selecting tuning parameters ηt̂i , ηt̂i,1, ηt̂i,2, all ηt̂i , ηt̂i,1 and ηt̂i,2 are suggested to be set
to (log(2an) log p)/(2an), i = 1, . . . , m̂. This choice was used in all of the numerical
analyses undertaken and provides very good results.

ωn: The selection of ωn is the most difficult, since it depends on how large changes in the
VAR parameters must be in order to consider them as break points in finite sample
applications. Here, we consider using a data-driven method for selecting ωn. The
idea is to cluster the changes in the objective function Ln into two subgroups, small
and large. The proposed algorithm is summarized as follow:

– Denote the candidate break points selected in the first step as t̂1, . . . , t̂m̂. For
each k = 1, 2, . . . , m̂, compute vk = Ln(Ân\

{
t̂k
}

; ηn)− Ln(Ân; ηn).

– Consider two boundary points tr1 = an + q and tr2 = T − an as reference points.

Compute vri = Ln(Ân; ηn)− Ln(Ân ∪ {tri}; ηn) for i = 1, 2, and set the reference
value as vr = max(vr1, v

r
2).

– Combine the jumps vk for each candidate break points and the reference value
vr (with 2 replicates) into one vector V = (v1, v2, . . . , vm̂, v

r, vr). Apply k-
means clustering algorithm (Hartigan and Wong, 1979) to the vector V with
two centers. Denote the sub-vector with smaller center as the small subgroup,
VS, and the other sub-vector as the large subgroup, VL.

– If (between-group SS/total SS) in k-means clustering is high and the reference
value vr is not in VL, set ωn = minVL; otherwise, set ωn = maxV .

One could also combine the k-means clustering method (Hartigan and Wong, 1979)
with the BIC criterion (Schwarz et al., 1978) to cluster the changes in the parameter
matrix into two subgroups.

ρn: We select ρn as the minimizer of the combined Bayesian Information Criterion (BIC)
for all the segments. Following Lütkepohl (2005) and Zou et al. (2007), for j =
0, . . . , m̃ we define the BIC on the interval Ij+1 = [rj2, r(j+1)1] as

BIC(j, ρn) = log(detΣ̂ε,j) +
log(r(j+1)1 − rj2)

(r(j+1)1 − rj2)

∥∥∥β̂j+1

∥∥∥
0
,

where Σ̂ε,j is the residual sample covariance matrix with B̂ estimated in (16), and

‖β̂j+1‖0 is the number of nonzero elements in β̂j+1; then ρn is selected as

ρ̂n = argminρn

m̃∑
j=0

BIC(j, ρn). (D.1)
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Rn: Recall from Section 3 that we need to remove the selected break points together
with their Rn-radius neighborhood before estimating the parameters using (16). In
practice, the radius Rn needs to be estimated. However, a closer look into Theo-
rem 2 together with Assumption A4 suggest that an can be chosen as the radius Rn.
Therefore, in all simulation scenarios and data applications, we set Rn = an.

Appendix E: Comparison with SBS and DCBS

We record the detection accuracy of the proposed BSS strategy and compare it to two binary
segmentation-based methods, the SBS (Cho and Fryzlewicz, 2015) and DCBS (Cho, 2016)
methods (both are implemented in the R package “hdbinseg”), geared towards detection of
multiple break points in multivariate time series data. Here, we consider the BSS method
with three different block size settings: the large block size bn = bn 1

2 c ,the medium block

size bn = bn 2
5 c and the small block size bn = bn 1

3 c, where n = T − q. Six additional
simulation scenarios (G.1 - G.6) are considered for this comparison with model parameter
values summarized in Table 1. The true coefficient matrices are similar to simulation B,
as depicted in Figure 2 (top panel) with repeated entries −0.6, 0.6, and −0.6 off the main
diagonal. Details of the simulation settings are as follows:

Setting G (detection comparison ). Similar to scenario E, there are many true break
points in the data generating process. In scenario G, T = 4, 000, p = 10, q = 1 with break
points being equally spaced: b T

m0+1
c, b 2T

m0+1
c, . . . , b m0T

m0+1
c. In scenarios G.1 though G.6, the

true number of break points are m0 = 2, 4, 6, 8, 10, 12, respectively.

Table 1: Details of model parameters for simulation settings G.
Sim T p AR order q block size bn m0 AR structure

G.1 4,000 10 1 bn
1
2 c , bn

2
5 c, bn

1
3 c 2 simple

G.2 4,000 10 1 bn
1
2 c , bn

2
5 c, bn

1
3 c 4 simple

G.3 4,000 10 1 bn
1
2 c , bn

2
5 c, bn

1
3 c 6 simple

G.4 4,000 10 1 bn
1
2 c , bn

2
5 c, bn

1
3 c 8 simple

G.5 4,000 10 1 bn
1
2 c , bn

2
5 c, bn

1
3 c 10 simple

G.6 4,000 10 1 bn
1
2 c , bn

2
5 c, bn

1
3 c 12 simple

The median of selection rates among m0 true break points for all scenarios in setting
G are summarized in the left panel in Figure 1. This plot clearly shows that in all settings
considered, BSS has an advantage over SBS and DCBS in detection performance while this
advantage gets more significant by increasing m0. The selection rate for the BSS method
with small and medium block sizes remains above 98%, while the selection rate for the SBS
and DCBS methods are ∼ 80% for m0 = 4, 6 and drop to ∼ 10% for m0 = 10, 12. Note that
the selection rate for BSS with large block size also remains above ∼ 95% with the exception
of ∼ 40% for the case of m0 = 12 (still higher than the selection rate of SBS and DCBS

in this case). The Hausdorff distance dH

(
Ãfn,An

)
between the set of estimated break

points and the set of true break points is a reasonable measure for estimation accuracy.
The right panel in Figure 1 illustrates the performance of all three methods in terms of this
estimation accuracy (averaged over 100 replicates) in which the BSS outperforms the SBS
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and DCBS methods in almost all settings, while the advantage of BSS is more significant
for larger m0 values. For example, in the case of 6 true break points, the average estimation
accuracy for SBS is around 677.29, while the same quantity for BSS (large, medium, small
block sizes) is around 3.50, 0.84 and 0.10, respectively. Therefore, even the BSS method
with large block sizes reduces the estimation error in locating the break points by around
99.5% compared to SBS.
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Figure 1: Simulation G results: (left) median selection rate for the BSS, SBS and DCBS

methods; (right) median Hausdorff distance dH

(
Ãfn,An

)
for the BSS, SBS and DCBS

methods.

Next, we compare the computation time for three methods (BSS, SBS and DCBS). Six
additional simulation scenarios (H.1-H.6) are considered for comparison among BSS, SBS
and DCBS with model parameter values summarized in Table 2. Details of the simulation
settings are as follows:

Setting H (computation time comparison). In scenario H, p = 20, q = 1 ,m0 = 2,
t1 = bT

3
c, t2 = b2T

3
c. The auto-regressive coefficients are chosen to have the same simple

1-off diagonal structure as in Scenario A.1 as shown in the top left panel of Figure 2 with
repeated entries−0.6, 0.6, and−0.6 off the main diagonal. The sample size for scenarios H.1
through H.6 are T = 1000, 2000, 3000, 4000, 5000, 6000, respectively.

Table 2: Details of model parameters for simulation settings H.
Sim T p AR order q block size bn m0 AR structure

H.1 1,000 20 1 bn
1
2 c , bn

2
5 c, bn

1
3 c 2 simple

H.2 2,000 20 1 bn
1
2 c , bn

2
5 c, bn

1
3 c 2 simple

H.3 3,000 20 1 bn
1
2 c , bn

2
5 c, bn

1
3 c 2 simple

H.4 4,000 20 1 bn
1
2 c , bn

2
5 c, bn

1
3 c 2 simple

H.5 5,000 20 1 bn
1
2 c , bn

2
5 c, bn

1
3 c 2 simple

H.6 6,000 20 1 bn
1
2 c , bn

2
5 c, bn

1
3 c 2 simple

The average computation time over 100 replicates for simulation setting H is plotted in
Figure 2. BSS with large block sizes is the fastest method overall, while DCBS is the slowest
one. It is worth noting that BSS with small block sizes remains faster than both SBS and
DCBS, while its estimation accuracy and selection rate are the best over all these three
methods as explained in simulation setting G. In this numerical experiment, the reduction
in computation time in BSS (small block size) compared to SBS and DCBS is around 30%
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Figure 2: Average computational time for the BSS (large, medium, small block sizes), SBS
and DCBS methods .

and 55%, respectively, while BSS with medium and large block sizes achieves even higher
time reduction.
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