arXiv:2003.04786v1 [stat.ME] 10 Mar 2020

Multivariate Functional Regression via Nested
Reduced-Rank Regularization

Xiaokang Liu!, Shujie Ma?, Kun Chen!*
Y Department of Statistics, University of Connecticut
2 Department of Statistics, University of California, Riverside

March 11, 2020

Abstract

We propose a nested reduced-rank regression (NRRR) approach in fitting regres-
sion model with multivariate functional responses and predictors, to achieve tailored
dimension reduction and facilitate interpretation/visualization of the resulting func-
tional model. Our approach is based on a two-level low-rank structure imposed on
the functional regression surfaces. A global low-rank structure identifies a small set
of latent principal functional responses and predictors that drives the underlying re-
gression association. A local low-rank structure then controls the complexity and
smoothness of the association between the principal functional responses and pre-
dictors. Through a basis expansion approach, the functional problem boils down to
an interesting integrated matrix approximation task, where the blocks or submatri-
ces of an integrated low-rank matrix share some common row space and/or column
space. An iterative algorithm with convergence guarantee is developed. We estab-
lish the consistency of NRRR and also show through non-asymptotic analysis that
it can achieve at least a comparable error rate to that of the reduced-rank regres-
sion. Simulation studies demonstrate the effectiveness of NRRR. We apply NRRR
in an electricity demand problem, to relate the trajectories of the daily electricity
consumption with those of the daily temperatures.
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1 Introduction

Multivariate functional data, which are generated when multiple variables are observed
over certain continuum, become increasingly prevalent nowadays, partly due to the rapid
advances in record keeping, inspection, and monitoring technologies in various fields. An
object might be captured by cameras/scanners at a sequence of different angles/positions.
The progression of a disease, as measured by various physiological indicators, may be
monitored frequently over time. With the richness of such data, it is often of interest
to study the association between some multivariate functional responses and predictors.
For example, with half-hourly observations on temperature and electricity consumption of
the city Adelaide, the interest is to explore the predictive association between the daily
electricity profiles and the daily temperature profiles, for each day in a week simultaneously.
Such a predictive model can then be used to infer future weekly power demand curves based
on temperature forecasts, to facilitate power supply and peak load management.

The aforementioned problem can be cast under the framework of functional regression,
which has attracted considerable research efforts in the past. (Cardot et al. (1999, 2003)
considered the case of regressing a scalar response variable on a functional predictor, and
James| (2002) generalized it to the generalized linear regression setting. Faraway| (1997)
and (Chiou et al.| (2003) derived methods for modeling univariate functional response with
scalar predictors. For the case of relating a functional response and a functional predic-
tor, Yao et al.| (2005)) considered a model based on functional principle component analysis
(FPCA). He et al.| (2010) studied a model which connects functional regression to functional
canonical correlation analysis (FCCA). [Ebaid (2008)) imposed a low-rank structure on the
coefficient surface and showed that low-rank regularization is closely connected to FPCA
and FCCA. Extensions to the cases of multiple scalar or functional responses/predictors
have been studied by various authors, e.g., Matsui et al.| (2008), |Zhu et al. (2017)), and
Krzysko and Smagal (2017). Recently He et al. (2018) proposed a multivariate varying-
coefficient model to study changing effects of predictors on responses, in which FPCA is
used to reduce the number of unknown coefficient functions. As for the most general sit-

uation where both the response and the predictor are multivariate and functional, [Ebaid



(2008)) considered imposing a low-rank structure on the coefficient surface with basis expan-
sion. (Chiou et al.| (2016) incorporated into their model the possible relationship between
components of responses and predictors, respectively, by conducting multivariate FPCA to
two sets of variables as the first step. For a comprehensive account of functional regression,
see, e.g., Morris| (2015) and [Wang et al.| (2016).

We consider the general scenario where both the response and the predictor are multi-
variate and functional. To formulate, let y(¢) = [y1(t), ..., yq(t)]* be a d-dimensional vector
of zero-mean functional response with ¢ € T and x(s) = [z1(s), ..., 7,(s)]T a p-dimensional
vector of zero-mean functional predictor with s € S. We consider the multivariate func-

tional linear regression model

y(t) = /S Cols, t)x(s)ds + e(t),  teT, (1)

where Cy(s,t) = [c(s,)]axp consists of unknown bivariate functions cy(s,t) assumed to
be square integrable, i.e., fT fs cz,l(s,t)dsdt <oo,k=1,....d,l=1,...,p, and €(t) is a
d-dimensional zero-mean random error function. This formulation is a natural extension
of the classical functional linear model (FLM) developed for univariate time-dependent
responses. The key is on how to jointly estimating the many functional surfaces in Model
by utilizing the potential associations among the functional variables.

In this paper, our focus is on exploring the potentials of the reduced-rank methodol-
ogy for fitting Model with finite samples. In classical multivariate regression, low-rank
models have been commonly applied to invoke information sharing among the correlated
responses and predictors, in order to boost predictive performance and enhance model in-
terpretation (Izenman), [1975; Reinsel and Velu, [1998; Bunea et al., 2011; Chen et al., 2013).
It appears straightforward to utilize this idea for functional regression, once a pragmatic
basis expansion/truncation procedure (Ramsay and Silverman, 2005) is applied to trans-
form the functional problem to finite dimensions. Imposing a low-rank structure on the
resulting coefficient matrix is then a natural and somewhat generic choice for controlling
model complexity (Ebaid, 2008). However, we argue that such a naive reduced-rank im-

plementation does not take full advantage of the multivariate and functional nature of the



problem, and hence can be inadequate in practice.

We innovate a nested reduced-rank matriz representation, to enable multi-scale learning
in Model . At the global level, our method identifies latent principal functional factors
that drive the functional association between the responses and the predictors. As such,
dimension reduction is achieved when the number of latent responses is less than d and/or
the number of latent predictors is less than p. This reduction can be quite effective in the
presence of high-dimensional and highly-correlated functional variables. At the local level,
the smaller-dimensional latent regression surface is assumed to be smooth and correspond-
ingly its coefficient matrix derived through basis expansion is assumed to be of low rank,
enabling another chance of dimension reduction. With these structures, the problem then
boils down to a high-dimensional matrix decomposition and approximation task, where the
nested reduced-rank structure implies that the blocks or submatrices of an integrated high-
dimensional low-rank matrix share some common row space and/or column space. The
applicability of the nested reduced-rank structure goes well beyond the functional setup;
for instance, it also arises in vector autoregressive modeling of time series.

The paper is organized as follows. Section [2| introduces the nested reduced-rank for-
mulation under Model , derives the model estimation procedure, and showcases the
applicability of such nested reduced-rank matrix recovery in time series modeling and im-
age compression. Computational algorithms and rank selection methods are proposed in
Section In Section 4] we show the consistency of the proposed estimator and derive
a non-asymptotic error bound. Simulation studies and the application on electricity de-
mand are presented in Sections 5] and [6] respectively. In Section [7] we conclude with some

remarks.

2 Nested Reduced-Rank Regression

2.1 Model Formulation

We propose a nested reduced-rank structure under Model , to appreciate both the mul-

tivariate and the functional natures of the problem.



Structure 1. (Global reduced-rank structure)
Co(s, t) = UgCi(s, 1) Vg, seS,teT,

where Uy € R™™ with v, < d, Vo € RP*™ with r, < p, and C}(s,t) is an r, X r, latent

regression surface. Without loss of generality, we assume Ul Uy = L, and ViVy=1,.

In Structure |1}, Uy and V| are designed to capture the “global” effects of the functional
association, i.e., it implies that the association between y(¢) and x(t) is driving by some
lower-dimensional latent functional responses and latent predictors that are formed as some
linear combinations of the original functional responses and predictors, respectively. That

is, it implies that

¥ (t) = / Ciy (s, )" (s)ds + €°(8),

where y*(t) = Uy (t), x*(s) = Vix(s) and €*(t) = Uj€(t). When r, < d and/or r, < p,
our model achieves great dimensionality reduction and parsimony while retaining flexibil-
ity. It includes the structures: Co(s,t), UgCp(s,t) and Cj(s,t)Va as special cases. This
structure is particularly helpful for simultaneously modeling a large number of functional
responses and predictors that are highly correlated across s or t.

It is conventional to take a basis expansion and truncation approach to facilitate the
modeling of the latent regression surface C§(s,?) (Ramsay and Silverman, 2005), for in-
ducing its smoothness over both s and ¢ and converting the infinite dimensional problem

to finite dimensional. Specifically, we represent the latent regression surface C{(s,t) as
Cy(s.t) ~ (I, @ ¥T(1))Cy(I,, ® ®(s)),  Cje RUmu)xthrs), (2)

where I, denotes the a x a identity matrix, ®(s) = [¢1(s),..., b, (s)]T consists of a set
of basis functions with Jyy = [ ®(s5)®"(s)ds being positive definite (p.d.), and similarly
W(t) = [hi(t),... 0y, ()] with Jyy = fT\Il(t)\IIT(t)dt being p.d. Here we assume the

basis functions are given, such as spline, wavelet, and Fourier basis; also, for simplicity,



we have assumed all the responses or the predictors share the same set of basis, either
W(t) or ®(s), respectively. An alternative is to take a functional principal component
analysis (FPCA) or functional canonical correlation analysis (FCCA), in which the basis
are obtained as eigenfunctions of covariance operators of y(¢) and x(s). While with any
given number of components such a data-driven basis expansion can explain most of the
variation in the ¢ sense, the analysis is much more complicated as it then involves the
estimation of the unknown basis. We thus take the basis as chosen with a sufficiently large
number of components and invoke regularization in model estimation.

With the expansion in , it boils down to consider the modeling of the high-dimensional

coefficient matrix Cf. We further explore a potential low-rank structure in Cg.

Structure 2. (Local reduced-rank structure)
rank(Cg) <,

for v < min(J,r,, Jur.); that is, C5 = AiBy for some A € RUvv)xr Bi € RUsre)xr,

As this structure induces the dependency between the latent responses and the latent
predictors through their basis-expanded representations, we achieve a finer dimension re-
duction at the “local” level.

The approximation error in can be controlled under reasonable conditions. Assume
that the |7v]th order derivative of each function in Cj(s,t) satisfies the Holder condition
of order v — |v| with v > 1/2, where |v]| is the biggest integer strictly smaller than .
This smoothness condition together with Structures imply that the regression surface

Co(s,t) approximately admits a nested reduced-rank representation,

sup |Co(s,t) — Ug(L, @ B (1) A;B; (I, ® ®(s)) V| = O(J;7 + J;7). (3)
seSteT

We can choose the number of basis functions satisfying J, — oo and J, — 0o as n — 00, so
that the above approximation error vanishes. Indeed, this is allowed in our non-asymptotic

theoretical analysis which provides a high-probability prediction error bound; see Section

[ for details.



Model then becomes

y(t) ~ / Uo(I,, © U7 (1) A;B; (I, @ B(s))VIx(s)ds + €(t)

~ (I @ T (1) (U @ 1,,)AB; (VI @1, { /S (I, ® <I>(3))x(s)ds} Fet).  (4)

We remark that Uy, Vy, Aj and B are not fully identifiable individually up to rotation or
nonsingular transformation, similar to the settings in conventional reduced-rank estimation;
nevertheless, the structure as a whole is well-defined and identifiable.

It is worthwhile to mention a few special cases. When the low-dimensional structures
do not present at all, ie., r, = p, r, = d and r = min(J,r,, J,r,), the model becomes
Co(s,t) = (I; ® ¥ (¢))Ci(I, ® ®(s)), for which the least squares estimation is equivalent
to separately regressing each response yi(t) on x(s) and hence there is no gain of conducting
multivariate analysis. When the global structure does not present, i.e., r, = p and r, = d,

the model reduces to a reduced-rank functional model as in |Ebaid (2008).

2.2 Estimation

The model estimation at the population level can be conducted through minimizing the

mean integrated squared error (MISE) with respect to C(s,t),

),

where ||al| = vaTa denotes the {5 norm. Define the integrated predictor and the integrated

2

dt, (5)

y(t) - /S C(s, £)x(s)ds

response as

X = /5 I, @ B(s)x(s)ds, y=(L®T,0) /T (L, ® B (0)y(t)dt, (6)

and write

y(t) = (L@ (1)1 0 I,2)y + (Lo U 1)1LeJ,%, )y,



where x € R’?, y € R”? y, € R’ and [W(t)¥] (¢)dt = 0. Under the nested reduced-
rank model in ([{4), the MISE in (5]) becomes

2

IE/ vt~ o W)U 1,)ABT (VT o 1, )x ar
T

5 2
:E/ H(Id @)L I,2)y - Lo¥ 1) (Usl,)AB (VI ® IJI,)XH dt + const.
T
As a result, the estimation criterion becomes

1 2
: _ 2 x* L T
o i {EHy (L©J2,)(UeL,)AB" (V ®1Jw)xH } (7)

This is a generalization of the reduced-rank regression criterion (Reinsel and Velu) 1998).
Unlike the latter, however, does not lead to an explicit analytic expression in general.

We now consider the corresponding sample estimation problem. Suppose the functional
responses and predictors are fully observed for n random subjects over their respective
domains, i.e., (yi(t),xi(s)) fort € T, s € §,and i = 1,...,n. The integrated predictors

and responses for each subject i can then be computed according to (@,

Tl :/ o;(s)xi(s)ds, l=1,....p;5=1,...,J,
S
y?kj :ij(t)ykl(t)dtv k= ]-)' . 7d7j = 17 e ‘7<]y7

Yikj :J;j[j7.](y?kl7 e vy?ka)Ta k=1,....d;j=1,...,Jy,
where J;j[j,] denotes the j-th row of J;j Define Y.; = (Yikj)nxa, for j = 1,...,J,, and
let Y = (Y.,...,Y.;,). Similarly, define X.; = (2;)nxp, and let X = (X4,...,X.;,). We
write A* = (A], ..., AT )T where Ay, € R forh=1,...,7,,and B* = (B],..., B} )"
where By, € R%*" for h = 1,...,r,. Define A, = JiwAh' and A* = (AT, ... ,KEy,)T.
Since Jy, is nonsingular, it suffices to consider the estimation of A" instead of A*. It
is necessary to rearrange the rows of A* and B*, ie., let A = (A%, ... ,AT,y)T where
A ; € R"v*" is formed by collecting the jth row of each A, and B = (BT .. B )T

where B.; € R"™**" is formed by collecting the jth row of each By.. Finally, these matrix



notations allow us to write the sample MISE criterion as a nested reduced-rank regression

problem,
min||Y - XC|[[§,  s.t.C= (L, ® V)BAT(I,, ® UT). (8)

Thus from matrix approximation point of view, U and V are designed to capture the shared
column and row spaces among the blockwise sub-matrices of C, which, as a whole, is also

of low rank. Figure shows a conceptual diagram of this nested reduced-rank structure.

V]| - ||eOd

o | 1

Figure 1: A diagram of the nested reduced-rank matrix representation.

Thus far the functional responses and predictors are treated as given. In practical
situations, however, the functional data are often observed not continuously or densely, but
at discrete points. It is certainly preferable to account for this uncertainty in statistical
analysis, but we do not pursue this complication in the current work. Following Ramsay and

Silverman, (2005)), the preceding integrals are approximated by finite Riemann sums with

discrete observations. Suppose for ¢ = 1,...,n, we observe y; (t) = (y1; (t), ..., ya (t))T
at discretized time points ¢;,, for v = 1...,m;, and x;(s) = (21;(8),..., 7, (s))" at
discretized time points s;,, for v =1,...,¢g,. Based on @, we compute

9i

T = i\ Siu ) L\ Siu)\Siuw — Siu—1), J=1...,J
> i(siw)z(siu)( ) L. J

u=2

yz(')kj = Z %’ (ti,v)yki(ti,v)(ti,v - ti,vfl)a j = 17 RN Jy'
v=2



2.3 Other Applications

The applicability of the nested reduced-rank estimation is beyond the functional setup.
An interesting application is in high-dimensional vector autoregressive (VAR) modeling in
multivariate time series analysis. Let y; € RP be the observed multivariate time series at

time t. Consider a VAR model of order h,
Vi=Ayia+.. . Ay te = Ax g +ey, t=1,....,T,

where A; € RP*P. A = (Ay,...,Ay) e R x, 1 = (yr,, ... yL,)T € R and e, € R?
is a zero-mean innovative process. Stationary reduced-rank VAR model was introduced in
Luetkepohl (1993)), where the coefficient matrix A is assumed to be of low rank. In high-
dimensional scenarios, it is possible that (1) some linear combinations of the multivariate
time series y; are processes of pure noise, and (2) the dynamics of y, is driven by its lags
only through some linear combinations. This gives arise a nested reduced-rank structure.

Specifically, the global structure can be modeled as
A, =UgA V], i=1,...,h,

where Uy € RP*"™ with r; < p, Vo € RP*™2 with ry < p, satisfying UOTUO =1, and
ViV, =1,,. The local low-dimensional structure can be modeled by letting the matrix
(A%,...,A)) € R *(2) he of low rank. As such, V{i'y: gives the latent principal time
series, and U} y; are pure noise where Ug € RP*(?~"1) and Ul UF = 0.

Another potential application is in surveillance video processing. In recent years, the
sparse plus low-rank decomposition has been a popular method for surveillance video decod-
ing, in which the low-rank component represents the background and the sparse component
captures the moving objects. Since the surveillance video frames are usually with a static
or gradually changed background, using a nested reduced-rank component with an extra
global reduction scheme may improve the efficiency of background representation by dra-
matically reducing the temporal redundancy. These ideas will be further explored in our

future work.
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3 Computation

3.1 A Blockwise Coordinate Descent Algorithm

When U and V are held fixed, minimizing becomes a reduced-rank regression (Reinsel
and Velu|, [1998)),

. . T2
min [V, — X BA, (9)

where Y, = Y(I;, ® U) and X, = X(I;, ® V). One set of explicit solution is given by
B = (XTX;)"X]YVL(r) and A = V(r), where V1 (r) consists of the first 7 eigenvectors
of the matrix Y}:XL(XEXL)fszL
For fixed A, B and V, the problem becomes
Jy

m&nz 1Y, - X4, UTE, st U'U=1,,

j=1
where X4 ; = X(I;, ® V)BA,Tj, j=1,...,J,. This is equivalent to

Jy
min [|1; — O _YIXa)U"E, st U'U=IL,, (10)

j=1

which can be recognized as an orthogonal Procrustes problem and admits an explicit solu-
tion U = UAV};, where UADAVE is the SVD of the matrix Zjil YEXAJ-.
In order to update V, we consider fix A and U and write the problem with respect to

both B and V as

i -X V)2 VIV =1, 11
min lys = Xpvee(V)II%, s . (11)

where yp = vec{Y(I;, ®U)A} and Xp = Zjil(BTj ®X.;). Here vec(-) is the vectorization
operator for converting a matrix to a vector by concatenating its columns; we will also use
dvec(-) to denote the corresponding de-vectorization operation. It is not necessary to solve

fully, as long as the updates can decrease the value of the original objective function

11



in (which is the same as in for fixed A and U). We thus propose the following
one-step update of (B, V). Ignoring the orthogonality constraints on V for a moment, we
first compute the least squares solution V = dvec{(X5X ) 'XLys}. We then perform
QR decomposition of \Nf, ie., V= QsRp, and let V = Qp and update B.; as RgB.;. This
step ensures the orthogonality of V, and makes the objective function decrease.
Algorithm [1| presents the proposed algorithm, for any fixed triplets of rank values
(r,74,7y). The matrices A, B, U and V are alternatingly updated according to (9)), and
. The objective in is monotone decreasing along the iterations, and consequently

the convergence to a limiting point is guaranteed.

Algorithm 1 Nested Reduced-Rank Regression
Initialize U° € R¥¥"s, VO ¢ RPXT=,
Set k < 0.

repeat
(1). RRR updates:

B! (X X,)TXIYLVi(r),  AM Vi (),
where Y, = Y(I,, ® U*) and X, = X(I,, ® V¥), and V(r) consists of the first r
eigenvectors of the matrix Y1 X (XTX;)"X}Y .
(2). Procrustes updates:

UM « ULV,

where U4D 4 V7 is the SVD of 37, YIX 4, with X ; = X(I,, ® VF)BFIART,
(3). QR updates:

VM Qp,
where QpRp is the QR decomposition of dvec{(X;Xp) 'XLyp}, with yp =
vec{Y (I, ® UMY AR} and Xp = Z;.]il(BZHT ® X.;).

Set k +— k+ 1.
until convergence, i.e., ||[C*1 — C*||/||CF|] < € = 107%, where C* = (I;, ®
VHBFAF (I, @ UM).

12



3.2 Initial Estimator and Rank Selection

Some initial estimates of (U, V) are required for running the proposed algorithm for a
specified set of rank values (r,7,,7,). The coefficient matrix C in takes the form
C = (I,, ® V)BA'(I,, ® U"), which implies that rank(C) < r. Therefore, ignoring the
global structure in (U, V) for a moment, C can be directly estimated by a conventional

reduced-rank regression of Y on X, i.e.,
mén Y — XC||3, s.t. rank(C) <, (12)

and the minimizer is given by C = BAT, B = (X™X)"XTYV (1), A = V(r), where V(r)
consists of the first r eigenvectors of the matrix YTX(XTX)~XTY. The B and A can be
viewed as approximations to (I;, ® V)B and (I;, ® U)A, respectively. Therefore, an initial

estimator of V can be obtained from
(V",B") = arg min B - (L, ® V)BJ;.

Write B = (BT, . .. ,E;x)T where each B; € RP" j = 1,...,.J,. Based on Eckart-Young

Theorem, it can be easily shown that

Vi =Uj(r),
where INJE(T) consists of the first  left singular vectors of the the matrix (By,...,By.).
Similarly, write A = (AT, ... ,:&};)T where each A; € R then an initial estimator of U

is obtained from minimizing || A — (I, ® U)A|} with respect to (U, A), so that

U = Uj(r),

where U 5(r) consists of the first r left singular vectors of the the matrix (Kl, A J,)-
To choose an optimal set of rank values (r,7,,7,), the K-fold cross validation proce-

dure can be used, which, however, can be quite computationally expensive for large-scale

13



problems. Here we propose to select (r,7,,7,) based on a Bayesian Information Criterion
(BIC) (Schwarz, 1978), because of its computational efficiency and promising performance
in regularized estimation. Denote a(r, T4, Ty) as the estimator of C by solving with the

rank values fixed at some (r,7,,r,). We define
BIC(r, ry,1y) = ndJy, log {SSE(r, 74, ry)/(ndJ,) } + log(ndJ,)df (r, 14, 1y), (13)

where SSE(r,r;, 1) = [[Y — Xa(r, Tz, 7y)|[# stands for the sum of squared errors and
df (r,ry,1y) is the effective degrees of freedom of the model. We use the number of free

model parameters to estimate df (r, 7,,7),
cé}”('r’, rasry) = r2{r(X)/Jo — 12} +ry(d — 1) + (Jyry + Jors — 1)1 (14)

When r, = d, r, = r(X)/J,, the above formula gives dAf('r, r(X)/Jy, d) = (Jyry+7r(X)—=r)r,
which is exactly the effective number of parameters in a rank-r reduced-rank regression
model (Mukherjee et al. 2015). The difference in the number of parameters is (J,d —
Jyry)(r =1y [ Jy) + (r(X) = Jera)(r — 12/ Ja).

With the above BIC criterion, a three-dimensional grid search procedure of the rank
values can be performed, and the best model is chosen as the one with the smallest BIC
value. On the other hand, note that the global structure of the predictors determined by 7,
the global structure of the responses determined by r,, and the local structure determined
by r are designed to realize different low-dimensional aspects of C. As such, a one-at-a-time
selection approach works well in practice. We first set r, = p, 7, = d, and select the best
local rank 7 among the models with 1 < r < min(r(X), J,d). We then fix the local rank
at 7, and repeat the similar procedure to determine 7, and 7, one at a time. Finally, with
fixed 7, and 7, we refine the estimation of r. This approach is adapted in all our numerical

studies and works quite well.
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4 Theoretical Analysis

Our theoretical analysis concerns the fundamental nested reduced-rank regression setup,
Y = XC, +E, s.t. Co = (I, ® Vo)BoAg (I, ® Uy).
Accordingly, the objective function is defined as
Q.(V,B,A,U) = [Y - X(I,, ® V)BA'(I,, ® U")|]%,
and the NRRR estimator is obtained as

(V.B,A,U) € arg_min Q,(V,B,A,U).

I ]

To facilitate the analysis, it is necessary to make the components (Vy, By, Ay, Up) iden-
tifiable individually; we defer the discussion until presenting the main results. Here the
integrated response and predictor matrices from functional data are treated as given, as the
functional approximation aspect of the problem is not our focus. We have assumed that the
rank values are known. Even so, the non-convexity of the NRRR problem, induced by the
complex nested low-rank matrix decomposition, makes the theoretical analysis challenging.

We need the following conditions for our asymptotic analysis.
Assumption 1. X"X/n 2% T as n — oo, where I' is a fized, positive-definite matriz.

Assumption 2. Each row e; of E is independently and identically distributed with E(e;) =
0 and cov(e;) = X, where X is positive-definite.

Theorem 1. (Consistency) Suppose Assumptions and@ hold. Then there exists a local
minimizer (V,B, A, U) of Q,(V,B, A, U) such that |V —Vo|lp = O,(n"2), |[B=Bg||r =

1

0,(n72), ||A — Agllp = O,(n"2) and ||U — Ug||p = O,(n"2).

Theorem [1] shows the consistency of the NRRR estimation in estimating the components
of the nested low-rank structure, in the sense that there exists a local minimizer that is

v/n—consistent. For non-convex problem, such an asymptotic result is what to be expected
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(Fan and Li, 2001} |Chen et al. [2012). While the details of the proof are provided in
Appendix A, we briefly outline the main steps here. We first parameterize the coefficient
matrix Cy such that the components in its nested low-rank structure, (Vy, By, Ag, Up),
can be identifiable. Then a local neighborhood around the true value Cy with radius A is
constructed, denoted as N (Co, h). We then show that for any given € > 0,

]P’{ ] _inf Q.(Vo+ LRl, B, + LRQ, Ay + LRi”, U, + LR4)
IR o =|R2| vn Vn NG NG

|r=|R3||p=|R*||p=h

> Qn(VoaBo,Aoan)} >1—c¢,

with a large enough constant h. Here the infimum is taken over the perturbation matrices
R',R? R3 R* (one-to-one transformations of R*, R?, R? R*) of Vi, By, Ag, Uy, respec-
tively, with a fixed Frobenius norm h. That is, the objective function evaluated at any
boundary point of the neighborhood of radius h is larger than that evaluated at the true
value, with arbitrarily large probability. It thus follows that a local minimizer must exist
within the neighborhood with a /n convergence rate.

We also attempt non-asymptotic analysis, to understand better the behavior of NRRR
estimator in high-dimensional setups. Let’s express the true functional regression surface as
Co(s,t) = {Id®\Il(t)T}{Id®J;E}60T{Ip®<I>(s)}, where Cy is obtained by a rearrangement
of the columns and rows of Cy. Let C = (I,, ® V)BAT(I,;, ® UT) be the NRRR estimator
of Cy, and 6(3, t) is obtained by plugging in the corresponding components.

Theorem 2. Suppose the random error matriz E has independent N (0,0?) entries. With
probability at least 1 — exp {—60?(r(X) + d.J,)/2}, we have
IXC = XColli < (r(X) + dJ,)r,
~ 2
/ / H (c (s,£) — Co (s,t)) x(s)H dsdt < (r(X) + dJ,)r,
TJS

where 0 > 0 is a positive constant. Here < means that the inequality holds up to some
multiplicative numerical constants.

Theorem [2| shows that the prediction error bounds of NRRR are at least comparable
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to those of reduced-rank regression (Bunea et al., 2011). The proof of Theorem [2| is in
Appendix A. This result provides support for using NRRR in problems with diverging
dimensionality; indeed, we see from numerical studies that NRRR always outperforms
RRR. We expect that the optimal rate for NRRR is faster than that is given above, since
the number of free parameters in a nested low-rank structure can be much smaller than
that in a regular reduced-rank structure due to the global dimension reduction by (Vy, Uy);
see the formulation of the degrees of freedom in and the discussion afterwards. We

will explore this conjecture in our future work.

5 Simulation

We compare the performance of the proposed nested reduced-rank regression (NRRR)
methods with several competing methods, including the ordinary least squares method
(OLS), the classical reduced-rank regression (RRR), and the reduced-rank ridge regression
(RRS). For NRRR, beside the regular version, we consider the special case of setting r, = d,
denoted as NRRR-X, and the nested reduced-rank ridge regression, denoted as NRRS, in
which a ridge penalty is added to the NRRR criterion for inducing parameter shrinkage.
To generate synthetic data, we let x(s) = {I,®®"(s)}x and €(t) = {I;@¥" (t)}€, where
x € R%? y € R%? and € € R’ are random vectors, and ®(s) and ¥(¢) are the same two
sets of B-spline basis functions used to expand C(s,t). The y(t) is then given according to
@), ie., y(t) = {IL,e (1)} {(UO @ 1;,)A5BE (Vo @ 1) (L, ® Ju)x + e}. Then, for

each i = 1,...,n, the discrete-time observations (x;(s),y;(t)) are generated as follows,

1. Generate x;(s) = {I, ® ®"(s)} x; for uniformly distributed time points s,, u =
1,...,gin S =[0,1], where x; € R’ is generated from N(0,3), where 3 = (pli=9)

with some 0 < p < 1.

2. Generate the entries of €; € R7? as independent samples from N (0, o?).

3. Generate y(t) = {I;® (1)} {(U0 @ 1,,)ABL (Vo @ 1,,) T (L, ® Jyy)x; +e} for
uniformly distributed time points ¢,, v =1,...,m in T = [0, 1].
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(Here for simplicity, data on different subjects are generated on the same sets of time
points.) The entries of A} € R’7"v*" and B} € R/"=*" are independent samples from
N(0,1), and Uy € R¥"™ and V € RP*"* are generated by orthogonalizing random matrices
of independent N (0, 1) entries via QR decomposition.

Two settings of model dimensions are considered:
Setting 1 : n =100, m =g =160, p=10,d=10,7r=5,1r, =3, j, =8, ry =3, j, = 8.
Setting 2 : n =100, m =g =100,p =20, d=20,r =3, 71, =3, j, =8, 1, = 3, j, = 8.

In Setting 1, the model dimensions, pj, = 80, dj, = 80 are comparable and a bit smaller
than the sample size; but the number of unknowns, 80 x 80, is already very large. In Setting
2, the model dimensions are much higher than the sample size, i.e., pj, = 160, dj, = 160,
and the total number of unknowns is four times of that in Setting 1. For each setting,
we try different signal to noise ratios (SNR € {1,2,4}), defined as the ratio between
the standard deviation of all the elements in the response matrix (Uy ® I Jy)ASBST (Vo ®
I;)7(I, ® J44)(x1, X2, . .., X,) and the noise level o, and different design correlations (p €
{0.1,0.5,0.9}). The ranks and other tuning parameters (if there is any) are selected by 10-
fold cross validation. For methods with nested reduced-rank structure, we use the proposed
BIC criterion to select ranks. The experiment is replicated 300 times for each setting.

To evaluate the performance of different methods, we compute for each method the
trimmed mean squared prediction error (MSPE) from all runs (the smallest and largest 20

observations are deleted from 300 runs),
. 1 .
MSPE(C, Co) = — Y — X Cll7
te

based on independent testing set of size n;,. = 500, where Y, and X,, are the integrated
response and predictor matrices. Similarly, to evaluate the estimation of the functional

responses, we compute the trimmed mean squared functional prediction error (MSFPE),

Nte m

=R 1 ~
MSFPE(Y,y) = Tte Z Z [¥tei(ts) = Veei(to) |5
€ i=1 v=1

18



Table |1 and Table [2 present the prediction errors (MSPE) under Settings 1 and 2,
respectively. The results from OLS are omitted as they are much worse than those of
the other methods. Among the five methods presented, RRR has the worst performance.
The performance of NRRR is slightly better than that of NRRR-X. RRS substantially
improves its corresponding counterpart RRR by incorporating ¢s shrinkage estimation.
In general the improvement is more substantial when the SNR is low and/or the design
correlation is high. In contrast, in most scenarios NRRS only slightly outperforms or just
has comparable performance to NRRR. This is because NRRR has already considered a
finer low-dimensional structure so that the extra shrinkage becomes less effective. Due to
space limit, we present the results on estimating r, r, and r, in Appendix B. RRR usually
leads to underestimation of r; this is expected as RRR tries to use an overall low-rank
structure to mimic the finer or even lower dimensional nested low-rank structure. NRRR
methods perform well in rank estimation in general. Therefore, the results confirm that

NRRR can produce a more interpretable model with improved predictive accuracy.

Table 1: Simulation results for Setting 1. The mean MSPE values are reported with their

standard deviations in parentheses. To improve presentation, all values are multiplied by
10.

p  NRRR NRRR-X RRR RRS NRRS
0.1 11.43 (2.64) 12.16 (2.81) 14.47 (3.16) 11.34 (2.46) 10.97 (2.50)
SNR=1 0.5 18.14 (4.28) 19.07 (4.33) 22.42 (4.92) 17.46 (3.81) 17.61 (4.18)
0.9 26.20 (9.17) 26.58 (9.01) 29.56 (9.92) 23.87 (8.04) 25.6 (8.92)
01 268 (0.56) 284 (0.59) 3.84 (0.80) 3.08 (0.59) 2.77 (0.55)
SNR=2 05 418 (1.01) 447 (1.10) 591 (1.40) 4.56 (1.06)  4.20 (0.99)
09 642 (219) 6.79 (2.31) 8.26 (2.58) 6.48 (2.09)  6.29 (2.06)
0.1 0.5 (0.14) 0.63(0.15) 092 (0.21) 0.96 (0.19) 0.77 (0.17)
SNR=4 05 1.04(0.26) 1.08(0.27) 1.47(0.38) 1.31(0.29) 1.14 (0.27)
09 1.52(0.52) 1.61(0.55) 2.11(0.70) 1.69 (0.53) 1.59 (0.51)

To visualize the effects of nested low-rank dimension reduction, Figure [2| displays the
boxplots of MSFPE for NRRR, NRRR-X and RRR under Settings 1 and 2 with SNR =1,
and Figure 3| draws two particular sets of the true and predicted curves by NRRR, RRR
and OLS from the simulation. The efficacy of the nested dimension reduction is apparent.
The results under other settings deliver the same message and hence are omitted. Except

for RRR and RRS, all the above results are obtained from using BIC to select the model
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Table 2: Simulation results for Setting 2. The layout is the same as in Table

p  NRRR NRRR-X RRR RRS NRRS
01 6.20 (147) 6.56 (1.55) 7.82 (1.98) 6.97 (1.60) 6.30 (1.50)
SNR=1 05 9.76(3.15) 10.33 (3.38) 11.82(3.91) 10.55 (3.29) 9.76 (3.12)
0.9 14.44 (5.72) 15.06 (5.87) 16.21 (6.40) 14.88 (5.76) 14.28 (5.67)
0.1 1.56 (0.41) 1.58 (0.41) 2.40 (1.11) 2.07 (0.49) 1.61 (0.43)
SNR=2 05 246 (0.74) 2.51(0.74) 3.16 (0.98) 3.08 (0.88)  2.49 (0.73)
0.9 3.28 (1.22) 3.40 (1.28) 3.86 (1.46) 3.91 (1.66) 3.34 (1.22)
0.1 0.37 (0.10) 0.38 (0.10) 1.05 (1.01) 0.78 (0.18)  0.42 (0.16)
SNR=4 05 0.61(0.19) 0.62(0.19) 0.95 (0.28) 0.91 (0.23)  0.63 (0.19)
0.9 0.88(0.35) 0.90 (0.36) 1.05 (0.41) 1.07 (0.44)  0.89 (0.37)

ranks. The results obtained from using 10-fold cross validation for all methods are similar

and presented in Appendix B.
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6 Application to Adelaide Electricity Demand Data

Adelaide is the capital city of the state of South Australia. The city has a Mediterranean

climate, with warm-dry summers and cool-mild winters.

20
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Figure 3: Comparison of the true curves and the predicted curves in two simulation runs
under Setting 1 with SNR = 2 and p = 0.5.

mainly depends on air conditioning, which makes the electricity demand highly dependent
on the weather conditions, and a large volatility in temperature throughout the day could
make stable electricity supply challenging. Therefore, it is of great interest to understand

the dependence and the predictive association between the electricity demand and the tem-

perature, for facilitating the supply management of electricity (Magnanoj, 2007; |[Magnano

et al |2008; Fan and Hyndman, 2015). Here we apply NRRR to perform a multivariate

functional regression analysis between daily half-hour electricity demand profiles for the 7
days of a week and the corresponding temperature profiles for the 7 days of the same week.

Half-hourly temperature records at two locations, Adelaide Kent town and Adelaide
airport, are available between 7/6/1997 and 3/31/2007. Also available are the half-hourly
electricity demand records of Adelaide for the same period. As such, for each day during the
period, there are three observed functional curves, each with 48 half-hourly observations.
As an illustration, Figure [ plots the temperature and electricity demand profiles of all the
Mondays from 7/6/1997 to 3/31/2007. Since our main focus is on studying the general
association between the within-day demand and temperature trajectories in a week, we

center the 48 discrete observations of each daily curve, to remove the between-day trend
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and seasonality of the data. Each week is then treated as a replication.

Electricity demand
_ Temperature
Temperature

S R ORI N A S RS S
Time Time

(a) (b)

Figure 4: Adelaide electricity demand analysis: (a) electricity demand in Adelaide, (b)
temperature in Kent town, and (c¢) temperature in the airport. Plotted are the half-hourly
observed profiles for all Mondays.

After data pre-processing, we use the daily half-hour electricity demand as the functional
multivariate response with d = 7 (corresponding to 7 days in a week from Monday to
Sunday), and as for the predictors, we consider two settings. In the first setting, we only
use the half-hour temperature data from Kent as the multivariate functional predictors,
so that p = 7; in the second setting, we also include temperature data from the airport
to make p = 14. Not surprisingly, the two sets of temperature data are extremely highly
correlated, so the second setting is meant to test for the behaviors of different methods
in the presence of high collinearity. In either setting, the total sample size is n = 508,
equaling to the number of weeks in the study period. To leave sufficient flexibility in
estimating the regression surface, we use B-spline with 30 degrees of freedom to convert
the discrete observations to its integrated form according to (@

First, we compare different methods using an out-of-sample random splitting procedure.
Each time, we randomly select 400 samples as the training set and the remaining 108
samples as the test set. The model is fitted using the training data, and the relative mean

squared prediction error (RMSPE) is then computed based on the test data,

— f”ytez S’\tei( )Hgdt
RISPES.) = 3 S

The procedure is repeated 100 times, and the results are reported in Table [6f In both
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settings, NRRR and NRRS perform very well, and their predicted curves are able to account
for about 74% of the total variation in the observed demand curves. The results show
that there is a dramatic global dimension reduction of the functional predictors, as r, is
estimated to be only 1 most of the times. As r, is often close to the number of original
functional responses, this indicates that each daily electricity demand curve has its own
pattern, and thus there is not much room for a global dimension reduction. In contrast,
RRR and RRS perform much worse in prediction, and RRR even fails completely in Setting
2. To visualize, Figure 5| plots some randomly selected observed and predicted curves under
Setting 1; the superior performance of NRRR is apparent. These results clearly show
the power and necessity of global dimension reduction, especially in the presence of high

correlation among the functional predictors.

Table 3: Adelaide electricity demand analysis: out-of-sample performance of different meth-
ods. Reported are the means and standard deviations (in parenthesis) of RMSPE, r, r,
and r, over 100 simulation runs.

Methods RRR NRRR RRS NRRS
Setting I RMSPE 0.42 (0.04) 0.27 (0.02) 0.38 (0.03) 0.26 (0.02)
r 1.53 (0.63) 4.06 (0.28) 3.60 (0.70) 4.09 (0.35)
ra 1.00 (0.00) 1.01 (0.10)
ry 5.70 (1.47) 5.73 (1.43)
Setting 2 RMSPE  1.08 (0.19) 0.26 (0.02) 0.55 (0.05) 0.26 (0.02)
r 0.26 (0.44) 4.45 (0.89) 1.00 (0.00) 4.40 (0.80)
ra 1.00 (0.00) 1.01 (0.10)
r, 6.72 (0.57) 6.75 (0.52)

We then use all data to fit a final NRRR model with only the temperature observations
from Kent. The estimated rank values are 7 = 4, 7, = 1, and 7, = 5. The estimated loading
matrix for the predictors is V= (0.22,0.39,0.46,0.52,0.43,0.28,0.25)T. This shows that
there is only one latent functional predictor that is driving the patterns of the electronic
demands, and this factor can be roughly explained as the averaged daily temperature profile
of the week. It appears that the days closer to the middle of the week load higher. On
the response side, there is not much global reduction, as the estimated loading matrix
U is of rank 5. To make sense of ﬁ, it may be more convenient to examine the two

basis vectors of its orthogonal complement, i.e., the first two singular vectors of I — IAJIAJT,
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Figure 5: Adelaide electricity demand analysis: randomly selected examples of observed
demand curves (in black) and out-of-sample predicted curves by RRR (in blue) and NRRR
(in red).

which give the latent response factors that are not related to the temperatures at all. While
the first loading vector (—0.52,0.36, 0.28,0.25, —0.56,0.34, —0.18)T is hard to interpret, the
second loading vector (0.00, —0.68,0.73,0.00, —0.04, 0.05, —0.04)T clearly indicates that the
difference between the electronic demand profiles of Tuesday and Wednesday is mostly a
noise process. In other words, the demand profiles of these two days are related to the
temperature process in almost the same way.

Let uy, be the kth row of U. Then Model (#)) shows that the estimated regression surface
(s, t) =} (I, @ T (1) A'B (1, @ ®(s)), k=1,....d, (15)

would indicate how the response ¥y (1) is related to the latent predictor {/Tx(s) over s and t.
In the context of this application, ¢ (s,t) shows that how the electricity demand trajectory
on the kth day of a week is related to the trajectory of the average temperature of the week.
We therefore plot the heatmaps of these surfaces to visualize. Figure [f] displays the plots
for Tuesday and Saturday. While the patterns of the association are hard to comprehend
in general, some observations can be made. First, there are three association regimes
throughout each day, i.e., night hours from about midnight to 7:30, daylight hours from
about 7:30 to 18:00, and the rest hours from about 18:00 to midnight. This corresponds well
with the general patterns of daily electricity demand, and the three regimes are separated

by the “Morning ramp”, i.e., the transition from relatively lower loads to higher loads in
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Figure 6: Adelaide electricity demand analysis: heatmaps of estimated regression surfaces

defined in .

the morning, and the peak load time around 18:00. Noticeably, the electricity demand in
daylight hours is the least associated with the temperature. Another observation is that
temperatures between about 19:00 to 20:30 and 23:00 to 00:00 in general have the largest
effects on the electricity demand. This may be related to household and entertainment
activities. Lastly, we observe that the association patterns on the workdays are similar to

each other, and are slightly different from those on the weekends.

7 Discussion

There are many research directions that stem from the proposed nested reduced-rank es-
timation framework. Our method can be extended to the historical functional regression,
i.e., when s and ¢ are both on the same domain such as time, it is required that C(s,t) =0
for any s > ¢, so that the future dynamics of x(s) is not used in the modeling of the current
or past dynamics of y(¢). Another interesting direction is to consider sparse and low-rank
estimation. For example, to enable the selection of the functional predictors, we could
assume that Vj is a row-sparse matrix and utilize group-wise regularization such as group
lasso in estimation. On the theoretical side, it is pressing to study the non-asymptotic
behavior of our proposed estimator under reasonable conditions on the integrated design

matrix originated from the functional setup. Last but not the least, we will further explore
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the nested reduced-rank structure, or even more generally, a multi-resolution reduced-rank
structure in other statistical problems such as time series analysis and large-scale matrix

denoising/approximation tasks.
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Appendix

A: Proofs of Main Theoretical Results
Parameterization

Denote 2 as the parameter space of the set of matrices C € R7+P*/v? with a nested reduced-
rank structure (I,, ® V)BAT(I, ® U") with rank values (rg,ry,r). This decomposition
is not unique, e.g., with any comfortable and invertible matrices Qq, Q2 and Q3, we can

write

C =1, ® V)BAT(I, ® U")

=L, ® (VQ)I[(T, ® Q1)BQ,JIQ; "AT (I, ® Q3)][Ly, ® (Q5" UM  (16)

We therefore consider a reparameterization of C in order to make its components iden-
tifiable and then characterize €2. Recall that V € RP*™ is designed to capture the
global low-dimensional structure in predictors and has rank r, (< p), then there must
exists an invertible sub-matrix Vi, . € R™*™ which consists of a set of linearly inde-
pendent rows. Here Ly = {l3,ls,...,l,,} is the row index set. Take Q; = Vi, . in (L6)
and we have (VQ;')z,. = I,,. Similarly, for U we can let Q3 = U, € R"v*™ such
that (UQ3')z,. = I,, where L3 is the required row index set. Now consider the term

(I, ® QI)BAT(IJy ® Q3) € R7=™=*%mvwhich has rank r; we can find an invertible sub-
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matrix Qs € R™" in (I;, ® Q3)A to make ((I;, ® Q3)AQ;")z,. = L. This shows that
a nested low-rank matrix can always be reparameterized such that each of V, U, A is
embedded with an identity sub-matrix. With such a representation, 2 admits a manifold

structure that is a union of ( ;’1 ) X (:i) X (‘]y:y) many components, i.e.,

Q = UL, xLoxLse 20, x Lo x L
where

QL1XL2><L3 :{(Ijx X V)BAT(IJy X ﬁ)T . V - RpXm; Wlth th. = Irxa B < R(Jx%)xr;

A e RV with Ay, =1,;U0 € R™™ with Uy, =1, }

and II consists of all possible index sets Ly X Lo x Ly with Ly C {1,...,p}, Ly C {1,..., Jyry,}
and L3 C {1,...,d}.

Proof of Theorem 1

Proof. Based on the above characterization of {2, we now construct a local neighborhood
around the true coefficient matrix Cgy, in order to investigate the asymptotic behavior of
the NRRR estimation. Suppose Cy € €21, x1,xLs, Where Ly, Ly and Lj are three fixed index
sets. Define V.= V,Q;', U=U,Q;", B = (I;, ® Q:1)BoQJ and A = (I;, ® Q3)A,Q,"
so that \V/Lh. =1, AL%. =1, and ULS,. =1I,,. It can be verified that

Co = (I, ® Vo)BoAj (I, ® Uy)
=L, ® (VoQi )L, ® Q1)BoQ;][Q; " A (1, ® Q3)][1y, ® (Q3 Uy
= (I, ® V)BAT(I; @ U").
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A local neighborhood centered at C, of radius A > 0 is constructed as follows,

S 1 P A 1\
Co, h) ={ |1 V+—R')| (B+—=R?)[A+—=R*) |I U+—R*)|
i ={ 1o (v )| (B o) (s ) o (v 7
R' € R with R}, . =0, |R'[|r < k;
R? € RV |R?|Ip <

R3 € RUvm)X" with RBL% =0, ||R3||F < h:

R € R with RL — 0, R < h}.

The zero parts in perturbation matrices R', R? and R* ensure that AN'(Co, h) € Qp,xr,xr;s

N(Cy,00). Also note that we can equivalently express the neighborhood in terms of

Vo, Bg, Ag, Uy as

1 1 1 T 1 T
Co,h) =¢ |1 Vo + —R! By+ —R?) (A;+ —=R?*) |I U, + —R! :
N(Cy, h) {[Jz®< 0+\/ﬁ )}( o—l-\/ﬁ )( O+\/ﬁ ) [Jy®( o—l—\/ﬁ
R'=R'Q; e R"™ with R}, . =R} . =0,[R'|r <k
R’ = (I, ® Q")R*Q] € RV=")" |R?||p < h;
R’ = (I;, ® Q3 )R*Q, € R with R}, =0, |R®||r < k;
R'=R'Q; e R™ with R}, . =R],. =0,|R"||r < h}

With the above setup, we now investigate the consistency of the NRRR estimation that

minimizes the objective function
Q.(V,B,A,U) =Y - X(I;, ® V)BA'(L;, ® U")|[3.

We claim that for any given € > 0, there exists a large enough constant h such that

1 1 1 1
P ~inf ) Q,.(Vo+ —=R! By + —R? Ay + —R? Uy + —R?)
{ IR p =[R2 [ p=[|R3 || p=||R*|| p=h Vn Vn Vn Vn
> Qn(VoaBo,AoyUo)} >1—e (17)

This statement implies that with probability at least 1 — ¢, there exists a local minimum
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C=01,® \A/')ﬁ;&T(IJy ® UT) in the interior of the ball A(Cy, k) and it satisfies

IV = Vo)QT Yl = Op(n~2),

(1, ® Q1)(B — Bo)Q; "l = Op(n7),
(L, ® Q3)(A — Ag)Q; |l r = Op(n~7),
(

10 = 00)Q3 "l = Op(n™2),
Then based on the fact ||AB||r < ||A||#||B||r for any two matrices A and B, we have

IV = Vo) Q' FIQ I < IV = Vollr < [(V = Vo)Qy |#1Qull#

Thus with [|Q]|p < co we obtain ||V — Vol|[p = O,(n~2). Similarly, with ||Qa|lr < oo
and ||Qs||p < oo we can obtain |[B — Byllp = O,(n72), |A — Agllr = Op(n"2) and
1T = Uollr = Oy(n~3).

It remains to verify (I7)). Let’s write

[Ijx ® (Vo + \/lﬁRlﬂ <B0 + \/lﬁR2> <A0 + ;ﬁR?’)T [ij ® <U0 + %R“)]T € N(Co, h)

as any perturbed matrix within A/(Cy, h) and define

U, (R'R* R, RY) =Q, (Vo + n R, By + n"*R*, Ag +n :R*, Uy + n”*R)
- QTL(VOu B07 A07 UO)

By some algebra, we get

XTE XTX
¥, (R, R? R* R*Y) = —Z"vec ( n ) + Z7T (ijd ® - ) Z + Op(n_%) (18)

where

Z =vec((I;, @ R"BoAg (I, @ Uy) + (I, ® Vo)R*Ag (I, ® Uy)
+ (I, ® Vo)BoR* (I, @ U ) + (I, ® Vo)BoAg (I, ® R*™)).
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Because
1
vec <%XTE> —>d N(O, by X P)

and
XTX

Lj,a® —15,a®T,

it suffices to show that for a large enough h, denoted as h*, ||Z|*> dominates ||Z]|| for
(RY, R?,R? R?) with |RY|r = |R?|r = |R?||lr = |[R*|r = h. For simplicity, write
Z = Vec(P1 + P1 + P3 + P4) where

I, @ RHBoAT(I,, ® UD),

I;, ®Vy

(

(I, ® Vo)R*A{ (I;, @ Uy),
( B,R*"(I,;, ® Uy),
(

)
)
)
)Bo

I, ® Vo)BoAg (I, @ R*T),

and also write

Bo= (By.---,Bg,)", Bu eR“7, i=1,...J,
AOZ Agl,"' ,AgJy>T, A()j ERTZ’XT, jzl,...,Jy
RI",...RIT, RIeR™, i=1,...,J,

R? = (R3T, ... ,R?;f)T, R§% ERVT j=1,...,J,

Let’s first consider
R'By A, US -+ RlBOPA;OTJyUOT
RlBOJQCAOTlUE)F .. RlBOJxAE)FJyUg

where each block R'B;Ag;Uj € RP* for ¢ = 1,...,J,, j = 1,...,J,. Recall that
R;, . = 0, thus we have (RlBOiAOTjUOT)Lh. = 0. Without loss of generality, we assume
= {1,...,7r.}. Then, if we write P, = (P?l,...,PlTJI)T with Py; € Rpx(vd) 4 —
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1,...,J,, the first r, rows for each Py; are zero vectors.

Next we deal with P4 which can be written as

ViBuALRYT - ViBpAl, RYT
p,_ . _ .
VoBo, ARRY - VBg, Al R

where each block VB Ag;R*™ € R fori =1,...,.J,, j=1,...,.J,. With R}, =0
we have (VoBgAg;R*"). L, = 0. Without loss of generality, we assume Lz = {1,...,7,}.
If we write Py = (Pua1,. .., Pyy,) with Py; € RUsPXd 5 =1 J the first r, columns for
each Py4; are zero vectors. To summarize, for each block RlBOiAOTjUOT + VOBOiAOTjR‘lT in
P, + Py, the left-upper sub-matrix is a zero matrix of dimension r, x r,.

Then we consider

P, = (I, ® Vo)R*AJ (I, ® U})
— (L, ® V)R?AT(I,, & UT)

VRIATOT ... VRIATOT
VR ATOT ... VR3ADUT

For each block VRATUT € RP*4, we have (VRZATUT),, 1, = R?AT € R™*™ because

VLL. =1, and ULJ =I,,. Similarly, we have
P; = (I;, ® V)BR*'(I,, ® U")
VB,R}TUT ... VBlR?’J;ffJT
VB, RTUT ... -VBJIR?]?UT
where each block VBZ-R?TU'T € RP*? and (VBZ-R;?TUT)LMLS = Bilf{?T € R™=*™_ Thus,

if we extract the left upper sub-matrix which has dimension 7, x r, from all blocks in
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P, + Py, + P53 + P4 and put them together, we can obtain a matrix

RIAT+B,R{" .- R}A] +BRY
: : : =R*AT + BR*.
R2 AT +B,R{" --- R} AJ +B, R

From R}, . = 0, we have (BR®").;, = 0. And from A, . =1I,, we have (R?AT).;, = R?.
It leads to (BR?*T + R?AT). ;, = R? and ||(BR*T + R2A"). 1,||% = ||R?||% = h?. Recall
that (BR3T + R2AT)A7L2 is a sub-matrix in P; + Py + P35 + P4. Then with

R' R?2 R3® R*
217 = [Py + ot Pot Pallp = (14 (G0 ) ) = (s i

where f() is a non-negative, continuous function which attains its minimum value & > 0
over the unit sphere {(R), R, R* R?) : |R!|r = 1,|R?|r = L|R?||r = 1,|RYr =
1;R£17, = O,Rim, = O,R‘i% = 0}. We have verified the existence of h’ due to the fact
that ||Z]| is O,(h) uniformly. This completes the proof. O

Proof of Theorem 2

Proof. By the definition of 6, we have
IY = XCl} < [[Y — XCol7

which leads to
IX(C — Co)T[|% < 2(E,X(C — Co)T)p, (19)

where (C,D)p = tr(CTD). Furthermore,
(B, X(C — C)")r = (PE, X(C — Co)"), (20)

where P = X (XTX) X7 denotes the projection matrix onto the column space of X.
Let d;(-) denote the jth largest singular value of the enclosed matrix. Then we have

(C,D)r < di(C)| D, where |Dl. = >, d;(D) denotes the nuclear norm of D. It follows
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that

(PE,X(C — Cy)")r < &(PE)|X(C— Cy)"|.

N

di(PE)V2r|X(C — Co)" |l (21)

Therefore, by (20), and (21)), we have
IX(C = Co)" || < 2d:(PE)V2r.
By Lemma 3 in Bunea et al.| (2011, we have
E{d(PE)} <o (Vr(X) + /dJ,)
and
92
P {dl(PE) > E[d\(PE)] + of (\/T(X) + \/dJy>} < exp {—E(T(X) + dJy)}

where 0 is a positive constant. Therefore, ||X(C—Co)%||r = O, (r'2(r(X) + dJ,)*/?) with
probability at least 1 — exp {—6*(r(X) + dJ,)/2}. The second result follows directly.

B: Additional Simulation Results
Additional Simulation Results from BIC Tuning

We present the results on estimating r, r, and 7, in this part. For methods with nested

reduced-rank structure, BIC is exploited to select ranks.
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Table 4: Simulation results for Setting 1 with true rank » = 5. The mean and the percentage
of matching with the true rank (in parenthesis) of rank estimation over 300 simulation runs

are presented.

p  NRRR  NRRR-X RRR RRS NRRS
0.1 3.58 (0.09) 246 (0.00) 1.80 (0.00) 4.15 (0.28) 4.02 (0.22)
SNR=1 0.5 3.17 (0.02) 2.24 (0.00) 1.65 (0.00) 3.95 (0.19) 3.51 (0.06)
0.9 2.13 (0.00) 1.66 (0.00) 1.55 (0.00) 3.30 (0.03) 2.22 (0.00)
0.1 4.88 (0.88) 4.37 (0.44) 3.65 (0.11) 4.91 (0.91) 4.91 (0.91)
SNR=2 0.5 4.71 (0.72) 4.01 (0.19) 3.40 (0.04) 4.80 (0.80) 4.82 (0.82)
0.9 3.72 (0.09) 3.05 (0.00) 2.69 (0.00) 4.16 (0.31) 3.92 (0.16)
0.1 5.00 (1.00) 4.97 (0.97) 4.88 (0.89) 4.99 (0.99) 5.00 (1.00)
SNR=4 0.5 5.00 (1.00) 4.90 (0.90) 4.66 (0.68) 4.99 (0.99) 5.00 (1.00)
0.9 4.74 (0.73) 4.22 (0.33) 3.72 (0.12) 4.83 (0.84) 4.73 (0.74)

Table 5: Simulation results for Setting 2 with true rank » = 3. The mean and the percentage
of matching with the true rank (in parenthesis) of rank estimation over 300 simulation runs

are presented.

p  NRRR  NRRRX RRR RRS NRRS
0.1 209 (0.99) 2.37 (0.40) 2.31 (0.58) 2.91 (0.91) 2.99 (0.99)
SNR=1 0.5 294 (0.94) 220 (0.29) 2.33 (0.47) 2.83 (0.83) 2.98 (0.98)
0.9 251 (0.54) 1.89 (0.08) 2.12(0.21) 2.64 (0.64) 2.71 (0.73)
0.1 3.00 (1.00) 2.97 (0.97) 2.62 (0.87) 3.09 (0.94) 3.00 (1.00)
SNR=2 0.5 3.00 (1.00) 2.93(0.93) 2.77 (0.89) 3.02 (0.92) 3.00 (1.00)
0.9 2.98 (0.98) 2.72(0.72) 2.77 (0.77) 3.02 (0.96) 3.00 (1.00)
0.1 3.00 (1.00) 3.00 (1.00) 2.67 (0.89) 3.13 (0.93) 3.00 (1.00)
SNR=4 0.5 3.00 (1.00) 3.00 (1.00) 2.81 (0.93) 3.15 (0.95) 3.00 (1.00)
0.9 3.00 (1.00) 2.97 (0.97) 2.96 (0.96) 3.00 (0.98) 3.00 (1.00)

Table 6: Simulation results for Setting 1 with true rank r, = 3. The mean and the percent-
age of matching with the true rank (in parenthesis) of r, estimation over 300 simulation

runs are presented.

p  NRRR  NRRR-X  NRRS
0.1 2.63 (0.64) 2.62(0.63) 2.75 (0.77)
SNR=1 0.5 2.41 (0.49) 2.40 (0.47) 2.50 (0.54)
0.9 1.75(0.13) 1.77 (0.13) 1.85 (0.19)
0.1 3.00 (1.00) 3.00 (1.00) 3.00 (1.00)
SNR=2 0.5 3.00 (1.00) 3.00 (1.00) 3.00 (1.00)
0.9 2.88 (0.87) 2.85(0.84) 2.90 (0.90)
0.1 3.00 (1.00) 3.00 (1.00) 3.00 (1.00)
SNR=4 0.5 3.00 (1.00) 3.00 (1.00) 3.00 (1.00)
0.9 3.01(0.99) 3.01(0.99) 3.00 (1.00)
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Table 7: Simulation results for Setting 2 with true rank r, = 3. The mean and the percent-
age of matching with the true rank (in parenthesis) of r, estimation over 300 simulation
runs are presented.

p  NRRR  NRRR-X  NRRS
0.1 293 (0.93) 2.90 (0.90) 2.93 (0.88)
SNR=1 0.5 2.88(0.89) 2.87 (0.88) 2.92 (0.91)
0.9 2.44 (0.49) 2.44 (0.49) 2.55 (0.59)
0.1 2.94 (0.94) 2.94 (0.94) 3.24 (0.78)
SNR=2 0.5 2.94 (0.94) 2.96 (0.96) 3.14 (0.86)
0.9 2.98 (0.96) 2.99 (0.97) 3.09 (0.89)
0.1 297 (0.96) 2.98 (0.98) 3.62 (0.85)
SNR=4 0.5 2.97 (0.97) 2.96 (0.97) 3.21 (0.93)
0.9 3.00 (1.00) 3.00 (1.00) 3.09 (0.93)

Table 8: Simulation results for Setting 1 with true rank r, = 3. The mean and the percent-
age of matching with the true rank (in parenthesis) of 7, estimation over 300 simulation
runs are presented.

»  NRRR NRRS
0.1 202 (0.92) 2.97 (0.97)
SNR=1 0.5 2.95(0.95) 2.99 (0.99)
0.9 2.95(0.95) 2.98 (0.93)
0.1 3.00 (1.00) 3.00 (1.00)
SNR=2 0.5 3.00 (1.00) 3.00 (1.00)
0.9 3.01 (0.99) 3.00 (1.00)
0.1 3.00 (1.00) 3.00 (1.00)
SNR=4 0.5 3.00 (1.00) 3.00 (1.00)
0.9 3.00 (1.00) 3.00 (1.00)

Table 9: Simulation results for Setting 2 with true rank r, = 3. The mean and the percent-
age of matching with the true rank (in parenthesis) of 7, estimation over 300 simulation
runs are presented.

p  NRRR NRRS
0.1 2.99 (0.99) 2.99 (0.99)
SNR=1 0.5 3.00 (1.00) 3.00 (1.00)
0.9 3.00 (0.99) 3.00 (1.00)
0.1 2.99 (0.99) 3.00 (1.00)
SNR=2 0.5 3.00 (1.00) 3.00 (1.00)
0.9 3.00 (1.00) 3.00 (1.00)
0.1 3.00 (1.00) 3.00 (1.00)
SNR=4 0.5 3.00 (1.00) 3.00 (1.00)
0.9 3.00 (1.00) 3.00 (1.00)
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Simulation Results from Cross Validation Tuning

We present simulation results under Setting 1 with all the ranks selected by 10-fold cross
validation. Results of MSPE and MSFPE displayed here are the trimmed version with the

smallest and the largest 20 observations deleted from 300 simulation runs.

Table 10: Simulation results for Setting 1. The trimmed means and standard deviations
(in parenthesis) of MSPE are presented. To improve presentation, all values are multiplied

by 10.

p NRRR NRRR-X RRR RRS NRRS
0.1 11.05 (2.54) 11.42 (2.61) 14.67 (3.24) 11.52 (2.56) 10.80 (2.46)

SNR=1 0.5 17.34 (4.30) 17.84 (4.37) 22.40 (5.33) 17.45 (4.14) 16.76 (4.06)
0.9 26.05(8.72) 26.37 (8.74) 30.28 (9.51) 24.39 (7.79) 24.30 (8.03)
0.1 2.72(0.51) 281 (0.52) 3.91(0.75) 3.2 (0.55) 2.81 (0.51)

SNR=2 0.5 4.07(0.91) 4.21 (0.95) 5.78 (1.29) 4.48 (0.97)  4.12 (0.90)
0.9 6.05(1.98) 6.23 (2.03) 8.00 (2.55) 6.20 (1.96) 5.89 (1.88)
0.1 0.66 (0.14) 0.68 (0.14) 0.93 (0.20) 0.96 (0.19)  0.77 (0.17)

SNR=4 0.5 1.04(0.24) 1.08(0.25) 1.46(0.34) 1.31(0.26) 1.15 (0.24)
0.9 1.50 (0.48) 1.56 (0.50)  2.10 (0.66) 1.67 (0.49) 1.57 (0.47)

Table 11: Simulation results for Setting 1 with true rank » = 5. The mean and the
percentage of matching with the true rank (in parenthesis) of rank estimation over 300

simulation runs are presented.

p  NRRR  NRRR-X RRR RRS NRRS
0.1 4.73 (0.75) 4.20 (0.36) 1.75 (0.00) 4.12 (0.26) 4.96 (0.85)

SNR=1 0.5 4.36 (0.52) 3.80 (0.18) 1.70 (0.00) 3.96 (0.19) 4.88 (0.74)
0.9 2.81 (0.06) 2.40 (0.01) 1.53 (0.00) 3.29 (0.02) 4.39 (0.33)

0.1 5.00 (1.00) 4.96 (0.96) 3.6 (0.12) 4.91 (0.91) 5.06 (0.94)

SNR=2 0.5 4.99 (0.98) 4.91(0.91) 3.48 (0.04) 4.83 (0.83) 5.07 (0.94)
0.9 4.63 (0.62) 4.17 (0.36) 2.70 (0.00) 4.26 (0.38) 5.02 (0.80)

0.1 5.00 (1.00) 5.00 (1.00) 4.84 (0.86) 4.97 (0.97) 5.03 (0.98)

SNR=4 0.5 5.00 (1.00) 5.00 (1.00) 4.76 (0.76) 5.00 (1.00) 5.04 (0.96)
0.9 5.00 (0.93) 4.85(0.85) 3.70 (0.11) 4.83 (0.83) 5.12 (0.89)
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Table 12: Simulation results for Setting 1 with true rank r, = 3. The mean and the per-
centage of matching with the true rank (in parenthesis) of r, estimation over 300 simulation
runs are presented.

p NRRR NRRR-X NRRS

0.1 2.85(0.84) 2.85(0.84) 3.05 (0.82)
SNR=1 0.5 2.67 (0.68) 2.67 (0.68) 3.08 (0.72)
0.9 197 (0.21) 1.97 (0.21) 3.22 (0.41)
0.1 3.00 (1.00) 3.00 (1.00) 3.00 (1.00)
SNR=2 0.5 3.00 (1.00) 3.00 (1.00) 3.02 (0.99)
0.9 2.94 (0.86) 2.94 (0.86) 3.06 (0.93)
0.1 3.00 (1.00) 3.00 (1.00) 3.00 (1.00)
SNR=4 0.5 3.00 (1.00) 3.00 (1.00) 3.00 (1.00)
0.9 3.06 (0.94) 3.06 (0.94) 3.01 (0.99)

Table 13: Simulation results for Setting 1 with true rank r, = 3. The mean and the per-
centage of matching with the true rank (in parenthesis) of r, estimation over 300 simulation
runs are presented.

p NRRR NRRS

0.1 3.17 (0.92) 3.04 (0.95)
SNR=1 0.5 3.15(0.92) 3.05 (0.95)
0.9 3.12 (0.93) 3.05 (0.95)
0.1 3.01 (0.99) 3.03 (0.93)
SNR=2 0.5 3.00 (1.00) 3.01 (0.99)
0.9 3.05(0.95) 3.04 (0.96)
0.1 3.00 (1.00) 3.01 (0.99)
SNR=4 0.5 3.00 (1.00) 3.01 (0.99)
0.9 3.01 (0.99) 3.01 (0.99)
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Figure 7: Boxplots of MSFPE from 300 simulation runs. From left to right are three plots
with SNR being 1, 2, and 4. In each panel, each set of three boxplots for p = 0.1,0.5,0.9
is showing in black, grey and white colors from left to right.
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