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Abstract

Longitudinal item response data are common in social science, educational science, and

psychology, among other disciplines. Studying the time-varying relationships between items

is crucial for educational assessment or designing marketing strategies from survey questions.

Although dynamic network models have been widely developed, we cannot apply them

directly to item response data because there are multiple systems of nodes with various

types of local interactions among items, resulting in multiplex network structures. We

propose a new model to study these temporal interactions among items by embedding the

functional parameters within the exponential random graph model framework. Inference

on such models is difficult because the likelihood functions contain intractable normalizing

constants. Furthermore, the number of functional parameters grows exponentially as the

number of items increases. Variable selection for such models is not trivial because standard
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shrinkage approaches do not consider temporal trends in functional parameters. To overcome

these challenges, we develop a novel Bayes approach by combining an auxiliary variable

MCMC algorithm and a recently-developed functional shrinkage method. We apply our

algorithm to survey and review data sets, illustrating that the proposed approach can avoid

the evaluation of intractable normalizing constants as well as detect significant temporal

interactions among items. Through a simulation study under different scenarios, we examine

the performance of our algorithm. Our method is, to our knowledge, the first attempt to

select functional variables for models with intractable normalizing constants.

Keywords: doubly-intractable distributions; Bayesian functional shrinkage; Ising graphical

model; exponential random graph model; longitudinal networks

1 Introduction

In many disciplines, including epidemiology, psychometrics, political science, and text mining,

longitudinal item response model is widely used to analyze responses to test items collected

over time. Examples include changes in the relationships among various attributes of hotel

text review data (Han et al., 2016), and longitudinal survey data for reporting the experiences

of participants in psychology (Geschwind et al., 2011). This has practical implications; for

instance, studying how the relationships among the sentiment keywords of hotel reviews change

over time can be useful for designing marketing strategies. Network-based approaches are natural

to describe the change in local interactions among items. However, it is not trivial to recover

such interactions because the resulting network has multiple systems of nodes with various types

of local interactions.

In this manuscript, we propose a new model to directly interpret the temporal interactions

among items for longitudinal network data. We embed time-varying (or functional) interaction

parameters within well-established exponential random graph model (ERGM) frameworks. Such

models face several computational and inferential challenges: (1) the models include doubly-

intractable normalizing constants, and (2) with an increasing number of items, the number of

functional parameters grows exponentially. It is challenging to identify significant interaction

parameters using standard variable selection approaches because those methods do not consider
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temporal trends in functional parameters. To address these challenges, we develop a novel Bayes

approach based on the functional shrinkage method (Shin et al., 2020) combined with an auxiliary

variable Markov chain Monte Carlo (MCMC) algorithm (Murray et al., 2006, Liang, 2010). Our

method can automatically detect strong temporal interactions among items, while avoiding the

direct evaluation of the intractable normalizing constants included in the model.

Exponential random graph models (ERGMs) (Robins et al., 2007) are widely used to study

the global structure of static networks. Bayesian approaches (Caimo and Friel, 2011, 2012) are

useful for ERGMs because they can alleviate the model degeneracy issue (Handcock, 2003); for

some parameter region, ERGMs have high probability mass on either very dense or very sparse

networks. Furthermore, the Bayesian framework is convenient for providing uncertainties from

posterior samples. Caimo and Friel (2013) explores Bayesian model selection for ERGMs based on

reversible jump MCMC. Bouranis et al. (2017) develops a correction method for pseudo-posterior

samples to address computational issues for fitting large ERGMs. Recently, Bouranis et al. (2018)

proposes a fast Bayesian model selection in the ERGMs context by adjusting pseudolikelihood

approximation. In the context of ERGMs, we focus here on a Bayesian approach to detect

significant temporal interactions.

There is an extensive literature on temporal network modeling. These approaches can be

broadly classified into two categories: (1) exponential random graph models (ERGMs) (Hanneke

et al., 2010, Krivitsky and Handcock, 2014, Lee et al., 2020) which describe the change in the

topological structure of the networks, and (2) latent space models (LSMs) (Sewell and Chen,

2015, Friel et al., 2016, Loyal and Chen, 2020) which embed change in transitive tendencies of

nodes into low-dimensional latent space. In addition, dynamic network data may be classified

as unipartite or bipartite networks. Unipartite dynamic networks have one set of nodes observed

through T time points, which result in x ∈ RT×n×n binary matrix. For all l, j, xtlj = 1 if the

l-th node and j-th node are connected at time t; otherwise xtlj = 0. On the other hand, bipartite

dynamic networks have two types of nodes; one set of nodes consists of the n actors and the other

sets have p actors. These bipartite networks are observed over T times resulting in x ∈ RT×n×p

binary matrix; for all l, j, xtlj = 1 if the l-th actor in node type 1 connects to j-th actor in node

type 2 at time t; otherwise xtlj = 0.

An item response data can be regarded as a bipartite network; we have n respondents (node
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type 1) and p items (node type 2). In this case, xtlj = 1 if respondent l answers correctly

(positively) to item j; otherwise xtlj = 0 at time t. It is challenging to apply existing dynamic

network models to longitudinal item response data because most of them have been developed

for unipartite networks. Furthermore, we have to consider various types of local interactions

among items carefully. For instance, pairwise interactions between two items can be different

from that of the other two items; therefore, assuming only one type of interaction between

items (i.e. a single two-star statistics) is unrealistic. In this context, there have been several

recent proposals for network psychometrics to study cross-sectional item response data sets (van

Borkulo et al., 2014, Jin and Jeon, 2019, Park et al., 2022). These provide an elegant approach

to detect interactions among p items from n respondents. By extending these approaches, we

focus on studying the temporal network structures among p items for longitudinal item response

data.

We propose functional inhomogeneous exponential random graph models (FI-ERGMs) that

can detect significant temporal interactions between items. There are several inferential and

computational challenges for FI-ERGMs. The likelihood functions involve intractable normaliz-

ing constants, which result in doubly-intractable distributions (Murray et al., 2006) in Bayesian

analysis. Furthermore, with an increasing number of items (p), the number of model parameters

grows at order p2. Since these parameters are time-varying functional objects, the conventional

variable selection method can not be directly applicable. Even in static networks, relatively

few approaches have been developed for variable selection. Recently, van Borkulo et al. (2014)

imposes an l1-penalty on Ising graphical models (Ravikumar et al., 2010). However, this method

cannot quantify the uncertainty about the estimated interaction and is not robust to model mis-

specification. To address this, Park et al. (2022) develops a Bayesian model selection approach

for item response data. However, to our knowledge, no existing approaches provide a variable

selection procedure for longitudinal networks. Furthermore, applying existing dynamic network

models to longitudinal item response data is still limited. This motivates the development of new

methods that allow shrinkage for time-varying local interactions. To address these challenges,

we adopt two methods: (1) a double Metropolis-Hastings (Liang, 2010), an auxiliary variable

MCMC method that cancels out the intractable normalizing constants in the acceptance proba-

bility, and (2) a functional horseshoe prior (Shin et al., 2020) that encourages shrinkage toward
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the zero function for weak signals. We show that our methods can recover the dependence

structure of longitudinal networks as well as detect strong time-varying interactions.

The rest of this manuscript is organized as follows. In Section 2, we describe existing dy-

namic network models and motivate a new model. Then we propose functional inhomogeneous

exponential random graph models (FI-ERGMs) and discuss their computational and inferen-

tial challenges. In Section 3, we describe the functional horseshoe double Metropolis-Hastings

(FHS-DMH) to make an inference for the FI-ERGMs and describe the implementation details.

We provide a guideline to shrink the functional parameters, which can automatically detect the

significant temporal interactions. In Section 4, we apply the FHS-DMH to three real data sets:

Korea youth panel survey data, motivation to succeed survey data, hotel review data. In Sec-

tion 5, we investigate the performance of the proposed method through simulation studies. We

conclude with a discussion in Section 6.

2 Model

2.1 Dynamic Network Models

Network types Purpose of modeling
ERGM TERGM unipartite prevalence of ties

STERGM unipartite incidence and duration of ties
VCERGM unipartite time-varying topological features

LSM DLSM unipartite latent positions
DLSM-B bipartite latent positions

HDP-LPCM unipartite time-varying community structures

Table 1: Comparison between dynamic network models.

In this section, we describe existing dynamic network models and point out the motivation for

a new network model for analyzing longitudinal item response data. There have been a number

of recent proposals for dynamic network modeling, summarized in Table 1.

Exponential Random Graph Models Exponential random graph models (ERGMs) (Robins

et al., 2007) are widely used to study static networks. By extending ERGMs, dynamic models

have been developed for unipartite networks. These models mainly focus on explaining the global
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structure with the network statistics g(x). Here, we introduce three models as follows.

1. TERGMs (Hanneke et al., 2010) can account for temporal changes of networks by assuming

a Markov-dependent structure on two time-adjacent networks. Let xt be the n×n unipartite

network observed at time t. TERGMs use transition statistics g(xt,xt−1) to describe the

temporal change of the global structure of sequential networks. For instance, one can

explain how the number of clusterings changes using triangle statistics; the positive model

parameters indicate that it is more likely to have triangles in the observed network. Note

that TERGMs can be generalized to a higher-order time dependence structure.

2. TERGMs focus on modeling the prevalence of the network at the current time point,

such as the total number of connections (ties) at time t. However, it is also essential

to study the incidence and duration of ties in dynamic networks. Furthermore, in many

social science applications, factors that result in the incidence of ties and their duration

are different. To make such interpretation, STERGMs (Krivitsky and Handcock, 2014)

introduce the formation and dissolution terms separately in the transition statistics. Com-

pared to TERGMs, which use a single parameter to describe the cross-sectional properties

of a network, STERGMs use formation and duration parameters to consider longitudinal

properties of dynamic networks.

3. Recently proposed varying-coefficient ERGM (VCERGM) (Lee et al., 2020) can parametrize

the time-varying topological structure of networks in continuous time. Similar to TERGMs

or STERGMs, VCERGMs use transition statistics to account for the change in the network

structures. However, VCERGMs represent the corresponding model parameters as basis

expansion, allowing to study the temporal heterogeneity of dynamic networks. Further-

more, VCERGMs can interpolate for unobserved networks because model parameters are

smooth functions over continuous time.

Latent Space Models Another common approach to study networks is the latent space model

(LSM) (Hoff et al., 2002). Such models embed network information into the low-dimensional

Euclidean space so-called latent space. The closer two nodes in this latent space are, the more

likely they are connected in the network. By modeling the evolution of latent positions over time,
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we can understand the change of local and global structures of dynamic networks. We introduce

three recent approaches as follows.

1. Dynamic latent space model (DLSM) (Sewell and Chen, 2015) allows each node to have

a temporal trajectory in the Euclidean latent space. DLSM describes the formation of

ties based on the distance between latent positions by modeling them as a hidden Markov

process. The closer latent positions for two nodes are, the more likely they are connected

in the observed dynamic network. Note that DLSM can be applicable to both undirected

and directed networks by modeling sender and receiver in the formation of ties.

2. While DLSM focuses on studying unipartite networks, Friel et al. (2016) develops a dy-

namic latent space model for the bipartite networks, referred as DLSM-B. DLSM-B models

the formation and duration of ties based on the latent distances from two different node

types. Friel et al. (2016) applied their model to dynamic bipartite networks consisting of

n companies (node type 1) and p directors (node type 2), and capture the heterogeneity of

dynamic bipartite networks.

3. Hierarchical Dirichlet process latent position clustering model (HDP-LPCM) (Loyal and

Chen, 2020) can describe the time-varying community structures such as deletions, splits,

or merges of groups in dynamic networks. Similar to other latent space-based models,

HPD-LPCM assigns nodes’ information into the latent space. In addition, HDP-LPCM

can cluster the latent positions by incorporating the hierarchical Dirichlet process prior.

From this, HDP can describe both the local and global structures in dynamic unipartite

networks.

Motivation In item response theory, detecting significant interactions among items is crucial

for designing or analyzing questionnaires. For instance, in clinical trial surveys, recovered inter-

actions among symptoms can be used to diagnose patient groups for clinical intervention. Note

that such interactions arise locally; interactions between two items can be different from that

of the other two items. Therefore, a network model for item response data should allow such

inhomogeneous dependence structures.

Although numerous dynamic network models are well established, direct application of these
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methods to longitudinal item response data set is challenging. Most of the existing models have

been developed for unipartite networks. Bipartite networks commonly arise in psychology and

educational sciences. Item response data comprises complex network structures with two node

types. For instance, we have survey data from n respondents (node type 1) for p items (node

type 2) observed through T time points. A notable exception is DLSM-B (Friel et al., 2016),

which can embed bipartite network information into latent space. Based on the latent positions

of items, DLSM-B describes both local and global structures of networks. The closer latent

positions are, the more likely items have positive interactions.

DLSM-B can provide useful insights of these item interactions; however, it is not trivial to

assess whether such interactions are significant or not: how much should latent positions become

closer to have statistically significant interactions? Our model can rule out weak interactions

among items using the functional shrinkage (Shin et al., 2020). Furthermore, our method can

quantify temporal interactions through estimated model parameters, which is challenging for

DLSM-B; we can only observe the change in interactions based on the relative distances between

latent positions. In Section 4, we compare our model with DLSM-B to point out such differences.

Our model belongs to ERGM class and has similarities to VCERGM (Lee et al., 2020) in that

we use a functional representation of model parameters. However, we focus on modeling the

change in local interactions among items rather than the evolution of the connectivity pattern of

networks as in the standard ERGMs. Furthermore, FI-ERGM is proposed for bipartite networks

from longitudinal item response data sets, while VCERGM is applicable to unipartite networks.

We provide details about the difference between the standard ERGMs and I-ERGMs in Section

2.2.

2.2 Functional Inhomogeneous Exponential Random Graph Models

Let x ∈ RT×n×p denote data with n responses to p binary items observed through T time points.

For all l, j, xtlj = 1 if the l-th individual responses j-th item positively (or correctly) at time t;

otherwise xtlj = 0. To account for the pairwise temporal interactions among items, we propose

the functional version of I-ERGMs (Frank and Strauss, 1986) as
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f(x|θ) =

T∏
t=1

1

κ(θt•)
exp


p∑
∀j

αtj

n∑
l=1

xtlj +

p∑
∀j<k

γtjk

n∑
l=1

xtljxtlk

 , θt• = {{αtj}∀j , {γtjk}∀j<k}.

(1)

For time t, αtj is an item easiness parameter, which acts as the intercept term for item j and γtjk

is the pairwise interaction among j, k items. Consider the model parameter θ ∈ RT×q , where

q = p + p(p − 1)/2. We can define θt• and θ•i as denoting the t-th row of θ and i-th column of

θ, respectively. Then, θt• ∈ Rq is the parameter for time t and θ•i ∈ RT is the i-th functional

parameter over time. Our models assume that xt (the observed binary response at time t) is

only dependent on θt•. In Section 3, we introduce functional priors to account for the temporal

trends within each functional parameter θ•i.

The standard ERGMs are applicable to the single network, which assumes only one type of

interaction between nodes. For instance, when we use edge and two-star statistics, standard

ERGMs assume that these statistics have equal probabilities of being occurred across different

nodes. Therefore, all the nodes’ information is incorporated into a network statistic to explain

the global structure of a single network (e.g., overall connectivity patterns). However, such an

assumption is not realistic for item response data sets, which have multiplex network structures

(van Borkulo et al., 2014, Park et al., 2022). Here, a network is represented as multiple systems

of a set of nodes, and there can be various types of local interactions among nodes. Especially

in item response data, we have two node types: n respondents (node type 1) and p items (node

type 2). Furthermore, there are complex local interactions among items. For instance, pairwise

interactions between j, k items can be different from that of j′, k′ items (j 6= j′, k 6= k′). I-

ERGMs are applicable to such multiplex networks by modeling γtjk and γtj′k′ separately. From

this, I-ERGMs allow the different probability of occurrences for network statistics. Therefore

I-ERGMs are useful to explain the local behaviors of networks and are suitable for item response

data.

Generally, the standard ERGMs suffer from model degeneracy and projectivity issues (Shalizi

and Rinaldo, 2013). This phenomenon occurs when a single change of a dyad status significantly

impacts the dyadic dependent statistics in the standard ERGMs. Here, highly impacted dyadic
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dependent statistics are dominant in Monte Carlo simulations of networks, and it causes model

degeneracy. Similarly, the standard ERGM cannot guarantee the projectivity (Shalizi and Ri-

naldo, 2013). It is very rare to observe the entire network of interest; we can fit ERGMs to

the observed sub-network (sample), and then infer the entire network (population) through the

fitted model. Since a single change of a dyad status can make a huge influence on the other

dyadic dependent statistics, observed dyadic dependent network statistics can vary drastically

depending on whom is selected as a sample in the observed sub-network.

Compared to the standard ERGMs, FI-ERGM can avoid model degeneracy issue and guar-

antee the projectivity of the model. FI-ERGM analyzes temporal pairwise interaction networks

(item-item networks) constructed from an item response x ∈ RT×n×p. To construct an item-item

network At ∈ Rp×p at time t, we use

At =

{
Atjk

}
=

{ n∑
l=1

xtljxtlk

}
,

where xtlj and xtlk are responses from a respondent l for item j and k at time t, respectively. In

the case of xtlk = 1,

the change of Atjk =

 −1 if xtlj changes from 1 to 0

1 if xtlj changes from 0 to 1,

If xtlk = 0, there is no change in Atjk. This implies the status change of item j for respondent

l at time t will make a very minimal influence on Atjk so that FI-ERGM does not suffer from

model degeneracy. In a similar fashion, the observed network statistics do not change much

depending on whom are included in samples; FI-ERGM can yield a consistent result.

One can generalize (1) by adding third-order interactions of the form xtljxtlkxtlm or higher-

order interactions with additional computational and statistical challenges. However, it is par-

ticularly difficult to add higher-order interactions to FI-ERGMs due to the highly correlated

high-dimensional parameters. For instance, including third-order interactions to FI-ERGMs

would result in p+p(p−1)/2+p(p−1)(p−2)/6 functional parameters. This requires a sufficient

number of respondents (n) for accurate statistical inference; collecting such large longitudinal

item response data is challenging in practice. Furthermore, such functional parameters are highly
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correlated. Let δtjkm be the third-order interaction parameters from xtljxtlkxtlm. If items j, k,m

have positive second-order interactions (i.e., γtjk, γtjm, γtkm > 0), δtjkm should be positive. FI-

ERGMs with higher-order interaction can suffer from the slow mixing of the Markov chain due

to such highly correlated functional parameters. For this practical reason, recent proposals in

psychometrics (van Borkulo et al., 2014, Park et al., 2022) have adapted high-dimensional Ising

models (Ravikumar et al., 2010) to study pairwise interactions among items. Both approaches

can accurately recover the p × p item-item network structures in educational assessment data.

By extending these works, we focus on modeling second-order functional parameters to capture

the temporal change in local pairwise interactions in the p× p item-item graph.

Inferences for FI-ERGMs are challenging because of the intractable normalizing constants

κ(θt•) included in (1). At each time t, the calculation of κ(θt•) requires summing the overall 2np

configurations of the binary response data, which is intractable even with the moderate sizes

of n and p. Although frequentist method (van Borkulo et al., 2014) for such models, it cannot

provide the uncertainty of estimates and is not robust to model misspecification (Park et al.,

2022).

Another difficulty with FI-ERGMs is that the number of model parameters increases at an

order of p2 (p represents the number of items). To rule out weak interaction parameters, Park

et al. (2022) develops a Bayesian variable selection method for I-ERGMs in static networks.

However, compared with their problem, our case is more complex because of the functional

parameters {θ•i}qi=1 that vary across each time point. To address this challenge, we propose

a novel MCMC approach based on a shrinkage prior on function spaces. Our method can

automatically detect functional parameters with a weak signal, while providing posterior samples

from an intractable likelihood function.

3 Functional Horseshoe Double Metropolis-Hastings

For FI-ERGMs, Bayesian approaches are useful to capture the dependence structure in temporal

networks because we can easily incorporate shrinkage priors to rule out parameters with weak

signals. In this section, we propose an MCMC algorithm for FI-ERGMs. We combine double

Metropolis-Hastings (DMH) (Liang, 2010) with the functional horseshoe prior (Shin et al., 2020)
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to address the computational and inferential challenges in FI-ERGMs.

3.1 Bayesian Hierarchical Models with the Functional Horseshoe Prior

Since the number of model parameters (q) for FI-ERGMs increases exponentially, one might

consider standard shrinkage priors (cf. George and McCulloch, 1993, Carvalho et al., 2010) to rule

out weak signals. However, such methods do not account for the temporal trends in the functional

parameters {θ•i}qi=1 in FI-ERGMs. Furthermore, it is not clear how to select the functional

parameters through standard shrinkage priors because they can only induce sparsity on individual

θti. Therefore, in this manuscript, we apply the functional horseshoe (FHS) prior (Shin et al.,

2020), which can impose shrinkage on the shape of functions. The FHS can encourage shrinkage

toward any parametric class of functions. Here, we focus on shrinkage toward zero functions

to detect strong signals, which allows us to perform a natural model selection in FI-ERGMs.

Shin et al. (2020) shows that the posterior constructed from the FHS prior is concentrated at a

near-optimal min-max rate.

Consider the i-th functional model parameter θ•i ∈ RT in (1). Then, the prior on the

functional model parameter can be

θ•i|βiσ2
i ∼ N(Φβi, σ

2
i IT ), (2)

where Φ ∈ RT×kn is a matrix of prespecified basis functions and βi ∈ Rkn is a vector of basis

coefficients. σ2
i explains an error that cannot be captured by a mean trend Φβi. We assume

that the nonparametric basis expansion can capture the temporally dependent trends within

each functional model parameter θ•i. Here, we use the B-spline basis (De Boor et al., 1978),

but other basis functions can also be used. The FHS can shrink Φβi toward the null function

subspace spanned by a null regressor matrix Φ0 with d0 = rank(Φ0). Then, we can define the

FHS hyperpriors as
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βi|σ2
i , τi ∝ (σ2

i τ
2
i )−(kn−d0)/2 exp

{
− 1

2σ2
i τ

2
i

β
′

iΦ
′(I−Q0)Φβi

}
,

τi ∝
(τ2i )b−1/2

(1 + τ2i )a+b
10,∞(τi).

(3)

To impose shrinkage toward the zero function, we set the null function space as Φ0 = {∅}. Then,

d0 = 0 and I−Q0 = I, where Q0 = Φ0(Φ
′

0Φ0)−1Φ0. Following Shin et al. (2020), we set a = 1/2

and b = exp{−kn log T/2} to satisfy the near optimal nonparametric posterior contraction rate.

We can summarize the hierarchical models for FI-ERGMs as

π(θ,β, τ ,σ2|x) ∝ f(x|θ)π(θ|β,σ2)π(β|τ )π(τ )π(σ2), (4)

where

f(x|θ) =

T∏
t=1

1

κ(θt•)
exp


p∑
∀j

αtj

n∑
l=1

xtlj +

p∑
∀j<k

γtjk

n∑
l=1

xtljxtlk

 ,

θ•i|βiσ2
i ∼ N(Φβi, σ

2
i IT ),

βi|σ2
i , τi ∝ (σ2

i τ
2
i )−(kn−d0)/2 exp

{
− 1

2σ2
i τ

2
i

β
′

iΦ
′(I−Q0)Φβi

}
,

τi ∝
(τ2i )b−1/2

(1 + τ2i )a+b
10,∞(τi),

σ2
i ∼ IG(1/100, 1/100).

(5)

3.2 Markov chain Monte Carlo Implementation

Our model (5) includes intractable normalizing constants κ(θt•), which pose inferential and com-

putational challenges. The resulting posterior (4) is called a doubly-intractable distribution hav-

ing extra unknown normalizing terms κ(θt•), which cannot be canceled out in standard MCMC

approaches. Several Bayes methods have been developed for sampling from doubly intractable

distributions. Just few of these include constructing Monte Carlo approximations for κ(θt•) (cf.

Atchade et al., 2008, Lyne et al., 2015, Park and Haran, 2020) and generating auxiliary variables

to avoid the direct evaluation of κ(θt•) (cf. Murray et al., 2006, Liang, 2010). Considering that

constructing Monte Carlo approximations is unstable with an increasing number of parameters,
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auxiliary variable approaches may be appropriate for the problems considered in this manuscript.

In particular, double Metropolis-Hastings (DMH) (Liang, 2010) is the most practical for com-

putationally expensive problems and the only feasible approach for high-dimensional parameter

problems among current approaches (see Park and Haran (2018) for comparisons between algo-

rithms). Therefore, in what follows, we incorporate FHS priors with DMH to impose functional

shrinkage as well as estimate the model parameters for FI-ERGMs.

Consider the model parameter θ, and the hyperparameters for the FHS priors (β, τ ,σ2). We

update the parameters sequentially through the Gibbs sampler. Let the parameters at the m-th

iteration of the Markov chain be

(
θ(m),β(m), τ (m),σ2(m)

)
=
(
θ
(m)
•1 , · · ·θ(m)

•q ,β
(m)
1 , · · · ,β(m)

q , τ
(m)
1 , · · · , τ (m)

q , σ
2(m)
1 , · · · , σ2(m)

q

)
.

(6)

For i = 1, · · · , q we use the arbitrary initial values with θ
(0)
•i ∼ Uniform(−5, 5),βi ∼ N(0, Ikn), τi ∼

N(0, 1/
√

20), σ2
i = 1. We can update the parameters successively. The i-th model parameter for

time t can be updated from

θ
(m+1)
ti ∼ π

(
θ
(m)
ti |xt,θ

(m)
t(i) ,β

(m)
i , σ

2(m)
i

)
∝ f

(
xt|θ(m)

ti ,θ
(m)
t(i)

)
π
(
θti|β(m)

i , σ
2(m)
i

)
, (7)

where θ
(m)
t(i) =

(
θ
(m+1)
t1 · · · , θ(m+1)

ti−1 , θ
(m)
ti+1, · · · , θ

(m)
tq

)
. Since f

(
xt|θ(m)

ti ,θ
(m)
t(i)

)
includes intractable

κ(θt), we use a double Metropolis-Hastings (DMH) algorithm (Liang, 2010) to update θ
(m+1)
ti .

This is a nested MCMC algorithm; a Metropolis-Hastings sampler is implemented within another

Metropolis-Hastings sampler. At each iteration of the MCMC (outer MCMC) θ
′

ti is proposed

from the proposal q
(
· |θ(m)

ti

)
. For the given θ

′

ti, DMH simulates an auxiliary variable yt from

the probability model f
(
xt | θ′ti,θ

(m)
t(i)

)
through the standard Metropolis-Hastings sampler (inner

sampler). For each iteration of the inner sampler, (j, k) pairs from xt are randomly chosen; xtjk

is set to 0 or 1 based on the full conditional probabilities of the networks. See Hunter et al.

(2008) for more details. Theoretically, we can simulate an exact auxiliary variable as the inner

sampler length approaches infinity; of course the length of the inner sampler should be finite in

practice. Following Liang (2010), we use the inner sampler length as 2n, where n is the number

of respondents for each θti update. Considering that we have q model parameters with T times
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points, this choice results in a 2nqT number of MH updates to generate auxiliary variables. In

Section 5, we study the performance of the algorithm with different lengths of the inner sampler.

We observe that 2n can generate a reasonably accurate auxiliary variable. Then, the resulting

acceptance probability for updating θ
(m+1)
ti is

α = min

 f
(
xt | θ′ti,θ

(m)
t(i)

)
f
(
yt | θ(m)

ti ,θ
(m)
t(i)

)
π
(
θ′ti|β

(m)
i , σ

2(m)
i

)
f
(
xt | θ(m)

ti ,θ
(m)
t(i)

)
f
(
yt|θ′ti,θ

(m)
t(i)

)
π
(
θ
(m)
ti | β(m)

i , σ
2(m)
i

) , 1
 . (8)

We note that (8) does not include intractable normalizing constant κ(θt). The main idea of this

approach is to cancel out κ(θt) in the acceptance probability with a clever choice of the auxiliary

variable. The more the simulated yt is close to the observed xt, the more likely the proposed θ
′

ti

will be accepted. We repeat this procedure for i = 1, · · · , q and t = 1, · · · , T .

Then, for i = 1, · · · , q τ (m+1)
i can be obtained from

τ
(m+1)
i ∼ π

(
β
(m)
i | σ2(m)

i , τ
(m)
i

)
π
(
τ
(m)
i

)
. (9)

We transform η
(m)
i = τ

−2(m)
i to use a slicer sampler for better mixing as well as computational

efficiency. The remaining parameters σ
2(m+1)
i and β

(m+1)
i can be updated from

σ
2(m+1)
i ∼ π

(
θ
(m+1)
•i | β(m)

i , σ
2(m)
i

)
π
(
β
(m)
i | σ2(m)

i , τ
(m+1)
i

)
π
(
σ
2(m)
i

)
β
(m+1)
i ∼ π

(
θ
(m+1)
•i | β(m)

i , σ
2(m+1)
i

)
π
(
β
(m)
i | σ2(m+1)

i , τ
(m+1)
i

)
,

(10)

where the conditional distributions are an inverse gamma distribution and a normal distribution,

respectively. The conditional distributions for all parameters are described in the supplementary

material. The FHS-DMH algorithm is summarized in Algorithm 1.

With each iteration of the MCMC, our algorithm generates an auxiliary variable for qT times

to update {θti} (see Step 2 of Algorithm 1). Since we use the inner sampler length as n (identical

to the number of respondents), the computational complexity of the brute force implementation

is O(np2T ), where p is the number of items and T is the number of observed time points.

However, in (5), we assume that xt is only dependent on θt•. Therefore, we can use parallel

computing to generate xt independently of the given θt•. Then the computational complexity
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Algorithm 1 A Functional Horseshoe Double Metropolis-Hastings (FHS-DHM) Algorithm

Given θ(m),β(m), τ (m),σ2(m) update θ(m+1),β(m+1), τ (m+1),σ2(m+1) for all i = 1, · · · , q
and t = 1, · · · , T .

Step 1. Propose θ′ti ∼ q
(
· |θ(m)

ti

)
.

Step 2. Generate an auxiliary variable from the probability model using the 2n-number of
Metropolis-Hastings updates:

yt ∼ f
(
xt | θ′ti,θ

(m)
t(i)

)
, where θ

(m)
t(i) =

(
θ
(m+1)
t1 · · · , θ(m+1)

ti−1 , θ
(m)
ti+1, · · · , θ

(m)
tq

)
.

Step 3. Accept θ
(m+1)
ti = θ′ti with probability

α = min

 f
(
xt|θ′ti,θ

(m)
t(i)

)
f
(
yt|θ(m)

ti ,θ
(m)
t(i)

)
π
(
θ′ti|β

(m)
i , σ

2(m)
i

)
f
(
xt|θ(m)

ti ,θ
(m)
t(i)

)
f
(
yt|θ′ti,θ

(m)
t(i)

)
π
(
θ
(m)
ti |β

(m)
i , σ

2(m)
i

) , 1


else reject (set θ
(m+1)
ti = θ

(m)
ti ).

Step 4. Update τ
(m+1)
i using a slice sampler :

1. u ∼ Uniform

[
0,
(

1

1+η
(m)
i

)a+b]
, where η

(m)
i = τ

−2(m)
i .

2. η
(m+1)
i ∼ Uniform

[
0, ua+kn/2−d0/2−1e

− 1

2σ
2(m)
i

β
(m)′
i Φ′(I−Q0)Φβ

(m)
i u

]
.

3. Take τ
(m+1)
i = 1√

η
(m+1)
i

.

Step 5. Update σ
2(m+1)
i from the conditional distribution:

σ
2(m+1)
i ∼ IG

(
T/2+kn/2+1/100,β

(m)′

i Φ′Φβ
(m)
i /2+β

(m)′

i Φ′(I−Q0)Φβ
(m)
i /2τ

2(m+1)
i +1/100

)
Step 6. Update β

(m+1)
i from the conditional distribution:

β
(m+1)
i ∼ N

([
Φ′Φ + I(1/τ

2(m+1)
i )

]−1
Φ′θ

(m+1)
•i , σ

2(m+1)
i

[
Φ′Φ + I(1/τ

2(m+1)
i )

]−1)
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of our method is O(np2T/c), where c < T is the number of available processors. The parallel

computation is implemented through the OpenMp library in C++. FHS-DMH can automatically

shrink the parameters {θ•i}qi=1 having weak signals to zero functions as well as generate posterior

samples from the complex hierarchical models in (5).

3.3 Shrinkage Procedure for Functional Parameters in FI-ERGMs

For FI-ERGMs, we have the functional parameters {θ•i}qi=1, where q = p+ p(p− 1)/2 increases

exponentially with the number of items (p). Among the q functional parameters, the first p

of them represent the easiness of the corresponding items across T time points. These can be

regarded as the intercept terms in standard regression models. The remaining p(p−1)/2 number

of parameters represent the pairwise interaction among the items across T time points. Since

not every item has statistically significant interactions, it is important to identify the important

interactions only by shrinking the others to zero.

Consider the reparameterization ωi = 1/(1 + τ2i ), where ωi can be interpreted as the weight

that the posterior mean for function places on the null function subspace (Shin et al., 2020).

Therefore, a larger ωi indicates higher weights on the zero function for θ•i. According to Shin

et al. (2020)[Theorem 3.2], the posterior distribution of ωi converges toward 1 when the true

shape of θ•i is the zero function. On the contrary, if the true θ•i 6= 0, the posterior distribution

of ωi contracts toward 0. Following Shin et al. (2020), we set the threshold for ωi as 0.5. If the

posterior mean of ωi is greater than 0.5, we diagnose θ•i = 0 ∈ RT ; otherwise θ•i 6= 0 ∈ RT

4 Applications

Here, we illustrate the application of our method to three real data examples: (1) Korea youth

panel survey data, (2) motivation to succeed survey data, and (3) hotel review data. We observe

that FHS-DMH can shrink weak interactions toward the zero function as well as recover the

dependence structure of the longitudinal network well. For the MCMC implementation, we use

an independent normal proposal. The convergence of MCMC methods has been checked by the

Monte Carlo standard errors (Jones et al., 2006, Flegal et al., 2008).

To validate our method, we compare the summary statistics between the observed network
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and fitted network from the posterior predictive distribution (Gelman et al., 2013). For observed

data x, we use the following summary statistics

T (x) =

{{ n∑
l=1

xtlj

}
∀j
,
{ n∑
l=1

xtljxtlk

}
∀j<k

}
∀t

.

Here, T (x) ∈ Rq×T because we have q = p + p(p − 1)/2 parameters for T time points. For a

given posterior sample from FHS-DMH, we simulate binary response data y. Then we obtain

summary statistics T (y). If these synthetic summary statistics T (y) resemble the observed sum-

mary statistics T (x) well, then our FHS-DMH posterior sample can be regarded as a reasonable

approximation of the true posterior distribution. To implement this, we obtain 1,000 thinned

posterior samples from FHS-DMH. We simulate y1, · · · ,y1,000 from the 1,000 posterior samples.

Then, we calculate the sample mean of the summary statistics 1
n

∑n
i=1 T (yi).

In addition, we assess our fitted models in terms of higher-order degree statistics. From the

posterior predictive distribution, for each time t we calculate the p× p item-item graph for each

respondent l. A j, k element of the item-item graph becomes 1, if a respondent l gives a correct

(positive) responses to both items j, k at time t (i.e., xtljxtlk = 1). Then we calculate the degree

statistics (order m) in the item-item graph obtained from n respondents and take the average

of the degree statistics over n respondents. Then we compare the sample mean of the simulated

degree statistics with the observed degree statistics as before. We provide model validations

using degree statistics of order m = 0, · · · , p− 1 for t = 1, · · · , T , which results in pT number of

degree statistics.

4.1 Korea Youth Panel Survey Data

Data Description The first example came from the Korea Youth Panel Survey (Lee et al.,

2010) that tracked a nationally representative sample of second-year middle school students for six

consecutive years from 2003 to 2008. Following Jeon and Rabe-Hesketh (2012), we analyzed the

subset of the data that excludes about 2% of the students who changed their school membership

during their middle school and/or high school years.

In this application, we used the five years’ data (2004–2008) on the 30 items that measure how

the students think about themselves (i.e., self-image). The base year (2003)’s data were dropped
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Positive Time 1 Time 2 Time 3 Time 4 Time 5
γt,9,10 7.068 6.343 5.348 6.736 7.820
γt,7,8 4.559 3.771 3.438 4.754 6.176
γt,11,12 4.175 4.512 4.264 4.350 4.241
γt,28,29 3.242 3.149 3.349 3.162 3.683
γt,2,3 3.133 2.771 2.734 3.047 3.263
γt,8,10 2.914 3.156 2.820 1.740 3.116
γt,14,15 2.594 2.501 2.536 2.626 2.324
γt,23,24 2.359 2.223 2.403 2.451 2.342
γt,16,17 2.175 2.003 2.165 2.323 2.646
γt,13,14 2.128 2.014 2.151 2.260 2.428

Table 2: Top 10 largest nonzero interaction parameters among items in the Korea youth panel
survey data. The order is based on the summation of the estimated interaction parameters across
all time (i.e.,

∑
∀t γtjk). Estimates are obtained from posterior mean of 20,000 MCMC samples

from FHS-DMH; the Monte Carlo standard errors are at 0.02.

because six items were not included in the base year. Each of the 30 item was measured on a

5-point Likert-type scale with the response options, “Strongly disagree”, “Disagree”, “Neither

agree nor disagree”, “Agree”, and “Strongly agree”. Example items include I sometimes think I

am a useless person, I sometimes think I am a bad person, I sometimes feel like I am a failure,

and I think I am a trouble make. A full set of items are provided in the supplementary material.

To measure a positive self-image, the response categories of the negative items were reversed, and

then all response categories were dichotomized at point 3 (≤ 3 and > 3). The proportion of male

students was 49.9%. At each time point, the data include binary responses from about n = 3, 000

individuals to the p = 30 items; this results in p + p(p − 1)/2 = 465 functional parameters in

FI-ERGMs.

Analysis Results Among the 465 functional parameters, FHS-DMH shrinks 399 of them

to zero functions (Figure 2 (C)). Our method takes about 28 hours. Figure 1 and Table 2

describe the estimated dependence structures and their nonzero interactions. We observe that

every connection of items shows positive relationships, and the dependence structure is overall

consistent over time. We provide some descriptive explanations based on the top 10 largest

positive interactions in terms of the posterior mean of the parameters γt,j,k shown in Table 2.

The strongest positive interaction occurs between items (9) (“Other people think I am a

trouble maker”) and (10) (”Other people think I am a juvenile delinquent”), which makes sense
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Figure 1: Estimated networks for the Korea youth panel survey data set. Green lines indicate
positive relations. The width of the lines indicate the connection strength between the relevant
items - thicker lines indicate stronger interaction between items.
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given that both items are about how other people think and ‘trouble maker’ and ‘juvenile delin-

quent’ are about similar (negative) image. The second strongest positive interaction is shown

between items (7) (“I think I am a trouble maker”) and (8) (“I think I am a juvenile delin-

quent”); the interaction between these items becomes stronger as time goes. These items are

similar in content to the first pair of items (9) and (10) with the strongest interaction; the only

difference is that this second pair is about how they think about themselves. The third strongest

positive interaction appears between items (11) (“If I do something bad, people will blame me”)

and (12) (“If I do something bad, I’ll be humiliated by other people”). This indicates that the

teenagers who respond positively to items (11) and (12) are concerned about other people’s neg-

ative opinion about them. Therefore, they are less likely to cause troubles which could damage

to their self-image. A full list of items of the self-image data set can be found in the supplement.

In Figure 2 (A) and (B), the mean of the observed statistics and simulated statistics follow a

straight line, indicating that our model fits well.
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Figure 2: The left panel (A) compares the observed and mean of the simulated model summary
statistics. The middle panel (B) compares the observed and mean of the simulated degree
statistics. The summary statistics are simulated 1,000 times for the given FHS-DMH estimates.
The right panel (C) shows the shrinkage effect for the functional parameters. The red lines
indicate shrinkage. Among the 465 functional parameters, 399 of them are diagnosed as the zero
functions.

Comparison with DLSM-B Figure 3 represents the estimated latent positions from DLSM-

B. Estimates are obtained from the posterior mean of 20,000 MCMC samples, which takes about

8 minutes. For comparison, we selected the two pairs that showed top two largest interactions
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Figure 3: Estimated latent positions for the Korea youth panel survey data set. The closer two
latent positions of items are, the more likely they have positive relations.
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with the proposed method (Table 2). The latent positions between the item pair (9) and (10) as

well as the pair (7) and (8) are relatively close to each other within the pair across years, implying

positive temporal interactions between the items within each pair. This finding suggests some

consistency in the results between the two methods. To capture temporal changes in local

interactions between items with DLSM-B, one needs to compare and identify changes in the

relative distances between all item pairs in the latent space. These comparisons are somewhat

cumbersome and decisions on close and distant distances may be seen somewhat subjective.

In addition, with a large number of items, it can be challenging and inconvenient to determine

meaningful changes over time in the the interactions (distances) between all item pairs (Figure 3).

On the other hand, FHS-DMH, our proposed approach, directly quantifies temporal interactions

through estimated γt,j,k, and therefore, detects statistically significant interactions at the expense

of computing time (Figure 1, Table 2).

4.2 Motivation to Succeed Data

Data Description The data for the second application came from the Pathways to Desistance

study (Mulvey et al., 2004), which is a multi-site longitudinal study that follows 1,354 serious

juvenile offenders from adolescence to young adulthood in Philadelphia and Phoenix. Partic-

ipants completed baseline interviews in November 2000 and follow-up interviews at 6, 12, 18,

24, 30, 36, 48, 60, 72, and 84 months post-baseline (first follow up interview completed in May

2001; last follow up interview completed in March 2010). The aims of the study are to identify

initial patterns of how serious adolescent offenders stop antisocial activity; describe the role of

the social context and developmental changes in promoting these positive changes; and compare

the effects of sanctions and interventions in promoting these changes.

From this large study, we used the motivation to succeed scale (Eccles et al., 1998), which

includes six items that measure the respondent’s assessment of the opportunities available in

his/her neighborhood regarding schooling and work. An additional two items were included that

measure the adolescent’s perceptions of how far he/she would like to go in school and how far

he/she think they will go in school. The eight test items are as follows: (1) In my neighborhood,

it is easy for a young person to get a good job; (2) Most of my friends will graduate from high
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Interactions Time 1 Time 3 Time 5 Time 7 Time 9 Time 11
γt,1,2 0.470 1.069 1.047 0.961 0.610 0.453
γt,1,3 -0.880 -0.927 -1.164 -0.781 -1.176 -0.910
γt,3,4 1.353 1.595 1.518 1.681 2.716 2.762
γt,1,5 0.005 0.071 -0.517 -1.007 -1.292 -1.688
γt,4,5 0.869 1.479 1.252 1.108 0.113 0.966
γt,2,6 -0.410 -0.560 -0.605 -1.440 -4.414 -4.562
γt,5,6 2.128 2.584 2.145 2.387 1.684 0.765
γt,2,7 0.143 0.034 0.263 0.254 0.586 0.542
γt,5,7 -0.187 0.136 -0.303 -0.859 -1.726 -1.714
γt,2,8 0.196 0.716 0.537 -0.009 -0.961 -1.070
γt,6,8 -1.544 -0.841 -1.505 -2.031 -3.998 -6.812
γt,7,8 4.163 5.078 4.846 5.084 5.534 5.864

Table 3: Estimated nonzero interaction parameters among the items in the motivation to succeed
data. The estimates are obtained from the posterior mean of 30,000 MCMC samples from FHS-
DMH; Monte Carlo standard errors are at 0.04.

school; (3) In my neighborhood, it is hard to make money without doing something illegal; (4)

College is too expensive for most people in my neighborhood; (5) We have fewer opportunities to

succeed than kids from other neighborhoods; (6) Our chances of getting ahead/being successful

are not very good; (7) How far would you like to go in school? (8) How far do you think you will

go in school?

The responses to the first six questions are on a five-point Likert-scale (“Strongly disagree”,

“Disagree”, “Neither agree nor disagree”, “Agree”, and “Strongly agree”). The responses to the

last two questions are “Drop out before graduation”, “Graduate from HS”, “Go to business, tech

school or jr college”, “Graduate from college”, and “Go to graduate or professional school”. We

dichotomized the responses to the first six items by assigning 1 to “Agree”, and “Strongly Agree”

responses and 0 otherwise. For the last two items, we assigned 1 to “Graduate from college”

and “Go to graduate or professional school” and 0 otherwise. After removing cases with missing

responses, 740 respondents remained. In summary, at each time point, the data include n = 740

respondents for the p = 8 items, which results in 36 functional parameters in FI-ERGMs.

Analysis Results Figure 5 (B) shows that among the 36 functional parameters, FHS-DMH

shrinks 17 of them to zero functions. Our method takes about an hour. Figure 4 and Table 3

show the estimated network structures and their estimated nonzero interaction parameters. We

observe several important negative and positive connections among the items. Such relationships
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Figure 4: Estimated networks for the motivation to succeed data set. The green lines indicate
positive relations and the red lines represent negative relations. The width of the lines indicates
the connection strength between the relevant nodes; thicker lines indicate stronger interactions
between items.
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are generally consistent over time, whereas their strengths vary to some degree. In particular,

item (1) and item (3) are negatively connected. This indicates that students who believe that

it is easy for young people to get a job in their neighborhood tend to disagree that doing illegal

things is necessary to earn money. On the contrary, item (3) shows a positive relationship with

item (4). Students who deem it necessary to engage in illegal activities to earn money also think

that college tuition is too expensive. From these findings, we can conclude that poverty is an

important factor behind students’ antisocial activities.

In addition, item (6), which represents the chance of success, has negative relationships

with items (8) and (2), but a positive relationship with item (5). Such connections show that

students who anticipate them having little chance of success are less likely to think that they will

opt for higher education. Instead, they think their neighborhoods, including themselves, have

fewer opportunities to be successful. These relationships convey that students who think they

have insufficient opportunities than others are less likely to think that they will go college or

graduate high school; rather, they think their neighborhood has fewer opportunities for them to

be successful.

In particular, the strength of the interaction between item (6) and item (2) becomes stronger

over time. It can be inferred from this result that earning a high school diploma or higher degree

brings students closer to success. Therefore, education is an important factor in leading students

to success. Additionally, items (7) and (8) have the strongest relationship; this indicates that a

desire and willingness to go to college are closely related. This suggests that the desire to go to

college motivates students to overcome the obstacles presented by their living situation, should

those obstacles exist, and pursue their dream of higher education.

As in the previous example, we simulate the summary statistics from 1,000 thinned posterior

samples obtained from FHS-DMH. Figure 5 shows that the mean of the 1,000 simulated summary

statistics aligns with the observed summary statistics, indicating that our model fits the observed

data well.

Comparison with DLSM-B Figure 6 illustrates the estimated latent positions of items from

DLSM-B. Estimates are obtained from the posterior mean of 10,000 MCMC samples, which takes

about 6 minutes. There are three clusters of latent positions: items (1)-(2), items (3)-(6), and
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Figure 5: The left panel (A) compares the observed and mean of the simulated model summary
statistics. The middle panel (B) compares the observed and mean of the simulated degree
statistics. The summary statistics are simulated 1,000 times for the given FHS-DMH estimates.
The right panel (C) shows the shrinkage effect for the functional parameters. The red lines
indicate shrinkage. Among the 36 functional parameters, 17 of them are diagnosed as the zero
functions.

Figure 6: Estimated latent positions for the motivation to succeed data set. The closer two
latent positions of items are, the more likely they have positive relations.
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Item Aspect-based Sentiments Sentiment Keywords
1 Price - satisfaction reasonable price, inexpensive price
2 Price - dissatisfaction very expensive, terrible price, ridiculous price
3 Room - satisfaction amazing room, luxury room, quiet room
4 Room - dissatisfaction dry room, dirty room, old room
5 Subsidiary facilities - satisfaction clean lounge, comfortable lounge
6 Subsidiary facilities - dissatisfaction dirty floor, old lounge
7 Food - satisfaction delicious buffet, nearby restaurant, clean cafeteria
8 Food - dissatisfaction dirty restaurant, tasteless cafeteria
9 Interior design - satisfaction nice place, luxurious interior
10 Interior design - dissatisfaction poor lighting, no sunlight
11 Service - satisfaction great service, prompt service
12 Service - dissatisfaction abysmal service, satisfactory service, surly service
13 Bed - satisfaction get a good night’s sleep
14 Bed - dissatisfaction terrible bed, uncomfortable bed

Table 4: Aspect-based sentiments and their sentiment keywords for the hotel review data.

items (7)-(8). The closer latent positions are, the more likely they have positive interactions.

These results are consistent with the estimated network from FHS-DMH (Figure 4). Note that for

DLSM-B estimates, it is difficult to distinguish between the zero and negative interactions. Since

the latent positions of items (1), (8) are located far away from item (6), one can interpret that

they have no interactions. On the other hand, FHS-DMH can quantify negative interactions (item

(6) and item (8)) and zero interactions (item (1) and item (8)) separately (Table 3, Figure 4).

4.3 Hotel Review Data

Data Description Many reviewers express their opinions by writing reviews on websites, and

their satisfaction toward hotels is summarized with sentiment keywords. Sentiment keywords

represent emotional expressions in hotel review data; the positive and negative opinions in the

review data correspond to specific keywords. We use text mining to construct aspect-based

sentiments, which are composed of keywords with similar aspects. Here, we study the temporal

networks among aspect-based sentiments about hotel reviews from reservation websites. We

collect 231,862 reviews of 423 hotels in South Korea from 2018 to 2019 and exclude advertisements

and spam reviews. To obtain the sentiment keywords from the data, we use the natural language

process through the Daumsoft Text Mining Engine Version 2. With these keywords, we construct

14 aspect-based sentiments such as prices, rooms, subsidiary facilities, food, interior design,
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Interactions Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7
γt,7,8 1.415 1.510 1.480 1.942 1.636 1.860 1.631
γt,7,11 1.543 1.271 1.792 1.461 1.487 1.036 0.775
γt,3,5 1.293 1.217 1.144 1.151 1.891 1.564 1.037
γt,3,11 1.266 0.695 0.644 1.163 1.286 1.906 1.554
γt,5,13 1.259 0.847 0.796 1.069 1.188 1.606 1.603
γt,3,9 2.093 1.220 1.297 0.804 0.963 0.844 1.055
γt,8,9 1.036 1.004 1.141 1.378 1.629 1.080 0.717
γt,3,13 0.512 1.447 1.306 1.363 1.169 0.852 1.062
γt,4,10 1.257 1.092 1.167 0.963 1.224 0.816 0.981
γt,2,9 0.877 0.899 0.727 0.913 0.835 0.699 0.976

Table 5: Top 10 largest nonzero interaction parameters among items in the hotel keyword data.
The order is based on the summation of the estimated interaction parameters across all time
(i.e.,

∑
∀t γtjk). Estimates are obtained from posterior mean of 50,000 MCMC samples from

FHS-DMH; the Monte Carlo standard errors are at 0.03.

service, and bed. Table 4 summarizes the aspects-based sentiments and their keywords. The

data set contains binary review information from n = 423 hotels over the seven time points from

the first quarter of 2018 to the third quarter of 2019. The binary value indicates whether an

individual hotel has a review containing aspect-based sentiments (1 existence of sentiments in

the review and 0 otherwise). The p = 14 aspect-based sentiments result in FI-ERGMs with 105

functional parameters.

Analysis Results

Analysis of Dyadic Relationships Figure 8 (B) shows that among the 105 functional pa-

rameters, FHS-DMH shrinks 33 of them to zero functions. Figure 7 and Table 5 describe the

estimated network structures and their nonzero interaction parameters. FHS-DMH takes about

3 hours. In Figure 7, we used the layout to the method of Fruchterman and Reingold (Fruchter-

man and Reingold, 1991), which exploits analogies between the relational structure in graphs, to

visualize the node cluster structure efficiently. We provide a circular layout for the hotel review

data in the supplementary material. We observe several meaningful patterns. First, item (8)

(food dissatisfaction) and item (9) (interior design satisfaction) are connected positively at each

time point. This indicates that although reviewers may be satisfied with the interior and exterior

design of the hotel (including the restaurant), they are not necessarily satisfied with the taste

of the food. On the contrary, satisfaction with the food (item (7)) is linked to satisfaction with
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Figure 7: Estimated networks for a hotel keyword data set. Green lines indicate positive relations
and red lines represent for negative relations. The width of the lines indicate the connection
strength between the relevant items - thicker lines indicate stronger interaction between keywords.
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the service (item (11)). Since this also has a strong positive relationship at all times, it can

be seen as related to satisfaction with the food and service. However, Table 5 shows that food

satisfaction (item (7)) and food dissatisfaction (item (8)) has a strong positive relationship at

all times, even though they have the opposite meanings. The items connecting favorable and

unfavorable sentiments tend to display positive relationships because of the characteristics of

the review data (i.e., reviewers mention negative and positive sentiment keywords on different

aspects simultaneously in reviews). Therefore, the input matrix of the review data according to

favorable and unfavorable aspect-based sentiments is analyzed with co-occurrence information.

When this occurs, our model labels the interaction between satisfaction and dissatisfaction as

positive. From this, we can infer that reviewers tended to say both good things and bad things

about their food. Note that there is an exception; we observe a negative relationship between

item (13) (bed satisfaction) and (14) (bed dissatisfaction) at Time 7. From this, we can con-

clude that once reviewers gratify their bed conditions, most reviewers less likely to respond the

unfavorable reviews on their bed conditions.

Analysis of Negative Relationships At Time 1, there is a negative relationship between

room satisfaction (item (3)) and bed dissatisfaction (item (14)). We can infer that there are

some favorable reviews about room condition but discontent with the bed quality for reasons

such as a hard bed, dirty bed, etc. Moreover, based on the negative relationship between interior

dissatisfaction (item (10)) and bed dissatisfaction (item (14)), some reviewers distinct unfavorable

feedback of room interior from bed conditions. We can infer that even though customers dislike

the interior of a room, such as poor lighting, they may satisfy the bed conditions or vise versa.

In addition, we observe a negative relationship between item (2) (price dissatisfaction) and item

(4) (room dissatisfaction) at Time 1. This implies that even if the price of a room is high, many

reviewers content with room conditions. However, these negative connections turn into positive

relationships over time.

Analysis of Triangle Relationships There is a consistent triangle (cyclic) relationship be-

tween favorable aspect-based items over time. At Time 1, the connection between room satisfac-

tion (item (3)) and interior design satisfaction (item (9)) is the strongest and their interaction
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parameter becomes smaller over the seven time points. Furthermore, both those items are

connected to satisfaction with the service (item (11)); hence the three items have a triangle rela-

tionship that is consistent at each time point. In other words, many reviews contain a favorable

impression of the room, interior design, and service. Furthermore, there is a strong positive

relationship between satisfaction with the food (item (7)) and satisfaction with the service (item

(11)) at Time 3. In addition, these two items display a strong positive relationship with room

satisfaction (item (3)) at all times. Given that items (3) and (11) are connected to item (5)

(subsidiary facilities satisfaction), they form another triangle relationship. We can combine this

result to conclude that hotel users have favorable opinions about their room, the service, the in-

terior design, the food, and the subsidiary facilities. Considering that such triangle relationships

are composed of items (3) and (11), we can infer that satisfaction with the service and with the

room conditions are major factors in getting favorable reviews.

As shown in Figure 7 and Table 5, the triangle relationships between items do not change

structurally between time points; rather, the strength of these relations vary over time. In terms

of unfavorable aspect-based factors, price dissatisfaction (item (1)), service dissatisfaction (item

(12)), and meal dissatisfaction (item (8)) are all connected. Further, room dissatisfaction (item

(4)), interior design dissatisfaction (item (10)), and bed dissatisfaction (item (14)) are connected.

In addition, as shown by the connection strength, the main complaint is that the room design is so

poor that it reflects negatively on reviews about the room and bed. Furthermore, the connection

between room satisfaction (item (3)), interior design satisfaction (item (9)), and bed satisfaction

(item (13)) is maintained over time. Therefore, we can conclude that the interior design influences

the overall impression of the room and bed. Other factors are affected by the price such as

dissatisfaction with the room and facilities. That is, there is constant connectivity between price

dissatisfaction (item (1)), room dissatisfaction (item (4)), and facilities dissatisfaction (item (6)).

As in the previous examples, Figure 8 shows that the observed summary statistics and simulated

summary statistics are aligned (i.e., our model fits well).

Comparison with DLSM-B Figure 9 shows the estimated latent positions from DLSM-B.

Estimates are obtained from the posterior mean of 10,000 MCMC samples, which takes about

4 minutes. The latent position of item (3) becomes close to the latent positions of items (5),
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Figure 8: The left panel (A) compares the observed and mean of the simulated model summary
statistics. The middle panel (B) compares the observed and mean of the simulated degree
statistics. The summary statistics are simulated 1,000 times for the given FHS-DMH estimates.
The right panel (C) shows the shrinkage effect for the functional parameters. The red lines
indicate shrinkage. Among the 105 functional parameters, 33 of them are diagnosed as the zero
functions.

Figure 9: Estimated latent positions for the hotel review data set. The closer two latent positions
of items are, the more likely they have positive relations.
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(9), (13) over time, which implies that they have positive temporal interactions. However, such

interpretation is based on the relative distances between latent positions that can be subjective.

Our method can be more informative in that FHS-DMH quantifies the change in interactions

through γ estimates. Table 5 indicates that there are positive interactions between these items

over time (i.e., γt,3,5, γt,3,9, γt,3,13 > 0,∀t ); FHS-DMH can determine statistically significant

local interactions.

5 Simulated Data Examples

To validate our method, we conduct a simulation study under different scenarios. We simu-

late temporal binary response data sets with n = 600 observations, p = 10 items, and t = 8

time points. This results in 55 functional parameters. We provide cyclic trends for the pa-

rameters using a function µ(t) = (1/8) cos(πt) + (1/8) sin(πt), which has fluctuating patterns

around 0. We simulate 10 intercept parameters (αtj) from N(−1 + µ(t), σ2I8). Among the

45 interaction parameters (γtjk), 22 of them are simulated from N(µ(t), σ2I8); these are as-

sumed to be the true zero functions. Then, 11 of the interaction parameters are generated from

N(−1+µ(t), σ2I8) and the remaining 12 parameters are generated from N(1+µ(t), σ2I8). Here,

we consider four noise strength settings (σ2 = 0.05, 0.1, 0.3, 0.5). For the given model parameters

{{αtj}∀t,j , {γtjk}∀t,j<k}, we simulate the data sets via 100n iterations of Metropolis-Hastings

updates (Hunter et al., 2008). Figure 10 illustrates the simulated functional parameters under

the different scenarios.

To study the performance of our method, we calculate the true positive rate (diagnose zero for

the true zero functions) and true negative rate (diagnose nonzero for the true nonzero functions)

for each scenario. Furthermore, we define the mean square error (MSE) as

1

55

55∑
i=1

(θ̂•i − θ•i)
′(θ̂•i − θ•i),

where θ̂•i is the functional parameter estimate obtained from FHS-DMH and θ•i is the true

parameter. Table 6 summarizes the results. Based on the MSE, we observe that FHS-DMH

estimates are reasonably close to the true functional parameters. Furthermore, FHS-DMH can
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Figure 10: Simulated functional parameters for FI-ERGMs under the four scenarios.
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Scenario MSE TP TN
σ2 = 0.05 0.09 1.00 0.92
σ2 = 0.1 0.12 0.86 0.91
σ2 = 0.3 0.16 0.68 0.76
σ2 = 0.5 0.23 0.73 0.67

Table 6: 10,000 MCMC samples are generated for each scenario; Monte Carlo standard errors are
at 0.05. The MSE represents the mean square errors obtained from FHS-DMH estimates. TP
(true positive) is the proportion of times that the true zero functional parameters are diagnosed
as zero. TN (true negative) is the proportion of times that the true nonzero functional parameters
are diagnosed as nonzero.

Inner sampler MSE TP TN Time(min)
n 0.12 1.00 0.85 21.01
2n 0.08 1.00 0.97 24.86
4n 0.08 0.95 1.00 38.14
8n 0.08 0.97 0.95 77.58

Table 7: MSE (mean square errors), TP (true positive), and TN (true negative) from the different
lengths of the inner sampler in FHS-DMH.

detect the true zero function well for reasonable noise settings (σ2 = 0.05, 0.1). With increasing

noise (σ2 = 0.3, 0.5) in the simulated data, it becomes difficult to detect the true zero functions

because the noises overwhelm the signals from each function.

In addition, we study our method for different lengths of inner sampler (Step 2 in Algo-

rithm 1). With the increasing length of the inner sampler, auxiliary variable samples become

close to the stationary distribution at the expense of computational costs (Caimo and Friel, 2012,

Park and Haran, 2018). Under the same simulation setting above (σ2 = 0.05), we calculate MSE,

true positive rate, and true negative rate with the increasing length of the inner sampler. Table 7

indicates that the performances do not change much from 2n. Therefore, we recommend using

2n as a practical choice for sampling auxiliary variables for FHS-DMH.

6 Discussion

In this manuscript, we embed functional parameters in inhomogeneous exponential random graph

models to study the temporal interactions among the items. Our models include intractable nor-

malizing constants, and the number of functional parameters increases with an increasing number

of items. We combine a double Metropolis-Hastings algorithm and a functional shrinkage method
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to address these computational and inferential challenges. Our study to real and simulated data

examples shows that FHS-DMH can rule out weak interactions among items as well as provide

a direct interpretation of temporal trends; our method can recover the dependence structure of

the longitudinal networks well. To our knowledge, this is the first attempt to use functional

shrinkage for models with intractable normalizing constants, which is an important contribution.

Most ERGM-based dynamic models (e.g., TERGM, STERGM) describe probabilistic prop-

erties of the dynamic network by assuming Markov dependence between consecutive network ob-

servations with time-invariant model parameters. From different perspectives, we directly model

the dynamic trends in the functional parameters using the nonparametric basis expansion Φβi

in (2). Our model assumes that the temporal dependence can be fully explained by time-varying

parameter, and the networks on different time points are independent given the time-dependent

parameter. This kind of assumption is not uncommon; for instance, dynamic spatio-temporal

models (cf. Wikle et al., 2019) also assume that observed processes are independent for a given

time-evolving process which have similarities to our models. The practical advantage of our

model is applicability to dynamic networks in continuous time as in Lee et al. (2020); it would

be unclear to specify the Markov dependence when the time points are irregularly observed.

Similar to the variable selection methods (van Borkulo et al., 2014, Park et al., 2022) for

static networks, our methods are suited to data sets with a sufficient number of respondents (n)

and a moderate number of items (p), as examples illustrated in this manuscript. Otherwise, it

will suffer from a small n, large p issues, which can lead to an unreliable inference. As a simple

heuristic, we recommend applying our methods to problems with n > p(p− 1)/2.

FHS-DMH is practical for moderate size of longitudinal item response data sets (e.g., n =

2, 000, p = 20, t = 10). With an increasing number of items and respondents, FHS-DMH

becomes computationally expensive due to the auxiliary variable simulation in Step 2. Note that

it is quite costly to collect large (for both n, p) item response data over a long period. It is usually

the case that when the number of respondents increases, the number of items stays small, and

when the number of items increases, the number of respondents stays small. Considering that

it is challenging to have longitudinal item response data sets larger than our examples, FHS-

DMH is applicable to many realistic cases. There have been several recent proposals to speed up

inference for large network models. For instance, Bouranis et al. (2017) corrects MCMC samples
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collected from pseudo-posterior distribution, which is computationally efficient. Park and Haran

(2020) uses fast Gaussian process approximation to replace expensive Monte Carlo estimates for

intractable normalizing constants. Adapting some of these methods would potentially lend itself

to faster algorithms.

The computational methods developed here allow researchers in many disciplines to study

temporal interactions among items for binary response data sets. Our methods could be appli-

cable to a variable selection in existing temporal network models as well as for a broader class

of functional models. Examples include temporal exponential random graph models (Hanneke

et al., 2010) and their variants (Krivitsky and Handcock, 2014), and functional regression models

(Ramsay and Silverman, 2007).

Acknowledgement

Jaewoo Park was partially supported by the Yonsei University Research Fund of 2020-22-0501

and the National Research Foundation of Korea (NRF-2020R1C1C1A0100386812). Ick Hoon Jin

was partially supported by the Yonsei University Research Fund of 2019-22-0210 and the National

Research Foundation of Korea (NRF-2020R1A2C1A01009881). Minsuk Shin was supported by

the National Science Foundation through NSF-DMS-Statistics-2015528. The authors are grateful

to Riccardo Rastelli for providing useful sample code. The authors are grateful to anonymous

reviewers for their careful reading and valuable comments.

References

Atchade, Y., Lartillot, N., and Robert, C. P. (2008). Bayesian computation for statistical models

with intractable normalizing constants. Brazilian Journal of Probability and Statistics, 27:416–

436.

Bouranis, L., Friel, N., and Maire, F. (2017). Efficient Bayesian inference for exponential random

graph models by correcting the pseudo-posterior distribution. Social Networks, 50:98–108.

Bouranis, L., Friel, N., and Maire, F. (2018). Bayesian model selection for exponential ran-

38



dom graph models via adjusted pseudolikelihoods. Journal of Computational and Graphical

Statistics, 27(3):516–528.

Caimo, A. and Friel, N. (2011). Bayesian inference for exponential random graph models. Social

Networks, 33(1):41–55.

Caimo, A. and Friel, N. (2012). Bergm: Bayesian exponential random graphs in R. arXiv preprint

arXiv:1201.2770.

Caimo, A. and Friel, N. (2013). Bayesian model selection for exponential random graph models.

Social Networks, 35(1):11–24.

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010). The horseshoe estimator for sparse

signals. Biometrika, 97(2):465–480.

De Boor, C., De Boor, C., Mathématicien, E.-U., De Boor, C., and De Boor, C. (1978). A

practical guide to splines, volume 27. springer-verlag New York.

Eccles, J., Wigfield, A., and Schiefele, U. (1998). Motivation in: Eiesenberg, n.(ed.), hand book

of child psychology, vol. 3, pp: 1017-1095.

Flegal, J. M., Haran, M., and Jones, G. L. (2008). Markov chain Monte carlo: Can we trust the

third significant figure? Statistical Science, 23:250–260.

Frank, O. and Strauss, D. (1986). Markov graphs. Journal of the American Statistical Associa-

tion, 81(395):832–842.

Friel, N., Rastelli, R., Wyse, J., and Raftery, A. E. (2016). Interlocking directorates in irish

companies using a latent space model for bipartite networks. Proceedings of the National

Academy of Sciences, 113(24):6629–6634.

Fruchterman, T. M. J. and Reingold, E. M. (1991). Graph drawing by force-directed placement.

Software: Practice and Experience, 21(11):1129–1164.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013).

Bayesian data analysis. Chapman and Hall/CRC.

39



George, E. and McCulloch, R. (1993). Variable selection via gibbs sampling. Journal of the

American Statistical Association, 88:881–889.

Geschwind, N., Peeters, F., Drukker, M., van Os, J., and Wichers, M. (2011). Mindfulness

training increases momentary positive emotions and reward experience in adults vulnerable

to depression: a randomized controlled trial. Journal of consulting and clinical psychology,

79(5):618.

Han, H. J., Mankad, S., Gavirneni, N., Verma, R., et al. (2016). What guests really think of

your hotel: Text analytics of online customer reviews.

Handcock, M. S. (2003). Statistical models for social networks: Inference and degeneracy, volume

126. National Academies Press.

Hanneke, S., Fu, W., Xing, E. P., et al. (2010). Discrete temporal models of social networks.

Electronic Journal of Statistics, 4:585–605.

Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002). Latent space approaches to social

network analysis. Journal of the american Statistical association, 97(460):1090–1098.

Hunter, D. R., Handcock, M. S., Butts, C. T., Goodreau, S. M., and Morris, M. (2008). ergm:

A package to fit, simulate and diagnose exponential-family models for networks. Journal of

statistical software, 24(3).

Jeon, M. and Rabe-Hesketh, S. (2012). Profile-likelihood approach for estimating generalized

linear mixed models with factor structures. Journal of Educational and Behavioral Statistics,

37(4):518–542.

Jin, I. H. and Jeon, M. (2019). A doubly latent space joint model for local item and person

dependence in the analysis of item response data. Psychometrika, 84(1):236–260.

Jones, G. L., Haran, M., Caffo, B. S., and Neath, R. (2006). Fixed-width output analysis for

Markov chain Monte Carlo. Journal of the American Statistical Association, 101(476):1537–

1547.

40



Krivitsky, P. N. and Handcock, M. S. (2014). A separable model for dynamic networks. Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 76(1):29–46.

Lee, J., Li, G., and Wilson, J. D. (2020). Varying-coefficient models for dynamic networks.

Computational Statistics & Data Analysis, 152:107052.

Lee, K., Lim, H., and Ahn, S. (2010). Korea youth panel study.

Liang, F. (2010). A double Metropolis–Hastings sampler for spatial models with intractable

normalizing constants. Journal of Statistical Computation and Simulation, 80(9):1007–1022.

Loyal, J. D. and Chen, Y. (2020). A bayesian nonparametric latent space approach to modeling

evolving communities in dynamic networks. arXiv preprint arXiv:2003.07404.

Lyne, A.-M., Girolami, M., Atchade, Y., Strathmann, H., and Simpson, D. (2015). On Rus-

sian roulette estimates for Bayesian inference with doubly-intractable likelihoods. Statistical

science, 30(4):443–467.

Mulvey, E. P., Steinberg, L., Fagan, J., Cauffman, E., Piquero, A. R., Chassin, L., Knight, G. P.,

Brame, R., Schubert, C. A., Hecker, T., et al. (2004). Theory and research on desistance from

antisocial activity among serious adolescent offenders. Youth Violence and Juvenile Justice,

2(3):213–236.

Murray, I., Ghahramani, Z., and MacKay, D. J. C. (2006). MCMC for doubly-intractable distri-

butions. In Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence

(UAI-06), pages 359–366. AUAI Press.

Park, J. and Haran, M. (2018). Bayesian inference in the presence of intractable normalizing

functions. Journal of the American Statistical Association, 113(523):1372–1390.

Park, J. and Haran, M. (2020). A function emulation approach for doubly intractable distribu-

tions. Journal of Computational and Graphical Statistics, 29(1):66–77.

Park, J., Jin, I. H., and Schweinberger, M. (2022). Bayesian model selection for high-dimensional

ising models, with applications to educational data. Computational Statistics & Data Analysis,

165:107325.

41



Ramsay, J. O. and Silverman, B. W. (2007). Applied functional data analysis: methods and case

studies. Springer.

Ravikumar, P., Wainwright, M. J., Lafferty, J. D., et al. (2010). High-dimensional Ising model

selection using l1-regularized logistic regression. The Annals of Statistics, 38(3):1287–1319.

Robins, G., Pattison, P., Kalish, Y., and Lusher, D. (2007). An introduction to exponential

random graph (p*) models for social networks. Social networks, 29(2):173–191.

Sewell, D. K. and Chen, Y. (2015). Latent space models for dynamic networks. Journal of the

American Statistical Association, 110(512):1646–1657.

Shalizi, C. R. and Rinaldo, A. (2013). Consistency under sampling of exponential random graph

models. The Annals of Statistics, 41(2):508–535.

Shin, M., Bhattacharya, A., and Johnson, V. E. (2020). Functional horseshoe priors for subspace

shrinkage. Journal of the American Statistical Association. (in press).

van Borkulo, C. D., Borsboom, D., Epskamp, S., Blanken, T. F., Boschloo, L., Schoevers, R. A.,

and Waldorp, L. J. (2014). A new method for constructing networks from binary data. Sci-

entific Reports, 4.

Wikle, C. K., Zammit-Mangion, A., and Cressie, N. (2019). Spatio-temporal Statistics with R.

Chapman and Hall/CRC.

42


	1 Introduction
	2 Model
	2.1 Dynamic Network Models
	2.2 Functional Inhomogeneous Exponential Random Graph Models

	3 Functional Horseshoe Double Metropolis-Hastings
	3.1 Bayesian Hierarchical Models with the Functional Horseshoe Prior
	3.2 Markov chain Monte Carlo Implementation
	3.3 Shrinkage Procedure for Functional Parameters in FI-ERGMs

	4 Applications
	4.1 Korea Youth Panel Survey Data
	4.2 Motivation to Succeed Data
	4.3 Hotel Review Data

	5 Simulated Data Examples
	6 Discussion

