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Abstract 
In recent years there has been noticeable interest in the 
study of the “shape of data”. Among the many ways a 
“shape” could be defined, topology is the most general 
one, as it describes an object in terms of its connectivity 
structure: connected components (topological features of 
dimension 0), cycles (features of dimension 1) and so on. 
There is a growing number of techniques, generally 
denoted as Topological Data Analysis, or TDA for short, 
aimed at estimating topological invariants of a fixed 
object; when we allow this object to change, however, little 
has been done to investigate the evolution in its topology. 
In this work we define the Persistence Flamelet, a 
multiscale version of one of the most popular tool in TDA, 
the Persistence Landscape. We examine its theoretical 
properties and we show its performance as both an 
exploratory and inferential tool. In addition, we provide 
open source implementation of the objects and methods 
presented in the R-package pflamelet. 

Keywords: Topological Data Analysis; Scale space methods; Bandwidth Exploration; 

Time Series 
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Topological data analysis (TDA) is a new and expanding branch of statistics devoted 

to recovering the shape of the data, focusing in particular on their connectivity. At its 

core, TDA comprises a set of tools for detecting and recovering some structure in the 

data such as connected blocks or clusters (i.e. 0-dimensional topological features) 

and cycles or loops (i.e. 1-dimensional topological features), while also providing a 

measure of the importance of each of these elements. As these “topological” 

features can be defined for very different types of data, from standard vectors in 

Euclidean spaces to networks or functions, TDA has gained popularity as a unified 

framework to describe arbitrarily complex objects through easily interpretable 

features such as their peaks, loops and voids (Wasserman, 2018). 

Summaries of the topology of data have been exploited in both explorative (Chazal, 

Guibas, Oudot and Skraba, 2013; Bendich et al., 2016) and inferential settings (Le 

and Yamada, 2018; Atienza et al., 2018; Padellini and Brutti, 2017), when the object 

of interest is supposed to have only one resolution. This assumption can however be 

limiting, as data can have multiple resolution either because of the way they are 

defined (this is the case for example of time series, whose resolution parameter is 

time) or because of the way we represent them (this is the case for example when 

we impose smoothing on the data, and we obtain different scales corresponding to 

different levels of smoothness). 

In general, due to the ever–growing complexity of data, being able to examine it at 

different resolutions, hence obtaining different insights, has become a crucial feature 

of statistical tools. Building on the TDA’s toolbox, we thus introduce a new topological 

summary, the Persistence Flamelet, which is able to characterize the evolution of the 

topological structure of an object across different scales and can be used for both 

exploratory and inferential purposes. This informative yet interpretable summary, has 

in fact probabilistic properties that make it suitable for statistical inference. At the 

same time, the Persistence Flamelet is an effective visualization tool, which allows 

for exploration of arbitrarily high dimensional data. 

This work is structured as follows: in Section 1 we briefly review TDA and its tools for 

a fixed scale. In Section 2 we introduce the Persistence Flamelet as a topological 

summary of a scale space and we investigate its theoretical properties. Finally, 
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Section 3 shows how the Persistence Flamelets can be exploited in applications, 

with a special emphasis on two famous scale parameters: the time in dynamical 

point–clouds and the bandwidth in kernel density estimation. Implementations of the 

methods described in this work are freely available in the R-package pflamelet. 

1 The shape of fixed-scale data 

The mathematical backbone of TDA is the notion of Persistent Homology 

(Edelsbrunner and Harer, 2010). Roughly speaking, Persistent Homology provides a 

characterization of the topological structure of any arbitrary function of data f by 

building a filtration on it (typically its sub- or super-levelsets, 
f
  and f



 respectively). 

The reason why it is necessary to investigate the topology of some function f rather 

than that of data directly is that data itself often presents only a trivial topological 

structure. This is especially true when our data is a set of points 

{ , 1, , }
d

i
X i n   

, an object usually referred to as point cloud in the TDA 

literature. 

As can be seen in Figure 1, in fact, when we look at the observed points (in black) 

we can see no connection between them. Every point Xi is “connected” only to itself, 

thus we have as many connected components as there are observations but no 

higher dimensional topological structures such as circles or voids. In order to recover 

the clear circular structure on which data lay, it is necessary to connect the points 

through an additional function f, in this case a distance function (whose sub-levelsets 

are shown in grey). The link between Persistent Homology and the “shape of the 

data” is that for some choice of f, sub- (or respectively super-) levelset filtrations are 

topologically equivalent to the space data  was sampled from, say , which in 

the following we will assume to be a compact manifold with no boundary embedded 

in 
d

. We will now show the construction of Persistent Homology for two classes of 

functions for which this equivalence holds: distances and kernel density estimators. 

While we focus on these two example for the ease of interpretation, the result 

presented in the following are not limited to these functions, and, depending on the 

application of interest, other choices of f may be better suited (Atienza 

et al., 2019; Chintakunta et al., 2015). 
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Distance functions 

The most common choice for analysing the topological structure of  is to 

investigate the Persistent Homology of the sub-levelset filtrations of a distance 

function. At each level ε, the ε-sub-levelset of the distance d, 
d

 , is defined as 

1

( , ) ,

n

i

i

d B X






  

where 
( , ) { | ( , ) }

i i
B X x d x X  

 denotes a ball of radius ε and center Xi, and 
d

 is 

an arbitrary distance function. 

The topology of 
d

  can be recovered by computing its Homology Groups; Homology 

groups of dimension 0, 0
( )H d

 , represent connected components of 1
, ( )d H d

   

represent its loops, and so on. 
d

  is topologically more interesting than the original 

point cloud, but it is extremely sensible to the radius ε. For each value of ε, in fact, 

we obtain a different estimate 
d

 , with a different topological structure: for small 

values of ε, the topology of 
d

  is close to the one of the point–cloud itself. As ε grows 

more and more points start to be connected, until eventually the corresponding 
d

  is 

homeomorphic to a point. 

The key feature of encoding data into a filtration is that as ε grows, different sub-

levelsets 1 2

,d d
   with 1 2

 
 are related, so that if a feature is present in both we can 

say that it remains alive in the interval 1 2
[ , ] 

. Persistent Homology then allows to 

see how features appear and disappear at different scales. Values b d
 

 of ε 

corresponding respectively to when two components are connected for the first time 

(birth–step) and when they connect to some other larger component (death–step) are 

the generators of a Persistent Homology Group (Figure 1). 

In the statistical literature, 
d

  is often known as the Devroye–Wise support estimator 

(Devroye and Wise, 1980). The consistency of the Devroye-Wise estimator justifies 

and motivates the use of the distance function: as 
d

  is a consistent estimator of 

, the topology of 
d

  is a sensible approximation of the topology of . 
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Kernel Density estimators 

The second way of linking levelset filtrations to the topology of , the support of the 

distribution generating the data, is that the super–levelsets of a density function p 

can be topologically equivalent to the support of the distribution itself (Fasy 

et al., 2014). More formally, if the data are sampled from a distribution P supported 

on , and if the density p of P is smooth and bounded away from 0, then there is 

an interval [ , ]   such that the super–levelset { | ( ) }p x p x


   is homotopic (i.e. 

topologically equivalent) to , for     . 

Since the true generating density p is most often unknown, it is typically 

approximated by a kernel density estimator p̂ . A naïve way to estimate the topology 

of  is then to compute topological invariants of the super-levelset of the kernel 

density estimator p̂ : 

ˆ ˆ{ | ( ) } .p x p x


   

The super-levelsets p̂


, with ˆ[0 , m a x ]p  , form a decreasing filtration, which means 

that ˆ ˆp p
 
  for all   . As in the case of distances, for each element in the 

filtration, i.e. for each value ε, we obtain a different estimate p̂


, whose topology can 

be characterized by its Homology Groups. Since in practice it is not possible to 

determine the interval [ , ]   in which the topology of p̂


 is closest to that of , we 

analyse the evolution of the topology over the whole filtration. Once again, Persistent 

Homology allows to analyze how those Homology Groups change with ε. Persistent 

loops in p̂


 naturally represent circular structures in p̂ , Persistent Homology Groups 

of dimension 2 indicate holes in p̂  and so on. 

An example of this construction can be seen in Figure 2. When ε is close to 
ˆm a x p , 

the super-levelsets of p̂  (highlighted in grey), are disjoint, as shown in the left panel 

of the Figure. When ε decreases, the local peaks that may be disconnected at the 

beginning (as the smaller one in the Figure), merged into the same super-levelset. 

Finally, for 
0

ˆ0 , p   is formed by two disjoint components, corresponding to the two 

main peaks of the distribution. Since 0 is the smallest value the function p̂  can take, 

it is also the “last” value for which the peaks can be defined, hence it is taken to be 
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their “time of death”. It is worth noticing that topological features of dimension 0, or 

connected components have a relevant interpretation in terms of “bumps”; 

connected components in the filtration p̂


 are in fact local maxima of p̂ ; this is true 

for any super-levelset filtration. When the filtration is defined in terms of sub-levelset 

instead, as in the case of the distance function, connected components represent 

local minima. 

1.1 Persistence Diagram 

Persistent Homology Groups can be summarized by the Persistence Diagram, a 

multiset 1
{ ( , )}

m

i i i i
D z b d


 

 whose generic element (bi, di) is the i
t h

 generator of the 

Persistent Homology Group. Features with a long “lifetime” (or persistence 

p e rs b d  ) are those which can be found at many different resolution of the 

filtration, and are informative of the topology of . Points that are close to the 

diagonal instead represent short–lived features, which may be only noisy artifacts 

and can be neglected (Fasy et al., 2014). 

The space of Persistence Diagrams  is a metric space when endowed with the 

Bottleneck distance, which, given two Persistence Diagrams D and D  , is defined as 

( , ) in f s u p ( ) ,
B

x D

d D D x x







    

where the infimum is taken over all bijections : D D  . 

Several other metrics have been proposed to compare Persistence Diagrams, for 

example the Wasserstein distance (Mileyko et al., 2011) or the Fisher Information 

metric (Le and Yamada, 2018). One of the main advantages of adopting the 

Bottleneck distance, is that it allows to prove stability, arguably one of the most 

important properties of Persistence Diagrams, under relatively mild assumptions 

(Chazal et al., 2016). 

Theorem 1.1 (Stability). Let f and g be two functions on a triangulable space  and 

let Df, Dg be the Persistence Diagram built on their respective sub- (or super-) 

levelset filtrations, then 

Acc
ep

te
d 

M
an

us
cr

ipt



( , ) ,
B f g

d D D f g


   

where 
su p | ( ) |

x

f f x



 is the L


–norm. 

In the special case of 
f d

 and 
g d

 two distance functions defined on two 

point–clouds  and  respectively, the stability result can be written in a more 

easily interpretable way: 

   , 2 , ,
B H

d D D d  

where 
( , )

H
d

 is the Hausdorff distance between two topological spaces  and 

. Roughly speaking this means that if the two point clouds  and  are close, their 

persistence Diagrams will be as well, and can be interpreted in two ways: 

 the Persistence Diagram is a topological signature: stability reassures us that 

if two point clouds ,  are similar their Persistence Diagrams will be as well, 

and is therefore instrumental for using them in statistical tasks such as 

classification or clustering; 

 the Persistence Diagram is statistically consistent: stability reassure us that if 

we are using a point–cloud n  to estimate the topology of an unknown object 

, if n


 as n   , then n

D
 converges to 

D
 as well. 

Stability is also key to assess statistical significance of topological features. Building 

on the core idea that features that are close to the diagonal are more likely to be 

noise than those that are far away from it, Fasy et al. (2014) proposes a way to 

define a bootstrap confidence band around the diagonal. Points of the Diagram 

laying outside the band are taken to be significant, as they are most likely signal, 

whereas those inside the band may be just noise. 

1.2 Persistence Landscape 

Persistence Diagrams are defined in spaces endowed with only a metric structure, 

which can be limiting in data analysis. A collection of Persistence Diagrams 1
, ,

n
D D

 

in fact does not have a unique mean, nor a satisfying measure of variability (Turner 
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et al., 2014). More critically, although it is possible to define a probability distribution 

on the space of Persistence Diagrams , (Mileyko et al., 2011), it is still not clear 

how to explicitly derive it (if it is possible to derived it at all). In order to overcome 

these issues and to work with more statistics-friendly spaces, several tools have 

been developed to convert Persistence Diagrams into functional objects, the most 

famous being the Persistence Landscape (Bubenik, 2015) and the Persistence 

Silhouette (Chazal et al., 2014). These topological summaries are built by mapping 

each point ( , )z b d  of a Persistence Diagram D to a piecewise linear function called 

the “triangle” function Tz, which is defined as: 

[ , ] ( , ]
( ) ( ) ( ) ( ) ( ) [0 , ] ,

z b d b b b d
T y y b d y b d y y y Y

 
      1 1  

where 
m ax ( ) / 2

z D
Y b d


 

 and 
( )

A
x1

 is the standard indicator function: 
( ) 1

A
x 1

 if 

x A  and 
( ) 0

A
x 1

 otherwise. Informally a triangle function links each point of the 

Diagram to the diagonal with segments parallel to the axes, and then rotates them of 

45 degrees. 

The triangles Tz can be combined in many different ways. If we take their -m a xk , i.e. 

the k
t h

 largest value in the set 
( )

z
T y

, we obtain the k
t h

 Persistence Landscape 

( ) -m a x ( ) [0 , ] , 1, , .
z D

k

D z
y k T y y Y k m



      

The Persistence Landscape λD is a representation of the Persistence Diagram D as 

a collection 
1

{ , , }
K

D D
 

 of piecewise linear functions, indexed by the order of the 

maximum to be considered in defining the Landscape, k, which can be any number 

between 1 and m, the cardinality of the Persistence Diagram D. If we take the 

weighted average of the functions 
( )

z
T y

, we have the Power Weighted Silhouette 

( )

( ) [0 , ] .

p

z z

z D

p p

z

z D

w T y

y y Y
w






 




 

Figure 3 shows a point cloud with its corresponding Persistence Diagram and 

Landscape. The two circles in the data, clearly picked up by the Persistence 

Diagram, correspond to the two peaks of the Persistence Landscape. Interestingly, 
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the Landscape also retains information about the persistence of these two loops or 

cycles, with the peak on the left, corresponding to the smaller circle, being slightly 

shorter than the one on the right. 

While the space of Persistence Diagrams  is only a metric space, Persistence 

Landscapes are defined in a much richer Banach space , endowed with the 

following norm 

,
pp k

D Dp p
k

    

where 

k

p


 is the Lp–norm 

 
1 /

d .

p
k k

p
     

It is not possible to go back from Persistence Landscapes to Persistence Diagrams, 

meaning that there is a loss of information in going from Persistence Diagrams to 

Persistence Landscapes. However the Persistence Landscape is still informative, 

since stability still holds (Bubenik, 2015). 

Theorem 1.2. Let f, g be two functions on  and let Df and Dg be the Persistence 

Diagrams built from their super- (or sub-) levelsets, then 

 , ,
f g

D D
d f g 

 
   

where 
 ,

f g f g
D D D D

d    




 
 is the L



–distance in the space of Persistence 

Landscapes, . 

Persistence Landscapes are piece–wise linear functions, which makes it possible to 

define a (unique) mean and a variance for any collection of them. The main 

advantage of the Persistence Landscape over the Persistence Diagram is that it is 

defined in a Banach Space, which is instrumental in statistical learning as it allows 

for a full characterization of the Persistence Landscape as a random variable. More 

details can be found in the Supplementary Material. 
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2 The Persistence Flamelet 

Persistence Diagrams and Persistence Landscapes give us a full characterization of 

a function f in terms of the topology of its sub–levelset (or super–levelset) filtration, 

however they do not show changes in its structure as f varies. We now focus on the 

case where rather than one function f we are dealing with a family of functions 

{ , }f S


 
, indexed by some parameter σ, which represent the resolution or the 

scale of the object 
f
 . This is a very common setting in statistics, as the presence of 

multiple scales in the analysis can arise both from the nature of the data themselves 

(this is the case for example when σ is the time in time series or the spatial 

resolution in images or geo-referenced data) and from the algorithm used to perform 

the analysis, where σ typically represent a tuning parameter. 

Although traditional methods focus on selecting a single optimal scale  , inspired 

by scale space theory (Lindeberg, 1994), we adopt the idea that different scales yield 

different information, hence all of them must be simultaneously taken into account in 

order to get a better understanding of the phenomenon under analysis. We restrict 

ourselves to the case where the 
{ , }f S


 

 is continuously indexed by the scale 

parameter σ, defined in a bounded interval S. For the sake of simplicity we will 

assume [0 ,1]  , as every bounded interval can be rescaled to [ 0 ,1] . Two notable 

examples that we will explore more thoroughly in the following are kernel smoothers, 

for which the resolution σ is given by the bandwidth parameter h, and time–varying 

processes, whose scale σ is the time, t. 

Previous attempts at encoding a multi-resolution family 
{ , [0 ,1]}f


 

 into the 

TDA framework focused on considering the Persistence Diagram itself as a function 

of the scale parameter σ. The family of Persistence Diagrams 
{ , [0 ,1]}D


 

 

corresponding to , is known as Persistence Vineyards (Cohen-Steiner et al., 2006) 

and is a stable and continuous representation of the topology of the whole  

(Munch, 2013). Despite their theoretical relevance, however, Persistence Vineyards 

suffer from several drawbacks that hinder their popularity in applications. Comparing 

two of them, for example, is indeed computationally very intensive, due to the fact 

that matching distances need to be computed for all the Persistence Diagrams 
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comprising the scale-space. As opposed to the Persistence Diagram, which is 

praised for being an invaluable visualization tool, graphical representation of 

Vineyards may at times be cumbersome to interpret. Moreover, they share all the 

drawbacks and limitations of Persistence Diagrams, more specifically they lack a 

unique average and a measure of variability for a group of them (Turner et al., 2014), 

and, once again, since their probabilistic behavior is not well understood, the use of 

Persistence Vineyard in statistical inference is severely compromised. 

We thus introduce a new representation, based on the Persistence Landscape, that 

overcomes most of these issues and provides a functional representation with very 

favorable probabilistic properties, which can be exploited for statistical inference 

using well known tools of Functional Data Analysis, thus greatly extending the 

potential application of topological summaries. It is worth noticing that although in the 

following we focus on Persistence Landscapes, the same results hold for 

Persistence Silhouettes as well. In order to explicitly take into account the multiple 

resolutions of , we consider the Persistence Landscapes D


 corresponding to the 

family 
{ , [0 ,1]}f


 

 as a function of the scale parameter σ. Visually we can 

think of such function as a “flow” of landscapes, one for each resolution, smoothly 

moving and resembling a tiny fire (see, for example, Figure 7). 

Definition 2.1 (Persistence Flamelet). Given a Persistence Vineyard , that is a 

collection of Persistence Diagrams 
{ , [0 ,1]}D


 

, continuously indexed by some 

parameter [0 ,1]  , and k


 , we define the k
t h

 Persistence Flamelet as the 

function 

( , ) ( ) [0 ,1] , [0 , ] , .
k k

D
y y y Y k



  


       

As the Landscape itself, the Persistence Flamelet Λ is also a collection 

{ , }
k

k


     indexed by the order of the m a x  we consider. 

The theoretical reassurance that the Persistence Flamelet is a meaningful 

topological summary is its stability, which we will prove in the following. Before doing 

so, however, we need to introduce a notion of proximity between Persistence 

Flamelets. 
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Definition 2.2 (Integrated Landscape distance). Let 

{ , [0 ,1]} , { , [0 ,1]}D G
 

    
 two Persistence Vineyards and 

, 
 the 

corresponding Persistence Flamelets. We define the Integrated Landscape distance 

between 


 and 


 as 

1

0

( , ) ( , ) d .
D G

I d
 

  
 

     

As functional objects, Persistence Flamelets can be compared by a natural 

extension of the usual Lp metrics, which is way less computationally demanding than 

the matching distances needed for Persistence Diagrams and Vineyards. 

Theorem 2.1. Let { , [0 ,1]} , { , [0 ,1]}D G
 

      two Persistence Vineyards 

and ,   the corresponding Persistence Flamelets, then: 

1.   and   are continuous with respect to the Bottleneck distance; 

2. ( , ) ( , )
B

I I


    

where 

1

0

( , ) ( , ) d
B B

I d D G
 

   is the Integrated Bottleneck distance for 

Persistence Vineyards as defined in Munch (2013). 

Proof. 

These statements are a direct consequence of the Stability Theorem for Persistence 

Landscapes (Theorem 1.2) and the continuity of Persistence Vineyards, in fact: 

1. For a fixed σ, consider 
D

  and 
D

   (same applies for ). By Theorem 1.2 

and the continuity of  we have 

   
0 0

0 lim , lim , 0 .
D D B

d d D D
  

  
 

 


 
 

    

2. Since for a fixed σ we have, by Theorem 1.2 we have 

   , ,
D G B

d d D G
   

 


  

integrating both terms is enough to prove the result. 
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□ 

The Persistence Flamelet is also a random variable defined in a Banach space. In 

analogy with what Bubenik (2015) has done for Persistence Landscapes, we define 

a norm for Persistence Flamelets, more specifically 

1

0

d .
pp k

Dp p
k



     

Then, following Ledoux and Talagrand (2013), we can extend the Law of Large 

Numbers and the Central Limit Theorem to this new object. 

Corollary 2.1.1 (Strong Law of Large Numbers). Let { }
n n

  be a sequence of 

independent copies of Λ and, for a given n, let 1n n
S       , where the sum is 

defined pointwise. 

( ) a lm o s t su re ly .
n

S

n
       

Corollary 2.1.2 (Central Limit Theorem). Assume  has type 2 in the sense of 

Hoffmann-Jorgensen et al. (1976). If ( ) 0V   and 
2

( )  
 then 

n
S

n  converges 

weakly to a Gaussian random variable ( )G   with the same covariance structure as 

Λ. 

Proofs follow from Theorem A.1 and Theorem A.2 of the Supplementary Material. 

2.1 Confidence Band for Persistence Flamelets 

In order to strengthen the role of the Persistence Flamelet as a statistical tool, we 

now show that it is possible to build confidence bands on the mean Persistence 

Flamelet by means of bootstrapping, in analogy with what has been done for 

Persistence Landscapes (Chazal, Fasy, Lecci, Rinaldo, Singh 

and Wasserman, 2013). What follows applies to any level k of a Flamelet, hence we 

omit any explicit reference to it in order to ease the notation. 
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Let 1
{ , , }

n n
   

, be a sequence of Persistence Flamelets independently 

sampled from some probability distribution . Then the mean Persistence Flamelet, 

μ, is defined as 

 ( , ) ( , ) [0 ,1] , [0 , ] .
P

y y y Y        

Theorem 2.2 (Consistency of the Bootstrap). Let ,
{ , [0 ,1] , [0 , ]}

t
g y Y


  

 be the 

class of functions defining the Persistence Flamelet, that is, for any Persistence 

Vineyard , the function , t
g

  is given by as 

,
( ) ( , ) .

y
g y


   

If the family { , [0 ,1]}f

   characterizing the Flamelet is Lipschitz in its scale 

argument, that is 

2
| |f f K

 
     

then the class  is Donsker, and the bootstrap procedure defined in Algorithm 1 is 

valid. 

 

Algorithm 1: Bootstrap Bands for Persistence Flamelets 

Input: 

- 1
{ , , }

n n
   

, i.i.d. sample from some probability distribution  over 

the space of Persistence Flamelets 

- α confidence level 

- B number of Bootstrap repetitions 

1 Compute 1

1
( , ) ( , )

n

n i

i

L t y
n

 



 
; 

2 for j in 1 : B  do 

3 Sample (with replacement) n elements 1
, ,

j j

n
  

 from n ; 

4 Compute the bootstrapped sample mean 1

1
( , ) ( , )

n

j j

n i

i

L t y
n

 



 
; 
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5 Compute ,

s u p | ( ( , ) ( , ) ) |
j

j n n

y

n L y L y


   

; 

6 end 

7 Define 1

1
in f{ | ( ) }

B

i

i

q q q
B


 



  
; 

Output: 

( , ) [ ( , )) / , ( , )) / ]
n n n

C B t L y q n L y q n
 

    
 

 

Corollary 2.2.1. The band CBn obtained from Algorithm 1 is an asymptotic 

confidence band for the Persistence Flamelet at confidence level 1  . 

As any topological summary, the Persistence Flamelet may be affected by noise and 

highlight spurious features, and confidence bands may be used to assess whether or 

not a topological feature is statistically significant. If we take the empty Flamelet, i.e. 

the constant Flamelet located on 0, to represent the case of no significant topological 

structure, the procedure illustrated before can in fact be used to define a confidence 

band on the noise component of the topological structure. Comparing this band with 

the observed Flamelet allows us to detect which parts (if any) of the Flamelet are to 

be considered noisy artifacts resulting from the procedure adopted to build the 

topological summaries, or significantly different than zero and can be thus 

considered topological signal. 

Alternatively, in order to check whether or not a feature is to be judged as relevant, 

we suggest to exploit the fact that, in practice, the Persistence Flamelet is computed 

over a finite set of values 1
{ , , }

J
S   

 of the scale parameter σ defining the family 

. For each of the Persistence Diagrams corresponding to elements of S, it is 

possible to define a simplification scheme that retains only significant topological 

feature filtering out the noise. One strategy to implement this idea is to reshape the 

Diagram so that the persistence of its “relevant” features is maximized, as suggested 

in Atienza et al. (2019). Here, instead, in order to preserve the original structure of 

the Diagram, we adopt the approach introduced in Fasy et al. (2014), which consists 

in building a confidence band around the diagonal of the Diagram via bootstrap: 
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points of the Diagram that lay within this band are not significantly different from the 

diagonal itself, and can thus be removed from the Diagram. The Persistence 

Flamelet built using Diagrams “denoised” in this fashion, then contains only 

significant topological features; in the following we will refer to this technique as “

Diagram cleaning”. It is worth noticing that since this procedure requires building 

multiple confidence bands, possibly using the same data, it may be necessary to 

adopt a multiplicity correction in order to ensure the proper coverage level. With 

respect to the denoising based on the Confidence Band for the Flamelets, this is 

more of a global approach, in the sense that it does not depend on the choice of a 

functional representation of the Persistence Diagram, nor on the tuning parameter k 

and p of, respectively, Landscape and Silhouettes; nevertheless, this procedure is 

not explicitly tailored for the Persistence Flamelet and may be affected by the choice 

of the grid S. 

It is worth mentioning that Confidence Bands are one way of simplifying the 

Persistence Diagrams (or Persistence Flamelets) “a posteriori”. As shown in 

(Chintakunta et al., 2015), however, it is also possible to directly build the Diagram 

so that the information it contains is “significant”. The construction of the Persistence 

Flamelet is agnostic with respect to the way the family of Diagrams comprising the 

Persistence Vineyard are computed, hence both strategies are viable to ensure that 

the topological noise it may contain is minimized. 

3 Applications 

In this last section, we illustrate how the Persistence Flamelets, so far only a rather 

abstract object, may be encountered and fruitfully used as both an inferential and 

exploratory tool. 

3.1 Time Series / EEG Dynamic Point–Clouds 

The easiest way to understand the need for topological characterization of a 

continuously varying space is to consider the case where the scale parameter σ is 

time, t. The Persistence Flamelets allows in fact for a characterization of a time–

varying system 
{ , [0 ,1]}

t
f t 

 in terms of its topology (Munch 

et al., 2015; Munch, 2013) by allowing us to simultaneously study the shape of any 
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time–dependent function ft and how it evolves with time t. Again, although this 

framework is general enough to cover any arbitrary function ft, as long as it is 

continuous with respect to time, we are especially interested in the case where ft is a 

function of data. 

Assume that at each time t we observe a sample 1
( ) { ( ), , ( )}

k
t X t X t 

 drawn from 

some distribution Pt. The Persistence Flamelet Λ built on distance functions or kernel 

density estimators estimate the topology of the whole continuous–time generating 

process 
{ , [0 ,1]}

t
P t 

. The trace of the sample in the time interval { ( ) , [ 0 ,1]}t t  , 

usually called Dynamic Point Cloud, is just a high dimensional time series, hence 

Persistence Flamelets can be exploited as a tool to extract a new type of insights on 

time series of arbitrarily high dimension. 

In the special case of dynamic point–clouds, the stability result of Theorem 2.1 can 

be restated as follows. 

Corollary 3.0.1. Let { ( ) , ( )}t t  with ( 0 ,1)t   two continuous dynamic point clouds, 

  and   their corresponding Persistence Flamelets, then: 

( , ) ( , ),
H

I I


    

where 

1

0

( , ) ( ) , ( ) d( )
H H

I d t t t   is the Integrated Hausdorff distance for dynamic 

point–clouds, as defined in Munch (2013). 

Figure 4 shows two Persistence Flamelets built from electroencephalography (EEG) 

tracks, freely available on the UCI Machine Learning Repository. EEG are electric 

impulses recorded at a very high frequency (256 Hz) through multiple electrodes (64 

in this study), located in different areas of the skull. At each time t, topological 

features represent dependency structure in the signal, which is relevant information 

per se, but since it is also important to assess whether or not these connection 

persist in time, this kind of data fits perfectly in our framework. 

We compare the EEGs of 10 alcoholic and 10 control patient, all subject to the same 

stimulus. For each of them we have 5 trials of 1 second; EEG are typically very noisy 
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hence we average them across repetition before computing their topological 

summaries. Features of both dimension 1 and dimension 0 seem to be concentrated 

in the same area of the Persistence Diagrams, we thus build the Persistence 

Flamelet using as a base summary the Persistence Silhouette, which takes into 

account all points in the Diagram, as well as the Persistence Landscapes, for which 

the selection of the order of the k-max is non-trivial in this application. 

The Persistence Flamelet highlights a topological difference in behavior of the two 

groups; as shown in Figure 4 the signal from the control group, in fact, appears to be 

characterized by a few persistent features. In the alcoholic patient instead there is 

less structure; the number of features is higher than in the control patient, yet they all 

have a smaller persistence, and could thus be interpreted as noise. In order to 

assess whether there is statistical substance to this claim, we perform a two sample 

test to compare the average silhouettes of the two groups. As the sample size is 

rather small, exploiting the asymptotic normality of the average Flamelet is not 

advisable, hence we resort to the permutation test detailed in Algorithm 2. 

Algorithm 2: Two-Sample Permutation Tests for Persistence Flamelets 

Input: 

- 1 2

(1 ) (1 ) (1 ) ( 2 ) ( 2 ) ( 2 )

1 1
{ , , } , { , , }

n n
       

 i.i.d. samples of Persistence 

Flamelets 

- B number of Bootstrap repetitions 

1 Compute 

( ) ( )

1

1
( , ) ( , )

j
n

j j

i

ij

L t y
n

 



 
 for j = 1, 2;  

2 Compute 
1 2

(1 , 2 ) (1 ) ( 2 )

,

su p | ( ( , ) ( , )) |
n n

y

L y L y


   

;  

3 Define the joint sample 1 2

(1 ) (1 ) ( 2 ) ( 2 )

1 1
{ , , , , , }

n n n
      

;  

4 for i in 1 : B  do  

5 Sample (without replacement) n1 elements 1

(1, ) (1, )

1
, ,

i i

n
  

 from n ;  

6 Define 1

(1 ) (1, ) (1, )

1
{ , , }

i i

i n
   

 and 2

( 2 ) ( 2 , ) ( 2 , )

1
{ , , }

i i

i n
   

 its complement with respect 

to n ;  

Acc
ep

te
d 

M
an

us
cr

ipt



7 Compute the bootstrapped sample means 
(1 )

( , )
i

L y
 and 

( 2 )
( , )

i
L y

 for the two 

samples;  

8 Compute 

(1 ) ( 2 )

,

su p | ( ( , ) ( , )) |
i i i

y

L y L y


   

; 

9 end 

Output: 

(1 , 2 )

1

1
p -v a lu e ( )

B

i

i
B

 



 
; 

 

Let m be the maximum number of elements per Diagram in  and J be the number 

of elements of the finite grid used to in practice to compute the Persistence Flamelet 

( 1
{ , , }

J
S   

). In both Algorithm 2 and Algorithm 1 the most intensive step, the 

computation of θi, is O(mJ), as follows naturally from the results of Bubenik 

and Dłotko (2017). If we wanted to compare in the same fashion two Persistence 

Vineyards, however, the computational cost would be a considerably larger 
1 .5

( lo g ( ) )O m m J  (Kerber et al., 2017). 

As the Flamelet allows to isolate topological invariants of different dimensions, it can 

be used to retrieve qualitative differences on the topology, as well as quantitative 

ones. In addition to assessing the presence of a topological discrepancy, in fact, it is 

also informative on which kind of features are responsible for it. Results shown in 

Table 1, in fact, highlight that the distinction between the two groups does not 

depend on the sole presence of connected components (i.e. electrodes that are in 

some sense “close”) but it is determined by the nature of the association within these 

components, which is formalized by whether or not these sets of electrodes form 

cyclical structures. We consider two different orders of Landscapes for each 

dimension to show that the pattern we observe depend on the dimension and not on 

the order of the landscape we consider. We take the two largest order k of the 

landscape, which in the case of dimension 0 corresponds to k = 2, 3, as k = 1 is a 

constant triangle equal to the diameter of the data and it is not discriminative. 
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Interestingly, this behavior is robust with respect to the base function used to build 

the Flamelet, as inferential conclusions when considering the Persistence 

Landscape (with different choices of k) are coherent with those obtained using the 

Persistence Silhouette. 

3.2 Data Smoothing / Kernel Density Estimation 

In the statistical literature, scale–space ideas have been especially popular in the 

context of data smoothing. In its broader definition, data smoothing is a family of 

methods aimed at recovering some structure in the data. Depending on their scale, 

however, smoothing methods may enhance noise or neglect relevant features, so 

that it is crucial to understand the impact of the smoothing level on the smoothed 

object. The Persistence Flamelet can be used to summarize and evaluate the 

evolution of the whole smoothing process, by tracking (and visualizing) the 

appearance and disappearance of feature of arbitrary dimension. 

Among all the smoothing methods, we focus on Kernel Density Estimation (KDE) 

(Scott, 2015), for which the role of topological features (especially that of 0
t h

 

dimensional Homology Groups) is a well established problem (Chaudhuri 

and Marron, 1999). Features affected by the smoothing process such as local peaks 

(or, in topological terms, 0
t h

 dimensional Homology Groups), are in fact especially 

meaningful in the case of KDE; local modes of a density and their basin of attraction 

represent for example one way of defining clusters (Comaniciu and Meer, 2002). 

Persistence Flamelets allows us to explore also higher dimensional features, such as 

cycles or voids, which have been noticeably neglected. 

Given a sample 1
{ , }

n
X X

, drawn from some smooth density p, a Kernel Density 

Estimator 
ˆ

h
p

 is defined as 

1

1
ˆ ( ) ( ) ,

n

h h i

i

p x K x X
n



   

where 

1
( ) ( )

h

x y
K x y K

h h


 

 is a scaled kernel, h is the bandwidth parameter and 

( · )K , the kernel, is a non-negative, symmetric function that integrates to 1. 
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While any kernel function ( · )K  may be used without compromising the performance 

of the estimator, the bandwidth parameter represent the level of smoothing and 

needs to be finely tuned. In the scale-space approach, given some bounded range of 

bandwidths H


 , all the estimators 
ˆ

h
p

 are simultaneously considered, so that the 

object of interest becomes the family of smooths 
ˆ{ : }

h
p h H 

. Since Kh is 

continuous with respect to h by definition, it is immediate to see that the Persistence 

Flamelets can be used to investigate and characterize . 

In the exploration framework, the first attempt at investigating the relation between 

the bandwidth of a kernel density estimator and its topology SiZer (Chaudhuri 

and Marron, 1999). Roughly speaking, given a sample 1
{ , , }

n
X X

 drawn from a 

univariate density p, SiZer (SIgnificant ZERo crossings of derivatives) is a map 

showing where in space, x, and scale, h, the kernel density estimator 
ˆ ( )

h
p x

 is 

significantly increasing or decreasing. Since local peaks of a curve can be thought of 

as points where its derivative changes sign, the basic idea of SiZer is assess where 

this change happens, by testing whether the sign of the derivative 
ˆ ( )

h
p x

 for each 

couple of values (x, h) is positive or negative. Values (x, h) corresponding to 

significantly positive derivatives are shown in red and significantly negative are 

shown in black, as in Figure 7. 

SiZer is intrinsically 1–dimensional and even though it has been extended to 2–

dimensional densities, especially in the context of image analysis, (Godtliebsen 

et al., 2004) the features it hunts for are always and only local modes. The 

Persistence Flamelet provides a further extension in two different directions: 

 it can be used to investigate topological features of any dimension, rather than 

only feature of dimension 0, i.e. local peaks; 

 it does not depend on the dimension of the data and can thus be used to 

investigate kernel densities for very high dimensional data. 

Like SiZer, the Persistence Flamelet is able to assess the significance of each peak, 

by exploiting the tools shown in Section 2.1, but, in addition, it also provides a 

measure of the relevance of each feature: its persistence. 
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3.2.1 Bandwidth Exploration 

We now show two real–data applications. In the first univariate one we quickly 

compare the Persistence Flamelet with SiZer and show that, when both are 

available they yield similar insights. The second is a bivariate example, which 

motivates investigating higher dimensional features and highlights the potential of 

the Persistence Flamelet when other tools are not available. 

Eartquakes I / Depth 

In our first example we consider a classical dataset in kernel density estimation, the 

depth of the 512 earthquakes beneath the Mt. St. Helens volcano in the months 

before the eruption of 1982 (Scott, 2015). Figure 5 shows the 1
st

 and the 2
nd

 

Persistence Flameles for the 0 dimensional topological feature of the density 

estimator p̂  built with the Gaussian Kernel: 

2

1 1

1 1 1 1
ˆ ( ) ( ) ex p ( ) .

22

n n

h h i i

i i

p x K x X x X
n n hh 

 
    

 
   

In order to retain only significant topological information, before computing the 

Flamelets we built confidence bands on the diagonal of each of the Diagrams used 

to define it, and features whose persistence was smaller than the upper limit of such 

bands, where then discarded from the Diagram. As the same data are used to build 

the Diagrams corresponding to the different bandwidths, we adopt a Bonferroni 

correction on the confidence level to ensure proper coverage over the whole 

Flamelet. 

The 1
st

 Persistence Flamelet consists of only one peak, representing the global 

maximum, which, as we can expect, always persists. This is not very informative, 

and when analyzing dimension 0 topological features, it is thus advisable to consider 

2
nd

 Persistence Flamelet, which represents the most relevant local peaks. In this 

case we can see that the two peaks appearing in the 2
nd

 Persistence Flamelet 

correspond to the two points in the Diagram (which in turn correspond to the two 

bumps we can see in the KDE in Figure 7). As we can see from Figure 5, the 2
nd

 

Persistence Flamelet behaves differently than 1
st

 Persistence Flamelet; when the 

bandwidth grows in fact, the two secondary peaks are smoothed away. Figure 7 
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shows the comparison with SiZer, and it is easy to see that the two approaches lead 

to very similar conclusions. In order to make this comparison possible, we highlight 

here that we cleaned the Diagrams following the procedure introduced in Section 2.1 

and we removed from the Persistence Diagrams the noisy features falling inside the 

confidence band before computing the Flamelet, so that the topological features 

displayed on it are all statistically significant. The three peaks appear for h = 0.05, 

then one of them disappear at around h = 0.25, one other around h = 0.35 and, the 

last one always survives (in the given range of bandwidths). 

Earthquakes II / Locations 

For our second example we consider earthquake data coming from the USG catalog. 

Our sample consists of the locations, expressed in latitude and longitude, of 6500 

events with magnitude higher than 5, taking place between June 2013 and June 

2017. The 2–dimensional density p generating the data 1
{ , , }

n
X X

 can still be 

estimated using the kernel density estimator with a Gaussian Kernel: 

1

1 / 2

1 1

1 1 1 1
ˆ ( ) ( ) ex p ( ) ( ) .

2 | | 2

n n

t

h i i i

i i

p K
n n 



 

 
      

 
 H

x x X x X H x X
H

 

Notice that in the multivariate case, the bandwidth is not a scalar but rather a matrix 

H , however we chose an isotropic Gaussian Kernel, which corresponds to imposing 

a spherical structure to the covariance matrix 

1 0
, ,

0 1
h h


 

 
 
 

H  

so that the kernel density estimator expression can be simplified as follows: 

2

1

1 1 1
ˆ ( ) ex p ( ) ( ) .

2 2

n

t

h i i

i

p
n h h



 
    

 
x x X x X  

Earthquakes are concentrated around circular structures, also known as plates. 

According to Plate Tectonics, in fact, the Earth’s lithosphere is broken into 7 main 

plates, plus a number of minor ones. Since earthquakes are caused by the 

movements of neighboring plates, the density p naturally inherits the Earth’s plates 
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structure. In terms of topology, plates can be thought as loops, or dimension 1 

Homology Groups. 

The dimension 1 Persistence Flamelet of the kernel density estimator p̂  can be 

employed to assess whether or not kernel density estimators are able to recover 

these loops. The Persistence Flamelet shown in Figure 8 presents 7 crests, each of 

them representing one persistent loop in ; this seems to suggest that at, different 

resolution, the kernel density estimator is able to recover all the 7 main plates. Notice 

that as opposed to the 0
t h

 dimensional case, where there is always one feature, the 

global maximum, dominating all the others, when analysing loops we can limit our 

analysis to the 1
st

 Persistence Flamelet. 

In this example specifically, the Persistence Flamelet shows that there is one loop 

that persists noticeably more than all the others; as persistence is a measure of the 

importance of a feature, this suggests that there is one plate which is more neatly 

detected than all others. This highly persistent loop closely resembles the contour of 

the Philippine plate, which is not surprising, since more than 26% of the seismic 

activity in the given time interval was concentrated in the area between Philippine 

and Japan. 

3.2.2 Bandwidth Selection 

We conclude by showing that, even though the Persistence Flamelet is intrinsically 

related to the scale-space principle, according to which no bandwidth candidate is 

taken to be more informative than the others, our topological summary also plays a 

role in the context of bandwidth selection, and we can use it to heuristically choose a 

“topologically–aware” bandwidth. 

In the literature on bandwidth selection the topological structure of the KDE is usually 

ignored (with the exception of local modes (Genovese et al., 2016)). However, as 

standard approaches to the task (most noticeably cross-validation) have proven to 

fail when the density is concentrated around lower dimensional structures 

(Genovese et al., 2016), we believe that taking into account topological invariants 

whose dimension is larger than 0 (local modes) yet smaller than the ambient space, 

may be beneficial. 
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Intuitively, since persistence can be interpreted as a measure of the importance of 

each feature, bandwidths corresponding to peaks in the Persistence Flamelet result 

in estimators that highlight the most prominent features in the density. By selecting 

the value of h that maximise the Persistence Flamelet, the topologically–aware T A
ĥ

, 

we are forcing the density estimator to retain the most relevant topological treats. 

Let us consider again the Earthquake II example. By choosing the value of h that 

maximise the Persistence Flamelet, we are forcing the density estimator to 

emphasize the most persistent loop. The kernel density estimator T A

ˆ
h

p
, shown in 

Figure 9, is in fact concentrated around the Philippine plate, as we could expect. To 

understand why such a topologically–aware bandwidth selection heuristic may be 

useful, let us compare it with more established methods for bandwidth selection: 

Silverman’s Normal Rule and a Plug–in bandwidth selection criterion. We 

intentionally ignore cross validation methods because, as shown in Genovese 

et al. (2016), they are known to display poor behaviour in this setting. When the 

density is singular, which is the case when the support of the distribution is 

concentrated on an object whose dimension is smaller than the ambient dimension, 

cross validation will in fact select 0 as optimal bandwidth, and it is thus not 

informative. 

The first alternative we consider is an extension of Silverman Normal Rule, one of 

the most famous “rule of thumb” for bandwidth selection, to the case of densities with 

singular features, as detailed in Chacón et al. (2011). More specifically, given a 

sample 1
{ , , }

D

n
 X X

, from some distribution P, the optimal bandwidth h for 

recovering the d–dimensional features is 

2

4
2

s

4
ˆ ,

( 2 )

d

h s
n d

 
  
  

 

where 

1 2

D

j

j i

s D s




 
 and 

2

j
s

 is the variance of the j
th

 variable. Despite the fact that 

we set d = 1, in order to take into account the loop structure, the density estimator, 

shown in Figure 10, does not seem to recover any of the plates at all. 

Acc
ep

te
d 

M
an

us
cr

ipt



The second approach we consider is a plug–in bandwidth estimator P IH , obtained 

by minimizing the AMISE (Asymptotic Mean Integrated Square Error) with respect to 

the bandwidth h; details are given in Chacón et al. (2011). Since limiting the case of 

scalar bandwidths, as we did until here, may seem too restrictive, in this final 

example we relax the hypothesis of spherical covariance and do not impose any 

structure on the bandwidth matrix H . The additional complexity of the estimator 

does not however result in a better estimation: as we can see in Figure 11, the plates 

structure of the true density is still not recognizable. 

4 Conclusion and Future Developments 

In this work we introduced a new multiscale topological summary, the Persistence 

Flamelet, we characterized it in a probabilistic framework and we proved that it 

retains the topological information contained in the original scale spaces, and thus it 

is a meaningful topological summary. The very different nature of the two examples 

we considered (dynamic point clouds and kernel smoothers) show the versatility of 

this representation, which allows to account for the presence of multiple scales in the 

data and also in the tools we typically use to analyse them, and illustrate how the 

Persistence Flamelet allows to effectively summarize non-linear dependencies within 

an object. 

So far we exclusively focused on comparing objects of the same kind, i.e. Flamelets 

built on the same type of data, such as EEG recordings. One of the main features of 

the Persistence Flamelets, however, is that they allow to compare data structures of 

potentially different types (e.g. networks and functional data), hence providing a 

unified framework for analysing complex data. In the future we plan to exploit this 

property to match different sources of neuroimaging data, more specifically EEG 

recordings, which are functional objects, and functional/structural networks obtained 

from fMRI data. We also wish to extend the use of the Flamelet to the supervised 

setting, especially for problems related to neuroimaging data, and see whether this 

topological summary is informative enough to help in predicting different neurological 

conditions. 
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Finally, we plan to investigate further the properties of Persistence Flamelets–related 

heuristics for bandwidth selection. We have already seen how picking the bandwidth 

that maximises the “persistency” seems to be promising. We plan to investigate it 

even further also considering the use of the Persistence Flamelet to select a 

bandwidth that reflects some previous knowledge on the topology of the object of 

interest. In addition, since features that appear at many different resolution can be 

thought as the most relevant ones, it may also be interesting to explore persistence 

in bandwidth ranges as an additional measure of relevance for topological traits. 
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Fig. 1 From left to right: birth of the circle in the filtration, death of the circle and 

summarizing Persistence Diagram. 
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Fig. 2 From left to right: birth of the smallest peak in the filtration, ˆ
b

p , death of the 

smallest peak in the filtration ˆ
d

p  and summarizing Persistence Diagram. 
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Fig. 3 A point cloud (left) with its corresponding Persistence Diagram (centre) and 

Persistence Landscape (right). 
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Fig. 4 Persistence Flamelets of Dimension 1 for the EEG data of one alcoholic 

(left) and one control (right) subject. 
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Fig. 5 1
st

 (left) and 2
nd

 (right) Persistence Flamelets of dimension 0. 
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Fig. 6 From left to right: Kernel Density Estimator of the Mt. St. Helens dept data 

(with h = 0.1) and corresponding Persistence Diagram. Highlighted in pink is the 

confidence band around the diagonal. 
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Fig. 7 SiZer, the 1
st

 and 2
nd

 Persistence Flamelets of dimension 0. In order to 

facilitate the comparison with SiZer, the Persistence Flamelet is projected and 

represented as a matrix. 
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Fig. 8 Dimension 1 Persistence Flamelets for earthquakes locations KDE before 

(left) and after (right) cleaning each Diagram with a confidence band. 
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Fig. 9 Density estimation with the topologically aware bandwidth T A
ĥ
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Fig. 10 Density estimation with extended Silverman Normal bandwidth S
ĥ
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Fig. 11 Density estimation with anisotropic Plug–in bandwidth matrix P IH . 
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Table 1 Bootstrapped p-value for the Two-Sample test 

 

Persistence Landscape Persistence Silhouette 

Dimension 0 0.200 (k = 2)  0.895 (k = 3) 0.199  

Dimension 1 0.048 (k = 1)  0.032 (k = 2) 0.020  
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