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Abstract

We connect two random graph models, the Popularity Adjusted Block Model
(PABM) and the Generalized Random Dot Product Graph (GRDPG), by demonstrat-
ing that the PABM is a special case of the GRDPG in which communities correspond
to mutually orthogonal subspaces of latent vectors. This insight allows us to construct
new algorithms for community detection and parameter estimation for the PABM, as
well as improve an existing algorithm that relies on Sparse Subspace Clustering. Using
established asymptotic properties of Adjacency Spectral Embedding for the GRDPG,
we derive asymptotic properties of these algorithms. In particular, we demonstrate
that the absolute number of community detection errors tends to zero as the number
of graph vertices tends to infinity. Simulation experiments illustrate these properties.

Keywords: network analysis, block models, generalized random dot product graphs, commu-
nity detection, sparse subspace clustering
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1 Introduction

Statistical inference on random graphs requires a suitable probability model. A general

probability model for unweighted and undirected graphs is the Bernoulli Graph (also known

as the inhomogeneous Erdös-Rényi model), which assumes that edges occur as independent

Bernoulli trials. A Bernoulli Graph is characterized by an edge probability matrix P = [Pij ],

where an edge between vertices i and j occurs with success probability Pij . A trivial example

of a Bernoulli Graph is the (homogeneous) Erdös-Rényi model proposed by Gilbert (1959),

in which the vertices of the random graph are fixed and possible edges occur independently

with fixed probability Pij = p for all i, j. The requirement that Pij ≡ p for all i, j is too

strong for most applications, and various researchers have weakened that requirement in

various ways. The present work relates two lines of generalization.

Network analysis is often concerned with community detection. One form of community

detection assumes that each vertex belongs to an unobserved community, with the probability

of an edge between vertices i and j depending on the communities to which i and j belong.

Formally, one assigns each vertex vi a community label zi and assumes a Bernoulli Graph

in which Pij is a function of zi and zj . Such models, called Block Models, define the goal of

community detection as a problem in statistical inference: identify the true community (up

to permutation of labels) to which each vertex belongs.

The classical Stochastic Block Model (SBM) of Lorrain and White (1971) specifies that

each edge probability Pij depends only on the labels zi and zj , i.e., Pij = ωzi,zj
. Subsequent

researchers have weakened this assumption. The Degree-Corrected Block Model (DCBM)

of Karrer and Newman (2011) assigns an additional parameter θi to each vertex and sets

Pij = θiθjωzi,zj
. The Popularity Adjusted Block Model (PABM) of Sengupta and Chen

(2018) generalizes the DCBM, allowing heterogeneity of edge probabilities within and

between communities while still maintaining distinct community structure.

Another type of Bernoulli Graph was proposed by Young and Scheinerman (2007). A

Random Dot Product Graph (RDPG) specifies that each vertex corresponds to a latent

position vector in Euclidean space and that the probability of an edge between two vertices
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is the dot product of their latent position vectors. Thus, if the latent positions are

x1, . . . , xn ∈ Rd and X =
[
x1 | · · · | xn

]>
, then the edge probability matrix is P = XX>.

Clearly, any Bernoulli Graph with positive semidefinite P is an RDPG. The positive definite

Euclidean inner product in the RDPG model was replaced by an indefinite inner product in

Rubin-Delanchy et al. (2017), resulting in the Generalized RDPG (GRDPG).

In contrast to Block Models, neither RDPGs nor GRDPGs inherently specify distinct

communities. However, one can easily impose community structure by assuming that the

latent positions lie in distinct clusters. Hence, it is not surprising that Block Models can

be studied by reformulating them as RDPGs or GRDPGs. For example, an assortative

SBM (an SBM for which P is positive semidefinite) is equivalent to an RDPG for which all

vertices in the same community correspond to the same latent position vector. Likewise, the

DCBM is equivalent to an RDPG for which all vertices in the same community correspond

to latent position vectors that lie on a straight line.

Because the edge probability matrix of a PABM is not necessarily positive semidefinite, a

PABM is not necessarily an RDPG. In Section 2.3 we demonstrate that every PABM is in

fact a specific type of GRDPG for which the latent position vectors lie in distinct orthogonal

subspaces, each subspace corresponding to a community. This identification is our central

result. In Section 3, we use the geometry of the GRDPG to derive more efficient algorithms

for detecting the communities and estimating the parameters in the PABM. We report the

results of simulation studies in Section 4 and apply our methods to three well-known data

sets in Section 5. Section 6 concludes. Proofs of Theorems 1 and 2 are provided in the body

of the text while proofs of Theorems 3, 4, and 5 are provided in the Appendix.

2 PABMs are GRDPGs

In this section, we show that the PABM is a special case of the GRDPG. More specifically,

a graph G drawn from the PABM can be represented by a collection of latent vectors in

Euclidean space. We further show that the latent configuration that induces the PABM

consists of orthogonal subspaces with each subspace corresponding to a community.

3



2.1 Notation and Scope

Let G = (V,E) be an unweighted, undirected graph without self-loops, with vertex set V

(|V | = n) and edge set E. The matrix A ∈ {0, 1}n×n represents the adjacency matrix of G

such that Aij = 1 if there exists an edge between vertices i and j and 0 otherwise. Aij = Aji

and Aii = 0 for each i, j ∈ [n] (where [n] = {1, 2, ..., n}). We further restrict our analyses

to Bernoulli graphs. Let P ∈ [0, 1]n×n be a symmetric matrix of edge probabilities. Graph

G is sampled from P by drawing Aij ind∼ Bernoulli(Pij) for each 1 ≤ i < j ≤ n (setting

Aji = Aij and Aii = 0). We denote A ∼ BernoulliGraph(P ) as a graph with adjacency

matrix A sampled from edge probability matrix P in this manner. If each vertex has a

hidden label in [K], they are denoted as z1, ..., zn. λik denotes the popularity parameter

of vertex i to community k. Λ is the n×K matrix of popularity parameters. Finally, we

denote X =
[
x1 | · · · | xn

]>
∈ Rn×d as the matrix corresponding to a collection of n latent

vectors x1, ..., xn ∈ Rd.

2.2 Two Probability Models for Graphs

Definition 1 (Popularity Adjusted Block Model). LetK ≥ 1 be an integer and let Λ ∈ Rn×K

be a matrix with entries in [0, 1]. Let z1, z2, . . . , zn ∈ [K]. A graph G with adjacency matrix

A is said to be a popularity adjusted block model graph with K communities, popularity

vectors Λ, and sparsity parameter ρn ∈ (0, 1] if A ∼ BernoulliGraph(P ) where the edge

probability matrix P has entries Pij, i, j ∈ [n], of the form

Pij = ρnλizj
λjzi

.

Remark 1. In a PABM, each vertex i has K popularity parameters λi1, . . . , λiK , that

describe its affinity toward each of the K communities. Another view of a PABM is as

follows. Let P̃ be the matrix obtained by permuting the rows and columns of P so that

the vertices are reorganized by community memberships zi ∈ {1, 2, . . . , K} in increasing

order. Denote by P̃ (k`) the nk × n` submatrix of P̃ corresponding to the edge probabilities

between vertices in communities k and `. Here nk = |{i : zi = k}| is the number of

vertices assigned to community k, for k = 1, 2 . . . , K. Note that P̃ (k`) = (P̃ (`k))>. Next let
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λ(k`) = {λi` : zi = k} ∈ Rnk ; the elements of λ(k`) are the affinity parameters toward the `th

community of all vertices in the kth community. Define λ(`k) analogously. Then each block

P̃ (k`) can be written as the outer product of two vectors:

P̃ (k`) = ρnλ
(k`)(λ(`k))>. (1)

We will henceforth use the notation A ∼ PABM({λ(k`)}K , ρn) to denote a random adjacency

matrix A drawn from a PABM with K communities, popularity parameters {λ(k`)} and

sparsity parameter ρn.

The sparsity parameter ρn in the definition of the PABM influences the degrees of the

vertices in the sampled graphs A ∼ BernoulliGraph(P ). In particular, for a fixed Λ, the

graphs become sparser as ρn decreases. Note that ρn and Λ are not uniquely identifiable,

i.e., we can scale ρn by a constant c > 0 and scale Λ by c−1/2 without changing the edge

probabilities in P . Thus, for ease of exposition, we shall assume henceforth that (1) Λ is

normalized to have Frobenius norm ‖Λ‖F =
√
n and (2) the `2 norms of the rows of ‖Λ‖

are all bounded away from 0. Under these two assumptions, the sparsity parameter ρn
can now be viewed as controlling the density of A, i.e., the average degree of A grows at

rate nρn and the number of edges grows at rate n2ρn. The choice ρn ≡ 1 and ρn → 0 then

corresponds to the dense graphs regime and semi-sparse graphs regime, respectively.

Definition 2 (Generalized Random Dot Product Graph). Let p ≥ 1 and q ≥ 0 be integers.

Define Ip,q as the block diagonal matrix Ip,q =
[
Ip 0
0 −Iq

]
where Ip and Iq are the identity

matrices of dimensions p× p and q× q respectively. Denote d = p+ q and let X be a subset

of Rd such that, for any x ∈ X and y ∈ X , we have x>Ip,qy ∈ [0, 1]. Let X =
[
x1 | · · · | xn

]>
be a n × d matrix with rows xi ∈ X . A graph G with adjacency matrix A is said to

be a generalized random dot product graph with latent positions X, sparsity parameter

ρn ∈ (0, 1] and signature (p, q) if A ∼ BernoulliGraph(P ) where the edge probability matrix

P is given by P = ρnXIp,qX
>, i.e., the entries of P are of the form Pij = ρnx

>
i Ip,qxj.

We will use the notation A ∼ GRDPGp,q(X; ρn) to denote a random adjacency matrix A

drawn from latent positions X, sparsity parameter ρn and signature (p, q).
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Definition 3 (Indefinite Orthogonal Group). The indefinite orthogonal group with signature

(p, q) is the set {Q ∈ Rd×d : QIp,qQ> = Ip,q}, denoted as O(p, q). Here d = p+ q.

Remark 2. The latent vectors that produce XIp,qX> = P are not unique (Rubin-Delanchy

et al., 2017). More specifically, if Pij = x>i Ip,qxj, then for any Q ∈ O(p, q) we also have

(Qxi)>Ip,q(Qxj) = x>i (Q>Ip,qQ)xj = x>i Ip,qxj = Pij . Unlike in the RDPG case, transforming

the latent positions via multiplication byQ ∈ O(p, q) does not necessarily maintain interpoint

angles or distances.

Remark 3. We can use Adjacency Spectral Embedding (ASE) (Sussman et al., 2012) to

recover the latent vectors of a GRDPG. This procedure consists of taking the spectral

decomposition of A and keeping the p+q largest eigenvalues (in modulus) and corresponding

eigenvectors of A. More specifically, let A be an n× n adjacency matrix and denote the

eigendecomposition of A as

A =
∑
i

λ̂iv̂iv̂
>
i , where |λ̂|1 ≥ |λ̂2| ≥ · · · ≥ |λ̂n|.

Let D̂ be a diagonal matrix whose diagonal entries are the eigenvalues {λ̂i}di=1 arranged in

decreasing values (not in decreasing modulus) and let V̂ be the n× d matrix whose columns

are the corresponding eigenvectors {v̂i}di=1 arranged in the same order as the diagonal

entries of D̂. Now define Ẑ = V̂ |D̂|1/2 where the | · | operation is applied elementwise to the

entries of D̂. Then Ẑ serves as an estimate of X, up to some non-identifiable orthogonal

transformation Q as described in Remark 2 and Definition 3; see Rubin-Delanchy et al.

(2017) for further details.

2.3 The Geometry of PABMs

Now that we defined the PABM and GRDPG, we show the special geometry of the PABM

when viewed as a GRDPG. For ease of exposition, and without loss of generality, we drop

the dependency on the sparsity parameter ρn and assume ρn ≡ 1 throughout this subsection.

Theorem 1 (The latent configuration of the PABM). Let A ∼ PABM({λ(k`)}K) be an

instance of a PABM with K ≥ 1 blocks and latent vectors {λ(k`) : 1 ≤ k ≤ K, 1 ≤ ` ≤ K}.
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Then there exists a block diagonal matrix X ∈ Rn×K2 defined by {λ(k`)} and a K2 × K2

fixed orthonormal matrix U such that A ∼ GRDPGK(K+1)/2,K(K−1)/2(Π̃XU). Here Π̃ is the

permutation matrix such that P = Π̃P̃ Π̃> where the rows and columns of P̃ are arranged

according to increasing values of the community labels (see Remark 1).

Proof. We will prove this theorem in two parts. First, for demonstration purposes, we focus

on the case when K = 2 to build intuition. The general case of K ≥ 2 is presented later.

For the K = 2 case, the proof is straightforward. We will first work with the matrix P̃ .

Note that P̃ has the form

P̃ =

P (11) P (12)

P (21) P (22)

 =

λ(11)(λ(11))> λ(12)(λ(21))>

λ(21)(λ(12))> λ(22)(λ(22))>

 .
Now let

X =

λ(11) λ(12) 0 0

0 0 λ(21) λ(22)

 and U =



1 0 0 0

0 0 1/
√

2 1/
√

2

0 0 1/
√

2 −1/
√

2

0 1 0 0


.

Then by straightforward matrix multiplication, we obtain

XUI3,1U
>X> =

λ(11)(λ(11))> λ(12)(λ(21))>

λ(21)(λ(12))> λ(22)(λ(22))>

 = P̃

and hence P̃ also corresponds to the edge probability matrix of GRDPG with latent vectors

described by XU . As P = Π̃P̃ Π̃> we conclude that P has latent vectors described by Π̃XU .

It is nevertheless instructive to look at a few intermediate steps. More specifically, the

product UI3,1U
> yields a permutation matrix Π with fixed points at positions 1 and 4 and

a cycle of order 2 swapping positions 2 and 3, i.e.,

Π = UI3,1U
> =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


.
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Furthermore, as U is orthonormal and I3,1 is diagonal, UI3,1U
> is also an eigendecomposition

of Π where the fixed points of Π are mapped to the eigenvectors e1 and e4 while the cycles

of order two are mapped to the eigenvectors 1√
2(e2 + e3) and 1√

2(e2− e3); here ei denote the

ith basis vector in R4. Thus, another way of decomposing the edge probability matrix is

P̃ = XΠX> where the rows of X lie in the union of two 2-dimensional orthogonal subspaces

and Π is a permutation matrix.

For the general case, we can extend P̃ = XΠX> to larger K. For a more concrete example

of this, refer to Example 1. We once again consider P̃ as defined in Remark 1. We first

define the following matrices

Λ(k) =
[
λ(k1) | · · · | λ(kK)

]
∈ Rnk×K , X = blockdiag(Λ(1), . . . ,Λ(K)) ∈ Rn×K2

, (2)

L(k) = blockdiag(λ(1k), . . . , λ(Kk)) ∈ Rn×K , Y =
[
L(1) | · · · | L(K)

]
∈ Rn×K2

. (3)

It is then straightforward to verify that

XY > = blockdiag(Λ(1), . . . ,Λ(K))


L>1
...

L>K

 =


Λ(1)(L(1))>

...

Λ(K)(L(K))>

 ,

Λ(k)(L(k))> =
[
λ(k1)(λ(1k))> | · · · | λ(kK)(λ(Kk))>

]
=
[
P (k1) | P (k2) | · · · | P (kK)

]
.

We therefore have P̃ = XY >. Similar to the K = 2 case, we also have Y = XΠ for

some permutation matrix Π and hence P̃ = XΠX>. The permutation described by Π

now has K fixed points, which correspond to K eigenvalues equal to 1 with corresponding

eigenvectors ek where k = r(K + 1) + 1 for 0 ≤ r ≤ K − 1. It also has
(
K
2

)
cycles of order

2. Each cycle corresponds to a pair of eigenvalues {−1,+1} and a pair of eigenvectors

{(es + et)/
√

2, (es − et)/
√

2}.

Let p = K(K + 1)/2 and q = K(K − 1)/2. We therefore have

Π = UIp,qU
> (4)
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where U is a K2 ×K2 orthogonal matrix and hence

P̃ = XUIp,q(XU)>. (5)

In summary we can describe the PABM with K communities as a GRDPG with latent

positions Π̃XU and known signature (p, q) =
(

1
2K(K + 1), 1

2K(K − 1)
)
.

Example 1. Let A be a 3 blocks PABM with latent vectors {λ(k`) : 1 ≤ k ≤ 3, 1 ≤ ` ≤ 3}.

Using the same notation as in Theorem 1, we can define

X =


λ(11) λ(12) λ(13) 0 0 0 0 0 0

0 0 0 λ(21) λ(22) λ(23) 0 0 0

0 0 0 0 0 0 λ(31) λ(32) λ(33)

 ,

Y =


λ(11) 0 0 λ(12) 0 0 λ(13) 0 0

0 λ(21) 0 0 λ(22) 0 0 λ(23) 0

0 0 λ(31) 0 0 λ(32) 0 0 λ(33)

 .

Then Y = XΠ and P̃ = XY > where Π is a 9× 9 permutation matrix of the form

Π =
[
e1 | e4 | e7 | e2 | e5 | e8 | e3 | e6 | e9

]
.

where ei denotes the ith basis vector in R9. The matrix Π corresponds to a permutation of

{1, 2, . . . , 9} with the following decomposition.

1. Positions 1, 5, 9 are fixed.

2. There are three cycles of length 2, namely (2, 4), (3, 7), and (6, 8).

We can thus write Π as Π = UI6,3U
> where the first three columns of U consist of e1, e5, and

e9 corresponding to the fixed points, the next three columns are the eigenvectors (ek+e`)/
√

2,

and the last three columns are the eigenvectors (ek−e`)/
√

2 for (k, `) ∈ {(2, 4), (3, 7), (6, 8)}.

The matrix P̃ is then the edge probabilities matrix for a Generalized Random Dot Product

Graph whose latent positions are the rows of the matrix

XU =


λ(11) 0 0 λ(12)

√
2

λ(13)
√

2 0 λ(12)
√

2
λ(13)
√

2 0

0 λ(22) 0 λ(21)
√

2 0 λ(23)
√

2 −λ(21)
√

2 0 λ(23)
√

2

0 0 λ(33) 0 λ(31)
√

2
λ(32)
√

2 0 −λ(31)
√

2 −λ(32)
√

2
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and the latent positions for P is a permutation of the rows of XU .

3 Algorithms

Two inference objectives arise from the PABM:

1. Community membership identification (up to permutation).

2. Parameter estimation (estimating λ(k`)’s).

In our methods, the data that are observed for estimation is the adjacency matrix, A ∼

PABM({λ(k`)}K , ρn), along with an assumed number of communities, K. To motivate our

methods, we first consider community detection and parameter estimation in the case where

we know the edge probability matrix P beforehand, noting that community memberships

and popularity parameters are not immediately discernible from P itself. After establishing

methods for community detection and parameter estimation from P , we use the consistency

property of the ASE (Sussman et al., 2012; Rubin-Delanchy et al., 2017) to demonstrate

that the same methods work for A almost surely as n→∞.

3.1 Previous Work

Sengupta and Chen (2018) used Modularity Maximization (MM) and the Extreme Points

(EP) algorithm (Le, Levina, and Vershynin, 2016) for community detection and parameter

estimation. They were able to show that as the sample size increases, the proportion of

misclassified community labels (up to permutation) goes to 0.

Noroozi, Rimal, and Pensky (2021) used Sparse Subspace Clustering (SSC) (Elhamifar and

Vidal, 2009) for community detection in the PABM. The SSC algorithm can be described

as follows: Given X ∈ Rn×d with vectors x>i ∈ Rd as rows of X, the optimization problem

ci = arg minc ‖c‖1 subject to xi = X>c and c(i) = 0, where c(i) is the ith entry of c, is solved

for each i ∈ [n]. The solutions are collected into matrix C =
[
c1 | · · · | cn

]>
to construct an

affinity matrix B = |C|+ |C>|. If each xi lies exactly on one of K subspaces, B describes

an undirected graph consisting of at least K disjoint subgraphs, i.e., Bij = 0 if xi, xj lie on
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different subspaces. The intuition here is that vectors that lie on the same subspace can

be described as linear combinations of each other, assuming the number of vectors in the

subspace is greater than the dimensionality of the subspace. Then once sparsity is enforced,

for each ci, its jth element c(j)
i is zero if xj belongs to a subspace that doesn’t contain xi,

resulting in Bij = 0. If X instead represents points near K subspaces with some noise,

then this property may only hold approximately and a final graph partitioning step may be

required (e.g., edge thresholding or spectral clustering).

In practice, due to presence of noise, SSC is often done by solving the LASSO problems

ci = arg min
c

1
2‖xi −X

>
−ic‖2

2 + ϑ‖c‖1 (6)

for some sparsity parameter ϑ > 0. The ci vectors are then collected into C and B as before.

Definition 4 (Subspace Detection Property). Let X =
[
x1 | · · · | xn

]>
be noisy points

sampled from K subspaces, i.e., xi = yi+zi where the yi belongs to the union of K subspaces

and the zi are noise vectors. Let ϑ ≥ 0 be given and let C and B be constructed from the

solutions of LASSO problems as described in Eq. (6) with this given choice of ϑ. Then X is

said to satisfy the subspace detection property with sparsity parameter ϑ if each column of

C has nonzero `2 norm and Bij = 0 whenever yi and yj are from different subspaces.

Remark 4. One common approach to show that SSC works for a noisy sample X is to

show that X satisfies the subspace detection property for some choice of ϑ; recall that ϑ is

the sparsity parameter for the LASSO problems in Eq. (6). However, this is not sufficient

to guarantee that SSC perfectly recovers the underlying subspaces. More specifically, if

X satisfies the subspace detection property, then B describes a graph with at least K

disconnected subgraphs, with the ideal case being that there are exactly K subgraphs

which map onto each subspace. Nevertheless it is also possible that the K subspaces are

represented by K ′ > K multiple disconnected subgraphs and we cannot, at least without a

subsequent post-processing step, recover the K subspaces directly from B; see Nasihatkon

and Hartley (2011) and Liu et al. (2013) for further discussions. Therefore in practice

B is usually treated as an affinity matrix and, as we allude to earlier, the rows of B are

partitioned using some clustering algorithm to obtain the final clustering.
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Theorem 1 suggests that SSC is appropriate for community detection for the PABM,

provided that we observe the edge probabilities matrix P . More precisely, given the matrix

P̃ obtained by permuting the rows and columns of P as described in Remark 1 we can recover

XU up to some non-identifiability indefinite orthogonal transformation Q. Then using

results from Soltanolkotabi and Candés (2012), it can be easily shown that the subspace

detection property holds for XU . Indeed, the columns of XU from different communities

correspond to mutually orthogonal subspaces. This then implies that the subspace detection

property also holds for XUQ for all invertible transformation Q and hence the subspace

detection property also holds for Π̃XUQ for any n× n permutation matrix Π̃.

However, because we do not observe P but rather only the noisy adjacency matrix A ∼

BernoulliGraph(P ), the natural approach then is to perform SSC on the rows of the spectral

embedding of A, since the embedding of P consists of K subspaces (Theorem 1), and so

the embedding of A will lie approximately on the K subspaces. We will show in Theorem 4

that, with probability converging to one as n→∞, the rows of the ASE of A also satisfy

the subspace detection property. Theorem 4 builds upon existing work by Rubin-Delanchy

et al. (2017) who describe the convergence behavior of the ASE of A to that of Π̃XU , and

Wang and Xu (2016) who show the necessary conditions for the subspace detection property

to hold in noisy cases where the points lie near subspaces. Finally we emphasize that while

Noroozi, Rimal, and Pensky (2021) also considered the use of SSC for community recovery

in PABM, they instead applied SSC to the rows of A itself, foregoing the embedding step

altogether. It is however much harder to show that the rows of A satisfy the subspace

detection property and thus, to the best of our knowledge, there is currently no consistency

result regarding the application of SSC to the rows of A.

3.2 Algorithms for Community Detection

We previously stated in Theorem 1 one possible set of latent positions that result in the edge

probability matrix of a PABM, namely P = Π̃(XU)Ip,q(XU)>Π̃> where X is block diagonal

and Π̃ is a permutation matrix. Furthermore, the explicit form of XU represents points in

RK2 such that points within each community lie on K-dimensional orthogonal subspaces,
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i.e. 〈U>xi, U>xj〉 = 0 whenever i and j are in different communities. Thus if we have (or

can estimate) XU directly, then both the community detection and parameter identification

problem are trivial because U is orthonormal and fixed for each value of K. However, direct

identification or estimation of XU is possibly difficult due to the non-identifiability of XU

(see Remark 2) when we are given only P . More specifically, suppose we find a matrix

Y ∈ Rn×K2 such that P = Y Ip,qY
>. Then it is generally the case that Y = Π̃XUQ for some

indefinite orthogonal matrix Q ∈ O(p, q). However since Q is not necessarily an orthogonal

matrix and hence, if yi denote the ith row of Y , then 〈U>xi, U>xj〉 6= 〈yi, yj〉. This prevents

us from transferring the orthogonality property of XU directly to Y .

Nevertheless by using the special geometric structure of X we can circumvent the non-

identifiability of Y and XU by using instead the rows of the matrix V of eigenvectors

(corresponding to the non-zero eigenvalues) of P . In particular V is identifiable up to

orthogonal transformations and furthermore, due to the block diagonal structure of X, the

rows of V also lie on K distinct orthogonal subspaces and hence v>i vj = 0 whenever zi 6= zj .

Theorem 2. Let P = V DV > be the spectral decomposition of the edge probability matrix.

Let B = nV V >. Assume λizi
> 0 for each i ∈ [n], i.e., each vertex’s popularity parameter to

its own community is nonzero. Then Bij = 0 if and only if vertices i and j are in different

communities.

Proof. We first show that V V > = Π̃X(X>X)−1X>Π̃> where X is defined as in Eq. (2).

Indeed, by Theorem 2, P = Π̃XUIp,qU>X>Π̃ for p = K(K + 1)/2 and q = K(K − 1)/2.

The eigendecomposition P = V DV > also yields P = V |D|1/2Ip,q|D|1/2V > where | · |1/2 is

applied entry-wise. Now let Y = Π̃XU and Ỹ = V |D|1/2; note that Y and Ỹ both have full

column ranks. Because P = Y Ip,qY
> = Ỹ Ip,qỸ

>, we have

Y = Ỹ Ip,qỸ
>Y (Y >Y )−1Ip,q.

Let Q = Ip,qỸ
>Y (Y >Y )−1Ip,q and note that Y = Ỹ Q. We then have

Q>Ip,qQ = Ip,q(Y >Y )−1Y >Ỹ Ip,qIp,qIp,qỸ
>Y (Y >Y )−1Ip,q

= Ip,q(Y >Y )−1Y >Y Ip,qY
>Y (Y >Y )−1Ip,q = Ip,q
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and hence Q is an indefinite orthogonal matrix.

Let R = UQ|D|−1/2 and note that V = Π̃XR. Because R is invertible, we can write

Π̃X(X>X)−1X>Π̃> = Π̃XR(R>X>XR)−1R>X>Π̃>.

Furthermore, as V has orthonormal columns, R>X>XR = V >Π̃Π̃>V = V >V = I. We

thus conclude

Π̃X(X>X)−1X>Π̃> = V (V >V )−1V > = V V >

as desired.

To complete the proof of Theorem 2, recall that X is block diagonal with each block

corresponding to one community, and hence X(X>X)−1X> is also a block diagonal matrix

with each block corresponding to a community. As B = nV V > = nΠ̃X(X>X)−1X>Π̃>, we

conclude that Bij = 0 whenever vertices i and j belong to different communities.

Theorem 2 provides perfect community detection from P . More specifically, let |B| be the

affinity matrix for graph G′, where | · | is applied entry-wise. Then G′ consists of exactly

K disjoint subgraphs, as G′ has no edges between communities. All that is left to identify

the communities is to assign each subgraph a distinct community label. In practice, we

do not observe P and instead only observe the noisy A ∼ BernoulliGraph(P ). A natural

approach is then to use the affinity matrix B̂ = nV̂ V̂ > where V̂ is the matrix of eigenvectors

(corresponding to the largest eigenvalues in modulus) of A. The resulting procedure, named

Orthogonal Spectral Clustering, is presented in Algorithm 1. The following result leverages

existing theoretical properties of ASE for estimating of latent positions in a GRDPG

(Rubin-Delanchy et al., 2017) to show that B̂ converges almost surely to B; in particular

B̂ij
a.s.→ 0 for each pair (i, j) in different communities.

Theorem 3. Assume the setting of Theorem 2. Let B̂ with entries B̂ij be the affinity matrix

obtained from OSC as described in Algorithm 1. Then for nρn = ω(log4 n), we have

max
i,j
|B̂ij −Bij| = O

( log n
√
nρn

)
(7)
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Algorithm 1: Orthogonal Spectral Clustering.
Data: Adjacency matrix A, number of communities K

Result: Community assignments 1, ..., K

1 Compute the eigenvectors of A that correspond to the K(K + 1)/2 most positive

eigenvalues and K(K − 1)/2 most negative eigenvalues. Construct V using these

eigenvectors as its columns.

2 Compute B = |nV V >|, applying | · | entry-wise.

3 Construct graph G using B as its similarity matrix.

4 Partition G into K disconnected subgraphs (e.g., using edge thresholding or spectral

clustering).

5 Map each partition to the community labels 1, ..., K.

with high probability. In particular B̂ij −Bij
a.s.→ 0 where the convergence is uniform over all

i, j. Hence for all pairs (i, j) in different communities we have B̂ij
a.s.→ 0, while for all pairs

(i, j) in the same community, lim infn→∞ |B̂ij| > 0 almost surely.

Theorem 3 guarantees that for any ε > 0, the number of edges of B̂ between vertices of

different communities that are larger than ε converges to zero with probability converging

to one as n increases. We can always find an ε > 0 such that B̂ij > ε with probability

converging to one as n increases. Thus, by using B̂, we can perfectly recover all the

latent community assignments z1, z2, . . . , zn, i.e., the number of misclustered vertices is zero

asymptotically almost surely. We note that Theorem 3 is stronger than existing results

in the literature; in particular Theorem 1 of Sengupta and Chen (2018) (the paper that

originally introduces the PABM model) only guarantees that the proportion of misclustered

vertices converges to 0 as n→∞. Furthermore Theorem 1 of Sengupta and Chen (2018)

also requires the sparsity parameter ρn to satisfies nρ2
n = ω(log2 n) which is a considerably

stronger assumption than the assumption nρn = ω(log4 n) used in Theorem 3. Indeed,

nρ2
n = ω(log2 n) implies nρn = ω(n1/2). We emphasize that the assumption nρn = ω(logc n)

for some constant c > 1 is commonly used in the context of graph estimation using spectral

methods.
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Algorithm 2: Sparse Subspace Clustering using LASSO.
Data: Adjacency matrix A, number of communities K, hyperparameter λ

Result: Community assignments 1, ..., K

1 Find V , the matrix of eigenvectors of A corresponding to the K(K + 1)/2 most positive

and the K(K − 1)/2 most negative eigenvalues.

2 Normalize V ←
√
nV .

3 for i = 1, ..., n do

4 Assign v>i as the ith row of V . Assign V−i =
[
v1 | · · · | vi−1 | vi+1 | · · · | vn

]>
.

5 Solve the LASSO problem ci = arg minβ 1
2‖vi − V−iβ‖

2
2 + λ‖β‖1.

6 Assign c̃i = (c(1)
i , . . . , c

(i−1)
i , 0, c(i)

i , . . . , c
(n−1)
i )> such that the superscript is the index

of c̃i.

7 end

8 Assign C =
[
c̃1 | · · · | c̃n

]
.

9 Compute the affinity matrix B = |C|+ |C>|.

10 Construct graph G using B as its similarity matrix.

11 Partition G into K disconnected subgraphs (e.g., using edge thresholding or spectral

clustering).

12 Map each partition to the community labels 1, ..., K.

Theorems 1, 2, and 3 also provide a natural path toward using SSC for community detection.

In particular we established in Theorem 1 that an ASE of the edge probability matrix P

can be constructed from a latent vector configuration consisting of orthogonal subspaces.

Theorem 2 shows how this property can also be recovered from the eigenvectors of P . Then

Theorem 3 shows that, by replacing P with A, the rows of V̂ also lie on asymptotically

orthogonal subspaces. Motivated by Theorem 3, Theorem 4 below shows that the subspace

detection property also holds for the rows of
√
nV̂ .

Theorem 4. Let P describe the edge probability matrix of the PABM with n vertices, and

let A ∼ Bernoulli(P ). Let V̂ be the matrix of eigenvectors of A corresponding to the K2

largest eigenvalues in modulus. Then for any ε > 0 there exists a choice of ϑ > 0 and N ∈ N
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Algorithm 3: PABM parameter estimation.
Data: Adjacency matrix A, community assignments 1, ..., K

Result: PABM parameter estimates {λ̂(k`)}K .

1 Arrange the rows and columns of A by community such that each A(k`) block consists of

estimated edge probabilities between communities k and l.

2 for k, ` = 1, ..., K, k ≤ ` do

3 Compute A(k`) = UΣV >, the SVD of the k`-th block.

4 Assign u(k`) and v(k`) as the first columns of U and V . Assign (σ(k`))2 ← Σ11.

5 Assign λ̂(k`) ← ±σ(k`)u(k`) and λ̂(`k) ← ±σ(k`)v(k`).

6 end

such that for all n ≥ N ,
√
nV̂ obeys the subspace detection property with probability at least

1− ε.

3.3 Algorithm for Parameter Estimation

For ease of exposition we now assume in this subsection that the edge probability matrix P

for the PABM had been arranged so that the rows and columns are organized by community

so that P̃ = P (see Remark 1). Then the k`th block is an outer product of two vectors, i.e.,

P (k`) = λ(k`)(λ(`k))>. Therefore, given P (k`), λ(k`) and λ(`k) are solvable up to multiplicative

constant using singular value decomposition. More specifically let P (k`) = (σ(k`))2u(k`)(v(k`))>

be the singular value decomposition of P (k`) where u(k`) ∈ Rnk and v(k`) ∈ Rn` are vectors

and σ(k`) is a scalar. Then ρ1/2
n λ(k`) = s1u

(k`) and ρ1/2
n λ(`k) = s2v

(k`) for unidentifiable

s1s2 = (σ(k`))2. Because each λ(k`) is not strictly identifiable, we instead estimate each

λ̃(k`) = σ(k`)u(k`). Given the adjacency matrix A instead of edge probability matrix P , we

can simply use plug-in estimators by taking the SVD of each A(k`) to obtain λ̂(k`) = σ̂(k`)û(k`)

using the largest singular value of A and its corresponding singular vectors.

Theorem 5. Let each λ̃(k`) be the popularity vector derived from its corresponding P (k`)
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and let λ̂(k`) be its estimate obtained from A(k`) using Algorithm 3. Then if nρn = ω(log4 n),

max
k,`∈{1,...,K}

‖λ̂(k`) − λ̃(k`)‖∞ = O

(
log nk√
nk

)
(8)

with high probability. Here ‖ · ‖∞ denotes the `∞ norm of a vector. Let Λ̂ be the matrix

Λ̂ =



λ̂(11) λ̂(12) · · · λ̂(1K)

λ̂(21) λ̂(22) · · · λ̂(2K)

... ... · · · ...

λ̂(K1) λ̂(K2) · · · λ̂(KK)


and let P̂ = X̂UIp,qU

>X̂> where X̂ is defined from Λ̂ and U is defined from K as in

Theorem 1. Eq. (8) then implies

1
n
‖ρ−1

n P̂ − ρ−1
n P‖F = O((nρn)−1/2), max

ij
|ρ−1
n P̂ij − ρ−1

n Pij| = O((nρn)−1/2) (9)

with high probability.

Eq. (8) guarantees that n−1/2‖ρ−1/2
n Λ̂− Λ‖F = O((nρn)−1/2). Eq. (9) then guarantees that

the mean square error for ρ−1
n (P̂ − P ) converges to 0 almost surely and furthermore the

entries of ρ−1
n P̂ converge uniformly to the entries of ρ−1

n P ; recall that ρ−1
n Pij = λizj

λjzi
. We

note that these results are stronger than existing results in Sengupta and Chen (2018); for

example Theorem 2 in Sengupta and Chen (2018) only guarantees n−1/2‖ρ−1/2
n Λ̂−Λ‖F = o(1)

as n→∞.

4 Simulation Study

For each simulation, community labels are drawn from a multinomial distribution, the

popularity vectors {λ(k`)}K are drawn from two types of joint distributions depending

on whether k = ` or k 6= `. The edge probability matrix P is constructed using the

popularity vectors and finally the adjacency matrix A is drawn A ∼ Bernoulli(P ). OSC

(Algorithm 1) is then used for community detection, and this method is compared against

(1) SSC using the spectral embedding V̂ (Algorithm 2), (2) SSC using the rows of the
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observed adjacency matrix A as is done in Noroozi, Rimal, and Pensky (2021) and (3)

modularity maximization (MM) as is done in Sengupta and Chen (2018). We denote the

two SSC implementations using the rows of A and using the spectral embedding of A as

SSC-A and SSC-ASE, respectively. The parameters ϑ that controls the sparsity for SSC-A

and SSC-ASE were chosen via a preliminary cross-validation experiment. In practice, ϑ that

guarantee SDP (if it is possible for the particular simulated data) often result in more than

K disconnected subgraphs, so a smaller ϑ that does not guarantee SDP was chosen, and

the final clustering step of SSC-A and SSC-ASE was done by fitting a Gaussian Mixture

Model to the normalized Laplacian eigenmap embeddings (Belkin and Niyogi, 2003) of the

affinity matrix B. We also estimate the latent popularity vectors {λ(k`)} by assuming that

the true community labels are known and then apply Algorithm 3, and we compare this

estimation method against an MLE-based estimator as described in Noroozi, Rimal, and

Pensky (2021) and Sengupta and Chen (2018).

Modularity Maximization is NP-hard, so Sengupta and Chen (2018) used the Extreme Points

(EP) algorithm (Le, Levina, and Vershynin, 2016) as a greedy relaxation of the optimization

problem; the EP algorithm has a running time of O(nK−1) where n is the number of

vertices in the graph and K is the number of communities. For these simulations we instead

replace the EP algorithm with the Louvain algorithm for modularity maximization, as the

implementation of the EP algorithm in Sengupta and Chen (2018) is too computationally

expensive for K > 2. For K = 2, it was verified that the Louvain algorithm produces

comparable results to EP-MM.

For comparing methods, we define the community detection error as:

Lc(σ̂, σ;V ) = min
π

∑
i

I(π ◦ σ̂(vi) = σ(vi))

where σ(vi) is the true community label of vertex vi, σ̂(vi) is the predicted label of vi, and

π is a permutation operator. This is effectively the “misclustering count” of clustering

function σ̂.

For parameter estimation, because the popularity parameters {λik} are unidentifiable, we

instead estimate the edge probabilities Pij = λizj
λjzi

via the quantities P̂ij = λ̂izj
λ̂jzi

. The
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parameter estimation error is then given by the normalized Frobenius norm of P divided by

the number of vertices, i.e.,

RMSE(P̂ , P ) = 1
n
‖P̂ − P‖F .

We also note that unlike the MLE-based method (Sengupta and Chen, 2018), the ASE

method in Algorithm 3 can be trivially modified so as to not require the community labels

if we are only interested in estimating P . More specifically we first compute the ASE Ẑ of

A (see Remark 3) and then compute P̂ = ẐIp,qẐ
>. The resulting estimate P̂ will have the

same convergence rate as that given in Eq. (9).

4.1 Balanced Communities

In each simulation, community labels z1, ..., zn were drawn from a multinomial distribution

with mixture parameters {α1, ..., αK}, then {λ(k`)}K according to the drawn community

labels, P was constructed using the drawn {λ(k`)}K , and A was drawn from P .

For these examples, we set the following parameters:

• Number of vertices n = 128, 256, 512, 1024, 2048, 4096

• Number of underlying communities K = 2, 3, 4

• Mixture parameters αk = 1/K for k = 1, ..., K, (i.e., each community label has an

equal probability of being drawn)

• Community labels zk iid∼ Multinomial(α1, ..., αK)

• Within-group popularities λ(kk) iid∼ Beta(2, 1)

• Between-group popularities λ(k`) iid∼ Beta(1, 2) for k 6= `

Fifty simulations were performed for each combination of n andK. The results for community

recovery and parameter estimations are presented in Fig. 1 and Fig. 2, respectively.

Fig. 1 shows that OSC recovers the community perfectly as n increases, i.e., the number

of mislabeled vertices goes to 0. The performance of SSC-ASE is comparable to OSC for

K ≥ 3 but is noticeably worse when K = 2. Similarly, SSC on both the embedding and on

the adjacency matrix produces similar trends for K > 2. The difference in performance
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Figure 1: Median and IQR of community detection error. Communities are approximately

balanced. Simulations were repeated 50 times for each sample size.

between SSC-A and SSC-ASE for K = 2 can be attributed to the final spectral clustering

step of the affinity matrix. While the subspace detection property is guaranteed for large n,

in our simulations, setting the sparsity parameter ϑ to the required value usually resulted

in more than K disconnected subgraphs in the affinity matrix B̂. We instead chose a

smaller sparsity parameter, necessitating a final clustering step. A GMM was fit to the

normalized Laplacian eigenmap of B̂, but visual inspection suggests that the communities

are not distributed as a mixture of Gaussians in the eigenmap. A different choice of mixture

distribution may result in better performance.

Given ground truth community labels, Fig. 2 shows that Algorithm 3 and the MLE-based

plug-in estimators perform comparably, with root mean square error decaying at rate

approximately n−1/2 as n increases.

4.2 Imbalanced Communities

Simulations performed in this section are the same as those in the previous section with the

exception of the mixture parameters {α1, ..., αK} used to draw community labels from the

multinomial distribution. For these examples, we set the following parameters:
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Figure 2: Median and IQR RMSE for edge probability matrices reconstructed from the

outputs of Algorithm 3 (red) compared against outputs of an MLE-based method (blue)

proposed in Sengupta and Chen (2018). Simulations were repeated 50 times for each sample

size. Communities were drawn to be approximately balanced.

• Number of vertices n = 128, 256, 512, 1024, 2048, 4096

• Number of underlying communities K = 2, 3, 4

• Mixture parameters αk = k−1∑K

`=1 `
−1 for k = 1, ..., K

• Community labels zk iid∼ Multinomial(α1, ..., αK)

• Within-group popularities λ(kk) iid∼ Beta(2, 1)

• Between-group popularities λ(k`) iid∼ Beta(1, 2) for k 6= `

Fifty simulations were performed for each combination of n andK. The results for community

recovery and parameter estimations are presented in Fig. 3 and Fig. 4, respectively.

From Fig. 3 we once again see that the number of mislabeled vertices trending to 0 for

OSC. The performance of SSC-ASE is comparable to that of OSC for K > 2 but is worse

when K = 2. Fig. 4 indicates that the parameter estimation error also decays at rate n−1/2

similar to that in the balanced communities setting.
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Figure 3: Median and IQR of community detection error. Communities are imbalanced.

Simulations were repeated 50 times for each sample size.
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Figure 4: Median and IQR RMSE of edge probabilities derived from the outputs of Algorithm

3 (red) compared against an MLE-based method (blue) described in Sengupta and Chen,

2018. Simulations were repeated 50 times for each sample size. Communities were drawn to

be imbalanced.
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4.3 Disassortative Models

Rubin-Delanchy et al. (2017) demonstrated the power of applying GRDPG-based approaches

to disassortative block models. Likewise, demonstrate that GRDPG-based algorithms OSC

and SSC-ASE perform well on disassortative PABMs. Simulations performed in this section

are the same as those in Section 4.1 with the exception of the distributions from which within

and between-group popularity parameters are drawn. Here, we draw these parameters such

that the expected value is 1/3 for the within-group popularity parameters and 2/3 for the

between-group popularity parameters:

• Number of vertices n = 128, 256, 512, 1024, 2048, 4096

• Number of underlying communities K = 2, 3, 4

• Mixture parameters αk = k−1∑K

`=1 `
−1 for k = 1, ..., K

• Community labels zk iid∼ Multinomial(α1, ..., αK)

• Within-group popularities λ(kk) iid∼ Beta(1, 2)

• Between-group popularities λ(k`) iid∼ Beta(2, 1) for k 6= `

OSC, SSC-ASE, and SSC-A perform similarly on disassortative PABMs compared to the

simulations in Sections 4.1 and 4.2. (Fig. 5 and 6).

Remark 5. While we call the models in this section “disassortative”, it is our view that

the assortative/disassortative distinction is not applicable to PABMs due to its flexibility.

Unlike the SBM and DCBM, in the PABM, each vertex is free to have a higher affinity to its

own community or to other communities, independent of each other. In other words, within

the same community, vi may have a larger popularity parameter to its own community

whereas vj may have a larger popularity parameter to a different community. Furthermore,

when viewed as GRDPGs, the assortativity or disassortativity of SBMs and DCBMs affects

whether P is positive semidefinite, which affects ASE-based approaches to analyzing the

graph (Rubin-Delanchy et al., 2017), but in the full rank PABM, P is never positive

semidefinite and will always have K(K+ 1)/2 positive eigenvalues and K(K− 1)/2 negative

eigenvalues.
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Figure 5: Median and IQR of community detection error. Communities are approximately

balanced. Edge probabilities were drawn to be disassortative. Simulations were repeated 50

times for each sample size.
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Figure 6: Median and IQR RMSE of edge probabilities derived from the outputs of Algorithm

3 (red) compared against an MLE-based method (blue) described in Sengupta and Chen,

2018. Simulations were repeated 50 times for each sample size. Communities were drawn to

be approximately balanced. Edge probabilities were drawn to be disassortative.
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5 Applications

In the first example, we applied OSC (Algorithm 1) to the Leeds Butterfly dataset (Wang

et al., 2018) consisting of visual similarity measurements among 832 butterflies across 10

species. The graph was modified to match the example from Noroozi, Rimal, and Pensky

(2021): Only the K = 4 most frequent species were considered, and the similarities were

discretized to {0, 1} via thresholding. Fig. 7 shows a sorted adjacency matrix sorted by the

resultant clustering.

Comparing against the ground truth species labels, Noroozi, Rimal, and Pensky (2021)

report that SSC on the adjacency matrix achieves an adjusted Rand index of 73% in their

implementation, whereas OSC achieves 92% and SSC on the ASE achieves 96%.

Figure 7: Adjacency matrix of the Leeds Butterfly dataset after sorting by the clustering

outputted by OSC.

In the second example, we applied OSC to the British MPs Twitter network (Greene and

Cunningham, 2013), the Political Blogs network (Adamic and Glance, 2005), and the

DBLP network (Gao et al., 2009; Ji et al., 2010). For this data analysis, we subsetted the

data as described in Sengupta and Chen (2018) for their analysis of the same networks.

Our methods slightly underperformed compared to modularity maximization, although

performance is comparable. The run time of OSC is however much smaller than that of

modularity maximization.
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Network MM SSC-ASE OSC

British MPs 0.003 0.012 0.006

Political Blogs 0.050 0.187 0.062

DBLP 0.028 0.072 0.059

Table 1: Community detection error rates on the British MPs Twitter, Political Blogs, and

DBLP networks using modularity maximization, sparse subspace clustering, and OSC.

Figure 8: Adjacency matrices of (from left to right) the British MPs, Political Blogs, and

DBLP networks after sorting by the clustering outputted by OSC.

In the third example (Fig. 9 and Table 2), we analyzed the Karantaka villages data studied

by Banerjee et al. (2013). We chose the visitgo networks from villages 12, 31, and 46

at the household level. In these networks, each node is a household and each edge is an

interaction between members of pairs of households. The label of interest is the religious

affiliation. The networks were truncated to religions “1” and “2”, and vertices of degree 0

were removed. The villages were chosen based on there being an adequate number of nodes

between households within each religion.

6 Discussion

Our central result states that the Popularity Adjusted Block Model is a special case of the

Generalized Random Dot Product Graph. In particular, the PABM with K communities is a

GRDPG for which the communities are represented by mutually orthogonal K-dimensional
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Figure 9: Adjacency matrix of the Karnataka villages data, arranged by the clustering

produced by OSC (left). The villages studied here are, from left to right, 12, 31, and 46.

Network MM SSC-ASE OSC

Village 12 0.270 0.291 0.227

Village 31 0.125 0.059 0.051

Village 46 0.052 0.069 0.056

Table 2: Community detection error rates for identifying household religion.

subspaces of the K2-dimensional latent space. This result extends previous results that

connected the Stochastic Block Model and the Degree Corrected Block Model to Random

Dot Product Graphs. Replacing RDPGs with GRDPGs is a critical step in this line of

research, as a PABM is not necessarily a RDPG.

Because all Bernoulli Graphs are GRDPGs, it should be possible to invent and study

new families of Bernoulli Graphs by characterizing them as special cases of GRDPGs and

exploiting the latent structures that define them. The present work illustrates the power

of this approach. We recover the latent structure of the PABM by Adjacency Spectral

Embedding, then exploit that structure to improve statistical inference. Exploiting the fact

that PABM communities correspond to orthogonal subspaces, we propose Orthogonal Spec-

tral Clustering for community detection and demonstrate that the number of misclassified

vertices approaches zero with high probability as the size of the graph increases. This is a

stronger result than previously proposed algorithms (Sengupta and Chen, 2018), which only

guarantee that the error rate (and not count) approaches zero asymptotically. Parameter
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estimation can be performed in a similar fashion using the ASE, for which we also prove

that the per-parameter error approaches zero asymptotically.

A secondary benefit of the GRDPG approach is that the latent structure may be used to

improve existing algorithms. For example, one algorithm for PABM community detection

(Noroozi, Rimal, and Pensky, 2021) relies on Sparse Subspace Clustering. The latent

structure of the PABM provides a natural justification for SSC for the PABM and leads to

an improvement over the previous implementation. The improved algorithm applies SSC to

the ASE, and we prove that the ASE of the PABM obeys the Subspace Detection Property

with high probability if the graph is large.

Finally, one might well inquire what one gains and what one sacrifices by assuming that

a Bernoulli Graph is a PABM. The GRDPG model offers a plausible way to pursue this

inquiry. Absent a known latent structure that can be exploited by specialized methods, the

GRDPG-ASE approach transforms the problem of network community detection to the

much-studied problem of clustering vectors in Euclidean space. Communities of vertices

are defined as clusters of latent vectors. After ASE, a standard clustering algorithm, e.g.,

single linkage, is used to infer the communities. In future research, we intend to use such

general algorithms as baselines and measure the efficiency of the PABM algorithms (and

other specialized algorithms) by studying how much they improve on general algorithms

when the specified latent structure obtains.

A Proofs of Theorem 3, Theorem 4, and Theorem 5

Let Vn and V̂n be the n × K2 matrices whose columns are the eigenvectors of P and A

corresponding to the K2 largest eigenvalues (in modulus), respectively. We first state an

important technical lemma for bounding the maximum `2 norm difference between the

rows of V̂n and Vn. See Cape, Tang, and Priebe (2019) and Rubin-Delanchy et al. (2017,

Lemma 5) for a proof.

Lemma 1. Let A ∼ PABM({λ(k``)}K) be a K-blocks PABM graph on n vertices and let V

and V̂ be the n×K2 matrices whose columns are the eigenvectors of P and A corresponding
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to the K2 largest eigenvalues in modulus, respectively. Let v>i and v̂>i denote the ith row

of V and V̂ , respectively. Then there exists a constant c > 1 and an orthogonal matrix W

such that with high probability,

max
i
‖Wv̂i − vi‖ = O

( logc n
n
√
ρn

)
.

In particular we can take c = 1 + ε for any ε > 0.

Proof of Theorem 3. Recall the notations in Lemma 1 and note that, under our assumption

that the latent vectors λ(k`) are all homogeneous, we have maxi ‖vi‖ = O(n−1/2).

Next recall Theorem 2; in particular Bij = nv>i vj. We therefore have

max
ij
|B̂ij −Bij| = max

ij
n|v̂>i v̂j − v>i vj|

≤ nmax
ij
|v̂>i WW>v̂j − v>i vj|

≤ nmax
i,j

(
‖W>v̂i − vi‖ × ‖v̂j‖+ ‖W>v̂j − vj‖ × ‖vi‖

)
≤ n

(
max
ij
‖Wv̂i − vi‖2 + ‖Wv̂i − vi‖ × ‖vj‖+ ‖Wv̂j − vj‖ × ‖vi‖

)
≤ nmax

i
‖Wv̂i − vi‖2 + 2nmax

i
‖Wv̂i − vi‖ ×max

j
‖vj‖

= O
( logc n
n1/2ρ

1/2
n

)
with high probability. Theorem 3 follows from the above bound together with the conclusion

in Theorem 2 that Bij = 0 whenever vertices i and j belongs to different communities.

We now provide a proof of Theorem 4. Our proof is based on verifying the sufficient

conditions given in Theorem 6 of Wang and Xu (2016) under which sparse subspace

clustering based on solving the optimization problem in Eq. (6) yields an affinity matrix

B = |C|+ |C>| satisfying the subspace detection property of Definition 4. We first recall

a few definitions used in Soltanolkotabi and Candés (2012) and Wang and Xu (2016); for

ease of exposition, these definitions are stated using the notations of the current paper and

we will drop the explicit dependency on n from our eigenvectors V̂ of A and V of P .

Definition 5 (Inradius). The inradius of a convex body P , denoted by r(P), is defined as

the radius of the largest Euclidean ball inscribed in P . Let X be a n× d matrix with rows

30



x1, x2, . . . , xn. We then define, with a slight abuse of notation, r(X) as the inradius of the

convex hull formed by {±x1,±x2, . . . ,±xn}.

Definition 6 (Subspace incoherence). Let V̂ be the eigenvectors of A corresponding to the

K2 largest eigenvalues in modulus. Let V̂ (k) denote the matrix formed by keeping only the

rows of V̂ corresponding to the kth community and let V̂ (−k) denote the matrix formed by

omitting the rows of V̂ corresponding to the kth community. Let (v̂(k)
i )> denote the ith row

of V̂ (k) and V̂ (k)
−i be V̂ (k) with the ith row omitted. Let V , V (k), V (−k), and v(k)

i be defined

similarly using the eigenvectors V of P . Finally let S(k) be the vector space spanned by the

rows of V (k).

Now define ν(k)
i for k = 1, 2, . . . , K and i = 1, 2, . . . , nk as the solution of the following

optimization problem

ν
(k)
i = max

η
(v̂(k)
i )>η − 1

2λη
>η, subject to ‖V (k)

−i η‖∞ ≤ 1.

Given ν(k)
i , let PS(k)(ν(k)

i ) be the vector in RK2 corresponding to the orthogonal projection

of ν(k)
i onto the vector space S(k) and define the projected dual direction w(k)

i as

w
(k)
i = PS(k)(ν(k)

i )
‖PS(k)(ν(k)

i )‖
.

Now let W (k) =
[
w

(k)
1 | · · · | w(k)

nk

]>
and define the subspace incoherence for V̂ (k) by

µ(k) = µ(V̂ (k)) = max
v∈V (−k)

‖W (k)v‖∞.

With the above definitions in place, we are now ready to state our proof of Theorem 4.

Proof of Theorem 4. For a given k = 1, 2 . . . , K, let r(k) = mini r(V (k)
−i ) be inradius of the

convex hull formed by the rows of V (k)
−i and let r∗ = mink r(k). Then Theorem 6 in Wang and

Xu (2016) states that there exists a λ > 0 such that
√
nV̂ satisfies the subspace detection

property in Definition 4 whenever the following two conditions are satisfied

µ(k) < r(k) for all k = 1, 2, . . . , K, (10)

max
i
‖Wv̂i − vi‖ ≤ min

k

r∗(r(k) − µ(k))
2 + 7r(k) . (11)
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We now verify that for sufficiently large n, Eq. (10) and Eq. (11) holds with high probability.

Verifying Eq. (10). If n is sufficiently large then there are enough vertices in each

community k so that span(V (k)
−i ) = S(k) for all i and hence r(k) = mini r(V (k)

−i ) > 0 for all

k = 1, 2, . . . , K.

Next, by Theorem 2 we have that the subspaces {S(1), . . . ,S(K)} are mutually orthogonal,

i.e., v>w = 0 for all v ∈ S(k) and w ∈ S(`) with k 6= `. Now let z ∈ RK2 be arbitrary and

let z̃ = PS(k)z be the projection of z onto S(k). We then have v>z̃ = 0 for all v ∈ V (−k).

Because z is arbitrary, this implies ‖W (k)v‖∞ = 0 for all v ∈ V (−k) and hence µ(k) = 0 for

all k = 1, 2, . . . , K. Therefore µ(k) < r(k) for all k = 1 = 2, . . . , K as desired.

Verifying Eq. (11). Let δ = maxi
√
n‖Wv̂i − vi‖. Then from Lemma 1, we have δ a.s.→ 0

and hence

δ < min
k

r∗(r(k) − µ(k))
2 + 7r(k)

asymptotically almost surely.

In summary
√
nV̂ satisfies the subspace detection property with probability converging to 1

as n→∞.

Remark 6. Theorem 6 of Wang and Xu (2016) assumes that each row vi of V has unit

norm, i.e., ‖vi‖ = 1 for all i. This assumption has the effect of scaling the r(k) so that

r(k) ≤ 1 for all k = 1, 2, . . . , K. We emphasize that this assumption has no effect on the

proof of Theorem 4. Indeed, because µ(k) = 0 for all k, as long as the rows of V (k) spans

the subspace S(k), then ar(k) > µ(k) for any scalar a > 0.

Proof of Theorem 5. Let P be organized by community such that P (k`) denote the nk × n`
matrix obtained by keeping only the rows of P corresponding to vertices in community k

and the columns of P corresponding to vertices in community `. We define A(k`) analogously.

Recall that P (k`) = λ(k`)(λ(`k))> for all k, `. We now consider estimation of P (k`) for the

cases when k = ` versus when k 6= `.

Case k = l. Let P (kk) = σ2
kku

(kk)(u(kk))> be the singular value decomposition of P (kk).

32



We can then define λ̃(kk) = σkku
(kk). Now let Û (kk)Σ̂(kk)(Û (kk))> be the singular value

decomposition of A(kk), and let σ̂2
kkû

(kk)(û(kk))> be the best rank-one approximation of A(kk).

Define λ̂(kk) = σ̂kkû
(kk). Then λ̂(kk) is the adjacency spectral embedding approximation of

λ(kk) and by Theorem 5 of Rubin-Delanchy et al. (2017), we have

‖λ̂(kk) − λ(kk)‖∞ = O
( log nk√

nk

)

with high probability. Here ‖ · ‖∞ denote the `∞ norm of a vector.

Case k 6= l. Let P (k`) = σ2
k`u

(k`)(v(k`))> and P (`k) = σ2
klu

(`k)(v(`k))> be the singular value

decompositions and note that σk` = σ`k, u(k`) = v(`k), and v(k`) = u(`k). Now define

λ(k`) = σk`u
(k`) and λ(`k) = σk`v

(k`).

Next consider the Hermitian dilation

M (k`) = 2

 0 P (k`)

P (`k) 0


which is a symmetric (nk + n`)× (nk + n`) matrix. The eigendecomposition of M (k`) is then

M (k`) =

u(k`) −u(k`)

v(k`) v(k`)

×
σ2

kl 0

0 −σ2
kl

×
u(k`) −u(k`)

v(k`) v(k`)


>

Thus treating M (k`) as the edge probability matrix of a GRDPG, we have latent positions

in R2 given by the (nk + n`)× 2 matrix

Λ(k`) =

σk`u(k`) σk`u
(k`)

σk`v
(k`) −σk`v(k`)

 =

λ(k`) λ(k`)

λ(`k) −λ(`k)

 .
Now consider

M̂ (k`) =

 0 A(k`)

A(`k) 0


We can then view M̂ (k`) as an adjacency matrix drawn from the edge probabilities matrix

M (k`). Now suppose that the adjacency spectral embedding of M̂ (k`) is represented as the
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(nk + n`)× 2 matrix

Λ̂(k`) =

λ̂(k`) λ̂(k`)

λ̂(`k) −λ̂(`k)


where each λ̂(k`) is defined as in Algorithm 3. Then by Theorem 5 of Rubin-Delanchy

et al. (2017), there exists an indefinite orthogonal transformation W ∗ such that, with high

probability,

max
i
|W ∗Λ̂(k`)

i − Λ(k`)
i ‖ = O

( log(nk + n`)√
nk + n`

)
with high probability. Here Λ(k`)

i and Λ̂(k`)
i denote the ith rows of Λ(k`) and Λ̂(k`), respectively.

Furthermore, by looking at the proof of Theorem 5 in (Rubin-Delanchy et al., 2017), we

see that W ∗ is also blocks diagonal with 2 blocks where the positive eigenvalues of M (k`)

forming a block and the negative eigenvalues of M (k`) forming the remaining block. Because

M (k`) has one positive eigenvalue and one negative eigenvalue, we see that W ∗ is necessarily

of the form W ∗ =
[

1 0
0 −1

]
Using this form for W ∗, we obtain

max{‖λ̂(k`) − λ(k`)‖∞, ‖λ̂(`k) − λ(`k)‖∞} = O
( log(nk + n`)√

nk + n`

)

with high probability. Combining this bound with the bound for ‖λ̂(kk) − λ(kk)‖∞ given

above yields Eq. (8) in Theorem 5.
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SUPPLEMENTAL MATERIALS

Source files: The source files used to compile this document can be found in summary.zip.

Data: The data used in section 5 can be found in data.zip.

Code: The code for simulations and data anlyses can be found in code-and-results.zip. This

file also includes the simulation results in csv format (please note that the simulations
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can take a long time to complete). The code for data analyses requires the files found

in data.zip. All of these files can also be found at

https://github.com/johneverettkoo/pabm-grdpg.

Sparsity: Additional supplemental materials regarding simulations for the effect of the

sparsity parameter can be found in sparsity-sim.zip.
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