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Abstract

Deep neural networks (DNN) have been demonstrated to achieve unparalleled
prediction accuracy in a wide range of applications. Despite its strong performance,
in certain areas, the usage of DNN has met resistance because of its black-box na-
ture. In this paper, we propose a new method to estimate a mixture of linear models
(MLM) for regression or classification that is relatively easy to interpret. We use
DNN as a proxy of the optimal prediction function such that MLM can be effectively
estimated. We propose visualization methods and quantitative approaches to inter-
pret the predictor by MLM. Experiments show that the new method allows us to
trade-off interpretability and accuracy. The MLM estimated under the guidance of a
trained DNN fills the gap between a highly explainable linear statistical model and
a highly accurate but difficult to interpret predictor.

Keywords: Explainable machine learning, DNN co-supervision, Explainable dimensions,
Explainable conditions, Interpretation of DNN

1 Introduction

Deep neural network (DNN) models have achieved phenomenal success for applications in

many domains, ranging from academic research in science and engineering to industry and

business. The modeling power of DNN is believed to have come from the complexity and
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over-parameterization of the model, which on the other hand has been criticized for the lack

of interpretation. Although certainly not true for every application, in some applications,

especially in economics, social science, healthcare industry, and administrative decision

making, scientists or practitioners are resistant to use predictions made by a black-box

system for multiple reasons. One reason is that a major purpose of a study can be to make

discoveries based upon the prediction function, e.g., to reveal the relationships between

measurements. Another reason can be that the training dataset is not large enough to

make researchers feel completely sure about a purely data-driven result. Being able to

examine and interpret the prediction function will enable researchers to connect the result

with existing knowledge or gain insights about new directions to explore. Although classic

statistical models are much more explainable, their accuracy often falls considerably below

DNN. In this paper, we propose an approach to fill the gap between relatively simple

explainable models and DNN such that we can more flexibly tune the trade-off between

interpretability and accuracy. Our main idea is a mixture of discriminative models that is

trained with the guidance from a DNN. Although mixtures of discriminative models have

been studied before, our way of generating the mixture is quite different.

1.1 Related Work

Despite the fact that many attempts have been made to make DNN models more inter-

pretable, a formal definition of “human interpretability” has remained elusive. The concept

of interpretability is multifaceted and inevitably subjective. An in-depth discussion about

the meaning of being interpretable is given by the review article of Doshi-Velez and Kim

(2017), which confirms the richness of this concept and provides philosophical viewpoints.

In the literature, different approaches have been proposed to define “interpretation”. A

complete unified taxonomy for all the existing approaches does not exist. Nevertheless,

one way is to categorize recent works into two types: one that builds more interpretable

models by reducing model complexity, and the other that attempts to interpret a complex

model by examining certain aspects of it, e.g., how decisions are made locally. For the

first type of approaches, interpretability is aimed at during the model’s training phase,
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and what constitutes good interpretability has been addressed in diverse ways. For ex-

ample, attention-based methods (Bahdanau et al., 2014; Vaswani et al., 2017) propose an

attention score for neural machine translation; generalized additive models (GAM) (Lou

et al., 2013; Agarwal et al., 2020; Guo et al., 2020) interpret pair-wise interaction effects

by imposing an additive structure; and feature selection methods impose cross-entropy er-

ror function (Verikas and Bacauskiene, 2002) or L0 penalization (Tsang et al., 2018). In

contrast, the second type of approaches, the so-called model-agnostic methods (Ribeiro

et al., 2016b), are post-hoc in the sense that they analyze an already trained model using

interpretable measurements. For example, sensitivity analysis (Lundberg and Lee, 2017),

local linear surrogate models (Ribeiro et al., 2016a) and Bayesian non-parametric mixture

model (Guo et al., 2018) search for important features for specific samples according to a

given prediction model. The same aspect of being interpretable can be tackled by either

type of the approaches. For example, Tsang et al. (2017) searches for interaction effects

of original features as captured in a trained neural network by computing a strength score

based on the learned weights. In Tsang et al. (2018), similar results can be obtained by

training the neural network model with a penalty to learn the interaction effects.

Various kinds of interpretation have been suggested, including but not limited to visu-

alizing the result, generating human explainable rules, selecting features, or constructing

prototype cases. The advantages and disadvantages of existing methods are discussed in

detail in Molnar (2020). What forms of interpretation are valuable also depends on the

field of applications. For instance, feature selection for image processing may not be as

meaningful as that for tabular data. Many proposed methods target particular applica-

tions, e.g., image processing (Zhang et al., 2018; Chen et al., 2019), text mining (Vaswani

et al., 2017), time series (Guo et al., 2019).

Ribeiro et al. (2016a) interprets neural networks by explaining how the decision is

made in the vicinity of every instance. In particular, the trained neural network is used to

generate pairs of input and output quantities, based on which a linear regression model is

estimated. This linear model is used to explain the decision in the neighborhood of that

instance. Although the local linear models help understand the prediction around every
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single point, they are far from providing global perspectives. Our new method is inspired

by Ribeiro et al. (2016a), but we tackle two additional problems. First, our method will

produce a stand-alone prediction model that is relatively easy to interpret. In another

word, our method is not the model-agnostic type to explain an actual operating DNN.

Second, our method aims at globally interpreting the decision.

Although motivated from rather different aspects, in terms of the formulation of the

model, our method is related to locally weighted regression (Cleveland and Devlin, 1988)

which splits the space of the original independent variables by a user-specified bandwidth

and estimates a local linear regression inside each band. In non-parametric regression,

many other flexible regression models have been studied, for instance, kernel regression

(Nadaraya, 1964; Watson, 1964), generalized additive models (Hastie and Tibshirani, 1990),

and classification and regression trees (CART) (Breiman et al., 1984). Some of the methods

such as CART are by construction highly interpretable, but some are not. More recently,

Guo et al. (2020) have used neural networks to efficiently learn the classic GAM (Hastie

and Tibshirani, 1990) models.

1.2 Overview of Our Approach

One natural idea to explain a complex model is to view the decision as a composite of

decisions made by different functions in different regions of the input space. Explanation

of the overall model consists of two parts: to explain how the partition of the input space is

formed, and to explain the prediction in each region. This idea points to the construction

of a mixture model in which every component is a linear model, which is called the mixture

of linear models (MLM). Although a linear model is not necessarily always easy to explain,

relatively speaking, it is explainable, and via LASSO-type sparsity penalty (Tibshirani,

1996) it can be made increasingly more explainable. Moreover, well-studied hypothesis

testing can be applied to validate the model.

The main technical hurdle is to find a suitable partition of the instances such that

component-wise linear models can be estimated. The challenge faced here is in stark

contrast to that for building generative mixture models, e.g., Gaussian mixture models
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(GMM), where the proximity of the independent variables themselves roughly determines

the grouping of instances into components. The same approach of forming components is

a poor choice for building a mixture of discriminative models. The similarity between the

instances is no longer measured by the proximity of the independent variables but by the

proximity of the relationships between the dependent variable (Y ) and the independent

variables (X). However, the dependence between Y and X cannot be adequately captured

by the observation of one instance. In the case of moderate to high dimensions, it is also

impractical to estimate the discriminative function, Ŷ = f(X), based on nearby points.

Our key idea is to use the DNN model as an approximation of the theoretically optimal

prediction function, which is employed to guide the partition of the instances. We also

propose to use visualization based on GMM and decision tree to interpret the partition of

the instances, which is crucial for obtaining interpretation in a global sense.

It is debatable whether DNN serves well as an approximation of the optimal prediction

function. In many applications, we observe that DNN achieves the best accuracy among the

state-of-the-art methods, e.g., support vector machine (SVM) (Cortes and Vapnik, 1995)

and random forest (RF) (Breiman, 2001). It is thus reasonable to exploit DNN in this

manner. However, we acknowledge that a weakness of our approach is that the accuracy

is mostly capped by DNN, and if DNN itself performs inferior, the same is likely to occur

with our approach.

The rest of the paper is organized as follows. In Section 2, we introduce notations and

summarize existing methods most relevant to our proposed work. We present MLM in

Section 3.1 and describe the tools developed for interpretation based upon MLM in Section

3.2. In Section 4, experimental results are reported for four real-world datasets including

two clinical datasets for classification and two for regression. For prediction accuracy,

comparisons have been made with multiple approaches including DNN. We also illustrate

how the interpretation tools are used. Finally, conclusions are drawn in Section 5.
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2 Preliminaries

Let X ∈ Rp be the independent variables (or covariates) and Y ∈ R be the dependent vari-

able. Denote the sample space of X by X . Let {yi}ni=1 and {xi}ni=1 = {(xi,1, · · · , xi,p)T}ni=1

be the n observations of Y and X. Denote the input data matrix by X ∈ Rn×p. In re-

gression analysis, we are interested in estimating the following regression function for any

x ∈ X (for classification, we simply substitute Y by g(Y ) via a link function g(·)).

m(x) = E(Y |X = x) . (1)

In linear regression, it is assumed that m(x) = α + xTβ. In non-linear regression, a

linear expansion of basis functions is often used to estimate m(x). For example, Nadaraya-

Watson kernel regression (Nadaraya, 1964; Watson, 1964) assumes m(x) to be an additive

form of kernel functions with a given bandwidth h:

m(x) =
n∑
i=1

G(x−xi

h
)yi

n∑
i′=1

G(
x−xi′
h

)
, (2)

where G(x) = (2π)−k/2e−x
Tx/2. The locally weighted regression (Cleveland and Devlin,

1988) extends Nadaraya-Watson’s m(x) by changing the constant prediction in each band

to a linear function. Regression splines use piecewise polynomial basis functions between

fixed points, known as knots, and ensure smoothness at the knots (Schoenberg, 1973).

Friedman (1991) extended the spline method so as to handle higher dimensional data.

These kernel and spline-based approaches use the basic binning strategy to separate the

covariate space into regions, which suffers from curse of dimensionality even at moderate

dimensions.

In recent years, DNN has become increasingly popular in high-dimensional applications

because of its remarkable prediction accuracy. Consider a feed-forward neural network

with L hidden layers and one output layer. Its regression function, denoted by m̃(x), is

defined by the composition of the affine transform and a non-linear activation function at

each layer. Let pl be the number of hidden units at the l-th hidden layer, l = 0, ..., L, and

p0 = p. Let z(l) ∈ Rpl be the outputs of the lth hidden layer. Set z(0) = x. The mapping
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at the l-th hidden layer, z(l) = hl(z
(l−1)), is defined by

z(l) = hl(z
(l−1))

= σl(W
(l)z(l−1) + b(l)), l = 1, · · · , L, (3)

where σl(·) is a non-linear element-wise activation function such as ReLU (Nair and Hinton,

2010), sigmoid or hyperbolic tangent, and W(l) ∈ Rpl×pl−1 and b(l) ∈ Rpl are the model

parameters. At the output layer, g(z(L)), is defined as either a linear or softmax function

depending on whether the purpose is regression or classification. In summary, the neural

network model, m̃(x), is given by

m̃(x) = (g ◦ hL ◦ hL−1 ◦ · · · ◦ h1)(x), (4)

and its parameters are trained by gradient descent algorithm so that the mean squared error

loss for regression or the cross-entropy loss for classification is minimized. Specifically, the

mean squared error loss is defined by

n∑
i=1

[yi − m̃(xi)]
2 /n ,

and the cross-entropy loss is

−
n∑
i=1

[yi log(m̃(xi)) + (1− yi) log(1− m̃(xi))] /n.

Because of the multiple layers and the large number of hidden units at every layer, it is

difficult to interpret a DNN model, for example, to explain the effects of the input variables

on the predicted variable.

3 Methods

Our core idea is to approximate the prediction function m̃(x) of a DNN model by a piecewise

linear function m̂(x) called Mixture of Linear Models (MLM). We will present in the context

of regression. Adaption to classification will be remarked upon later. Suppose the input

sample space X is divided into K mutually exclusive and collectively exhaustive sets,
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Figure 1: A schematic plot showing the steps of creating MLM.

{P1, ...,PK}, which form a partition of X . Denote the partition by P = {P1, ...,PK}. The

partition P induces a row-wise separation of the input data matrix X into K sub-matrices:

X(1), ..., X(K). Within each Pk, m̃(x) is approximated by mk(x), which is referred to as

the local linear model. To create P, our criterion is not based on the proximity of xi’s but

on the similarity between m̃(x) in the neighborhood of each xi. Because of this difference

from the conventional mixture model, we are motivated to cluster xi’s by simulating from

the prediction function of an estimated DNN. Without the guidance of the DNN, there

will not be enough training points in the neighborhood of any xi to permit a reasonable

estimation of the prediction function unless the dimension is very low.

Let IP(x) be the indicator function that equals 1 when x ∈ P and zero otherwise. Given

the partition P, we express m̂(x) by

m̂(x) = IP1(x)m1(x) + · · ·+ IPK
(x)mK(x),

mk(x) = αk + xTβk, k = 1, ..., K. (5)

A schematic plot is provided in Figure 1 to show the major steps in generating an MLM.

The partition P is obtained by a two-stage process. First, clustering is performed based

on the outputs at each layer of the DNN. This stage provides refined clusters, referred to

as cells, of the data points and helps reduce computation at the next stage. Secondly,
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the cells are merged into larger clusters based on the similarity of m̃(x) computed via

simulations. Clusters obtained at this stage become Pk’s in P. We refer to Pk as an EPIC

(Explainable Prediction-induced Input Cluster). A linear model is then fitted based on the

data points in each EPIC as well as simulated data generated using the DNN. GMM models

are then formed for each EPIC so that test data can be classified into the EPICs. Finally,

a soft-weighted MLM modified from Eq. (5) is used as m̂(x).

The interpretability of MLM relies on both the local linear models mk(x) and the

characterization of EPICs. We develop a visualization method and a decision-tree based

method to help users explain EPICs and to open avenues for potential discovery. These

methods are presented in Section 3.2. Next, we describe the steps to build an MLM.

3.1 Construction of a Mixture of Linear Models

In Subsection 3.1.1, an approach is presented to approximate a neural network by a piece-

wise linear model and obtain cells. The approach to merge cells and obtain EPICs is

described in Subsection 3.1.2. Finally, we describe the soft-weighted form of MLM in

Subsection 3.1.3.

3.1.1 Piecewise Linear Approximation of DNN

The neural network model m̃(x) in Eq. (4) is non-linear due to the non-linear activation

functions σl(·) at each hidden layer. If the outputs at each layer are partitioned such

that the non-linearity can be neglected within a cluster, the mapping of DNN from the

original input to the prediction is approximately linear for data points that belong to the

same cluster across all the layers. Since we will build a linear model for each EPIC, we are

motivated to cluster the outputs at each layer of the DNN and use this sequence of clustering

results to form the final grouping of the original points. Because clustering is applied to

the outputs of the layers, points that belong to the same cluster are not necessarily close

in the original space X .

Let {C(l)1 , · · · , C
(l)
Kl
} be a partition of the l-th layer outputs of the DNN, where Kl is the

number of clusters. We call this partition layer l-cells. Then, with layer l-cells, we can
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approximate the l-th hidden layer map hl(z
(l−1)) as a piecewise linear function:

ĥl(z
(l−1)) = IC(l)1

(z(l−1))(W
(1)
1 z(l−1) + b

(1)
1 ) + · · ·+ IC(l)Kl

(z(l−1))(W
(l)
Kl
z(l−1) + b

(l)
Kl

), (6)

where W
(l)
k ∈ Rpl×pl−1 and b

(l)
k ∈ Rpl are model parameters, and IC(l)k

(z(l−1)) is the indicator

function.

The layer l-cells are obtained by clustering the observed l-th hidden layer outputs.

Denote by {z(l)i }ni=1 the observed l-th hidden layer outputs corresponding to {xi}ni=1 respec-

tively, that is, xi → z
(l)
i . We apply GMM-based clustering on {z(l)i }ni=1 with Kl clusters,

and obtain the following GMM model. Denote the density function by f(·), and the prior,

mean, and covariance matrix of each Gaussian component by π
(l)
k , µ

(l)
k , and Σ

(l)
k . Then

f(z(l)) =

Kl∑
k=1

π
(l)
k φ(z(l)|µ(l)

k ,Σ
(l)
k ). (7)

As usual, the maximum a posteriori (MAP) criterion is applied to cluster z
(l)
i ’s based

on the GMM. We apply GMM clustering on each hidden layer separately to compute layer

l-cells. Denote the set of cluster labels for the layer l-cells by Kl = {1, · · · , Kl}. The set

of all possible sequences of the cluster labels across the L layers is the Cartesian product

K̃ = K1 × · · · × KL. Let the cardinality of K̃ be K̃0 =
L∏
l=1

Kl. For each sequence in K̃,

(k1, ..., kL), kl ∈ Kl, assign it a label k, 1 ≤ k ≤ K̃0, according to the lexicographic order.

Denote the mapping by (k1, ..., kL)→ k. Then, the original input xi belongs to cluster Ck
if (k1, ..., kL)→ k and z

(l)
i ∈ C

(l)
kl

for l = 1, ..., L. It can often occur that no xi corresponds

to a particular sequence in K̃. Thus the actual number of clusters formed, denoted by K̃,

is smaller than K̃0.

We call the clusters Ck cells. After obtaining the cells, we estimate a linear model

for each cell. As in Eq.(5), the linear model for the kth cell is mk(x). To train each

local linear model mk(x), we use both the original data points that belong to a cell k and

simulated data points perturbed from the original points with responses generated by the

DNN model m̃(x). A major reason for adding the simulated sample is that a cell usually

does not contain sufficiently many points for estimating mk(x), the very difficulty of high

dimensions. By the same rationale, we attempt to mimic the decision of the DNN, which
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is an empirically strong prediction model trained using the entire data. If the DNN can be

well approximated, we expect MLM to perform strongly as well. Estimating a linear model

using simulated data generated by the DNN is a data-driven approach to approximate the

DNN locally. We thus aptly call this practice co-supervision by DNN.

Let nk be the number of observations in {xi}ni=1 that belong to cell Ck. We have
K̃∑
k=1

nk = n. Without loss of generality, let {x′k,i}
nk
i=1 be the set of points that belong to cell Ck:

{x′k,i}
nk
i=1 = {xj|xj ∈ Ck for j = 1, · · · , n} with an arbitrary ordering of x′k,1, · · · ,x′k,nk

, and

let y′k,i for i = 1, · · · , nk be the corresponding dependent variable of x′k,i for i = 1, · · · , nk.

We denote by x̄′k the sample mean of x′k,1, · · · ,x′k,nk
: x̄′k =

∑nk
i=1 x

′
k,i

nk
. Then we generate m

perturbed sample points vk,1, · · · ,vk,m by adding Gaussian noise to the mean x̄′k with a

pre-specified variance parameter ε for each cell k = 1, · · · , K̃. That is,

vk,i ∼ N (x̄′k, ε), for i = 1, · · · , nk. (8)

For the perturbed sample points {vk,i}mi=1, the predicted dependent variable {wk,i}mi=1 is

computed using the DNN model m̃(·):

wk,i = m̃(vk,i), i = 1, · · · ,m. (9)

In the case of classification, the prediction of DNN is the probabilities of the classes. We

then generate a class label by taking the maximum. We combine the original sample points

and the simulated ones,

{(x′k,i, y′k,i)}
nk
i=1

⋃
{(vk,i, wk,i)}mi=1

to train mk(x) for k = 1, ..., K̃. For each local linear model, if the dimension p of X is large,

we can apply a penalized method such as LASSO to select the variables. For the brevity of

presentation below, we introduce unified notations for the original data and the simulated

data within each cell: v′k,i = x′k,i, i = 1, ..., nk, v′k,nk+i
= vk,i, i = 1, ...,m, w′k,i = y′k,i,

i = 1, ..., nk, w
′
k,nk+i

= wk,i, i = 1, ...,m.

We need to pre-choose the hyperparameters Kl, l = 1, · · · , L, m, and ε. In our exper-

iments, we set m = 100 and ε ≤ 0.1, the particular value of which is selected to minimize

the training accuracy. For simplicity, we set K1 = K2 = · · ·KL and choose K1 using

cross-validation.
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3.1.2 MLM based on EPICs

The complexity of MLM in Eq. (5) depends primarily on the number of local linear models.

If we fit a local linear model for each cell, that is, to treat a cell directly as a EPIC, there can

be unnecessarily too many of them. In addition, to facilitate interpretation of the model

m̂(x), we must interpret the EPICs. The task tends to be easier if the number of EPICs is

low. Therefore, we further merge the cells by hierarchical clustering to generate the EPICs.

The similarity between two cells is defined by the similarity of their corresponding local

linear models.

For regression analysis, we define mutual prediction disparity, ds,t, between the pair of

local linear models ms(x) and mt(x), s, t ∈ {1, ..., K̃} by

ds,t =
1

ns + nt + 2m

[
ns+m∑
i=1

(
ms(v

′
s,i)−mt(v

′
s,i)
)2

+
nt+m∑
i=1

(
ms(v

′
t,i)−mt(v

′
t,i)
)2]

. (10)

We can take ds,t as a distance measure between the two local linear models. It is the average

squared difference between the predicted values by the two models.

For classification, we define ds,t using the inverse of F1-score (Rijsbergen, 1979):

ds,t = fp+fn
2·tp (11)

where tp =
∣∣{v′k,i|ms(v

′
k,i) = 1 and mt(v

′
k,i) = 1, for i = 1, · · · , nk +m, k = s, t}

∣∣ ,
fp =

∣∣{v′k,i|ms(v
′
k,i) = 1 and mt(v

′
k,i) = 0, for i = 1, · · · , nk +m, k = s, t}

∣∣ ,
fn =

∣∣{v′k,i|ms(v
′
k,i) = 0 and mt(v

′
k,i) = 1, for i = 1, · · · , nk +m, k = s, t}

∣∣ ,
and | · | denotes the cardinality of a set.

Treating ds,t as a distance between the sth and tth cells, s, t ∈ {1, · · · , K̃}, we apply

hierarchical clustering, specifically, Ward’s linkage (Ward Jr, 1963), to merge the cells

C1, · · · , CK̃ into J̃ clusters. We assume J̃ is user specified. Let Jj be the set of the indices

of cells that are merged into the jth cluster, j = 1, ..., J̃ . For example, if cell C1 and C2 are

merged into the first cluster, then J1 = {1, 2}. Clearly
J̃⋃
j=1

Jj = {1, · · · , K̃}. We define the

merged cells as a EPIC. For j = 1, ..., J̃ ,

Pj =
⋃
k∈Jj

Ck . (12)
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The original data and the simulated data contained in Pj form the set
⋃
k∈Jj

{(v′k,i, w′k,i)}
nk+m
i=1 ,

based on which we refit a local linear model for the EPIC. With a slight abuse of notation,

we still denote each local linear model by m(x):

m̂(x) = IP1(x)m1(x) + · · ·+ IP
J̃
(x)mJ̃(x),

mj(x) = αj + xTβj, for j = 1, ..., J̃ . (13)

3.1.3 Soft-weighted MLM based on EPICs

Although Eq. (13) is used to fit the training data, it is not directly applicable to new

test data because which Pj a test point belongs to is unknown. We essentially need a

classifier for the EPICs: P1, ..., PJ̃ . Given how the EPICs are generated in training, one

seemingly obvious choice is to compute the DNN inner layer outputs for the test data

and associate these outputs to the trained cells and subsequently EPICs. However, this

approach hinders us from interpreting the overall MLM because categorization into the

EPICs requires complicated mappings of a DNN model, even though the local linear models

in MLM are relatively easy to interpret. We thus opt for an easy to interpret classifier for

EPICs. We will build a classifier for EPICs using the original independent variables instead

of DNN inner-layer outputs. In Subsection 3.2, we will also develop ways for visualization

and rule-based descriptions of EPICs.

From now on, we treat the partition of the training data xi, i = 1, ..., n, into the EPICs

P1, ..., PJ̃ as the “ground truth” labels when discussing classification of EPICs based on the

original variables. Denote the labels by ζi. We have xi ∈ Pζi . We first construct a GMM

directly from the cells C1, ..., CK̃ by fitting a single Gaussian density for each cell. Denote

the estimated prior, mean, and covariance matrix of Ck by π̂k, µ̂k, and Σ̂k, k = 1, ..., K̃.

The estimated prior π̂k is simply the empirical frequency, and µ̂k is given by the sample

mean. The covariance Σ̂k can be estimated with different types of structural constraints,

e.g., diagonal, spherical, or pooled covariance across components. Recall that Pj contains

cells Ck with k ∈ Jj. Let φ(·) be the Gaussian density. Let the estimated prior of Pj be

13



π̃j =
∑

k∈Jj π̂k. The density of X given that X ∈ Pj is

fPj
(x) =

∑
k∈Jj

π̂k
π̃j
· φ(x | µk,Σk) , j = 1, ..., J̃ . (14)

The posterior P (X ∈ Pj | X = x) ∝ π̃jfPj
(x) is used as the weight for the local linear

models in MLM. Let the posterior for Pj be γj(x) =
π̃jfPj

(x)∑J̃
j′=1 π̃j′fPj′

(x)
. Then the soft-

weighted MLM is

m̂(x) =
J̃∑
j=1

γj(x)mj(x)

mj(x) = αj + xTβj, j = 1, ..., J̃ . (15)

The above soft-weighted MLM yields more smooth transition between the EPICs. As

having been explained in Subsection 3.1.2, the local linear models mj(x) are fitted by least

square regression using the original and simulated data in Pj. We note that the weights

γj(x) play a similar role as the kernel functions in Eq.(2). Instead of using Gaussian density

functions centered at each data point, we use fPj
(x), the densities of the EPICs. Another

important difference is that we use local linear models trained under the co-supervision of

a DNN.

3.2 Interpretation

To interpret MLM, we assume that the local linear model within each EPIC can be in-

terpreted, or useful insight can be gained for each EPIC based on its local linear model.

Although this assumption may not always hold depending on the dataset, our focus here

is to interpret the EPICs. If we can understand the EPICs, we can better understand the

heterogeneity across the sample space in terms of the relationship between the dependent

and independent variables. For example, if hypothesis testing is conducted, MLM may

indicate that a hypothesis is only meaningful for a sub-population but not the entire popu-

lation. Our experiments show that the heterogeneity across EPICs can be large, and MLM

can achieve considerably higher accuracy than a single linear model.

To help understand EPICs, we develop two approaches, one based on visualization and

the other based on descriptive rules. For the first approach, we aim at selecting a small
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number of variables based on which a EPIC can be well separated from the others. If

such a small subset of variables exist, we can visualize the EPIC in low dimensions. The

second approach aims at identifying easy-to-describe regions in the sample space that are

dominated by one EPIC. We call the first approach the Low Dimensional Subspace (LDS)

method and the second the Prominent Region (PR) method.

3.2.1 Interpretation of EPIC by LDS

Recall that we model the density of X in each EPIC, denoted by fPj
(x), j = 1, ..., J̃ , by a

GMM in Eq.(14). The marginal density of fPj
(x) on any subset of variables of X can be

readily obtained because the marginal density of any Gaussian component in the mixture

is Gaussian. Denote a subset of variable indices by s, s ⊆ {1, ..., p}. Denote the subvector

of X specified by s by X[s] and correspondingly the subvector of a realization x by x[s].

Denote the marginal density of X[s] by fPj ,s(x[s]). Consider EPIC Pj and a particular

subset of variables specified by s. Using the marginal densities fPj′ ,s
(x[s]), j

′ = 1, ..., J̃ , and

applying MAP, we can classify whether a sample point xi, i = 1, ..., n, belongs to Pj. Let

q̂j = (q̂j,1, ..., q̂j,n) be the indicator vector for xi being classified to Pj based on the marginal

densities of X[s]:

q̂j,1 =

 1 π̃jfPj ,s(x[s]) ≥
∑

j′:j′ 6=j π̃j′fPj′ ,s
(x[s])

0 otherwise .

Let qj = (qj,1, ..., qj,n) be the indicator for EPIC Pj based on the EPIC labels ζi, that is,

qj,i = 1 if ζi = j, zero otherwise.

We seek for a subset s∗j such that the cardinality |s∗j | is small and q̂j is close to qj,

the disparity between them measured by the F1-score between binary classification results.

Denote the F1-score by F1(q̂j,qj), which is larger for better agreement between the binary

vectors. In the algorithm presented in Table 1, we find s∗j by step-wise greedy search. In

a nutshell, the algorithm adds variables one by one to a set until F1(q̂j,qj) > ξ, where

0 < ξ < 1 is a pre-chosen hyper-parameter. It is possible that the search does not yield

any valid s∗j , which indicates that the EPICs cannot be accurately classified and thus easily

interpreted. We call variables in s∗j explainable dimensions for EPIC Pj and the F1-score
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Algorithm to find explainable dimensions s∗j for EPIC Pj
1 Set hyper-parameter 0 < ξ < 1

2 s†j = ∅; r†j = 0

3 Do while r†j ≤ ξ and |s†j| < p

4 Form a collection of sets S = {s|s = s†j
⋃
s for any s ∈ {1, · · · , p} \ s†j}

5 Compute rs = F1(q̂j,qj) for all s ∈ S

6 Update s†j: arg max
s∈S

rs → s†j

7 Update r†j : rs†j
→ r†j

8 Return s†j and r†j as (s∗j , rs∗j ) if r†j > ξ. Otherwise, declare failure to find a valid s∗j .

Table 1: The algorithm to find explainable dimensions and the corresponding explainable

rate for each EPIC.

obtained by s∗j explainable rate, which is denoted by rs∗j .

3.2.2 Interpretation of EPIC by PR

In this subsection, we explore a more explicit way to characterize EPICs. Using a decision

tree, we seek prominent regions that can be defined by a few conditions on individual vari-

ables and are in the meanwhile dominated by points from a single EPIC. Such descriptions

of EPICs are more direct interpretation than visualization in low dimensions. However,

the drawback is that prominent regions are not guaranteed to exist. Given a prominent

region, researchers can pose a hypothesis specific to this region rather than for the whole

population.

Let D be a decision tree trained for binary classification by CART (Breiman et al.,

1984). Let the training class labels be q = {qi|qi ∈ {0, 1}, i = 1, · · · , n} and input data

matrix X ∈ Rn×p. CART recursively divides the data by thresholding one variable at each

split. A leaf node, also called terminal node, is a node that is not split; a pure node is a

node that contains sample points from a single class; and a fully grown tree is a tree whose

leaf nodes either are pure nodes or contain a single point or multiple identical points. It is

assumed that when a node becomes pure, it is not further split. Consider a node denoted
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by e. Define the depth of e, d(e), as the number of splits to traverse from the root node to

e. Define the size of e, s(e), as the number of sample points contained in the node. Define

the sample index set u(e) as the set of indices of sample points contained in e, and the

decision path of e, denoted by H, as the sequence of split conditions to traverse from the

root node to e. H consists of d(e) number of conditions each expressed by thresholding

one variable, e.g., x·,j > a or x·,j ≤ a.

Again let qj = (qj,1, · · · , qj,n) be the indicator vector for any sample point belonging to

EPIC Pj. We fit a fully grown decision tree Dj based on X and the class labels qj (class

1 means belonging to Pj). Let ψ be a pre-chosen threshold, 0 < ψ ≤ 1. We prune off the

descendant nodes of e if its proportion of points in class 1 reaches ψ:

n∑
i=1

Iu(e)(i)qj,i

s(e)
≥ ψ . (16)

We collect all the leaf nodes satisfying Eq.(16) with sizes above a pre-chosen minimum

size threshold η. Since leaf nodes are not further split, they are ensured to contain non-

overlapping points. Suppose there are κj leaf nodes êτ , τ = 1, ..., κj, such that s(êτ ) > η

and êτ satisfies Eq.(16). Denote the decision path of êτ by Hτ , which contains d(êτ )

conditions. In Hτ , one variable may be subject to multiple conditions (that is, this variable

is chosen multiple times to split the data). We will identify the intersection region of

multiple conditions applied to the same variable, which is in general a finite union of

intervals. At the end, a decision path Hτ specifies a region of the sample space X by the

Cartesian product R1 ×R2 × · · · × Rp. If Rj′ = R, then variable Xj′ does not appear in

any condition of Hτ . Suppose Rj′1
, ..., Rj′

p′
are proper subsets of R. The region given by

Hτ can be described by {Xj′1
∈ Rj′1

}∩{Xj′2
∈ Rj′2

}∩ · · · ∩ {Xj′
p′
∈ Rj′

p′
}. We call this form

of the region decided by Hτ an explainable condition.

When the depth of Hτ is small, the number of conditions p′ in Hτ will be small, and

thus the explainable condition is simpler. For the sake of interpretation, simpler explainable

conditions are preferred. It is also desirable to have large s(êτ ), which means that many

data points from Pj are covered by this explainable condition. Whether we can find simple

explainable conditions that also have high coverage of points depends strongly on the data
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being analyzed. Hence, the search for explainable conditions can only be viewed as a tool to

assist interpretation, but it cannot guarantee that simple interpretations will be generated.

In practice, it may suffice to require that class 1 accounts for a sufficiently high percentage

of points in êτ by setting the purity parameter ψ < 1. With this relaxation, we can find

êτ ’s with smaller depth.

4 Experiments

In this section, we present experimental results of the proposed methods. We demonstrate

prediction accuracy of MLM based on cells (MLM-cell) and EPICs (MLM-EPIC), and

interpret the formed EPICs by LDS and PR methods. We use five real-world datasets: two

TCGA datasets (Section 4.1), one Parkinson’s disease (PD) clinical dataset (Section 4.4)

for classification, the bike sharing demand data (Section 4.2), and California housing price

data (Section 4.3) for regression task.

We compare the prediction accuracy of MLM-cell and MLM-EPIC with the following

methods: random forest (RF) (Breiman, 2001), support vector machine (SVR) (Cortes

and Vapnik, 1995), multilayer perceptron (MLP), linear regression (LR), generalized addi-

tive model (GAM) (Hastie and Tibshirani, 1990), Spatial Autoregressive (SAR) (Rey and

Anselin, 2007) (for California housing price data that include spatial variables), multivari-

ate adaptive regression splines (MARS) (only for regression tasks, i.e., bike sharing and

California housing datasets) (Friedman, 1991). To fit these models, the following python

packages are utilized: pygam for GAM, pyearth for MARS, pysal for SAR, and scikit-

learn for the other methods.

The summary descriptions of each dataset are as follows.

• KIRC and SKCM are the Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma

(TCGA-KIRC) (Akin et al., 2016) and The Cancer Genome Atlas Skin Cutaneous

Melanoma (TCGA-SKCM) clinical datasets, respectively. Both are part of a large

collection that is made to study the connection between cancer phenotypes and geno-

types. The original datasets include tissue images, clinical data, biomedical data, and
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Data KIRC SKCM PD
Bike

Sharing
Cal

Housing

Number of samples 430 388 756 17379 20640

Number of original features 24 30 753 12 8

Continuous / Ordinal 20 25 753 10 8

Nominal 4 5 0 2 0

After dummy encoding 45 73 753 16 8

Table 2: Data descriptions.

genomics data. We only use clinical data in this experiment. For both datasets, the

target variable is overall survival (OS) status which is coded in binary, 1 indicating

living and 0 deceased. The covariates consist of demographic and clinical variables

(24 for KIRC and 30 for SKCM) such as age, gender, race, tumor status, dimension

of specimen, and so on. After dummy encoding of categorical variables, KIRC has

45 features and SKCM has 73 features. Both datasets are available in R package

TCGAretriever.

• Bike Sharing (Fanaee-T and Gama, 2014) is an hourly time series data for bike rentals

in the Capital Bikeshare system between years 2011 and 2012. The count of total

rental bikes is the target variable, and 12 covariates consist of Year∈ {2011, 2012},

Month∈ {1, · · · , 12}, Hour∈ {0, · · · , 23}, Holiday∈ {0, 1}, Weekday∈ {0, · · · , 6},

Working day∈ {0, 1}, Temperature∈ (0, 1) that is normalized from the original

range of (−8, 39), Feeling temperature∈ (0, 1) that is normalized from (−16, 50),

Humidity∈ (0, 1), Wind speed∈ (0, 1), Season∈ {0(winter), 1(spring), 2(summer),

3(fall)}, Weather∈ {0(clear), 1(cloudy), 2(light rain or snow), 3(heavy rain or snow)}.

After dummy encoding of Season and Weather, we get 16 covariates.

• Cal Housing (Pace and Barry, 1997) is a dataset for the median house values in

California districts, which are published by the 1990 U.S. Census. In this dataset,

a geographical block group is an instance/unit. The original covariates consist of 8

features including latitude and longitude which are spatial variables, median income,
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median house age (house age), average number of rooms, average number of bedrooms

(bedrooms), block population (population), average house occupancy (occupancy),

and latitude and longitude. Given the average number of rooms and the average

number of bedrooms, we compute the average number of non-bedroom rooms as a

new covariate to replace the former.

• Parkinson’s Disease (PD) dataset (Sakar et al., 2019) is collected from 188 patients

with PD and 64 healthy individuals to study PD detection from the vocal impair-

ments in sustained vowel phonations of patients. The target variable is binary with

1 being PD patients and 0 otherwise. The covariates consist of various clinical infor-

mation generated by processing the sustained phonation of the vowel ’a’ from each

subject. Consequently, 753 features are generated by various speech signal process-

ing algorithms, e.g., Time Frequency Features, Mel Frequency Cepstral Coefficients

(MFCCs).

For all the datasets, we use dummy encoding for nominal variables. That is, we generate

c − 1 binary vectors for a nominal variable with c-classes. The numbers of samples and

features used in the experiments are shown in Table 2.

4.1 TCGA Clinical Data

For both KIRC and SKCM data, MLP is constructed using 2 hidden layers that have

respectively 128 and 32 units for KIRC and 256 and 32 units for SKCM, and trained for 10

epochs. Random forest is trained with maximum depth equal to 10. For both MLM-cell

and MLM-EPIC, hyper-parameters Kl is set based on 10-fold cross validation (CV) within

training data, and assumed to be equal across the 2 hidden layers. We choose another

hyper-parameter J̃ by comparing the training accuracy obtained at several values. For

KIRC, the number of layer l-cells is set to Kl = 4 according to CV for l = 1, 2, and 12

cells are formed at the end. These 12 cells are merged into J̃ = 10 EPICs. For SKCM,

the number of layer l-cells is set to Kl = 13 according to CV for l = 1, 2, and 77 cells are

formed at the end. The cells are merged into J̃ = 10 EPICs.
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Data KIRC SKCM PD Bike Sharing Cal Housing

(AUC) (AUC) (AUC) (RMSE) (RMSE)

Model Train Test Train Test Train Test Train Test Train Test

Kmeans-mean .834 .723 .774 .650 .794 .750 122.1 127.7 .795 .815

RF .983 .869 .997 .688 .997 .794 43.8 52.2 .421 .554

SVR .843 .856 .764 .667 .756 .728 145.6 148.1 .671 .676

MARS - - - - - - 141.1 140.1 .629 .640

MLP .974 .907 .987 .777 .975 .833 40.1 47.6 .503 .517

LR .853 .888 .826 .702 .880 .789 141.1 140.3 .723 .727

SAR - - - - - - - - .655 .652

GA1M .838 .847 - - - - 99.4 101.1 .613 .640

MLM-cell .904 .891 .948 .728 1.000 .860 52.7 60.9 .560 .570

MLM-EPIC .902 .891 .861 .742 .975 .851 62.8 66.7 .569 .584

Table 3: Prediction accuracy of regression and classification methods. We partition these

methods into two categories: complex (top panel) and interpretable models (bottom panel).

For each method, the model parameters are fine tuned. By linear regression (LR), we

specifically mean logistic regression for KIRC, SKCM and PD data, and Poisson regression

for Bike Sharing data. If a method is not applicable to a dataset, the corresponding entry

in the table is not listed.

21



The first two columns of Table 3 show the prediction accuracy for KIRC and SKCM.

The area under curve (AUC) score is used here as the efficacy metric. For both datasets,

MLP predicts the overall survival (OS) status the best compared to other models. RF has

a higher training AUC score but it does not generalize well to the testing data. Among all

the interpretable models, GAM does not converge for SKCM. LR for KIRC and SKCM, and

GAM for KIRC have higher test AUC scores compared to other complex models although

their training AUC scores are not better than RF. On the other hand, MLM-cell and

MLM-EPIC achieve relatively high AUC scores in both training and testing accuracy, and

outperform LR.

(a) Age (b) Sex

(c) Radiation treatment adjuvant (d) History other malignancy

Figure 2: Estimated regression coefficients (blue dots) with their corresponding confidence

intervals (purple lines) of four selected variables for SKCM. The X-axis indicates the value of

each regression coefficient. The linear effects of age, sex, whether the patient has radiation

treatment adjuvant, and whether the patient has the history of other malignancy vary by

EPICs.

We interpret MLM-EPIC via local linear models for each EPIC. Figure 2 shows the

estimated regression coefficients and the associated confidence intervals for four selected

variables for SKCM. The EPICs are sorted in descending order according to their sizes.

Figure 2(a) demonstrates that age is not significantly associated with the OS status in
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EPICs 1 and 8, as the coefficients related to age are shrunk to zero by LASSO penalty.

However, the irrelevance of age does not hold in other EPICs. Such EPIC-specific results

enable us to gain understanding impossible with a single LR model or a DNN.

In addition, EPICs 2, 3, 5, 6, and 9 have negative coefficients for age that are signifi-

cantly different from zero. This result may motivate researchers to examine whether there

exists significantly different linear impacts of age between two groups of patients belonging

to two different EPICs, e.g., by applying a paired test. Similar analyses can be made to

the other three variables. Moreover, Figure 2(d) demonstrates that the prediction model

for subjects belonging to EPIC 5 does not include the history of other malignancy variable,

which shows the potential heterogeneous structure among the covariates with respect to

OS status.

Now, we investigate how EPICs are formed. We compute explainable conditions for each

EPIC to check if they provide any insight into distinguishing EPICs. Here we interpret

the largest EPIC that consists 59 samples. ψ and η are set to 1 and 4. Table 4 shows

explainable conditions for the EPIC 1. More explainable conditions for other EPICs are

provided in Supplementary Material. Specifically, around half of patients in EPIC 1 are

relatively young patients who have new tumor events after the initial treatment and have

less than 306 survival months. Combining this information with the information from

Figure 2, an interesting hypothesis can be that for the patients in EPIC 1 under these

conditions, age does not impact the OS status. Such insight is not available from MLP or

other complex models which are hard to interpret.

4.2 Bike Sharing Data

The bike sharing dataset is often used to demonstrate the efficacy of complex machine

learning models. For this dataset, RF is set with its maximum depth equal to 10. MLP is

constructed with 3 layers and 30 units for each layer, and trained for 20 epochs. MLM-cell

is computed based on the MLP as its underlying neural network model. The number of

layer l-cells is 100 chosen by CV and it is set equal across the 3 hidden layers. 1712 cells

are formed. MLM-EPIC is constructed by merging 1712 cells into 150 EPICs. For the
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EPIC Descriptions Size

1 Age< 29.0, Days to collection≤ 10345, Initial pathology DX year> 1996,

New tumor event after initial treatment = 1, Overall survival months≤ 306.2,

Retrospective collection = 1, AJCC staging edition 6= 5

11

(59) Age< 29.0, 8701 <Days to collection> 10345, Initial pathology DX year>

1996, New tumor event after initial treatment = 1, Overall survival months≤

306.2, Retrospective collection = 1, Submitted tumor DX days> 9737, AJCC

staging edition 6= 5

8

Age< 29.0, Days to collection> 10345, ICD-10< 5, ICD-O-3 site> 23.5,

Overall survival months≤ 306.2, Retrospective collection = 1, AJCC staging

edition 6= 5

7

Table 4: Explainable conditions for the largest EPIC for SKCM data. Numbers within the

bracket indicate the size of the EPIC in training data.

estimation of the MLM-EPIC parameters, we apply pooled covariance to estimate GMM

of each EPIC. Pooled covariance is often used in the model-based clustering when cluster

sizes are unbalanced. Pooled covariance mitigates the tendency that samples tend to be

assigned to large clusters. For other methods, we apply the default settings of the methods

from pyearth (for MARS), pygam (for GAM), and scikit-learn python packages.

First, we examine the prediction accuracy of the methods. Table 3 shows that RF

and MLP achieve higher prediction accuracy (lower root mean squared error (RMSE)) in

comparison to other simpler methods. The RMSEs of MLM-cell and MLM-EPIC are con-

siderably lower than any other method except for RF and MLP. Figure 3 (a) and (b) show

the trade-off between the prediction accuracy and the model complexity of MLM (indicated

by Kl for MLM-cell in (a) and by J̃ for MLM-EPIC in (b)). As the model complexity in-

creases, both training and testing RMSE decreases. We do not observe overfitting as the

model complexity of MLM is capped by the underlying neural network. The measure for

agreement between MLP and MLM-cell is computed by the RMSE between the predicted

values of MLP and MLM-cell respectively. As shown in the figure, the agreement with MLP

decreases as the model complexity increases. Figure 3 (c) is the histogram of EPIC sizes
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Figure 3: Impact of hyper-parameters, Kl and J̃ , on MLM for bike sharing data. (a)

RMSE of MLM-cell at different Kl, the number of layer l-cells. (b) RMSE of MLM-EPIC

at different J̃ , the number of EPICs. (c) Histogram of the sizes of the 150 EPICs.

obtained from the 150 EPICs of the training data. The histogram shows that many data

points belong to small EPICs. For the sample points in small EPICs, the predicted values

based on MLM-EPIC are similar to using the nearest neighbor method. For example, in

the extreme case, if all EPICs consist of a single point, MLM-EPIC is equivalent to using

1-nearest neighbor method.

Figure 4 shows the fitted regression coefficients of MLM-EPIC for the 5 largest EPICs.

The values of the coefficients are indicated by color. Depending on which EPIC a sample

point belongs to, the effect of a covariate is different when predicting the bike rental count.

Specific interpretation of the fitted MLM-EPIC is provided in Supplementary Material.

4.3 California Housing Prices

California housing data was first introduced to demonstrate the efficacy of spatial autore-

gressive (SAR) model (Pace and Barry, 1997), yet the data is now often used to test various

neural network models. Many previous works have shown that neural network models per-

form well with spatial data (Zhu, 2000; Özesmi and Özesmi, 1999), however they cannot

be interpreted. In this subsection, we analyze California housing price data with MLM for

both prediction and interpretation.

Table 3 shows the prediction accuracy of the methods. RF is fitted with its maximum

depth equal to 10, and MLP is constructed with 3 hidden layers and 30 hidden units

for each layer. MLP is trained for 50 epochs. SAR is fitted with the consideration of
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Figure 4: The linear mixture model regression coefficients {β̂j|x ∈ Pj}J̃j=1 for the top 5

largest EPICs for bike sharing data.

spatially lagged covariates except for longitude and latitude. MLM-cell and MLM-EPICs

are fitted based on the MLP model. MLM-cell is constructed with layer l-cells equal to

6 for all 3 layers, and consequently forms 64 cells. MLM-EPIC merged the 64 cells into

30 EPICs. The prediction accuracy of MLM-cell and MLM-EPIC is slightly lower (i.e.,

slightly larger RMSE) than that of MLP and RF, but they achieve better accuracy than

any other interpretable models such as LR, SAR, and GAM.

MLM-EPIC provides more useful interpretation than those commonly-used autoregres-

sive models for California housing price data. Autoregressive models are primarily used

to describe a time-varying or space-varying process, and the interpretation of the model

is based on the model’s representation of time or spatial variables. MLM-EPIC can be

utilized to describe both time and space-varying effects as it divides samples into EPICs

in different time and space. Figure 5 shows the change of regression coefficients for each

variable in the longitude and latitude space. The value of the coefficient for the variable in

consideration is indicated by color. According to the fitted MLM-EPIC, the impact of the

median income on the house values is relatively consistent across the California map. On

the other hand, house age affects the house values differently depending on which EPIC the

sample points belong to. Near the coastal area, old houses tend to be appreciated whereas

in the inland area, house age has a negative impact on the house value. This observed
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(a) Median income (b) House age (c) Other rooms

(d) Bedrooms (e) Population (f) Occupancy

Figure 5: Log-valued regression coefficients of local linear models plotted on longitude

(horizontal axis) and latitude (vertical axis) space. Regression coefficients differ for each

EPIC.

pattern may be explained by the fact that the houses in the highly populated area were

built in earlier days and are still in high demand. Another interesting pattern in Figure

5 is that the increase of the number of non-bedroom rooms has a negative impact on the

house values in city center areas. The log-valued confidence intervals and estimates of the

6 covariates are shown in Figure 6 for the first 7 biggest EPICs. In training data, the 7

EPICs cover about 70% of the samples.

For this dataset, we cannot get concise explainable conditions for the EPICs. For

example, an explainable condition for EPIC 1 is ‘Median income≤ 86.6k and House

age /∈ (3.5, 27.5] and Bedrooms /∈ (33.1, 33.6] and Population /∈ (32.1k, 35.7k] and Average

occupancy /∈ (1239.6, 1241.8] and Latitude /∈ (40.1, 40.9] and Longitude /∈ (−121.2,−119.5]’.

Instead, we use the LDS method to find explainable dimensions for the EPICs. The ex-

plainable dimensions for the first 6 biggest EPICs are shown in Figure 7. For example,
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(a) Median income (b) House age (c) Other rooms

(d) Bedrooms (e) Population (f) Occupancy

Figure 6: Log-valued confidence intervals of each variable in the 7 largest EPICs.

based on 3 features: Median income, House age, Longitude, EPIC 1 is distinguishable from

the other EPICs with accuracy 0.84 as measured by F-1 score. EPIC 1 mostly contains

points with lower than the median income, older than the median house age, and the

middle east part of California. In EPIC 1, older houses tend to increase the house values

slightly. Also, having more bedrooms is appreciated in house values, while the increase of

rooms other than bedrooms tends to decrease the house values. EPIC 2 contains mostly

points with newer houses in the middle northern part of California (with the explainable

rate equal 0.82). For points in EPIC 2, in contrast to EPIC 1, the house age has a negative

impact on the house value. Also, the increase in the number of rooms other than bedrooms

tends to increase the house value, whereas the impact of the number of bedrooms is not

significant.
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(a) EPIC 1 (0.84) (b) EPIC 2 (0.82) (c) EPIC 3 (0.80)

(d) EPIC 4 (0.88) (e) EPIC 5 (0.58) (f) EPIC 6 (0.81)

Figure 7: Explainable dimensions for the first 6 biggest EPICs. The values in the paren-

theses are explainable rates of the explainable dimensions for each EPIC.

4.4 Parkinson’s Disease Detection

Many works have studied Parkinson’s disease (PD) to detect PD from the vocal impair-

ments in sustained vowel phonatations of PD patients. However, due to the lack of clear

understanding of the mechanism to detect PD from the complex characteristics that appear

in the mere voice recordings of PD patients, the dataset often involves a huge number of co-

variates that are extracted from various speech signal processing algorithms. In this subsec-

tion, we demonstrate that MLM-cell and MLM-EPIC work well with this high-dimensional

dataset. At reduced complexity, the two methods achieved slightly better accuracy than

the more complex models.

For this dataset, RF is fitted with maximum depth equal to 10. MLP is constructed
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with 3 layers that have 30 hidden units for each layer. MLP is trained for 5 epochs. Other

methods follow the default parameter setting from sci-kit learn python package. MLM-

cell is constructed based on MLP with layer-l cells equal to 5, which is chosen by CV, for

l = 1, 2, 3. 52 cells are formed. We merge the cells into 3 EPICs to build MLM-EPIC.

For the local linear models of MLM-EPIC, we applied LASSO penalty with its weight

parameter α = 0.2.

Table 3 shows the training and testing accuracy of the methods. MLM-cell achieves the

highest training and testing accuracy. In addition, although MLM-EPIC is only a mixture

of 3 local linear models, it has better testing accuracy (lower testing AUC) than MLP.

Specifically, MLM-EPIC forms 3 EPICs with sizes 442, 133, and 29 for the training data.

The local linear models respectively have 700, 14, 0 non-zero regression coefficients. The

last local linear model is a constant function which classifies all the points in EPIC 3 as

class 0. In this case, the interpretation of EPIC 3 provides an explanation of a local region

for class 0.

We compute the explainable dimensions for each EPIC. We set ξ = 0.8. EPIC 1 is

distinguishable with only one variable. In fact, 694 single variables achieve an explainable

rate higher than 0.8. Among them, the variable ’tqwt TKEO std dec 12’ achieves the

highest explainable rate of 0.87. Whereas, EPIC 2 needs 7 variables to distinguish the

EPIC with explainable rate higher than 0.8, and EPIC 3 needs 13 variables.

Explainable conditions provide a different perspective for interpreting the EPICs. With

ψ = 0.9 and η = 50 for EPIC 1 and 2, and η = 5 for EPIC 3, we find the explainable

conditions listed in Table 5. In the explainable conditions, ’tqwt TKEO std dec 12’ appears

again as an important feature to distinguish EPIC 1. EPIC 2 and 3 are relatively hard to

be distinguished with explainable conditions as the explainable conditions only capture 75

out of 133 points for EPIC 2, and 9 out of 29 points for EPIC 3.

5 Conclusions

In this paper, we develop MLM under co-supervision of a trained DNN. Our goal is to

estimate interpretable models without compromising performance. The experiments show
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EPIC Descriptions Size

1 (442) std delta delta log energy> 0.057, tqwt energy dec 18≤ 0.562, 381

tqwt TKEO std dec 12≤ 0.102, tqwt medianValue dec 31≤ 0.454

2 (133) mean MFCC 2nd coef≤ 0.397, tqwt entropy log dec 27≤ 0.696, 75

tqwt entropy log dec 35> 0.368, tqwt TKEO std dec 17≤ 0.216

3 (29) tqwt entropy shannon dec 8≤ 0.007, tqwt stdValue dec 19> 0.373 9

Table 5: Explainable conditions for the 3 EPICs for Parkinson’s disease data. Numbers in

the bracket indicates the size of EPIC in training data.

that MLM achieves higher prediction accuracy than other explainable models. However,

for some data sets, the gap between the performance of MLM and DNN is not negligible.

Interpretation is intrinsically subjective. For different datasets, different approaches can be

more suitable. We have developed a visualization method and a decision rule-based method

to help understand the prediction function. In any case, these methods rely heavily on the

local linear models constructed in MLM. To explore the aspect of interpretation at greater

depth, as future work, we plan to examine applications in more specific context.
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